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Abstract: This work focuses on interpreting the importance of considering uncertainty in determining a
reliable and cost effective design for remediation of a physical system, namely a ground water system. The
utilization of optimization in this process is critical as it provides a mechanism for determining cost effective
designs. In these optimization problems calculating values of the objective and constraint functions requires
the application of mathematical simulations of the physical system. A genetic algorithm (GA) is utilized to
solve the optimization problems. Uncertainty is considered for a variety of physical systems using a multi-
scenario approach. The physical systems examined differ in their large scale features. The differences in the
affects of the uncertainty on the solutions to the optimization problems applied to each of the systems are
compared using statistical tools. Through correlation measures, the significance of uncertainty in each of
the systems is determined. The results of this work indicate that large scale features of the physical system
for ground water remediation design problems dictate the relevance of uncertainty in determining reliable
cost effective designs.
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1 Introduction

Numerical models are used extensively as predictive tools for making ground water man-
agement decisions. The accuracy of predictive ground water flow models and subsequent
reliability of management designs is dependent upon the ability to accurately represent
material properties of a ground water system, also known as a ground water aquifer. Un-
certainty in these parameter values can result in ground water management designs that
are not reliable. The degree to which uncertainty affects the reliability is a function of the
large scale differences in the geologic environments of the physical systems. Optimization,
statistics and model simulations provide the tools for which the physics of ground water
flow models are shown to be an important consideration in determining the relevance of
uncertainty in determining cost effective reliable remediation designs.

The spread of contaminated ground water is often prevented by pumping ground water
out of the ground, thereby influencing ground water flow. When contaminated ground water
is extracted from the ground it is treated, or purified, then safely discarded. Remediation
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systems that operate in the manner are referred to as pump-and-treat designs. The instal-
lation and operation of pump-and-treat designs are costly, and so optimization methods are
commonly used to determine cost effective designs.

A parameter value of a ground water system that greatly influences the dynamics of
flow is the material property of the ground known as the hydraulic conductivity, K [14].
Hydraulic conductivity defines the rate at which water, under pressure, is able to flow
through the ground. In one dimensional space this relationship is defined by Darcy’s Law:

v = −K
dh

dx
, (1.1)

where v is the specific discharge of water, or velocity of water flow [LT−1], K is the hydraulic
conductivity of the medium [LT−1], h is the hydraulic head, or level of the surface of the
ground water subject to atmospheric pressure [L], and x is spatial location [L] [5].

It is difficult to measure hydraulic conductivity values in the field. While geologist
can provide a modeler with a rough map of hydrologically distinct regions, the boundaries
between these regions is often not precise. Further, it has been well documented that even
in hydrologically similar regions there is spatial variability in the hydraulic conductivity [7].
The uncertainty of hydraulic conductivity has been the subject of a great deal of research
related to ground water management [16,1,8,6,21]. Unlike in previous studies where the
focus has been on the natural spatial variability of hydraulic conductivity, here we examine
the effects of uncertainty in the boundaries of distinct hydrologic fields on the determination
of reliable optimal cost pump-and-treat ground water remediation designs. Further, these
effects are examined for regions with distinctively different geologic settings.

Regions with similar hydrologic properties characterized by similar hydraulic conduc-
tivity values are called hydrostratigraphic fields. In this work, a heterogeneous field is one
where there is more than one hydrostratigraphic field. The locations and orientations of the
boundaries of the hydrostratigraphic fields can have a significant impact on the reliability of
management designs. These effects have been shown to exist in the determination of reliable
pump-and-treat remediation designs for containment where each field is spatial variability
but the boundaries of the fields are assumed to be fixed [16]. Here we examine the uncer-
tainty in the location of the boundary itself for seven different models each representative
of a distinctly different geologic environment.

Numerical ground water flow models for heterogeneous aquifers are built using a block-
structured approach. Such an approach limits the possible geometries of the boundaries.
Modeling complicated geologic environments, such as vertically sloping boundaries, alter-
nating layers of sands and silt or fingering of sand and silt, multilayered numerical models
requires fine discretization of the fields. The computational intensity of models with fine
discretization is often prohibitive. In some geologic settings it is shown that the uncertainty
associated with course block-structured models in heterogeneous fields does not significantly
affect the reliability of an optimal pump-and-treat ground water remediation design [10].
While such a model ignores the finer details of the geometry of the boundary of distinct
hydrologic fields, the overall geometry in the model with respect to the design constraints
affects the degree to which a reliable ground water management design can be determined.

Point source data of hydraulic conductivity, such as the data gathered from water wells,
provides sparse data from which hydraulic conductivity values are determined. In those
areas where the hydraulic conductivity value is not known, geospatial statistical measures
are used to interpolate K values. While spatial variability in K is a source of uncertainty in
these models, it has been shown that the uncertainty in mean K values for heterogeneous
fields is most significant when the contrast between the mean K values is high [21]. In this
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work only systems with highly contrasting mean K values for distinct hydrologic fields are
considered.

The uncertainty in the locations of distinct hydrostratigraphic regions for seven different
geologic environments is analyzed with respect to a pump-and-treat ground water remedia-
tion design. The determination of a set of scenarios that represent the uncertainty in these
boundaries uses an approach that involves techniques in image processing to segment the
hydraulic conductivity field [15, 3, 19]. Unlike support vector machines [2] and methods
in cluster modeling [11] that are typically applied used to separate field of like data, the
method presented assumes no prescribed geometries for the boundaries of the distinct K
fields and all observations of K are regarded as true values. Purely geospatial statistical
methods, such as Multiple Indicator Kriging [17] require that decisions be made about the
statistical techniques that can influence the weight of specific data points in determining
the location of the boundary. Geospatial statistical techniques are used to generate full
field categorization data from the sparse data, then methods in image processing are use
to determine the boundaries that define each of the realizations of different heterogeneous
hydraulic conductivity fields in the set of multiple scenarios.

In examining the uncertainty effects in a ground water management design, one can
take a purely mathematical approach whereby the quantification of the uncertainty is well
defined and it is possible to calculate the uncertainty in the response [20]. These methods
require that the uncertainty in the K is known. While such an approach is possible for fields
where the hydrologic properties are uniform, in heterogeneous models where the boundary
of the distinct hydrologic fields is uncertain, such an approach is not straight forward. In
this work, a stochastic approach is taken in modeling the uncertainty in the location of the
boundaries of distinct hydrologic fields for each of the geologic environments. Stochastic
approaches are commonly used to interpret the effects of uncertainty on pump-and-treat
management designs [18]. Here the boundary is modeled using a multi-scenario approach.
The location of the boundary in each of the scenarios is determined using a method derived
from techniques in image processing. The optimal pump-and-treat ground water remediation
design is determined using a genetic algorithm (GA) for each of the scenarios. Statistical
measures are used to draw conclusions about the optimal solutions with respect to the
uncertainty considered in each model.

