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Abstract: We present new methodology for constrained optimization based on building a combination of
models, one for the objective function and one for the constraint region. We use a treed Gaussian process
as a statistical emulator for the complex objective function, and a random forest to model the probability of
meeting the constraints. By combining these models, we can guide the optimization search to promising areas
in terms of both the objective function and the constraint. This approach avoids the problem of becoming
stuck in a local mode, as well as being able to deal with unconnected viable regions. We demonstrate our
methodology on a simulated problem and an example from hydrology.
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1 Introduction

Optimization of complex functions, where many separated local optima abound, is a chal-
lenging problem with a long history. Further complication arises when the function can only
be successfully evaluated over a subset of the input space, and this region is not known in
advance. In this case, it might also be of interest to learn about the feasibility region itself.
Our motivating example comes from hydrology, where we are using a computer simulation
for designing the placement of a set of wells. We want to minimize the cost of the setup.
However, for most runs of the simulator, the response is that there has been a constraint
violation, and no further information about cost is provided. Thus we need to simultane-
ously learn about the constraint region and solve the minimization. A further complication
is that no derivative information may be available, so we are restricted to derivative-free
optimization methods.

We note that constraints come in several kinds. When the constraints are known restric-
tions on the valid set of inputs, it is reasonably straightforward to focus the optimization on
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only the valid set. However when the constraints depend on an evaluation of the function,
either on values of the outputs or a failure during the evaluation, the problem becomes con-
siderably more difficult (for example [7] and the references therein). We further distinguish
between physical or hidden constraints, where it is not possible to get an output value, and
policy or unknown constraints, where an output value is obtained and then deemed not
valid. In this paper we focus on the former case, where the computer simulation fails to
return a value for some runs. In that case, no information about the objective function can
be learned from a run outside the valid set, and one wants to learn the boundaries of valid
regions to avoid wasting runs on input settings outside that set.

Our approach is to use statistical emulation, where we build a statistical model as an
approximation to the complex simulator, and use this model to guide the optimization. This
model has two parts: one to predict the response surface when the simulator gives a valid
response, and one to predict whether or not the simulator will return a valid response at all.
We use treed Gaussian processes [12] for response surface prediction, and random forests [1]
for constraint violation prediction. The former is becoming widely recognized as a flexible
surrogate model, or emulator, for the design and analysis of computer experiments. The
latter is a powerful classification algorithm from the machine learning literature.

In Section 2 we review the statistical emulation techniques. In Section 3 we apply
the statistical predictions to optimization using expected improvement. In Section 4 we
then provide an illustrative example before finally applying our methods to the motivating
example in hydrology in Section 5.

2 Statistical Emulation

The use of stochastic or statistical models to approximate a complex function, such as the
output of a computer simulator, is now well established in the literature [26, 20, 27, 6]. In
particular, the standard model used for emulation is a Gaussian process (GP). The functional
response is treated as a random variable Z(x) that depends on the input vector x such that
the response varies smoothly. The degree of smoothness is determined by the covariance
structure of the GP. GPs have the property that any finite set of locations has a joint
multivariate normal (Gaussian) distribution, thus the process is completely determined by its
mean and covariance function. If we have observations at a set of locations x1, . . . ,xn ∈ X ,
then

(Z(x1), . . . , Z(xn)) ∼ MVN(µ,Σ) , (2.1)

where µ = (µ(x1), . . . , µ(xn)) is a mean function and Σ is the variance-covariance matrix.
The mean function is typically taken as constant, linear, or a low-order polynomial. The
covariance is typically given a simple parameterization such that correlation decreases with
distance in the input space. More details on GPs are available in references such as [5]
and [28]. We take a fully Bayesian approach, allowing for estimation of uncertainty, which
is critical when trying to determine the probability that an unsampled location will be an
improvement over the current known optimum.

