
A SUBMODULAR FUNCTION MINIMIZATION ALGORITHM
BASED ON THE MINIMUM-NORM BASE∗

Satoru Fujishige and Shigueo Isotani

Abstract: We consider an application of the minimum-norm-point algorithm to submodular function mini-
mization. Although combinatorial polynomial algorithms for submodular function minimization (SFM) have
recently been obtained, there still remain (open) problems of reducing the complexity of the SFM algorithms
and of constructing a practically fast SFM algorithms. We show some possible approach to the problems by
means of the minimum-norm-point algorithm. Computational results on submodular function minimization
reveal that our algorithm outperforms existing polynomial algorithms for SFM.

Key words: submodular function, minimum norm point, algorithms, base polyhedron

Mathematics Subject Classification: 65K05, 90C27, 52B40, 68Q25

1 Introduction

Philip Wolfe [18] presented an algorithm for finding the minimum-norm point in the convex
hull of a given finite set of points in the n-dimensional Euclidean space Rn (von Hohen-
balken [7] also gave essentially the same algorithm for more general objective functions).
In the present paper we consider an application of the minimum-norm-point algorithm to
submodular function minimization. Combinatorial polynomial algorithms for submodular
function minimization (SFM) have been obtained by [11, 9, 16, 15, 12]. However, there
still remain (open) problems of reducing the complexity of the SFM algorithms and of con-
structing practically fast SFM algorithms. The present paper has been motivated by an
attempt to solve these problems. We will show a possible approach to them by means of
the minimum-norm-point algorithm to construct a practically fast algorithm for submodular
function minimization. (Such an approach was first suggested by the first author in [4] and
some preliminary computational experiments were made by the second author in [8].)

The minimum-norm-point algorithm keeps a simplex (a set of affinely independent set
of points) chosen from the given point set P . Updating such a simplex requires a solution of
a linear optimization problem over the convex hull P̂ of P , and the algorithm works if the
linear optimization can (efficiently) be done over the polytope P̂ . In the original problem
setting by Wolfe [18] the polytope P̂ is expressed as the convex hull of the set P of given
points. Hence, the linear optimization over P̂ can be done trivially by the evaluation of a
linear function on given points in P . For a general polytope Q, however, the number of

∗Presented by the first author as a plenary talk at the fourth Sino-Japanese Optimization Meeting held
on August 27–31, 2008, in Tainan, Taiwan.

4 S. FUJISHIGE AND S. ISOTANI

extreme points of Q can be exponentially large with respect to dimension n, so that the
minimum-norm-point algorithm cannot be used in the original, trivial way. However, there
are interesting classes of polytopes on which linear optimization can efficiently be done, even
if the number of extreme points of Q is exponentially large with respect to dimension n.

The following is one of such classes of polytopes. It is well known that the greedy
algorithm [1] works for base polyhedra associated with submodular functions (see [6] for
details about submodular functions and related polyhedra). Hence we can easily make
linear optimization over base polyhedra (although the number of extreme points can be
equal to n! with n being the dimension of the space that contains the base polyhedra).
This fact leads us to an algorithm for submodular function minimization by means of the
minimum-norm-point algorithm, which will be discussed in Section 3.

We examine the proposed algorithm for submodular function minimization in Section 4.
Computational results for submodular function minimization will show that the minimum-
norm-point algorithm outperforms the existing polynomial-time algorithms given in [9, 11,
16].

2 The Minimum-Norm-Point Algorithm

In this section we describe Wolfe’s algorithm [18] for finding the minimum-norm point in a
polytope for completeness.

2.1 Description of the Minimum-Norm-Point Algorithm

Consider the n-dimensional Euclidean space Rn. Suppose that we are given a finite set P of
points pi (i ∈ I) in Rn. The problem is to find the minimum-norm point x∗ in the convex
hull P̂ of points pi (i ∈ I).

Wolfe’s algorithm [18] is given as follows.