The specific objective of this work is to examine how uncertainty in a physical model is
expressed in the reliability of a solution to an optimization problem. In particular, this work
examines optimization problems where the objective function and the constraint functions
are dependent upon the physical model. The application presented in this work is the
determination of an optimal pump-and-treat ground water remediation design where there
is uncertainty in the physical model that describes ground water flow.

Methods used to model ground water flow are presented in the context of identifying
significant features of ground water flow systems that are relevant to pump-and-treat ground
water remediation designs. An optimization problem that results in a least-cost pump-and-
treat remediation design is formulated. Details of a GA are discussed to determine the
solutions to the optimization problem. And the methods section concludes with a discussion
of how uncertainty in the ground water flow model is represented in the optimization problem
and how the solutions are analyzed. Following the methods section is a description of the
different physical ground water flow models and the remediation design constraints analyzed
in this study. The parameter values of the GA applied to these problems is also presented.
The results of this work are divided into two sections, one where differences in the optimal
solutions are observed for the different models where uncertainty is not considered, and
another where uncertainty is considered. The main results are highlighted throughout the
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results section and the conclusions section summarized more broad key results of this work.

2 Methods

2.1 Ground Water Flow Model

A pump-and-treat ground water remediation design that contains the flow of contaminated
ground water through manipulation of the hydraulic head values is the focus of this study.
Determining a least-cost design that meets the imposed flow constraints for containment
requires solving the partial differential equation that describes the dynamics of ground water
flow in a fully saturated, three-dimensional, porous media:

∇(K · ∇h) = Ss ·
∂h

∂t
+ f, (2.1)

where ∇ is the spatial differential operator, K is the hydraulic conductivity tensor [LT−1], h
is the hydraulic head [L], Ss is the specific elastic storage [L

−1], t is time [T] and f represents
a source/sink (per unit volume) term [T−1]. It is within the source/sink term, f , that the
pumping rates are prescribed.

To solve for the hydraulic head in the flow equation (Equation (2.1)) defined by a givenK
field and pumping design in space and time, the ground water flow simulator MODFLOW-
2000 is applied [9]. This simulator takes a finite difference approach to solve the flow equa-
tion. The problems examined in this work seek steady-state solutions, and the aquifers in
the model are assumed to be confined. The implications of examining a steady-state solution
are that ∂h

∂t is set equal to zero in Equation (2.1) and confined aquifers are those where the
hydraulic conductivity values for each cell in the finite-difference mesh are constant. These
are common assumptions to make for examining new methodologies applied to ground water
management problems. Under these conditions the head response to pumping rates is linear
allowing for a response matrix approach to be utilized [8]. This approach greatly reduces the
number of calls to the numerical solver, MODFLOW-2000, for the flow equations, thereby
reducing the computational intensity of the problem.

The response matrix approach to modeling the hydraulic head values for a management
design is performed as follows: MODFLOW-2000 is utilized to calculate the hydraulic head
values for each of the models under conditions where none of the wells are actively pump-
ing. These values are called the ambient head values. The hydraulic head values are then
calculated using MODFLOW-2000 for models where one well is assigned one pumping unit
and all other wells are inactive. The difference between the ambient head value and the
head value in response to one unit of pumping is the hydraulic head response associated
with the active well. The head responses are calculated for each of the proposed wells in
the management model. These response values are collectively called the response matrix.
The total head response to a management design defined by pumping from multiple wells
at variable rates is then calculated. These head values equal the sum of the individual head
responses from each of the wells scaled by the pumping rate assigned to each of the wells.
The total head response is then added to the ambient head values to obtain the steady-state
head values for the model.

2.2 Optimal Cost Pump-and-Treat Design

The cost associated with the remediation design is the sum of the cost of installation of
the active wells and the cost of remediating the volume of water extracted from each of
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the wells [4]. It is here assumed that the cost of remediating the extracted water does
not change with time and is not dependent upon the concentration of the contaminant
in the extracted water. Such an assumption is reasonable for short term projects where
water is sufficiently remediated using methods that are low cost, not dependent upon the
concentration of contaminant in the water, and where maintenance and operational costs
of the wells is approximately linear with respect to the quantity of pumping. When it is
necessary to implement a management design over a long period of time and when the
technology necessary to sufficiently remediate the water is costly and is dependent upon the
concentration of contaminant in the water, it is not reasonable to assume the cost per unit
of pumping is constant.

A fixed number of wells are considered at specified locations. Flow constraints are
placed upon the system so that the gradient of the hydraulic heads at specified locations is
towards the wells. The optimization problem that minimizes the cost associated with this
remediation plan is as follows:

Objective: min
∑n

i=1 (CAi +Rqi)

Subject to: gj > max g, j = 1, ...,m

0 ≤ qi ≤ max q, i = 1, ..., n,

(2.2)

where C is a real valued constant representative of a fixed installation cost for each active
well, Ai is the activity function defined below, R is the daily cost of ground water remediation
per unit volume of water per, qi is the pumping rate at well i measured in units of volume
per day, n is the total number of wells considered, max g is the maximum allowable hydraulic
head gradient so that flow is towards the well at any of the m constraint locations, gj is the
gradient at the constraint location j given a pumping design of q = (q1, q2, ..., qn), and max q
is the maximum amount of pumping from any of the wells. Here pumping at any specific
well, qi, must be positive. This condition implies that only extraction wells are considered
(no injection wells are considered) in the resulting remediation plan. The activity function
is given by the following:

Ai =

{
0, if qi = 0

1, if qi > 0.
(2.3)

The value of the hydraulic head gradient, gj , is defined in terms of the finite difference
mesh utilized in the ground water simulator (Figure 1). At any of the constraint locations,
j, the gradient, gj , is modeled by the difference in hydraulic head values at adjacent nodes
oriented such that flow from the outer node, k, to the inner node, k − 1, would be towards
the well. Then gj = (hj,k − hj,k−1)/∆x, where hj,k and hj,k−1 represent the hydraulic head
values at adjacent nodes of the mesh associated with constraint j, and ∆x represent the
spatial distance between the adjacent nodes.

2.3 Derivative-Free Optimization

A derivative-free method of optimization is used to solve this optimization problem since
the objective function for this problem is discontinuous and hence not differentiable due to
the activity function in Equation (2.3).

The maximum pumping constraint is taken into consideration in this problem by defining
a discrete and finite set of permissible pumping rates for each well. The permissible rates are
between 0 and max q. By defining the set of pumping rates in this way, the decision space
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for this optimization problem consists of a large, but discrete set of variables. A genetic
algorithm (GA) is employed to solve this modified optimization problem. Within the GA
each member of each generation of the populations represents a possible remediation design
plan, i.e. combination of pumping rates at the proposed well locations.

Here a minimum fitness value is sought. The fitness value is equal to the value of
the objective function, plus a scalar multiple of the sum of the violations of the gradient
constraints at the constraint locations should the given pumping design fail to meet the
constraints (Equation (2.2)). This fitness value is thus defined by the following equation:

n∑
i=1

(CAi +Rqi) + ω
m∑
j=1

max{0,max(g − gj)}, (2.4)

where all variables are as stated previously, and ω is a penalty weight. By defining the
fitness value in this manner, the gradient constraints are considered in this optimization
problem. While it is possible that the gradient constraints may be violated using this
formulation, by setting the penalty weight appropriately, violations of the constraints are
unlikely.

