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uncertainties characterizing the subsurface system (e.g. heterogeneous geological settings,
hydrogeological parameter distributions, boundary conditions), which directly reflect on un-
certainties in the response predicted with groundwater simulation models, and ultimately
may lead to management strategies that are sub optimal and/or violate the management
constraints. Thus, under conditions of uncertainty, the groundwater supply management
problem acquires a stochastic nature, whose goal is to determine robust pumping strategies
that, for example, minimize production costs, while guaranteeing adequate levels of reliabil-
ity.

In the last decades, significant research has been conducted on stochastic optimization
applied to the design of groundwater systems. Detailed reviews of stochastic groundwa-
ter optimizations models are provided in [5, 7, 21, 28, 39, 50]. Chance-constrained (CC)
techniques constitute one of first attempts to incorporate uncertainty into the optimization
model. With these techniques, the solution to an optimization problem subject to stochastic
constraints is addressed by imposing the probability of constraint violation to be below a pre-
scribed acceptable level. In groundwater management problems, CC optimization has been
applied, among others, by [48] for aquifer development, [51, 52] for remediation of polluted
aquifers, and [31] for the planning of extraction/injection systems in connected stream-aquifer
systems. One limitation of CC techniques is that they can control at most the probability of
constraint violation without assessing the magnitude of violations.

The importance of accounting for the intensity of constraint violations was shown by [53],
who presented an optimization model for groundwater remediation under conditions of pa-
rameter uncertainty, where the objective was to minimize the cost of well operation, which
included also a penalty term, called “recourse”, proportional to the amount of violation of
a prescribed clean-up target constraint. This method was also applied by [44] in a context
of planning of groundwater supplies. [43] advanced a stochastic programming formulation
referred to as “robust optimization”, which was subsequently applied by [55] to groundwater
remediation problems. In robust optimization, a solution is optimality-robust if it remains
close to optimal under most scenarios used to model the uncertain parameters, whereas it
is feasibility-robust it is meets the constraints under most scenarios. Of related interest are
applications of decision analysis concepts to the management of groundwater resources un-
der uncertain parameters [22, 21]. In this case, the enforcement of stochastic constraints is
achieved by considering, in addition to the total cost of the system under design, a “risk
cost” directly proportional to the probability of not complying with prescribed management
targets. In principle, the role played by the risk cost in decision analysis is very similar to
the role of recourse in robust optimization.

In all of the methods presented by [22, 43, 53, 55] the optimization problem takes on
multi-criteria form that implicitly addresses the trade off between optimality and reliability,
with the latter explicitly accounting for constraint violations. Note that with these methods
the groundwater management is formulated as a single-objective (SO) problem, which re-
quires the definition of penalty costs associated with constraint violations. The specification
of these penalties often represents a shortcoming of these formulations, since it requires direct
involvement of stakeholders in the management of the groundwater system.

In this study, we advance an optimization framework that may be applied to assist the
design and the management of groundwater supply systems in confined aquifers known with
uncertainty. The focus is on the hydraulic conductivity distribution, which is often the most
uncertain hydrogeological parameter to characterize due to its inherent spatial heterogene-
ity. This methodology is developed and applied to one of the groundwater management
benchmark problems formulated by [39], which, in recent years, have been utilized by several
researchers in the optimization community [18, 19, 20, 29, 32, 33, 38].

In this methodology, the SO constrained optimization problem of [39] is modified into a
multi-objective (MO) optimization problem by substituting the constraint inequalities with
an additional objective function representing, in a probabilistic sense, the violation of the
constraints in the optimization formulation. Two formulations of the additional objective
function are here investigated. In one case, this is quantified by the probability of constraint
violation, whereas, in another, this is represented by the average intensity of constraint vio-
lation, i.e the expected value of its statistical distribution.
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The goal of the MO optimization problems is the determination of the set of pumping
schemes that trade off cost optimality against the risk of not complying with the management
constraints. The MO approach may be particularly advantageous in the decision making pro-
cess. In one case, where the reliability theme is considered in terms of probability of constraint
violation, the MO problem constitutes a generalization of CC methods [48, 51, 52, 31] and
provides trade-off sets that directly address the increase in cost necessary to design more
reliable pumping systems. In another, when stochastic constraints are expressed in terms
of average intensity of violation, the MO approach is able to produce trade-off sets without
requiring the definition of penalty coefficients [43, 53, 55] that would be otherwise necessary,
within a SO approach, to commensurate violations to the groundwater supply cost.

These optimization problems are solved using a MO evolutionary algorithm. This class of
algorithms is particularly indicated to deal with problems involving non-linear and discontin-
uous objective functions. [13] provide a detailed review of MO evolutionary algorithms and
their applications in science and engineering fields. In this work, we utilize a Niche-Pareto
Genetic Algorithm (NPGA) [17, 34] in combination with a stochastic groundwater flow model
relying on a stochastic simulation (or Monte Carlo) technique.