The Minimum-Norm-Point Algorithm

Input: A finite set P of points pi (i ∈ I0) in Rn.
Output: The minimum-norm point x∗ in the convex hull P̂ of the points pi (i ∈ I0).
Step 1: Choose any point p in P and put S := {p} and x̂ := p.

Step 2: Find a point p̂ in P that minimizes the linear function 〈x̂, p〉 =
n∑

k=1

x̂(k)p(k) in

p ∈ P . Put S := S ∪ {p̂}.
If 〈x̂, p̂〉 = 〈x̂, x̂〉, then return x∗ = x̂;
else go to Step 3.
Step 3: Find the minimum-norm point y in the affine hull of points in S.
If y lies in the relative interior of the convex hull of S, then put x̂ := y and go to Step 2.
Step 4: Let z be the point that is the nearest to y among the intersection of the convex
hull of S and the line segment [y, x̂] between y and x̂. Also let S′ ⊂ S be the unique proper
subset of S such that z lies in the relative interior of the convex hull of S′. Put S := S′ and
x̂ := z. Go to Step 3.
(End)

The cycle formed by Step 2 and Step 3 is called a major cycle, and the one by Step 3 and
Step 4 a minor cycle. Every major cycle increases the size of the simplex S by one, while

A SUBMODULAR FUNCTION MINIMIZATION ALGORITHM 5

every minor cycle decreases the size of the simplex S by at least one. A simplex S is called
a corral if the minimum-norm point in the affine hull of S lies in the relative interior of the
convex hull of S. When we go from Step 3 to Step 2 in a major cycle, the current simplex
S is a corral. Note that every corral S uniquely determines the minimum-norm point x̂ and
that every time we get a new corral, the norm of the new x̂ strictly decreases. Also note
that at most n − 1 repetitions of Step 3 and Step 4 in a minor cycle give a corral, so that
the Wolfe algorithm described above terminates in a finite number of steps. (It is open to
determine whether the Wolfe algorithm runs in polynomial time.)

In Step 3, for S = {pi | i ∈ I} with I ⊆ I0 we have y =
∑

i∈I µipi with
∑

i∈I µi = 1.
Note that y lies in the relative interior of the convex hull of S if and only if µi > 0 for all
i ∈ I, where recall that S is affinely independent. In Step 4, both x̂ and y are expressed
as x̂ =

∑
i∈I λipi and y =

∑
i∈I µipi. Then, the point z is determined in such a way that

z = (1− β)x̂ + βy, (1− β)λi + βµi ≥ 0 for all i ∈ I, and β is as large as possible.

Remark. When implementing the Wolfe algorithm, we should take care of numerical errors
by introducing small tolerance intervals for decisions such as ‘α = β?’. Besides these, the
algorithm is self-correcting, so that it is stable against numerical errors. For the minimum
norm base we can utilize further information about the bounded fractionality of the solution
to make our algorithm stable against numerical errors, which will be discussed later (see
Theorem 3.3).

2.2 Applicability of the Algorithm

The Wolfe algorithm requires linear optimization in Step 2, which can be done by computing
〈x̂, p〉 for all points p in P . If the number of points in P is exponential in the dimension of
the space Rn, then it becomes hard to perform the linear optimization in Step 2 in such a
primitive way.

Now, suppose that the set P is implicitly given as the set of extreme points of a polytope
Q in Rn. Then the Wolfe algorithm works if linear optimization over Q can efficiently
be made. There are classes of polytopes on which linear optimization can efficiently be
done while the number of the extreme points of such a polytope is exponentially large. For
example, we have

(1) base polyhedra, associated with submodular functions, on which the so-called greedy
algorithm of Edmonds [1] finds optimal (extreme) points, and

(2) zonotopes, on which every linear optimization can be done in a greedy way,

where a zonotope is the Minkowski sum of line segments (or an affine transformation of a
unit hypercube).