In the GA, subsequent generations are determined by employing the rules of elitism,
mating priority, crossover, mutation and random selection. To generate a new population,
two of the members of the mating population are randomly selected as a match. Random
crossover locations are chosen to create a member of the next generation. The members
of the new generation may undergo a random mutation, however the rate of mutation is
small. It should be noted that some proportion of the new generation is not determined
through mating and is randomly generated in the manner in which the initial population
was generated.

The parameter values that define the GA used to solve for optimal management designs
are determined by examining the reliability of the solutions. The reliability of optimal
designs determined through a GA for a particular model is found by evaluating the set
of solutions to the GA implemented with multiple randomly generated initial populations.
Reliable solutions are those that are not dependent upon the initial population. The details
of the parameters that define the GAs used for different models is presented in Section 3:
Implementation.

2.4 Representation of Uncertainty

The hydraulic conductivity of the ground through which water flows in a ground water
aquifer is not uniform. Further, hydraulic conductivity measurements often only exist at
sparse locations in a given region where water wells allow for the testing of the flow properties.
In order to solve the ground water flow model using a finite difference approach, however, it
is necessary to specify at every cell in the finite difference mesh a fixed hydraulic conductivity
value, K. Assignment of K values where no data have been collected introduces uncertainty
into the solutions to the flow model.

Heterogeneous aquifers considered in this work are those where the region being modeled
is characterized by contrasting hydraulic conductivity fields called hydrostratigraphic units.
An example of contrasting fields is a unit consisting of clean sand, where water flows with
ease (high K), and a unit consisting of sand mixed with silt, where the fine grains of the
silt block fluid flow (low K). Geologists understand that observed contrasting hydrologic
properties measured at different ground water wells indicates that the wells are located in
distinct hydrostratigraphic units separated by sharp boundaries. Mapping these boundaries
based upon sparse data is typically not precise.
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The uncertainty considered in this work is the uncertainty in the locations of the bound-
aries of distinct hydrostratigraphic units. This uncertainty is represented using a multi-
scenario approach, whereby multiple realizations of the K field are generated using assumed
known information that characterizes the uncertain parameter. The fields representative of
the uncertainty in the boundaries of the hydrostratigraphic regions were generated using a
data driven approach. First the data are classified into distinct fields and each of the data
points is assigned an integer-indicator value associated with the field to which it belongs.
The classification indicator values are then interpolated over the entire field and a contour
technique is used to determine the boundary between the contrasting fields.

Segmentation methods refer to those methods in image processing whereby the colors
assigned to each pixel in an image are categorized by particular groups. Each category or
group is usually representative of some range of colors on a given spectrum, or continuum, of
colors. A single color, called an index color, is then assigned to each category. Segmentation
of the image occurs when index color for each category is assigned to each pixel of the image
according the pixel’s original membership in the said category [19].

To apply segmentation methods in this context, the number of hydrostratigraphic re-
gions, nr, is determined as follows. Each hydrostratigraphic unit is assigned an integer
value ordered in accordance with the ordering of the mean K value for the unit, I1, I2, ..., Inr .
These integer values are analogous to the index colors described above for segmentation of
an image. For example, if there are 4 units with mean K values of 0.001, 0.01, 0.1 and 1.0
md−1, the unit with mean K of 0.001 md−1 would be assigned the category value of I1 = 1,
the unit with mean of 0.01 md−1 the value of I2 = 2, etc. If the hydrostratigraphic fields
are representative of distinct geologic regions, such as a sand unit and a silt-sand unit, this
process of categorizing the data is not difficult because the K values will differ by orders of
magnitude and membership in a particular field, for example sand or silt-sand, will be easy
to determine. If the hydrostratigraphic units are not distinct, then techniques for determin-
ing the modes of a multi-modal distribution must be employed and membership of the data
to a given distribution must be based upon likelihood measures [12].

To determine the location of the boundaries, the integer-indicator values are interpolated
for all nodes of the finite difference mesh where data does not exist using universal kriging.
Universal kriging utilizes a regression model to obtain a surrogate for the K category field.
Here a linear regression model is utilized with a Gaussian correlation function, R(θ, d), i.e. a
Gaussian correlation model is utilized. The Gaussian correlation function is of the following
form:

R(θ, d) =
N∏
j=1

exp(−θjd
2
j ), (2.5)

where θ is the correlation factor, here defined to be 1 for for each cell in the finite difference
mesh, j = 1..N , and dj is the distance from a fixed location in the model and each cell in
the finite different mesh.

The number of candidate well locations in the remediation design, n, is equal to the
number of cells in the finite difference mesh, N , only when all well possible well locations are
considered. Typically optimization problems for pump-and-treat ground water remediation
designs do not consider all cells within a model as candidate well locations and n is less than
N .

An upper bound on the correlation distance is set to be 5 nodes within the finite difference
mesh. In the physical models, this distance equates to 100 m. The Matlab kriging toolbox,
DACE, is used in this application [13]. Through kriging in this manner, each node of
the finite difference mesh is assigned a numeric value. These values may not be integers
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themselves but they fall within the integer category values assigned to each data point.

Different contour curves of the category field are then used to generate multiple realiza-
tions of heterogeneous K fields that represent the uncertainty of the boundary locations of
the distinct hydrostratigraphic units. The location of the contour associated with the indica-
tor value that is midway between the initial integer-indicator values is said to represent the
boundary location that is most likely. For example, if two indicator values are 1 and 2, then
the most likely contour would be associated with the interpolated indicator value of 1.5 in
the field. To generate a set of realizations representative of the uncertainty in the boundary
locations, a truncated normal distribution with a mean of zero and standard deviation of
one is randomly sampled. The contour level, cbnd, that determines the boundary between
the hydrostratigraphic fields associated with the two categories is given by the following
equation:

cbnd =
r

ς
(cα − cβ) +

(cα + cβ)

2
, (2.6)

where cα and cβ are the integer-indicator values assigned to physically adjacent region,
α and β in the space, r is the random value sampled from the normal distribution and ς is a
parameter that scales the random variable in such a way that the resultant cbnd is between
cα and cβ . The assignment of a value to ς is related to the level of uncertainty in the location
of the boundary where higher values relate to less uncertainty. In this study ς is equal to
the value 4.

2.5 Stochastic Analysis

For each of the models, A through G, 100 K fields are generated to represent the uncertainty
in the boundary between the low and high K fields. The least-cost pump-and-treat ground
water remediation design is determined by solving the optimization problem using a GA
for each of the 100 realizations. As such, for each model 100 optimal pump-and-treat
remediation designs are determined. These sets of remediation designs are analyzed and
compared using statistical measures.