In some cases standard GP models are adequate. But in others, their limitations, such as
strong assumptions of stationarity and poor computational scaling, can be problematic. To
reduce these problems, we instead use treed Gaussian process (TGP) models [12]. The basic
idea is to use a recursive tree structure to create axis-aligned partitions that segment the
space into regions where the assumption of stationarity is valid, and then fit independent GP
models within each partition. The approach is an extension of the partition models of [4].
Operating under the Bayesian paradigm, the partitions can be fit simultaneously with the
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parameters of the embedded GP models using reversible jump Markov chain Monte Carlo
[16]. Fitted values and predictions are obtained by averaging over the posterior distribution
for the tree structure, so that the model can produce smooth fitted functions. There is
software available in the tgp library [11] for the open source statistical package R [25].

In addition to emulating the simulator, we also need to predict whether the simulator
will return a valid response or whether there will be a constraint violation. For this task
we turn to a machine learning tool, random forests. At each training input x, we record
a dichotomous variable Y (x) = 0 if the simulator fails to return a valid response, and
Y (x) = 1 if a valid response Z(x) is returned (which is used in the construction of the
emulator as described above). For example, when n runs are completed, the binary data
Y (x1), . . . , Y (xn) are used to train a collection of B CART trees, each randomly instantiated
[2] using m randomly selected splitting variables. We use the average vote over the B trees to
obtain the predicted probability that an untried input location x will return a valid response:
h(x) = 1

B

∑B
b=1 Ŷb(x), where Ŷb(x) is the classification assigned in the bth randomly started

tree. It has been shown that this process converges asymptotically as the number of trees
grows large, but that in practice even moderately sized choices for m and B provide a good
approximation. More details on random forests are available in [1] and comparison with
other classification methods is discussed in [17]. We use the R implementation from the
randomForest library [22].

3 Optimization

Our approach toward optimization is that of expected improvement (EI) [19, 29]. We use the
statistical emulator, or surrogate model, to guide the search for a new optimum, sequentially
investigating locations with the largest probability of being an improvement. To be concrete,
we focus on the case of minimization (but it can clearly be applied to maximization as
well). Herein we assume that the functional response is deterministic, but the method
can be generalized for stochastic response functions as well. After N runs, denote the
current minimum value observed as fmin = min{z1, . . . , zN}, where zi = Z(xi). Define the
improvement statistic at a proposed input location x by

I(x) = max{fmin − Z(x), 0}. (3.1)

Since the x of interest is the vector of previously unobserved locations, Z(x) is unknown
and we represent its distribution using the posterior predictive distribution from the treed
Gaussian process emulator. A simple algorithm for optimization sequentially selects the
points x′ that maximize the expected improvement (EI)

x′ = arg max
x∈X

E{I(x)}. (3.2)

The EI provides a combined measure of how promising a candidate point is, balancing points
where the emulator predicts a minimal response with those points where the uncertainty in
the emulator is large. For the latter locations, there is a probability of a minimal response
even though the mean prediction may not be as small due to the emulator uncertainty.

Our approach for evaluating the EI is with our TGP emulator. As with most problems
in Bayesian statistics, we use Markov chain Monte Carlo (MCMC) [10] to fit the emulator,
obtaining a Monte Carlo sample of treed Gaussian processes from the posterior distribution.
For each of these posterior samples, the expectation calculation (3.2) is available in closed
form as a function of the mean and variance of the (Gaussian) posterior predictive distri-
bution of Z(x). We then obtain a Monte Carlo estimate of the posterior EI by taking an
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average of the corresponding EI calculations that arise from each sample. Our implementa-
tion takes advantage of the functionality of the tgp R library, which provides an argument
for evaluating the expected improvement, essentially automating the EI calculation.