In general, combined optimization-simulation frameworks may be computationally over-
whelming when the evaluation of the objective functions requires the use of “expensive”
simulation models. In these instances, methodologies are needed that allow for averting the
direct inclusion of the stochastic simulation model within the optimization loop. Over the
years, several works have been presented where “surrogate” objective functions are developed
in order to reduce the computational burden at the expense of model accuracy [2, 5, 11, 14,
37, 42, 46, 49, 56].

In this work, instead of calibrating surrogates of the objective functions, a substitute
of the simulation model is developed. Indeed, the nature of the flow in confined aquifers
makes it possible to determine linear functions providing a response identical to that of the
groundwater flow model, at a much lower computational cost. By using this technique, the
stochastic flow simulation model is used to calculate the so-called response matrix [27] for
each hydraulic conductivity scenario prior to the optimization loop. The optimization algo-
rithm is thus linked to a stochastic response-matrix simulator, which drastically improves the
computational performance of the optimization process and ultimately allows for considering
large numbers of decision variables.

2 Methodology

The major components of the framework presented in this work are: a MO management
problem addressing the optimal design of groundwater systems under parameter uncertainty;
a response-matrix approach to predict the response of the aquifer system to pumping stress;
and a MO optimization algorithm that identifies sets of optimal pumping schemes trading off
cost optimality against reliability.

2.1 Multiobjective Management Problem

In [39], the groundwater supply management is formulated as a SO optimization problem,
where a solution is searched for that minimizes the cost of the system, subject to a series of
constraints:

min
Q

[Cost (Q, s̃)] (2.1)

χ̃ = χ (Q, s̃) ≤ χc (2.2)

The components of the vectors χ and χc, are respectively generic functions and coeffi-
cients used to represent constraint inequalities. The variables upon which the objective
function (2.1) and the constraint inequalities (2.2) depend are: the vector of the decision
variables, Q, i.e the pumping rates at a number of potential pumping well locations; and the
vector of the state variables, s̃, i.e the hydraulic head distribution in the aquifer. The state
variables depend upon the pumping scheme Q, the boundary conditions, and the parameter
distribution in the aquifer.
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Due to uncertainty, the distribution of hydraulic conductivity in the aquifer, K̃, is here
thought of as a stochastic process. The symbol “˜” denotes stochasticity. Consequently, state
variables, the total cost and the constraint functions are themselves stochastic variables. Fol-
lowing a stochastic simulation approach, uncertainty is dealt with by generating a large num-
ber, NMC , of equally likely realizations of the stochastic parameters (Kk; k = 1, 2, .., NMC).

The goal of the management problem is to (a) optimize the expected value of the ground-
water supply cost calculated over this series of realizations:

Cost (Q) = E [Cost (Q, s̃)] ∼=
NMC∑
k=1

Cost (Q, sk)

NMC
(2.3)

while (b) probabilistically enforcing the specified constraints over the considered ensemble
of realizations. In Equation (2.3), sk indicates the vector of the state variables under the
pumping scheme Q and the generic parameter realization Kk.

In this study, two methods are considered to address the constraint inequalities under
uncertain parameters. In the first of these two methods, constraint inequalities (2.2) are
“relaxed” but penalized according to the frequency with which their violation occurs. For
any given pumping strategy, Q, such a frequency is quantified by the probability of failure [30]:

Pfail (Q) ∼=
nv (Q)− 0.5

NMC
(2.4)

where nv represents the number of hydraulic conductivity realizations in which at least one of
the constraints (2.2) is not met. By introducing Pfail, the SO and constrained optimization
problem (2.1-2.2) is transformed into the two-objective problem:

min
Q

{Cost (Q)}

min
Q

{Pfail (Q)} (2.5)

In the second method, constraint inequalities (2.2) are relaxed but penalized according to
the expected value of the intensity of violation:

V iolation (Q) = E [Violation (Q, s̃)] ∼=
NMC∑
k=1

max {0, ∥ χ (Q, sk)− χc ∥}
NMC

(2.6)

where ∥ · ∥ is an arbitrary norm used to quantify the violation associated with multiple
constraints. Therefore, the constrained-optimization problem (2.1-2.2) is transformed into
the two-objective problem:

min
Q

{Cost (Q)}

min
Q

{V iolation (Q)} (2.7)

It must be mentioned that, in a statistical sense, the cost and violation objectives may be
considered in terms of a generic representative value obtained from their respective probability
distribution functions, the choice of which is ultimately related to the general conditions of risk
aversion [6, 10, 21]. The assumption of the expected value of the distributions adopted in (2.7)
corresponds to the case of risk-neutral decision making, in which stakeholders assign, in terms
of cost and violation, the same ”weight” to all parameter scenarios. On the other hand, in
the case of risk-aversion, management strategies should be ranked based upon representative
values that are larger than the expected values of the pdf’s, since stakeholders would be more
worried about, and assign a larger weight to, parameter scenarios that produce larger cost
and drawdowns.