The sets of 100 remediation designs generated for each model are differentiated by three
quantitative measures: the number of active wells, the locations of the active wells and the
pumping rates assigned at each of the active wells in the remediation designs. These sets
of remediation designs are grouped according to subsets of designs where the active wells
within each subset are the same. For example, if the solution results for a model contain
remediation designs where wells 1 and 3 are active in 30% of the designs and the remaining
70% of the solutions are designs characterized by active wells 1, 2 and 4, then the total
solution set contains two subsets of designs. Each of the subsets within the solution set is
assigned an integer value that is herein called the ”design index” for the model. The reason
it is necessary to make a distinction between designs with different active wells is that the
distance between potential well locations in the models is such that statistical comparisons
between pumping rates at different wells is meaningless.

The design index provides a label for each subset of the set of remediation designs
determined for each model. Associated with each design index are the number of wells that
are active in the design and the well number for each active well indicating the location of
the well in the model (Figure 2). The well labels are the same for all models and are assigned
based upon the well location. The mean pumping rates are determined for the individual
active wells within each of the design subsets. The standard deviation of the pumping rates
is also calculated for these wells and is used as a rough measure of the sensitivity of the
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remediation design to the uncertainty of the physical parameter of the model within the
design subset.

The response of the pumping rates within each design to the uncertainty in the physical
parameter in the model using statistical measures. In this analysis the correlation coefficients
and P-values are used to compare the optimal pumping rates at each well in each design with
the contour levels, cbnd, (Equation (2.6)) that define the uncertainty in the K field in each
model. When P-values are calculated to be less than 0.05, it is believed that the correlation
between the compared sets, quantified by the correlation coefficient, is significant.

Different optimal remediation designs for each model are defined by active wells at dif-
ferent locations within the model. The frequency of each design in the full set of design
solutions is determined. This frequency is measured in percent of the total number of so-
lutions. Further, for each design the range of contour levels that define the K fields in the
associated models are determined. When the range of contour levels for distinct designs is
disjoint, it is possible to conclude that categorization of solutions by design is a function of
the contour level. If the range of contour levels for different designs overlap, it is possible
that multiple locally optimal solutions exist in the optimization problem.

The parameters for the GA used to solve the optimization problem were set so that the
algorithm is 80% reliable for all of the models examined. Since the GA is not 100% reliable,
no consideration is given to solutions that appear to be suboptimal such as those designs
associated with anomalously high operational costs.

3 Implementation

3.1 Ground Water Flow Model

Seven hypothetical ground water flow models were generated for this study. These seven
models contrast the physical features of the geology with the parameters for the flow model
as well as the parameters of the remediation design. It is through these seven models that
it is possible to draw associations and conclusions regarding the effects of the uncertainty in
the boundary of the hydrostratigraphic units in different geologic settings.

The seven models are all single layer models representative of a region that is 1000 m
by 1000 m in size and 100 m thick. No flow boundaries exist on the northern and southern
boundaries of the aquifer, while constant head boundaries of -20 m and -25 m are set at the
western and eastern boundaries, respectively. Aquifer vertical recharge is not modeled here.
The models are all of confined aquifers and the flow equation is run to simulate a steady-
state condition. A uniform finite difference mesh of 50 cells by 50 cells is defined over the
given area so that each cell represents a 20 m by 20 m region in the aquifer (Figure 2). The
seven models represent seven different geologic settings, each with two distinct hydrologic
regions. These seven models can be grouped into two comparison groups. In the first group
(Figure 3) there are three environments where the modeled regions consist of two hydrologic
zones that are roughly the same size. The locations of low K and high K zones differ in
these models, as does the orientation of the boundary between these zones with respect to
the ambient flow fields. In the second comparison group (Figure 4) there are four different
settings also with two distinct hydrologic regions. In this group the zones of low and high K
are not equal in size and so the effects of a smaller zone of high or low K in a model that is
primarily of a contrasting K value are examined. These models differ in the locations of the
boundary between the contrasting K values, as well as the K values assigned to the defined
regions in the model with these K values.

A hypothetical data set of K values is created for each of the seven models. This set
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consists of 13 randomly generated values, sampled from distribution fields representative
of observed uncertainty in K values that have been measured in the field (Table 1) [7].
Two units with distinct hydrologic properties are defined for each model. The units are
geologically representative of clean sand characterized by a mean K value of 1.0 md−1 and a
silt-sand by a mean K value of 0.01 md−1. The locations of the hypothetical measurement
are the same for all the models (Figure 2), but the values of K measured differ. Utilizing the
segmentation algorithm, the most likely location of the boundaries of the hydrostratigraphic
units for each of these models are illustrated in Figures 3 and 4.

A set of 100 realizations of the K field are generated using the segmentation algorithm
for each model. By performing the analysis on sets of increasing size, it was determined
that the statistical characteristics of the solution sets do not change when more than 100
scenarios are considered. For this reason it is concluded that an ensemble size of 100 is
sufficiently large to represent the uncertainty in the location of the boundaries of the units
in each model. The integer value assigned to those observation locations within the region
of low K is 1, while the integer representing the high K value is 2. When the randomly
sampled contour level, cbnd, determined is greater than 1.5, the boundary of the high K
regions is closer to the observation points where high K is measured, thereby reducing the
area where high K values are assigned in the model. When the contour level is below 1.5,
the boundary is closer to the low K observation points, thereby reducing the area where
low K values are assigned. Examples of different boundary locations for models B and E
are illustrated in Figure 5. It is significant to note how the proximity of the boundary to
potential well locations in the remediation design changes as cbnd changes.

3.2 Remediation Design

A least-cost pump-and-treat remediation design is sought for each of the models that will
reverse ambient ground water flow from the west towards the east along 14 gradient con-
straint locations. These constraint locations are positioned at every other node along a 550
m northerly to southerly transect that is located 280 m from the eastern boundary of the
model (Figure 2). Ten possible well locations are positioned up-stream of the gradient con-
straints. The installation cost applied to a well, Ai, that is activated is 500 dollars. Pumping
rates are bounded below by a rate of 0 m3d−1 and above by a rate of 500 m3d−1. The daily
cost for remediation per unit pumping, R, is equal to 1. The cost for remediation and the
installation cost are artificial in this example. Their values are set such that the introduc-
tion of a new well will be considered in an optimal remediation design only when maximum
pumping is not sufficient from a remediation design with fewer wells. Ground water flow
reversal is assumed to be achieved when the difference in hydraulic head values at adjacent
nodes along the constraint location transect in the direction of the wells is greater than 0.01
m. This implies that at the outer cell of the coupled gradient constraint pairs, the hydraulic
head is 0.01 m greater than the inner cell, ensuring that ground water flow is in the direction
necessary for flow towards the wells. The parameter values of the optimization problem in
Equation (2.2) are summarized in Table 2.

3.3 Parameters of the genetic algorithm

There are ten potential well locations in the remediation design, and so there are ten deci-
sion variables in the optimization problem. The application of the genetic algorithm (GA)
necessitates the construction of a discrete and finite set of possible pumping rates for each of
the wells. For these problems the same set is utilized, namely qi may assume the following
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set of values: 0, 5, 10, 15,. . . , 495, 500. Given these parameters of the optimization problem,
there are 10110 possible pumping designs for this problem.