In the case where there are no constraints, one can just iteratively evaluate the next point
that maximizes the EI (as estimated from the emulator), and then update the statistical
emulator and the estimated improvement function. There are several algorithms that may be
used to aid in the search of the x input that maximizes the EI. In the case of a simple (non-
treed) GP surrogate model and maximum likelihood inference, there is a branch and bound
algorithm that may be used [19]. This leads to the so-called expected global optimization
(EGO) algorithm. The more sophisticated and fully Bayesian TGP model requires a more
sophisticated search method. One useful construct is a Latin hypercube design (LHD) [24]
which is a space-filling design of n points that divides the p-dimensional input space into an
n× n× . . .× n = np grid and then arranges to have exactly one sample in each row in each
dimension. [29] used the TGP EI calculations on random LHDs of candidates as an “oracle”
sub-routine within a direct/pattern-search optimizer called APPS [15, 21] and illustrate how
these tools may be used to obtain the optimal design for a circuit device. Gramacy and Taddy
[13] (Section 3) propose a simpler, R-centric variant via the opposite embedding—where the
LHD candidates are augmented by an oracle point obtained by searching the maximum a
posteriori TGP surface for minima via the optim function—that has been shown to perform
well in many examples.

In any case, the presence of constraints complicates the notion of expected improvement.
It does not make any sense to knowingly waste time evaluating the function in a region
expected to return a constraint violation. Thus we need to trade off between the EI and the
probability that a valid response will be returned. To do this, we simply multiply the EI
by the probability that we will get a valid response. At each tried location, we can record
whether or not a valid response was returned by the simulator. This information can be
used to inform a random forest classifier. Let h(x) be the predicted probability of a valid
response at input x estimated by the random forest classifier. We extend the algorithm
in Equation (3.2) by now choosing the point x′ that maximizes the expected constrained
improvement:

x′ = arg max
x∈X

E{I(x)}h(x). (3.3)

With this modification, we can focus our efforts where they are most likely to be fruitful.
How much (3.3) differs from (3.2) will depend on the shape of the constraint boundary. Note
that this approach takes a global view of the optimization problem, as both the function
emulator and the constraint probability map cover the full input space. As with vanilla EI,
there are several ways one can proceed to search for the x which maximizes the EI. All of the
techniques mentioned above would apply in the expected constrained improvement context.
Our approach is based on the R implementation described by [13].

In summary, an outline of our implementation of this algorithm is:

1. Generate a small Latin Hypercube Design of points and evaluate the function at those
points, determining the validity of responses

2. Repeat the following until convergence or computing budget exhausted:

(a) Fit the TGP emulator and random forest classifier

(b) Compute the EI and the expected constrained improvement (3.3) over a set of
candidate locations (such as from a LHD)

(c) Find the candidate which maximizes the expected constrained improvement
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(d) Evaluate this point and determine if its response is valid, and add it to the set of
evaluated points

(e) If the response is valid, move to the next iteration. Otherwise, continue to find the
candidate with the next highest expected constrained improvement and evaluate
it until a valid point is found, adding all points to the training set for the random
forest classifier

For convergence we can monitor the magnitude of the maximum expected constrained im-
provement and terminate when it is smaller than a threshold value. In practice, we are often
faced with a limited computing budget for evaluating the complex objective function, and
may need to simply terminate the search when our computing budget is exhausted.

4 Illustrative Example

We provide a relatively simple example here to illustrate our methods. Suppose we want to
minimize the function

Z(x1, x2) = −w(x1)w(x2) (4.1)
w(x) = exp (−(x− 1)2) + exp (−0.8(x + 1)2)− 0.05 sin (8(x + 0.1)) . (4.2)

Figure 1 shows the negative of the surface (i.e., as a maximization problem) for visibility
(it is much easier to see the peaks than the valleys). There are four separated modal
regions, and local modes within each of the regions. The true global minimum is shown at
x1 = −1.0408, x2 = −1.0408. Now suppose that when we try to evaluate this function, it

Figure 1: The function to be optimized, shown without constraints and shown as a max-
imization problem for visibility. The optimum is shown with the dot on the right hand
plot.

will only return valid values inside of an ellipse, but that we don’t know anything about this
valid region in advance and need to learn about it from the data.