The goal of both problems (2.5) and (2.7) is the determination of the “Pareto-optimal”
set of pumping strategies that trade off cost optimality against the risk of not meeting the
management constraints. A pumping strategy is Pareto optimal if there is no other strategy
that performs at least as well in both objectives and strictly better in at least one objective.
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In the groundwater benchmark problem outlined by [39], the domain is represented by a
1000×1000 (m×m), 30-m thick, horizontal, and confined aquifer. The aquifer bottom and its
top are at elevations, zbot and ztop, of 0 and 30 m, respectively. The bottom of the aquifer
is chosen as the hydraulic head datum. The aquifer is uniformly recharged at its top at a
constant rate of 1.903×10−8 m/s (0.6 m/year). Groundwater flow is subject to the lateral
boundary conditions represented in Figure 1a. The bottom of the aquifer is impermeable. A
detailed description of all hydrogeological parameters may be found in [39].

Figure 1: Horizontal projection of the confined aquifer hypothesized by [39] along with the
location of 64 potential pumping wells used to identify optimal groundwater withdrawal strate-
gies. The contour lines in the background represent the expected value of the hydraulic head
(m) in the aquifer prior to groundwater pumping.

As is typical in groundwater hydrology [15], the heterogeneous distributions of hydraulic

conductivity is modeled according to a geostatistical conceptual model [36], in which K̃ is
represented as spatially distributed random process. In particular, a stationary, anisotropic,
log-normal process with an exponential covariance function is adopted:

(a) log K̃ = YK̃ = N
(
µY

K̃
, σY

K̃

)
(2.8)

(b) covY
K̃
,Y

K̃
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where: µY
K̃

and σY
K̃

are the mean and the standard deviation of the normal log-K distri-

bution, indicated by N
(
µY

K̃
, σY

K̃

)
; (dx, dy, dz) are the components of the distance vector

d; and (λx, λy, λz) are the spatial correlation scales along the coordinate directions. The
random process (2.8) considered here is characterized by the geostatistical parameters of the
random field III provided by [39], which are reported in Table 1. To represent the uncertainty
in the hydraulic conductivity spatial distribution, an ensemble of equally-likely realizations
Kk (k = 1, 2, .., NMC) fitting to the process (2.8) is generated using the sequential Gauss
simulation algorithm developed by [7].

Table 1: Geostatistical parameters characterizing the hydraulic conductivity spatial distribu-
tion [39].

µY
K̃

σY
K̃

λx λy λz

log(m/s) log(m/s) (m) (m) (m)
-4.3 1 50 50 7.5



412 D.A. BAÚ and J. LEE

In [39], the groundwater supply cost is a non-linear, discontinuous function of the decision
variables (well number, locations and pumping rates) and state variables (hydraulic heads):

Total Cost (Q, s) =

next+ninj∑
i=1

c0 · db0w,i +

next∑
i=1

c1 · |Qm
i |b1 · (zgs − hmin)

b2

+

∫ tfin

tin

[
next∑
i=1

c2 ·Qi · (hi − zgs)

]
· dt +

∫ tfin

tin

[
next+ninj∑
i=next+1

c3 ·Qi

]
· dt (2.9)

where: next is the number of extraction wells, and ninj is the number of injection wells; Qi is
the pumping rate for the i-th well (m3/s) (the i-th component of the decision variable vector
Q ); Qm

i is the design extraction rate for well i, equal to -6.4×10−3 m3/s (∼-550 m3/day);
hi and hmin represent the hydraulic head in well i (m) and its minimum allowable value,
respectively; zgs indicates the ground surface elevation, located at 60 m above the datum,
whereas dw,i (m) is the depth of well i below the ground surface (60 m); tin and tfin are the
initial and final time for groundwater pumping (s). The coefficients bi’s and ci’s associated
with the objective function (2.9) are provided in Table 2 The four terms at the right-hand

Table 2: Groundwater supply cost function coefficients [39].
Coefficient Value Unit

b0 0.3 (/)
b1 0.45 (/)
b2 0.64 (/)
c0 5.5×103 $/mb0

c1 5.75×103 $/[(m3/s)b1 ·mb2 ]
c2 2.90×10−4 $/m4

c3 1.45×10−4 $/m3

side of Equation (2.9) indicate, respectively, the capital costs incurred from installation of
pumping wells, the capital cost of extraction pumps, the operation costs for extraction wells,
and the operation cost for gravity-fed injection wells.

Decision variables are constrained by limitations on pumping rates at each well:

Qmax
ex ≤ Qi ≤ Qmax

in ; i = 1, 2, .., nw = next + ninj (2.10)

QT =

nw∑
i=1

Qi ≤ Qdem (2.11)

In (2.10), nw is the total number of installed wells (nw=next+ninj), and Qmax
ex and Qmax

in

are the maximum extraction and injection rates at any well, equal to -6.4×10−3 m3/s (∼-
550 m3/day) and 6.4×10−3 m3/s (∼550 m3/day), respectively. In (2.11), QT is the total
extraction rate, which must satisfy a groundwater supply demand Qdem = −3.2×10−2 m3/s
(∼-2,750 m3/day) [39]. In this work, no injection wells are considered (ninj=0; nw=next),
thus Qmax

in is set to zero. In addition, the extraction rates at the potential well locations are
assumed to be constant during the considered groundwater supply operation time interval,
(tin, tfin), whose length is equal to 10 years.