Remark. A pointed polyhedron is called edge-polynomial [5] if the number of edge vectors of
the polyhedron is polynomial in the dimension of the input data space, where edge vectors
are identified up to nonzero multiples. Base polyhedra and zonotopes are typical edge-
polynomial polyhedra. The number of edge vectors of base polyhedra is O(n2) with n being
the dimension of the space, and that of zonotopes is at most the number of the generators.
It should be noted that linear optimization over any edge-polynomial polyhedron is easy
(solvable in strongly polynomial time) under certain conditions, so that the minimum-norm-
point algorithm works for edge-polynomial polyhedra.

We shall show how the Wolfe algorithm works for base polyhedra in Section 3.

6 S. FUJISHIGE AND S. ISOTANI

3 Base Polyhedra and Submodular Function Minimization

In this section we show how the Wolfe algorithm can be used to minimize submodular
functions.

3.1 Submodular Functions and Base Polyhedra

Let E be a finite nonempty set and f be a submodular function on 2E , i.e., f : 2E → R
satisfies

f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y) (3.1)

for any X, Y ⊆ E. We suppose that f(∅) = 0 without loss of generality. We then define
polyhedra

P(f) = {x | x ∈ RE , ∀X ∈ 2E : x(X) ≤ f(X)}, (3.2)
B(f) = {x | x ∈ P(f), x(E) = f(E)}. (3.3)

Here, P(f) is called the submodular polyhedron and B(f) the base polyhedron, associated
with submodular function f on 2E .

Remark. Since B(f) defined as above is bounded, it is also called a base polytope. Note
that P(f) is always unbounded. In the general theory of submodular functions (see [6]) we
consider a distributive lattice D ⊆ 2E (a set of subsets of E that is closed with respect to set
union ∪ and intersection ∩) and a submodular function f on D. We assume that ∅, E ∈ D
and f(∅) = 0. Then B(f) is defined similarly as in (3.2), and is bounded only if D = 2V .

The linear optimization over base polyhedron B(f) can easily be made by the greedy
algorithm of Edmonds [1]. Here we assume that we are given an oracle for evaluation of the
function value f(X) for any X ⊆ E.

The Greedy Algorithm
Input A weight vector w ∈ RE .
Output: An optimal x∗ ∈ B(f) that minimizes the linear objective function

∑

e∈E

w(e)x(e)

in x ∈ B(f).
Step 1: Find a linear ordering e1, e2, · · · , en of elements of E such that

w(e1) ≤ w(e2) ≤ · · · ≤ w(en). (3.4)

Step 2: Compute

x∗(ei) = f({e1, e2, · · · , ei})− f({e1, e2, · · · , ei−1}) (i = 1, 2, · · · , n). (3.5)

Return x∗.
(End)

We also have the following theorem that characterizes the minimizers of a submodular
function f : 2E → R with f(∅) = 0.

Theorem 3.1 ([1]). We have

min{f(X) | X ⊆ E} = max{x−(E) | x ∈ B(f)}, (3.6)

where x−(e) = min{x(e), 0} for e ∈ E.
Moreover, if f is integer-valued, then the maximum in the right-hand side is attained by

an integral base x ∈ B(f).

A SUBMODULAR FUNCTION MINIMIZATION ALGORITHM 7

Note that for any X ⊆ E and x ∈ B(f) we have f(X) ≥ x−(E). The gap f(X) −
x−(E) evaluates an upper bound for to what extent f(X) is close to the minimum of f . In
particular, if f is integer-valued, the gap f(X)− x−(E) being less than one implies that X
is a minimizer of f .

3.2 The Minimum-Norm Point in a Base Polyhedron and Submodular Func-
tion Minimization

Concerning a relationship between the minimum-norm base and the submodular function
minimization, we have the following theorem.

Theorem 3.2 ([4], [6, Sec. 7.1.(a)]). Let x∗ be the minimum-norm point in the base
polyhedron B(f) given by (3.3). Define

A+ = {e | e ∈ E, x∗(e) ≤ 0}, (3.7)
A− = {e | e ∈ E, x∗(e) < 0}. (3.8)

Then, A+ is the unique maximal minimizer of f , and A− the unique minimal minimizer of
f .