To begin our search, we generate an initial design of 20 random points from a LHD and
evaluate the function at those points. We use this initial dataset to fit the treed Gaussian
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process emulator and the random forest classifier. We then compute the EI at a fresh set
of 100 LHD locations, multiply it by the predicted probability of obtaining a valid response
at those candidate locations, and choose the maximum of that result as the next point to
evaluate. If we obtain a valid response, that completes the iteration. Otherwise, we sample
at the location with the next highest expected constrained improvement until we obtain
a valid response (note that until a valid response is obtained, there is no need to update
the emulator). We only retrain the random forests classifier and TGP emulator once per
iteration, i.e., only after a valid response is obtained. We do fifty iterations, which provides
us with the answer.

Figures 2 and 3 show the results from this implementation. Figure 2 shows an inter-
mediate stage after twenty iterations. The upper left plot shows the truth along with the
bounding ellipse (only points inside the ellipse return a valid value) which we are treating
as unknown and arbitrarily-shaped. The lower left plot shows the current emulated surface,
which is a reasonable approximation of the truth within the valid region, although it will
continue to improve as more locations are sampled (and no data is available outside the
valid region, so we cannot expect a perfect match outside that region). The solid dots show
the locations that have been evaluated, and the open circles show the LHD over which we
conduct our search for the next point with highest expected constrained improvement. The
top middle plot shows the EI surface. The bottom middle plot shows the predicted proba-
bility of returning a valid value obtained from fitting the random forest classifier. The open
circles are the locations which have been evaluated successfully, and the filled circles are the
locations which have been evaluated but produced a constraint violation. The upper right
plot shows the product of the EI and the probability of being valid, and it is this surface that
is maximized. The location shown at the crosshairs is the chosen point. The bottom right
plot shows the progress in minimization. As the process proceeds, the emulator and the
classifier better learn about their respective problems and seek out lower minima until they
cannot find anything better. Figure 3 shows the result after thirty iterations (67 function
calls). The minimum was found after 39 function evaluations in this run.

For comparison, we pit our approach against a genetic algorithm (GA). The GA was
picked as it is another global approach which does not depend on having a good starting
location, whereas most local methods require a good staring point with which to initialize
the algorithm. We ran our procedure 100 times for 100 iterations each, and we also ran
a GA implementation in R [30] 100 times with a population size of 10 for 50 iterations,
for a total of 500 function evaluations. On average, our approach required 137.2 function
evaluations, and found an average minimum value of -1.0904, whereas the GA was budgeted
500 function evaluations for each run but only found an average minimum value of -1.0864.
Our method was within .005 of the true minimum 84% of the time, while the GA was within
.005 only 58% of the time, despite using many more function evaluations.

5 Hydrology Example

A key motivating example for this work is the hydraulic capture problem from the community
problems [23]. The goal of the problem is to find a configuration of up to four wells to
control the direction of groundwater movement to contain a contaminant plume, and to do
so at minimal cost. The constraints in this problem are in the form of specifications on the
hydraulic head differences at designated locations, and the objective function is the monetary
cost of installing and operating the wells. More details on this problem are available in [23]
and [8]. A number of solutions have been proposed for this problem, and some comparisons
and discussion of the difficulties are available in references such as [9, 14, 18]. This problem
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Figure 2: After 20 iterations: (a) the function to be optimized with valid region, (b) the
fitted emulator, (c) the EI surface, (d) the fitted probability of being valid, (e) the expected
constrained improvement, and (f) the progress in minimization. White shows high values
and green (dark) shows low values.

is particularly challenging for two reasons. First, the objective function is quite irregular
and difficult to predict. Second, the dimension of the space is not fixed, varying from twelve
dimensions if four wells are used, down to three dimensions if only one well is used (the
three parameters corresponding to each well are detailed below).