In [39], constraints on well locations, (xi, yi), are also prescribed in order to limit the
quantity of water withdrawn from the aquifer constant-head boundaries (Figure 1):

xmin ≤ xi ≤ xmax ; ymin ≤ yi ≤ ymax ; i = 1, 2, .., nw (2.12)

where xmin=ymin=0 m, and xmax=ymax=800 m. Hydraulic heads at pumping wells are
constrained within minimum and maximum bounds:

hmin ≤ hi ≤ hmax ; i = 1, 2, .., nw (2.13)
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where hmin = 40 m and hmax=zgs=60 m.
In this work, constraints on pumping rates (inequalities (2.10-2.11)) are strictly enforced

by setting lower and upper bounds to the values of the decision variables between which the
optimum is sought. Constraints on well locations (inequalities (2.12)) are automatically met
by fixing the locations of n=64 candidate wells uniformly distributed within a portion of
the domain that already comply with these constraints (Figure 1). Instead, the constraints
allowed for violation are those corresponding to inequalities (2.13). Accordingly, for any given
pumping strategy Q, Pfail is calculated using Equation (2.4), which requires determining the
number of realizations of the hydraulic conductivity field where constraints (2.13) are not
met. On the other hand, V iolation is obtained using Equation (2.6), where, in each hydraulic
conductivity realization, the violation of constraints (2.13) is calculated as:

max {0, ∥ χ (Q, sk)− χc ∥} =
n∑

i=1

max
{
0, hmin − h

(k)
i , h

(k)
i − hmax

}
(2.14)

In (2.14), h
(k)
i denotes the hydraulic head in well i for the realization Kk under the pumping

scheme Q. Note that the sum is extended over the n=64 candidate wells rather than the
nw wells that are actually activated (n ≥ nw). Since the candidate wells are uniformly
distributed (Figure 1), Equation (2.14) provides a measure of the ”volume of violation”, that
is, the volume where the hydraulic head surface resides outside the bounds hmin = 40 m and
hmax = 60 m prescribed by constraints (2.13).

2.2 Response Matrix Approach

The computational cost required to solve the stochastic MO problems (2.5) and (2.7) may
be greatly reduced by taking advantage of the characteristics of linearity of the investigated
groundwater management problem. Indeed, groundwater flow in the confined aquifer is gov-
erned by the classic diffusion linear equation [9], subject to Dirichlet and Neumann boundary
conditions (Figure 1) that are time-invariant and homogeneous (equal to zero) with respect to
the aquifer drawdown. In this situation, there exists a linear relationship between the piezo-
metric heads in the aquifer and the pumping rate at well locations, and the superposition of
the effects of multiple pumping wells may be applied.

In the considered management problem, the estimation of hydraulic head hi’s based on
pumping rates Qi’s is a necessary step to calculate the groundwater supply cost (2.9) and
the constraint inequalities (2.13), upon which the objective functions (2.3), (2.4), and (2.6)
depend. For each realizations of the hydraulic conductivity field, Kk(k = 1, 2, .., NMC), this
calculation may be carried out using the following equation [1]:

h(k) = h
(k)
0 +R(k) ·Q (2.15)

where h(k) and h
(k)
0 are the vectors of hydraulic heads at well locations at a generic time t and

initially (before pumping starts), respectively. The vector Q of pumping rates at the n can-
didate pumping wells is here assumed to remain constant during the withdrawal operations.

R(k) is the “response matrix” [1, 27], of dimensions n×n, whose generic component, r
(k)
i,j , rep-

resents the sensitivity of the drawdown s
(k)
i = h

(k)
0,i − h

(k)
i observed in well i to pumping from

well j. In general, the coefficients of the response matrix depend upon the aquifer parame-
ters (hydraulic conductivity and elastic storage spatial distributions), boundary conditions,
pumping schedule and observation time.

In this work, groundwater flow is assumed to be at steady state, so that the response
matrix is time-invariant. For each of the generated realizations of the hydraulic conductiv-

ity field, Kk(k = 1, 2, .., NMC), the response-matrix coefficients r
(k)
i,j are obtained using the

three-dimensional finite-element flow model SAT3D [23, 24]. This model solves the classic
groundwater flow equation [9] and is used to calculate the hydraulic head change at any well
location i due to a single well activated at location j with a unit pumping rate.



414 D.A. BAÚ and J. LEE

2.3 Multi-objective Optimization Algorithm

In this study, the solution to the MO problems (2.5) and (2.7) is tackled by combining
the stochastic response-matrix simulator (2.15) with a MO evolutionary algorithm stemming
from the NPGA developed by [34] and later improved and applied by [17] to the design of
pump-and-treat systems for the cleanup of contaminated aquifers.