Because of this theorem we can solve the submodular function minimization problem by
finding the minimum-norm point in the base polyhedron B(f). The minimum-norm-point
algorithm described in Section 2 can directly be employed to solve the submodular function
minimization problem by means of the greedy algorithm of Edmonds. Computational results
will be given in Section 4.

The following characterization of the minimum-norm base is known, which is useful for
avoiding numerical errors to perform submodular function minimization.

Theorem 3.3 ([3], [6, Sec. 9.2]). A base b ∈ B(f) is the minimum-norm base if and
only if for distinct values α1 < · · · < αk of b(e) (e ∈ E) and for Fi = {e ∈ E | b(e) ≤ αi}
(i = 1, · · · , k) we have b(Fi) = f(Fi) (i = 1, · · · , k).

Hence we have

b(e) =
f(Fi)− f(Fi−1)
|Fi \ Fi−1| (e ∈ Fi \ Fi−1) (3.9)

for i = 1, · · · , k, where F0 ≡ ∅.

Remark. Because of this theorem, if we know the value

min{|f(Y)− f(X)| | f(X) 6= f(Y), X ⊂ Y ⊆ E} (3.10)

or its positive lower bound (say, ε), then we have

A+ = {e | e ∈ E, x∗(e) < ε/2|E|}, (3.11)
A− = {e | e ∈ E, x∗(e) < −ε/2|E|}. (3.12)

instead of (3.7) and (3.8). Note that when f is integer-valued, we can take ε = 1.0 and that
we can avoid the possible numerical errors up to 1/2|E| for computing A+ and A− through
(3.11) and (3.12). The present idea will be incorporated into the code of our proposed
algorithm.

8 S. FUJISHIGE AND S. ISOTANI

3.3 Possible Problem Reduction

In this subsection we consider a possible way of accelerating our algorithm FW by extracting
information about minimizers of a given submodular function f .

Suppose that a current base x is given as a convex combination

x =
∑

i∈I

λibi (3.13)

of extreme bases bi (i ∈ I), where λi > 0 for all i ∈ I. Each i ∈ I is associated with a linear
ordering Li. A set A ⊆ E is called x-tight if x(A) = f(A) and that B ⊆ E is called x-cotight
if x(B) = f#(B)(≡ f(E) − f(E \ B)). It can easily be seen that the following three are
equivalent:

(a) A is x-tight.
(b) A is bi-tight for all i ∈ I.
(c) A is an initial segment of Li for all i ∈ I.

Similarly in a dual form, the following three are equivalent:
(a′) B is x-cotight.
(b′) B is bi-cotight for all i ∈ I.
(c′) B is a terminal segment of Li for all i ∈ I.

Moreover, we can show the following.

Theorem 3.4. For any set A ⊆ E such that
(1) A is x-tight, i.e., x(A) = f(A) and
(2) x(e) < 0 for all e ∈ A,
A is contained in every minimizer of f .

Dually, for any set B ⊆ E such that
(1′) B is x-cotight, i.e., x(B) = f(E)− f(E \B) and
(2′) x(e) > 0 for all e ∈ B,
every minimizer of f is contained in E \B.

Because of Theorems 3.3 and 3.4 we can consider the following procedure of the problem
reduction.

During the execution of our FW algorithm, when we get a corral S and a point x (the
minimum-norm point within the relative interior of Conv(S)) and try to augment it by
finding a new extreme base y, we may carry out the following.

Problem Reduction

1. Sort x(e) (e ∈ E) so as to get x(e1) ≤ · · · ≤ x(en).
2. Find the maximum i ∈ {1, · · · , n} such that x({e1, · · · , ei}) = f({e1, · · · , ei}) and for

all k = 1, · · · , i we have x(ek) < 0. If such an i exists, put A ← {e1, · · · , ei}; otherwise
put A ← ∅.