The hydraulic capture problem is described in [23] and the implementation details can
be found in [9]. Intuitively, the problem is illustrated in Figure 4. The green oval shows
the relative location of a contaminant plume in a rectangular aquifer. The circles around
the exterior of the plume represent the gradient constraints on the hydraulic head values,
aligned so that flow will be forced towards the interior of the plume to prevent migration.
Groundwater flow in the natural system in the absence of wells is towards the northeast,
indicated by the arrow in the lower left corner. In this illustration, we also use stars to
show a reasonable configuration of four wells—two extracting water inside the plume and
two injecting water outside the plume. The inputs of the objective function are the well
locations (in x-y coordinates) and the flow rates of each of the wells, so that there are three
parameters corresponding to each well. The function output is the total cost of installing
and operating the wells. Note that the calculation of this cost requires the results from the
groundwater simulator.

Our first approach is to start with four wells and allow the search to work its way down
to a single well iteratively. When the flow rate of a well is less than 1 × 10−4, the well is
turned off and the flow rate is set to zero. The search is initialized by seeding the space with
a LHD to obtain some points to fit the emulator. We then propose a set of candidate points
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Figure 3: After 30 iterations: (a) the function to be optimized with valid region, (b) the
fitted emulator, (c) the EI surface, (d) the fitted probability of being valid, (e) the expected
constrained improvement, and (f) the progress in minimization. White shows high values
and green (dark) shows low values.

from a fresh LHD, but we augment the candidate set over which we evaluate the expected
improvement in two ways. First, following [29], we add fifty points in a ball of small radius
around the best point, which helps in exploring higher-dimensional spaces. Second, we add
a candidate point equal to the best point with the smallest well rate set to flow zero. If
this point is determined to be the best, it allows us to remove a well from the design and
move to a lower-dimensional problem. We then fit the TGP emulator and the random forest
classifier, and rank the candidate points based on the product of their expected improvement
and probability of being valid, as per Equation (3.3). We evaluate the points in rank order
until one returns a valid output, then we move to the next iteration, updating the statistical
models and repeating. Convergence can be assessed by tracking the maximum expected
constrained improvement. This algorithm is able to easily reduce the number of wells from
four to two, but it has more difficulty moving to a single well solution. The best solution it
finds is a cost of $36,389.83 using two wells. We note that this solution is better than the
solutions found by six of the nine methods used in a comparison study of techniques on this
problem by [9].

However, this two well solution is not the best solution. We take a second approach to
searching the space, using our expected improvement approach for each of one-, two-, three-,
and four-well spaces separately. In this case, we do not supplement the candidate search
with a point with fewer wells, nor do we remove wells with extremely small flow rates. With
this fixed-dimension approach, we find a best one-well solution of $22,952.77, which is better
than all of the solutions found in [9], with the best solution reported there being $23,421.



OPTIMIZATIONSUBJECTTO HIDDENCONSTRAINTSVIA STATISTICALEMULATION475

Figure 4: Pictorial representation of the constrained optimization problem

We note that the setup of the experiment here is different than in the alternatives; our
method requires more than one initial valid point to initialize the statistical models. The
comparison methods might perform differently under the same initial conditions we used
here. For a small number of possible wells, it is more efficient for us to search each space
separately, as the statistical models can train more effectively to each state space, but this
approach would not scale as well to larger dimensional spaces.

6 Conclusions

In conclusion, we have proposed a new approach for constrained optimization based on
statistical models. By simultaneously learning about both the objective function and the
boundary of the constraints, we are able to better focus our efforts on the valid regions. We
note that because our methods are based on statistical models, they also apply to the cases
of stochastic simulators or probabilistic constraints.

Some areas for further work include the consideration of other classification models. For
example, when the constraint boundary is relatively smooth, a Gaussian process classifier
[3] may learn it more quickly. It would be worthwhile to compare the relative efficiency of
different classifiers under different types of feasible regions (e.g., connected versus disjoint
feasible regions). Another possibility is to connect the surrogate model with the model
for estimating the constraint boundary. A different approach is to move beyond expected
improvement at a point and consider a more global improvement function, such as one that
integrates improvement over the whole space. Convergence diagnostics could also be better
explored, such as those along the lines of [13] (Section 3).
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