The NPGA constitutes an extension of the traditional genetic algorithm (GA) developed
by [26] to unconstrained MO optimization problems. With the GA, mechanisms of natural
evolution are simulated with two fundamental operators: selection and reproduction [26, 45,
40, 35]. The NPGA involves two additional operators: Pareto domination ranking and niching
or fitness sharing [17].

In this work, following a typical formulation for evolutionary methods (e.g. [8, 17]), each
alternative pumping scheme is represented as a “chromosome”, i.e a string of binary (0 or
1) variables. A chromosome consists of a sequence of as many substrings as the number
n of candidate pumping wells. Each substring indicates a well pumping rate in the form
of a nr-digit long binary number, which is used to discretize the interval (Qmax

ex , 0) (see
constraints (2.10) with Qmax

in = 0) into a finite set of nQ equally spaced flow rates. The
so-called “resolution number”, nQ, is equal to the maximum number of integers enumerable
with a nr-digit long binary variable, i.e nQ = 2nr . The pumping rates at well i may thus
take on the discrete values:

Qi,j =
j − 1

nQ − 1
·Qmax

ex ; j = 1, 2, ..., nQ = 2nr (2.16)

The total chromosome length is equal to n × nr. It is worth pointing out that the choice of
discrete flow rates considered here is fully justified in the standard practice, since commercial
pumps can work only at a finite set of pumping regimes.

Figure 2 describes the NPGA-based procedure devised to address the solution to prob-
lems (2.5) and (2.7). In step (a), an initial population of npop candidate designs, namely
chromosomes, is randomly generated. In step (b), the objective functions (2.3) and (2.4)
or (2.6), associated with each of these designs are calculated. In this stage, the stochastic
response-matrix simulation model is run for each pumping scheme Q in the population to

estimate the hydraulic head ensembles h
(k)
i (i = 1, 2, .., n; k = 1, 2, .., NMC) at the n candidate

wells, which are necessary to calculate the objective function values. These values are then
archived in order to avoid redundant simulation calls in the following of the procedure. In
step (c), the chromosomes in the population are ordered according to their Pareto rank, i.e
the number of chromosomes in the population that have a performance that is better in at
least one objective, and equal in the other objectives. Chromosomes with a rank equal to
zero are called “non-dominated” and form a “Pareto front” in the objective function space.

Step (d) is the primary stage of the selection process that creates the next generation of
chromosomes. This is obtained with a number of npop “tournaments”, in each of which ntourn

chromosomes are randomly chosen and opposed against one another. A tournament is won
by the chromosome with the lowest rank [17].

Tournaments involving at least two equally-ranked chromosomes that dominate all other
designs will have no clear winner. This “impasse” is resolved by ranking the deadlocked
chromosomes on the basis of their niche count, which quantifies the degree of crowding, i.e,
the number of chromosomes in the current generation that are located within a specified
distanced from the candidate in the objective functions space. In the case of problems (2.5)
and (2.7), since the magnitudes of the objective functions are rather different, a scaling to
their respective maximum becomes necessary to search a circular region of the scaled objective
function space centered around each candidate and having a radius rN called “niche radius”.
The winner is ultimately chosen as the chromosome with the lowest niche count, which is the
”least similar” to other individuals in the population. This promotes genetic variability, so
that the population of winners will tend to have more diverse chromosomes and will eventually
form a more disperse Pareto front.

In the NPGA, the selection of chromosomes is thus controlled primarily by ntourn and
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Figure 2: Process flow chart for the NPGA-based multi-objective optimization/simulation
framework.

rN . Note that the same chromosome may be selected and win multiple tournaments, thus
entering the next generation more than once.

Step (e) consists of the application of the reproduction operator to the npop chromosomes
obtained after selection. Reproduction occurs through the two fundamental genetic processes
of crossover and mutation. With crossover, chromosomes are randomly paired with a proba-
bility prescribed by the crossover rate cr, and their corresponding portions comprised between
two randomly selected bit locations are permutated. The goal of the crossover operator is to
improve the pumping strategies by combining their positive features in terms of management
objectives. The mutation operator aims at reintroducing information that may have been
lost during the selection and crossover stages. In the NPGA, mutation is performed with
a probability prescribed by the mutation rate mr and consists of the reassignment of each
binary variable of the current set of chromosomes.

After crossover and mutation, the next generation of chromosomes is created. The steps
(b)-(e) of the process are then repeated starting from this newly generated population and
iterated generation after generation. The NPGA may be set up so that the optimization
process stops: (i) when the number of generations reaches a prescribed maximum value ngen;
or (ii) the number of calls to the stochastic groundwater flow simulator exceeds a given
maximum nsc. It can be shown that the stopping criterion (ii) is irrelevant if nsc is greater
than npop · ngen. The stopping check is performed in step (f) of the procedure depicted in
Figure 2.

3 Results and Discussion

In this section, results from the application of the NPGA-based framework to the manage-
ment problems described in Section 2.1 are presented and discussed. Figure 1 shows the
locations of 64 potential extraction wells chosen to identify the optimal groundwater supply
strategies. These locations are uniformly distributed in the portion of the domain defined
by constraints (2.12), which are thereby automatically met. Constraints (2.10) on decision
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variables are implicitly enforced by considering discrete flow rates as in Equation (2.16). The
water demand constraint (2.11) is imposed by setting the objective functions to their re-
spective maximum for those pumping schemes under which these constraints are not met.
Hydraulic head constraints (2.13) are the only ones allowed for violation.