The penalty weight, ω, for violations of the constraints is 105 (Equation (2.4)). This value
is one where the numeric value of the costs associated with the pumping and treating of the
ground water are at the same scale as the violations of the ground water flow constraints. It
is a value that is prohibitive of violations of the constraints, but is still such that variations
in the pumping rates and hence operational costs, are optimized in this problem.

The members of the population carried to the next generation through elitism consist of
the top 10% of best fit members of the given population. The mating population consists of
the top 50% of the best fit members, including the elite. Mating is conducted by applying
one cross-over event with subsequent mutation occurring in 0.05% of the resulting pumping
rates. Mating accounts for 70% of the population of the next generation. The remaining
20% of the next generation of pumping rates are created by randomly sampling the set
of possible pumping rates for each well. The GA creates new generations of populations
of pumping combinations for the wells until after 25 generations there is no change in the
determination of a best fit pumping design for all of the members of the population.

The reliability of the GA is sensitive to the initial population size. To determine an
initial population size where the results of the GA return the same solution in 80% of
the instances, implying that a stable locally optimal solution is obtained, different initial
population sizes were considered. Using 20 different randomly generated initial populations,
the GA is applied to the seven geologic models where uncertainty is not considered. In
four of the models (Models B, C, D and E) an initial population size of 10,000 is such that
the GA returns the same result in all 20 runs, i.e. is 100% reliable. In three of the models
(Models A, F and G) an initial population size of 25,000 is needed to obtain 100% reliability.
Only in Model F is an initial population size of 25,000 less than 100%, and in this case the
reliability is found to be 80%. For all models with and without consideration of uncertainty,
an initial population size of 25,000 is used in the GA.

4 Results

Solving optimization problems where the objective and constraint functions are dependent
upon solving for a physical model using a numerical simulation are computationally ex-
pensive. When uncertainty in the model is taken into consideration using multi-scenario
approaches, it is advantageous to understand the effects of uncertainty on the solutions to
the optimization problems. The results of this work illustrate how the physical properties of
a model, namely a ground water model, play an crucial role in interpreting and quantifying
the effects of uncertainty on optimization results, used here for determining a reliable ground
water remediation system.

4.1 Geologic Variations for Models with No Uncertainty

When uncertainty is not considered, optimal remediation design plans determined for the
seven hydrologic models provide insight into the effects of large scale differences in the
physical model. In these models the hydrostratigraphic fields of a heterogeneous aquifer are
perfectly homogeneous with hydraulic conductivity values of 0.01 md−1 and 1.0 md−1 and
the boundaries of these fields are fixed at the most likely locations as depicted in Figure 3
and 4. The least-cost pump-and-treat remediation solutions for these models are given in
Figures 6 and 7.
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Result 1: There is a direct relationship between the amount of pumping required at a
well to meet the flow constraints and the K value where the wells and the gradient constraint
are positioned.

Rationale for Result 1: It is clear that the geologic environments represented by
models A-F require different pump-and-treat ground water remediation designs depending
upon the locations of the gradient constraints and the proposed well locations with respect
to the boundaries of the distinct hydrologic fields.

For example, the remediation design for Model F clearly illustrates how the ground
water flow at the gradient constraint locations is affected by extraction of ground water
in regions of low K versus high K. In Model F the south-eastern quadrant of the model
is characterized by a low K region while the surrounding quadrants are characterized by
high K values (Figure 4). The ambient groundwater flow fields in Model F at the gradient
constraint locations are similar (Figure 9). To satisfy the desired flow constraints in the
remediation design, pumping from wells 7, 9 and 10 with pumping rates of 90, 455 and 120
m3d−1 are required respectively. Well 7 is located in the low K region where less pumping
is necessary to satisfy the gradient constraints than at well 9, located in the high K region.
Pumping at well 10 supplements the drawdown of the hydraulic head needed to meet the
flow constraints in the high K region.

Result 2: There is an indirect effect of pumping at a well on the flow at the gradient
constraint locations caused by changing the hydraulic head values at the boundaries of
hydrostratigraphic regions where the ambient ground water flow gradient is small.

Rationale for Result 2: The constant head boundaries placed upon the western and
eastern boundaries of the models directly affect the ambient ground water flow within the
interior of the model (Figures 8 and 9). If the K fields are perfectly homogeneous along the
ground water flow path, then the ambient flow would be uniform across the model. Such a
field is depicted in Model A where the flow path is from west to east. In Model A, despite
the fact that the region to the north is characterized by low K values and the region to the
south is characterized by high K values, along any flow path that runs directly west to east
the hydraulic conductivity is the same.

When the boundary between the regions of high K and low K are not co-linear with
the flow path, the ambient flow fields in the interior of the model are not uniform. Ground
water flows more quickly through high K fields than low K fields. For models where the
boundaries of a connected high K field include two types, a single valued constant head
boundary and a unspecified head value such as that defined by an adjacent low K field in
the interior of the modeled region, the hydraulic head variations within the high K field
are much less than the head variations in the adjacent low K field. Examples of such high
K fields are illustrated in Models B, C, D, and E (Figures 3 and 4). The most efficient
way to change the flow in these high K fields is to pump ground water out of wells in the
surrounding low K field so that the head values in the cells interior to the model that bound
the high K region are such that the gradient constraints are satisfied. Pumping within the
low K regions directly effects the heads along the delineating boundaries of the low and high
K regions, resulting in a secondary effect of changing the flow within the high K region so
that the gradient constraints are satisfied.

It should be noted that it is generally not prudent to pump directly from low permeable
regions of the aquifer because this inevitably increases the drawdown at the well. As draw-
down increases, greater effort is needed to pump water from a greater depth out of the well.
Assuming the cost of pumping is linear for these cases is not realistic and is a limitation of
this model. Further, increasing the drawdown significantly at a well may result in lowering
the hydraulic head to the point where it is below the top of the aquifer. If this happens,



LARGE SCALE UNCERTAINTY IN THE OPTIMIZATION OF A PHYSICAL MODEL 515

then the flow does not occur in a confined aquifer, as is assumed in these models. Making an
incorrect assumption about confined versus unconfined flow can result in highly inaccurate
predictions of the hydraulic head. While these affects were not considered in the analysis of
the affects of uncertainty on remediation design in this work, future models should consider
avoiding such problems by the addition of a minimum head constraint at the wells in the
optimization problems.

In models C and D the gradient constraint are located in high K regions where the
constant head boundary values assume a single value. In these models the optimal pumping
designs are ones where the wells are located solely within the low K regions adjacent to the
high K regions. In fact the only models where pumping wells are located in a high K field
are those models where the gradient constraint locations are within high K fields bounded
by constant head boundaries characterized by different constant head values (Models A, F
and G).