3. Find the minimum j ∈ {1, · · · , n} such that x({ej , · · · , en}) = f#({ej , · · · , en}) and
for all k = j, · · · , n we have x(ek) > 0. If such a j exists, put B ← {ej , · · · , en};
otherwise put B ← ∅.

If we find nonempty A or B by the above procedure we can consider a new function f
E\B
A :

2E\(A∪B) → R defined by

f
E\B
A (X) = f(A ∪X)− f(A), X ⊆ E \ (A ∪B). (3.14)

A SUBMODULAR FUNCTION MINIMIZATION ALGORITHM 9

Every minimizer X∗ of f is given by a minimizer Y ∗ of f
E\B
A as

X∗ = Y ∗ ∪A (3.15)

and vice versa.
In particular, we have a duality gap f(A) − x∗(A), so that if f is integer-valued and

f(A) − x∗(A) < 1, then we can terminate our FW algorithm with a minimizer A of f .
This stopping rule accelerates FW, which we incorporate into FW in our computational
experiments given in the next section.

4 Computational Results

First combinatorial polynomial algorithms for submodular function minimization (SFM)
were devised independently by Iwata, Fleischer, and Fujishige [11], and Schrijver [16]. Also
Fleischer and Iwata [2] proposed a polynomial preflow-push algorithm, which has the same
complexity as Schrijver’s ([17]). See nice surveys [13] and [10] for more details about recent
developments in SFM algorithms (also see [6, Chapter VI]). Currently the theoretically
fastest SFM algorithm has been obtained by Orlin [15](also see [12]).

Part of the following computational results on SFM algorithms are based on a report of
[8].

4.1 Computational Setup

We used a Dynabook G6/X18PDE with an Intel Pentium 4, CPU 1.80GHz, 768MB of
memory and running Linux RedHat version 2.4.18. All programs are written in C language
and compiled with gcc using the -O4 optimization option.

We denote by FW the proposed SFM algorithm by means of the minimum-norm-point
algorithm [4]. The Iwata-Fleischer-Fujishige algorithm [11] is denoted by SFM3 and SFM8
(an updated version of SFM3) and Schrijver’s algorithm [16] by LEX2. We also have Fleischer
and Iwata’s algorithm [2], denoted by PR. Moreover, HYBRID is an algorithm, proposed by
Iwata [9], that combines techniques involved in SFM3, SFM8, and PR (also see [10]). We
have employed the codes of SFM3, SFM8, PR, and HYBRID offered by Satoru Iwata.

The original version of FW program was first written in FORTRAN language by Masahiro
Nakayama and later in PASCAL by Shingo Shikita in their graduation theses at the Univer-
sity of Tsukuba in February, 1985 and in February, 1987, respectively, under the guidance
by the first author. We employed Quick Sort for the sorting algorithm required in the
greedy algorithm. We rewrote the program in C language and improved some part of it,
incorporating into it the idea shown in the previous section.

We tested the algorithms using two kinds of submodular functions. One is proposed by
Satoru Iwata and the other is a class of cut functions.

4.2 Iwata’s Test Function

The submodular function suggested by Satoru Iwata is

f(X) = |X||V \X| −
∑

j∈X

(5j − 2n) (X ⊆ V)

where V = {1, 2, · · · , n}.
The results on this function are shown in Table 1 and Table 2.

10 S. FUJISHIGE AND S. ISOTANI

Table 1: Results on Iwata’s function
Running time (sec)

n FW HYBRID SFM3 SFM8 LEX2 PR
100 0.00 0.41 1.00 0.04 2644.52 277.36
200 0.00 4.92 18.69 0.44
300 0.00 21.77 115.44 2.04
400 0.00 67.12 369.13 6.32
500 0.00 166.73 894.33 15.35
600 0.01 325.26 2820.83 34.88
700 0.01 568.54 62.38

Table 2: Numbers of generated bases on Iwata’s function
Number of generated bases

n FW HYBRID SFM3 SFM8 LEX2 PR
100 2 1163 766 1 337348 373324
200 2 3732 4618 1
300 2 6710 7309 1
400 2 10803 9914 1
500 2 16701 18835 1
600 2 22011 33849 1
700 2 28699 1

This class of test problems is very special for FW and SFM8, where SFM8 is a new version
of SFM3 adapted to the test problems by a preprocessing to choose an appropriate initial
extreme base. Except for FW and SFM8, HYBRID outperformed the others, LEX2 and PR.