In our study, the size of the ensemble of hydraulic conductivity realizations is chosen after
running a series of stochastic simulations with increasing value of NMC . These preliminary
tests show that, for the considered problem, a number of NMC= 100 realizations is nor-
mally sufficient for the objective function values (Equations (2.3), (2.4), and (2.6)) to reach
convergence. The hydraulic conductivity ensemble is generated using the sequential Gauss
simulation algorithm developed by [7] with the geostatistical parameters given in Table 1.

It must be observed that the hydraulic conductivity field fits to an unconditional, second-
order, stationary random process [15]. In practice, the joint probability distribution of K
is spatially invariant, so that the hydraulic conductivity field can be considered statistically
homogeneous. Given this assumption, and since the configuration of the aquifer boundary
conditions and the selected candidate well locations (Figure 1a) are symmetric with respect
the axis S-S shown in Figure 1, the optimization problem is solved by considering only
pumping schemes that retain the symmetry to S-S. This assumption allows for sampling
pumping schemes from 8 candidate well locations on the symmetry axis and 28 symmetric
couples of candidate wells off the symmetry axis. In practice, the condition of symmetry
produces a reduction of the size of the decision variable space from n=64 to n=36.

The optimization problems (2.5) and (2.7) are here solved by assigning nr=2, which yields
a chromosome length equal to n×nr=36×2=72. With nr=2, a resolution number nQ=2nr=4
is prescribed. Since Qmax

ex
∼= −550 m3/day, the possible extractions rates at each candidate

well are equal to 0, -183.3, -366.7 and -550 m3/day (Equation (2.16)). In any given pumping
scheme, the nw activated wells with a non-zero extraction rate are the only ones counted in
the calculation of the total cost (Equation (2.9)).

3.0.1 Trade-off Analysis

The application of the NPGA-based framework requires intensive preliminary analyses to
determine NPGA parameters that ensure the identification of the Pareto-optimal sets at the
least computational cost[17]. Based on the results of these preliminary tests (not shown here),
a population size npop=5000, a maximum number of generations ngens=200, a crossover rate
cr=0.9, a mutation rate mr=0.01, and a niche radius rN=0.01 are selected. As for the
tournament size, values ntourn equal to 2, 5 and 10 are considered. The adopted population
size and number of generations are large enough to guarantee the convergence of the NPGA
to trade-off sets that are optimal or close-to-optimal in a Pareto sense. However, when using
evolutionary algorithms in problems characterized by a decision variable space of large size,
there is no absolute certainty that the Pareto-optimal set is completely identified.

The results of these NPGA runs are shown in Figure 3a for problem (2.5) and Figure 3b
for problem (2.7). The numbers displayed between parentheses in the legend of each figure
indicate the total number of “calls” to the response-matrix simulation model made in each
simulation-optimization run, which has a prevailing impact on the computational cost of the
procedure.

Figures 3a and 3b display a minimal difference between the optimal trade-off sets ob-
tained using the three considered tournament size values. However, a significant advantage
is achieved, in terms of computational cost, by using a larger tournament size. In particular,
the total number of response-matrix simulations is reduced of about five and eight times by
increasing ntourn from two to five and 10, respectively. This happens because tournament
competition controls the evolutionary process by promoting genetic pressure. The use of
larger values of ntourn typically enhances selection pressure and increases the chance of the
fittest chromosomes in the population to enter following generations, thus promoting the con-
vergence of the evolutionary process. However, the tournament size should not be deliberately
increased as it can produce convergence to local optima, particularly when small populations
are considered.
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Figure 3: Trade-off fronts for (a) Cost vs. Pfail and (b) Cost vs. V iolation obtained
for npop=5000, ngens=200, rN=0.1, and ntourn values of 2, 5, and 10. Displayed between
parentheses in the legend is the total numbers of “calls” to the response-matrix simulation
model made in each simulation-optimization run. The decision alternatives A1, A2, A3, and
A4 in subpanel (a) represent the most reliable strategies identified by installing 5, 6, 7, and
9 pumping wells, respectively. The decision alternatives B1, B2, B3, and B4 in subpanel (b)
can be regarded as the lowest-violation strategies attainable with the activation of 5, 6, 9,
and 11 pumping wells, respectively.

The comparison between the Cost-vs.-Pfail (Figure 3a) and the Cost-vs.-V iolation (Fig-
ure 3b) trade-off sets reveals that the latter approach offers a much larger set of pumping
schemes than the former. Indeed, while with Pfail attention is focused on the frequency of
violation of constraints (2.13) over the set of realizations considered in the stochastic simula-
tions, with V iolation not only the frequency but also the intensity of violation is accounted
for. Therefore, while the probability of failure (Equation (2.4)) may take on only a discrete
set of NMC values, the expected value of violation (Equation (2.6)) is likely to be different for
each alternative pumping strategy. As a consequence, framework (2.7) produces a trade-off
front that results more dispersed than that obtained with framework (2.5). This may be seen
as an advantage of using V iolation, as opposed to Pfail, to quantify the reliability of pumping
strategies.