Results summary: Optimal pump-and-treat ground water remediation designs are
defined by the locations of active pumping wells and the rate at which water is pumped out
of the ground. Both the well locations and pumping rates are functions of three factors.
First, they are directly related to the manner in which the cost function in the optimization
is constructed. Often, this is the only concern for those applying optimization techniques
to ground water management problems. But two overlooked factors are those related to
the physical model itself. There is a direct relationship between pumping and ground water
flow at the gradient constraint locations. This direct relationship is due to the hydraulic
conductivity value of the field where the active well and gradient constraints are located.
There is also an indirect effect of pumping on the flow at the gradient constraint locations
caused by changing the hydraulic head values at the boundaries of contrasting K fields in
the model.

4.2 Uncertainty in the Boundary

There are three features that define an optimal pumping design for each of the models: the
number of active wells, the locations of the wells and the rate at which the wells are pumping.
In each of the models, changes in the location of the boundaries between low and high K
fields results in changes in the resultant optimal pump-and-treat remediation design. The
effects of the uncertainty in the boundaries of the regions for different geologic environments
is assessed by examining multiple optimal solutions applied to multiple scenarios generated
to represent the uncertainty. The following results indicate that the geologic environment
plays a significant role in determining the effects of uncertainty.

The optimal remediation design results applied to the multiple scenarios generated to
represent the uncertainty for each of the geologic models are summarized in Table 3.

4.2.1 Well Locations

Result 3: If all of the solutions determined in the stochastic analysis result in remediation
designs with the same numbers and locations of active wells, then the uncertainty in the
boundary between contrasting hydrostratigraphic fields is expressed in the variability of the
pumping rates at the active wells only. From a design perspective these cases are ideal
because there is no uncertainty capital costs associated with the installation of the wells
because the number of active wells and locations of the wells can be determined with 100%
certainty.

Rationale for Result 3: The results summarized in Table 3 indicate that there is only
one design index associated with the solution sets for Models A, B, C and E. This result
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implies that uncertainty in the boundary between high and low K fields does not affect the
number of active wells or the well locations in the optimal remediation designs for these
models. Only the pumping rate at each of the active wells is affected by uncertainty.

Result 4: When the physical effects on the optimal pumping design are affected by
uncertainty in the boundary between contrasting hydrostratigraphic fields, then uncertainty
in the optimal designs is expressed in the pumping rates at the active wells as well as the
number and locations of the active wells.

Rationale for Result 4: Multiple Design Indices are listed for the optimal remediation
designs determined for the multiple scenarios generated to represent the uncertainty in
Models D, F and G. For each of these models, changes in the boundary locations resulted
in changes in the direct and indirect effects of pumping on the ground water flow at the
gradient constraint locations.

In Model D, as the contour level, cbnd, increases, the boundary moves closer to the region
where high K values are observed, causing the area of the high K region to decrease. To
achieve the desired head gradient within the high K region most efficiently, the active well
located in the adjacent low K region, must be as close to the boundary as possible. And so
as the boundary moves closer to the observation points of high K, the activation well moves
from well 3 to either well 2 or well 8.

There are two possible pumping designs for Model G, both with two active wells pumping
in the high K field. In both designs well 10 is aggressively pumping thereby forcing water
to flow towards the wells. The no-flow condition along the northern boundary of the model
invokes a uniform gradient of groundwater flow along the northernmost transect of the
model. This boundary effect is extremely difficult to overcome and so pumping at well 10,
closest to this boundary and closest to the gradient constraints is needed.

In the interior of the Model G, aggressive pumping from either well 3 or well 8 is used
to meet the gradient constraints further south. Along the southern boundary there is a no
flow condition, however, the low K region in the southwestern region impacts the gradient
in the high K field. The groundwater flow along the southernmost flow path from west to
east is not uniform. Along this path a much higher ambient head gradient exists in the low
K region than in the high K region. Since the ambient gradient in the high K region is
smaller in the south than in the north, pumping from a centrally located well, such as well
3 or well 8, will reach the desired gradient constraint condition. The decision to pump from
well 3 or 8 is related to the location of the boundary since there is an indirect effect on the
gradient at the constraint locations in the high K field in the southern region of this model.

In Model F, four different remediation designs, indicated by four design indices in Table
3, are determined for the scenarios associated with different contour levels, cbnd. For most
scenarios three wells are required to be active to meet the flow constraints. In cases where
the boundary is closer to the observed low K regions, the gradient constraints in the high
K region require substantial pumping to meet the flow constraints at wells 8 and 10. While
wells 8 and 10 affect the gradient in the high K field, additional pumping is required to affect
the gradient in the low K field. Recall that effects on the boundary within the interior of
the model primarily occur from pumping in a low K region and here wells 8 and 10 are
located in a high K region. Pumping from either well 6 or 7 will equally satisfy the gradient
constraints in the low K field.

As the contour level, cbnd, increases and the boundary location moves towards observa-
tions points with high K values in Model F, the active pumping well in the low K region
is located centrally at well 7, while the wells in the high K region are positioned at well
locations 9 and 10. When the contour level is very high, the design only requires that two
wells are active, namely wells 8 and 10. At this point, well 8 is located within the low K



LARGE SCALE UNCERTAINTY IN THE OPTIMIZATION OF A PHYSICAL MODEL 517

field (with lower contour level it is in the high K field). Despite the fact that low pumping
is generally needed to influence ground water flow in low K fields, pumping from well 8
remains aggressive since the ambient head gradient in the low K region is greater in Model
F than in it is in Models B and E. Aggressive pumping is required meet the desired flow
constraints.

Results summary: The number of active pumping wells and the location of these
wells in an optimal pump-and-treat ground water remediation design is not affected by
uncertainty in the boundary between low and high K fields if the uncertainty does not
change the direct and indirect effects of pumping on the hydraulic head gradient at the
flow constraint locations. If the direct and indirect effects are impacted by changes in the
boundary, then the number and location of the active wells in the optimal designs is impacted
as well. Uncertainty in the boundary, in these cases, results in solutions where the number
of active wells, the locations and the pumping rates are uncertain.

4.2.2 Pumping Rates and Reliability

The rate of pumping from each of the wells in the remediation design is almost always
related to the K value at the well. Wells in low K regions generally pump less than wells in
high K regions. Of course there are exceptions to this generality, as seen in pumping from
well 8 in Model F when the contour level, cbnd, is high. Statistical measures are used to
examine how the uncertainty in the boundary between low and high K fields is related to
the optimal pumping rates determined at the wells. The mean and standard deviation of
the pumping rates for the different optimal designs for each model are reported in Table 3.
The correlation coefficient and P-values between the pumping rates and the contour level
values are also reported in Table 3 to determine the likelihood that the changes in pumping
are related to the uncertainty.

Result 5: Low variance in pumping rates is not always an indication of a reliable design.

Rationale for Result 5: The pumping rates for optimal designs determined for Models
A, C and D when uncertainty is considered are all characterized by low standard deviations
that are less than 10% of the mean rate. Due to the discretization of the pumping rates
used in the GA, drawing conclusions about the changes in pumping rate with the changes
in the contour level values, cbnd, as indicated by the correlation coefficient and the P-value
are questionable. But the resultant designs for Models A and C have only one design index,
indicating certainty in the well locations for the design. Since the standard deviation of the
pumping rates are low for these models it can be concluded that these designs are reliable.
No further measures are necessary to better define the boundary in these models.