It should be noted that FW starts with an initial extreme base b0 corresponding to
linear ordering L0 = (1, 2, · · · , n) and we have b0(i) = −7i + 3n + 1 (i = 1, · · · , n), so
that b0(n) < b0(n − 1) < · · · < b0(1). Hence FW generates the next extreme base b1

corresponding to linear ordering L1 = (n, n−1, · · · , 1), where b1 is given by b1(i) = −3i+n−1
(i = 1, · · · , n). We then update the current simplex S = {b0, b1} to {b1}. Here we have
b1(n) < b1(n − 1) < · · · < b1(1) again and each initial segment {n, n − 1, · · · , i} of L1 is a
b1-tight set for i = 1, · · · , n. Hence b1 is the minimum-norm base and FW terminates by
generating two extreme bases.

4.3 Cut Functions

In the case of cut functions, we need to generate networks. We used the generator genrmf
available from DIMACS Challenge [19]. Each generated network has b grid-like frames of
size (a× a). The number of vertices is a2b and that of arcs 5a2b− 4ab− a2. All vertices in
each frame are connected to its grid neighbors and each vertex is connected by an arc to a
vertex randomly chosen from the next frame.

All the running times reported here are in seconds, and we only report the user CPU
time. We generated five instances for each problem family of specified size, using different
random seeds. Each number shown in the tables is the averaged time over five runs.

We used genrmf to produce two kinds of networks as follows:

• Genrmf-Long. The number of vertices of a generated graph is n = 2x. The parameters

A SUBMODULAR FUNCTION MINIMIZATION ALGORITHM 11

Table 3: Results on Genrmf-Long
Running time (sec)

n m FW FW− HYBRID SFM3 SFM8 LEX2 PR
63 222 0.03 0.04 4.02 10.95 19.11 1.42 1.24

126 453 0.28 0.36 70.82 280.52 53.36 23.28
256 1008 3.77 3.79 7376.47 3209.70 3507.49
525 2180 35.02 46.05

1008 4332 275.46 366.21

Table 4: Results on Genrmf-Wide
Running time (sec)

n m FW FW− HYBRID SFM3 SFM8 LEX2 PR
75 290 0.04 0.05 3.34 20.58 64.75 4.19 3.48

147 602 0.41 0.41 55.99 749.13 141.49 89.87
324 1395 4.07 4.59 4265.14 9607.36 2433.57
576 2544 19.97 27.17

1024 4608 171.13 172.52

are a = 2x/4 and b = 2x/2.

• Genrmf-Wide. The number of vertices of a generated network is n = 2x. The param-
eters are a = 22x/5 and b = 2x/5.

We used the submodular function minimization algorithms to compute minimum cuts.
The running times for the computation are shown in Table 3 and Table 4, and numbers
of generated extreme bases in Table 5 and Table 6. Here FW− stands for FW without
the acceleration indicated in the last paragraph of Section 3.3. Figure 1 and Figure 2,
respectively, represent Table 3 and Table 4 except for FW− and SFM8.

Table 5: Results on Genrmf-Long
Number of generated extreme bases

n m FW HYBRID SFM3 SFM8 LEX2 PR
63 222 86 23029 28288 207527 526 1918

126 453 193 112328 140678 2280 5732
256 1008 479 690950 8757 14605
525 2180 1096

1008 4332 2310

For the Genrmf-Long networks LEX2 and PR were faster than HYBRID. However, for the
Genrmf-Wide networks LEX2 was slower than HYBRID. In both cases FW outperformed the
others (except for FW−). We have achieved about 10 to 25% run-time reduction from FW−

to FW for the Genrmf-Long networks while no significant reduction for the Genrmf-Wide
networks.