From the perspective of the decision maker, the framework (2.7) may thus be more con-
venient than framework (2.5) as the expected value of the violation intrinsically retains more
complete information on the reliability of any given pumping scheme, and also provides a
larger number of decision alternatives.

In Figures 3a and 3b, the trade-off sets form stair-shaped profiles characterized by Pareto-
optimal clusters of pumping schemes having approximately the same expected cost and differ-
ent values of either the probability of failure (Figure 3a) or the expected violation (Figure 3b).

The analysis of the pumping schemes in a cluster reveals that these have the same number
nw of activated wells. Since in the groundwater supply problem formulated by [39] the total
cost (Equation (2.9)) is mainly affected by its capital component, the difference in total
cost depends merely on how these wells are distributed, which affects the hydraulic head
distribution and thus the operating cost. Accordingly, it may be shown that two consecutive
clusters have a difference in cost of about $22,800, which is the capital value of one additional
pumping well. Given that the pumping schemes in a cluster have similar expected costs, the
most convenient solution for each cluster is that with a lower value of Pfail in Figure 3a or
V iolation in Figure 3b.



418 D.A. BAÚ and J. LEE

3.0.2 Analysis of Pumping Strategies

Figure 4 represents the characteristics of the four pumping schemes associated with the points
A1, A2, A3, and A4 on the Cost vs. Pfail trade-off front graphed in Figure 3a. The subfigures
show well locations and extraction rates for each pumping scheme, along with the contour
representation of the expected distribution of the piezometric surface. The four pumping
schemes A1, A2, A3, and A4 represent the lowest-cost and most reliable pumping strategies
identified by installing 5, 6, 7, and 9 pumping wells, respectively.

A1 A2

A3 A4

Figure 4: Characteristics of the pumping schemes associated with the points A1, A2, A3, and
A4 on the trade-off fronts indicated in Figure 3a.

Figure 5 displays four pumping schemes corresponding to the points B1, B2, B3, and B4

on the Cost vs. V iolation trade-off front plotted in Figure 3b. Pumping schemes B1, B2, B3,
and B4 can be regarded as the lowest-cost and lowest-violation pumping strategies attainable
with the activation of 5, 6, 9, and 11 pumping wells, respectively.

In both Figures 4 and 5, it may be observed that all pumping schemes strictly meet the
groundwater demand constraint (2.11). For the Cost vs. Pfail problem, all four alternatives
presented in Figure 4 have one well in common located in proximity of the lower-left corner of
the domain and pumping at the maximum allowed extraction rate, while the other pumping
wells are generically located along the constant-head boundaries of the domain (Figure 4).
These results reveal that, in order to minimize Pfail, one needs to position one large-capacity
well in the lower left corner of the aquifer, where the ambient hydraulic head is higher, due to
the combined effect of vertical recharge no-flow boundary conditions, and a number of wells
with smaller capacity along the upper and the right boundaries, where the aquifer is subject
to fixed-head conditions, which smooth out the effects of well interference.

On the other hand, for the Cost vs. V iolation problem, a close analysis of the pumping
patterns in Figure 5 indicates that an effective reduction of the average intensity of violation
of constraints (2.13) is achieved –however a larger total cost– by installing a larger number
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B1 B2

B3 B4

Figure 5: Characteristics of the pumping schemes associated with the points B1, B2, B3, and
B4 on the trade-off fronts indicated in Figure 3b.

of wells in centralized locations along the upper/left-lower/right diagonal of the domain, and
possibly reducing the extraction rates below the maximum pumping capacity. This is shown
to create hydraulic head regimes that, while having a sub optimal (larger) probability of
failure, that is, violate the hydraulic head constraints with higher frequency, are on average
characterized by a minimum intensity of violation smaller than those displayed in Figure 4.
Indeed, wells are positioned in areas of the aquifer where effects of well interference are more
important, but the ambient hydraulic head is also higher, than they are along the fixed-head
boundaries.

3.1 Computational Performance

All processes performed in this work are run on a computer equipped with four dual-core
AMD-Opteron 885 processors, each operating at 2,600 MHz, with a total 32 Gb Ram memory.
The computational cost associated with the solution to the MO optimization problems (2.5)
and (2.7) may be quantified by the sum of the central processing unit (CPU) times required
to: a) calculate the response matrix coefficients; and b) identify the Pareto-optimal set using
the response-matrix/NPGA simulation-optimization approach.