The optimal designs determined for Model D, however, have three possible designs that
differ in the location of the remediation well with respect to the gradient constraints. In
these designs the location of the well is shown to be dependent upon the contour level, cbnd,
and so there is risk associated with determining the placement of the well. Since wells are
expensive to set and because the location of the well is highly dependent upon the contour
level, efforts should be made to better classify the location of the boundary.

Result 5: High variance in pumping rates may be attributable to the uncertainty in the
boundary. The physics of the model is a factor in making this assessment.

Rationale for Result 5: In Models B and E the standard deviation of the pumping
rates is greater than 35% of the mean. There is only one optimal design however for each of
these models, i.e. the optimal location of the pumping wells is the same for all scenarios. In
these models there is a very strong correlation between the pumping rates and the contour
level, cbnd, and this correlation is significant as indicated by the P-value being well below 0.05.
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These statistical measures indicate that the pumping rates in these designs are a function
of the location of the boundary between the low and high K fields. In these cases it would
be strongly suggested that further geophysical data be collected to reduce the uncertainty
in the boundary location so that reliable, cost effective pumping can be employed.

In Model G two remediation designs are determined for all values of the contour level,
cbnd. The standard deviation of the pumping rates determined at well 10 is low and the
correlation with the contour level is not significant. These observations support the conclu-
sion that pumping from well 10 not driven by the boundary location, but rather by the no
flow condition placed along the northern boundary of the modeled region. The high corre-
lation coefficients and low P-values for the pumping rates at wells 3 and 8, interior to the
model, suggest that the location of the boundary has a significant effect on the remediation
design. In this model 84% of the designs invoke pumping at wells 3 and 10 so it may be
recommended in this case that this design be implemented and revised once an observation
of K is determined at well 10.

Result 6: The geometry and uncertainty in the location of the boundary between
contrastingK fields results in very different expressions of the uncertainty in the remediation
design when the contrasting K fields are reversed.

Rationale for Result 6: Model D and Model F are characterized by an almost homo-
geneous K field with a contrasting region in the southeast corner of the model. In Model
D the field is primarily one of low K with the contrasting field having high K values, while
in Model F the field is primarily one of high K with a contrasting field of low K. The
optimization results with the consideration of uncertainty for Model D resulted in a single
well design with a pumping rate that was known with certainty. The results for Model F,
however, produced the most variable results of all of the models examined in this study.

The optimization designs obtained when multiple scenarios were used to represent the
uncertainty in Model F resulted in four possible designs. The standard deviations of the
pumping rates are generally large in all of these designs (Table 3). By examining the
statistical correlations between the pumping rates and the contour levels, cbnd, used to obtain
these results it was found that in some of these designs the pumping rates are dependent
upon the contour levels. These dependencies were observed in the design associated with
design indices 1 and 2. In designs associated with design indices 3 and 4 the statistics
indicate that there is still ambiguity over the dependence of pumping upon the contour
level.

The location and uncertainty in the boundary between the low and high K values in
Model F are exactly the same as those observed in Model D, but in Model D there is a
small region of high K in a predominantly low K field. While the standard deviations of
pumping in Model D were lower than those observed in Model F, recall that in Model D
three possible designs were determined. To determine a low risk remediation design for
a geologic environment similar to that in Model F would require that further information
about the location of the boundary between the low and high K be obtained.

Results summary: The uncertainty in the boundary between low and high K regions
in a ground water model results in uncertainty in optimal cost pump-and-treat ground
water remediation designs. The uncertainty in the remediation designs, however, is not
always correlated with the uncertainty in the model. Unlike optimization problems where
uncertainty a specific parameter of the problem arises in the mathematical formulation of the
problem, the indirect uncertainty in the model as it relates to uncertainty in the optimization
problem requires that the modeler understand the physics of the model to best interpret the
uncertainty results.
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5 Conclusions

The research presented herein examines the uncertainty in the boundary between distinct
hydrologic regions in a ground water model characterized by contrasting hydraulic conduc-
tivity values for the development of optimal pump-and-treat remediation designs. Different
geologic environments are presented in this study where the uncertainty in the boundary
of the low and high K fields is considered. The uncertainty is represented using a multi-
scenario approach whereby each scenario represent a K field in a given environment with a
different boundary location as defined by a contour level. The technique used to determine
the boundary location is based upon image segmentation method approaches coupled with
contour methodologies. A genetic algorithm is used to solve the optimization problem whose
objective is to determine a least cost pumping design. Installation costs are considered in
this model. The results of these studies indicate that reliable ground water remediation
designs are affected by the geometry of different geologic environments in highly variable
ways.

The results of this research indicate that while the uncertainty in all of the models con-
sidered is due to the uncertainty in the boundary between the low and high K fields, the
physical model plays a substantial role in how this uncertainty affects the uncertainty in
the optimization results. In these ground water remediation design problems having a clear
understanding of the physics of the model, it is possible to draw conclusions about how the
optimal remediation designs are dependent upon the geologic environment. By classifying
physical features of the model related to the decision variables and constraints in the op-
timization problem, observations that involve the ground water flow model provide insight
into an interpretation of the optimization results that go well beyond a purely statistical
interpretation.

This work involves the interpretation of seven distinct physical models and while it is
possible to draw conclusions about how the geometries of the physical models affect the
optimization results, further investigations are necessary to quantify mathematically these
responses.

Statistical measures are useful tools for examining the correlation between the imposed
uncertainty and the uncertainty in the optimal results. When physical models are considered
and the uncertainty is such that uncertainty can change the dynamic of the modeled system
dramatically with respect to changes in the decision variables, information provided by
statistical measures may not be sufficient for making decision for reliable designs. This work
has shown that such dramatic changes are possible in applying optimization methods to
obtain optimal pump-and-treat ground water remediation designs.

Using mathematical models as prediction tools for physical systems is common practice
in optimization problems. If there is uncertainty in the physical system, multi-scenario
approaches are often used to generate multiple optimal solutions from which reliable results
are obtained. This research suggests that before one takes this approach, they look beyond
the multi-scenario results to determine whether or not the features of the physical model
can be used to understand how uncertainty in a physical model is expressed in the results
of an optimization problem that is dependent upon solving the physical system.
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Table 1: Hypothetical values of hydraulic conductivity, K(md−1), observed in the given
numbered sample at the (x, y) coordinate, measured in m, for each of the modeled regions,
KA−G. The coordinate (0,0) is located in the south-west corner of the modeled region,
and coordinates pairs where the x coordinate is positive are to the east of (0,0) while those
where the y coordinate is positive are north of (0,0). These observation points are graphed
in Figure 2, labeled by the Sample number.