The calculation of the response matrices R(k) requires as many stochastic SAT3D sim-
ulations as the number n of candidate wells. An additional simulation run is required to

calculate the initial hydraulic heads h
(k)
0 at potential well locations. The CPU time required

by each of these simulations is about 2,300 CPU seconds.
The computational cost associated with each NPGA-based optimization run is substan-

tially related to the number of calls to the stochastic response-matrix simulation model. The
computational time associated with each run varies slightly depending upon the assumed
NPGA parameters, and is, on average, equal to about 1320 simulation calls per CPU minute



420 D.A. BAÚ and J. LEE

(4.5×10−2 seconds each). For example, the NPGA process whose trade-off set is shown in Fig-
ure 3a, obtained with 10 random seed trials, npop=5000, ngens=200, ntourn=5, and rN=0.1,
involves a number of 1,697,239 response-matrix simulation calls, which require about 21 hours
and 26 minutes CPU time to be completed.

The overall computational cost is thus significant, but still viable with the available com-
puter capabilities. It is worth pointing out that the feasibility of these processes is made
possible only by substituting the stochastic groundwater flow simulation model with the
response-matrix model. Since the average CPU time of one stochastic flow simulation is
about 2,300 seconds, while the average stochastic response-matrix simulation takes about
4.5×10−2 seconds, one can easily estimate that, if the stochastic flow model was directly em-
bedded in the NPGA, the identification of trade-off fronts such as those shown in Figures 3a
and 3b would require a CPU time (2,300/4.5×10−2=) 5×104 times larger than that spent
using the response matrix simulator. In practice, this would drastically limit the capability
of the simulation-optimization framework to problems characterized by a very low number of
candidate well locations.

4 Conclusions

In this study, we have presented a stochastic optimization framework to support the design
and the management of groundwater supply systems in confined aquifers under uncertain hy-
draulic conductivity distribution. The framework stems from the combination of a stochastic
flow simulation model with an evolutionary algorithm. The stochastic flow model relies on
a Monte Carlo method, where an ensemble of hydraulic conductivity scenarios is used to
simulate the piezometric distribution in the aquifer needed to calculate both the total cost of
the pumping system and the management constraints.

The computational efficiency of the framework is drastically improved by adopting a
response-matrix approach, which is made possible by the linear relationship existing between
pumping stress and piezometric head in confined aquifers. The response matrix coefficients
are calculated outside the optimization loop using a stochastic flow simulation model, so that
the evolutionary algorithm can be linked to a stochastic response-matrix simulator, instead
of the computationally “expensive” stochastic flow model.

The framework is structured into a MO optimization problem, whose goal is to identify
sets of alternative pumping designs that –because of the uncertain response of the aquifer to
pumping stress– necessarily trade off cost optimality against the risk of not complying with
the management constraints. The risk is defined according to two alternative formulations:
the probability of failure, that is, the frequency of violation of management constraints, or
the expected intensity of constraint violation.

This methodology is applied to one of the benchmark management problems formulated
by [39]. The computational efficiency of the framework is such that the investigated problem
may be addressed using as many as 64 candidate well locations with four potential extraction
rates each, with a computational cost that, although significant, can be sustained with the
available computational capabilities.

The analysis shows that, from the perspective of the decision maker, the Cost-vs.-V iolation
formulation may be more convenient than the Cost-vs.-Pfail approach. Indeed, while Pfail

accounts only for the frequency of violation, V iolation accounts also for the the intensity of
violation, thus providing more complete information on the reliability of any given pumping
scheme. In addition, the solution to the Cost-vs.-V iolation trade-off problem yields a larger
set of pumping schemes, and thus wider range of decision alternatives, than that obtained for
the Cost-vs.-Pfail trade-off problem.

For the considered groundwater management problem [39], both Cost-vs.-Pfail and Cost-
vs.-V iolation trade-off fronts form stair-shaped profiles characterized by clusters of points
having approximately the same expected cost and different values of either the probability of
failure or the expected violation. Since the total groundwater supply cost is mainly affected
by its capital component, which is directly proportional to the number of installed wells, the
pumping schemes in a cluster are characterized by the same number of activated wells. The
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location of these wells affect significantly both Pfail and V iolation. Given that Cost is about
the same, the most convenient pumping scheme in a cluster appears to be be that with either
the lower frequency or the lower intensity of constraint violation.

The extraction rates in each trade-off pumping scheme are such that an imposed constraint
on the minimum groundwater supply demand is strictly met. The more expensive pumping
schemes, with more wells installed, are thus characterized by generally lower extraction rates
and are less prone to violation of hydraulic head constraints.

A future extension of this work will include the analysis of effects of transient flow as-
sumptions, which require modifying the response matrix approach in order to account for the
possible variations of pumping rates over time. Since this is expected to produce a significant
increase in the computational cost of the procedure, it will be important to resort to parallel
programming techniques allowing for the simultaneous distribution of simulation model calls
to multiple processing units. Another extension will explore the option of using injection wells
as a measure for reducing the risk of aquifer depletion and simulate the potential benefits of
aquifer storage and recovery techniques in terms of cost and sustainability.
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[6] D.A. Baú and A.S. Mayer, Data-worth analysis for multiobjective optimal design of
pump-and-treat remediation systems, Adv. Water Resources 30 (2007) 1815–1830.
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