Sample x y KA KB KC KD KE KF KG

1 100 800 0.0103 0.95 0.0095 0.0097 0.0100 0.958 0.934
2 140 120 0.96 0.92 0.0095 0.0095 1.05 0.975 0.0106
3 160 320 1.03 1.09 0.0098 0.0096 1.13 1.14 0.0112
4 240 660 0.0105 0.85 0.0102 0.0102 0.0098 1.08 0.954
5 260 880 0.0095 1.02 0.0099 0.0095 0.0111 1.04 1.014
6 360 220 0.95 1.01 0.0113 0.0106 0.95 1.07 0.0095
7 460 540 0.0076 1.08 0.0104 0.0104 0.0092 1.20 1.002
8 600 120 0.94 0.0076 1.07 0.98 0.0102 0.0094 0.948
9 620 820 0.0099 0.0089 0.992 0.0102 0.0103 1.03 1.14
10 760 340 1.12 0.0111 1.11 0.93 0.0094 0.0124 0.934
11 780 880 0.0116 0.0095 1.05 0.0106 0.0092 0.965 0.975
12 900 660 0.0092 0.0097 1.07 0.0103 0.0106 0.942 0.926
13 920 80 1.18 0.0113 0.967 0.99 0.0093 0.0121 1.014

Table 2: Values of parameters used to define the remediation design in Equations (2.2) and
(2.4).

Description Parameter Value
Number of possible wells n 10
Number of constraint location m 14
Cost for well installation C($) 500
Daily cost of ground water treatment R ($) 1
Maximum pumping rate max q(m3d−1) 500
Maximum allowable gradient max g(mm−1) 0.01
Penalty weight ω 105
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Table 3: Statistical results of the optimal pump-and-treat ground water remediation designs
for each of the models. The correlation coefficients (Corr. Coef.) and P-values are between
the pumping rates at individual wells and the contour level, cbnd, used to generate the
location of the boundary between the low and high K regions. The locations of the wells
are graphed in Figure 2. The % of Solns is the percent of solutions in the solution set that
have the associated statistical properties in the range of cbnd indicated.

Pump.
Design No. Mean Corr. cbnd % of

Model Index Wells Well m3d−1 STD Coeff. P-value range Solns.
A 1 2 6 230 15 -0.1440 0.3184 all 100

8 223 12 -0.4840 0.0004
B 1 2 7 113 66 -0.8120 0.0000 all 98

9 137 80 -0.8808 0.0000
C 1 1 3 81 3 0.6463 0.0000 all 100
D 1 1 3 57 5 -0.2296 0.2398 < 1.53 56

2 1 2 51 5 -0.7176 0.0195 > 1.53 20

3 1 8 57 3 0.9622 0.0000 > 1.53 20
E 1 1 7 94 35 -0.9252 0.0000 all 100
F 1 2 8 349 76 -0.9798 0.0000 > 1.67 18

10 335 55 0.9024 0.0009

2 3 7 77 69 -0.8849 0.0000 [1.5, 1.67] 28
9 395 76 -0.4846 0.0791
10 145 34 0.7255 0.0033

3 3 7 83 44 -0.9134 0.0015 [1.31, 1.5] 16
8 369 50 -0.5450 0.1625
10 286 26 0.0485 0.9092

4 3 6 22 9 -0.4455 0.1271 [1.31, 1.5] 26
8 435 51 -0.8618 0.0002
10 258 25 -0.3757 0.2058

G 1 2 3 344 60 -0.8856 0.0000 all 84
10 207 29 0.1491 0.3460

2 2 8 327 53 -0.9810 0.0000 all 16
10 213 14 0.7188 0.0445



524 KAREN L. RICCIARDI

Figure 1: Calculation of the gradient is performed by taking the difference in the hydraulic
head values, hj,k, at adjacent cells in line with the desired flow path towards the well
location(s), then dividing by the distance between these cells, ∆x.
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Figure 2: Hypothetical groundwater flow model. The squares represent the ten potential
well locations for the remediation design and the associated well numbers; the triangles
are located at the gradient constraint locations and are oriented so that they face in the
direction of the desired flow; the circles are the locations of the thirteen hypothetical K
measurements within the region (Table 1).
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Figure 3: Models A, B and C are of heterogeneous fields with regions of low and high K
that are roughly equal in size. In these models the boundary between the low and high K
fields occurs at the location that is most likely, cbnd = 1.5. The shaded region represents
the area of low K with a value of 0.01 md−1, while the white region represents the area of
high K with a value of 1.0 md−1. The circles represent the locations where the K values are
observed (Table 1), the squares represent potential well locations in the remediation design
and the triangles represent the locations of the gradient constraints.
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Figure 4: Models D, E, F and G are of heterogeneous fields with regions of low and high K
that are not equal in size. In these models the boundary between the low and high K fields
occurs at the location that is most likely. The shaded region represents the area of low K
with value of 0.01 md−1, while the white region represents the area of high K with value
of 1.0 md−1. The circles represent the locations where the K values have been observed
(Table 1), the squares represent potential well locations in the remediation design and the
triangles represent the locations of the gradient constraints.
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Figure 5: Three example K fields for models B and E generated so that the locations
of the boundary between the contrasting K values is based upon randomly sampling the
probability density function used to describe the uncertainty in the boundary location. The
proximity of the boundary to the potential wells in the remediation design is different. The
shaded region represents the area of low K with value of 0.01 md−1, while the white region
represents the area of high K with value of 1.0 md−1.
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Figure 6: Optimal pumping designs for Models A through C, representing different geologic
environments. The boundary of the distinct hydrologic fields in these models is at the
1.5 contour level, cbnd, of the indicator value representing the most likely location of the
boundary given the observation data. The pumping at the wells is measured in units of
m3d−1. The non-italicized values represent the optimal pumping rates when the boundary
between the K fields is located in the most likely location (cbnd = 1.5). The italicized values
are the mean values for designs when uncertainty is considered. More complete statistical
results on the sets of solutions given different K fields are reported in Table 3.
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Figure 7: Optimal pumping designs for Models D through G, representing different geologic
environments. The boundary of the distinct hydrologic fields in these models is at the 1.5
contour level, cbnd, of the indicator value representing the most likely location of the bound-
ary given the observation data. The pumping at the wells is measured in units of m3d−1.
The non-italicized values represent the optimal pumping rates when the boundary between
the K fields is located in the most likely location (cbnd = 1.5). The italicized values are
the mean values for designs when uncertainty is considered. If different remediation designs
were determined for the set of K fields that represent the uncertainty, than the different
pumping designs are indicated by the number that follows the dash after the pumping rate.
More complete statistical results on the sets of solutions given different K fields are reported
in Table 3.
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Figure 8: Ambient hydraulic heads for Models A,B and C. Red areas represent regions where
the head values are close to -21 m while blue areas represent regions where the value is close
to -25 m. Flow is from red to blue.

Figure 9: Ambient hydraulic heads for models D, E, F and G. Red areas represent regions
where the head values are close to -21 m while blue areas represent regions where the value
is close to -25 m. Flow is from red to blue.