Figures 3, 4, 5, and 6 show sample behaviors of iteration vs. duality gap for Genrmf-Long
with n = 63 and m = 222. Here, one iteration means a generation of a new extreme base.

12 S. FUJISHIGE AND S. ISOTANI

Table 6: Results on Genrmf-Wide
Number of generated extreme bases

n m FW HYBRID SFM3 SFM8 LEX2 PR
75 290 91 13564 18507 507757 756 3519

147 602 193 80240 66346 3878 7694
324 1395 413 661802 14066 20553
576 2544 646

1024 4608 1235

5 Concluding Remarks

The computational results on submodular function minimization have shown that the mini-
mum-norm-base algorithm FW runs very fast, which allures us to conjecture that FW is
(strongly) polynomial. It is, however, open to determine the complexity of FW for submod-
ular function minimization.

Acknowledgments

We are very grateful to Satoru Iwata for providing us with his programs of the SFM algo-
rithms. Thanks are also due to Nobuyuki Tsuchimura and Satoko Moriguchi for their useful
comments and computational experiments on earlier versions of our FW algorithm, which
improved our code FW. The present research was supported partly by a Grant-in-Aid from
the Ministry of Education, Culture, Sports, Science and Technology of Japan and by Japan
International Cooperation Agency.

References

[1] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in Proceedings of
the Calgary International Conference on Combinatorial Structures and Their Applica-
tions, R. Guy, H. Hanani, N. Sauer and J. Schönheim (eds.), Gordon and Breach, New
York, 1970, pp. 69–87; also in Combinatorial Optimization—Eureka, You Shrink!, M.
Jünger, G. Reinelt and G. Rinaldi (eds.), Lecture Notes in Computer Science, Vol. 2570,
Springer, Berlin, 2003, pp. 11–26.

[2] L. Fleischer and S. Iwata, A push-relabel framework for submodular function mini-
mization and applications to parametric optimization, Discrete Appl. Math. 131 (2003)
311–322.

[3] S. Fujishige, Lexicographically optimal base of a polymatroid with respect to a weight
vector, Math. Oper. Res. 5 (1980) 186–196.

[4] S. Fujishige, Submodular systems and related topics, Math. Program. Study 22 (1984)
113–131.

[5] S. Fujishige, Submodularity and polyhedra, 4th Japanese-Hungarian Symposium on
Discrete Mathematics and Its Applications, Budapest, June 3–6, 2005.

[6] S. Fujishige, Submodular Functions and Optimization, (Second Edition), Annals of Dis-
crete Mathematics 58, Elsevier, Amsterdam, 2005.

A SUBMODULAR FUNCTION MINIMIZATION ALGORITHM 13

[7] B. von Hohenbalken, A finite algorithm to maximize certain pseudoconcave functions
on polytopes, Math. Program. 8 (1975) 189–206.

[8] S. Isotani and S. Fujishige, Submodular function minimization: Computational exper-
iments, Unpublished manuscript, 2003.

[9] S. Iwata, A faster scaling algorithm for minimizing submodular functions, SIAM
J. Comput. 32 (2003) 833–840.

[10] S. Iwata, Submodular function minimization, Math. Program. 112 (2008) 45–64.

[11] S. Iwata, L. Fleischer and S. Fujishige, A combinatorial strongly polynomial algorithm
for minimizing submodular functions, J. ACM 48 (2001) 761–777.

[12] S. Iwata and J.B. Orlin, A simple combinatorial algorithm for submodular function
minimization, ACM-SIAM Symposium on Discrete Algorithms (SODA09), January 4-
6, 2009, New York, NY.

[13] S.T. McCormick, Submodular function minimization, in Discrete Optimization (Hand-
books in Operations Research and Management Science 12), K. Aardal, G.L. Nemhauser
and R. Weismantel (eds.), Elsevier, Amsterdam, 2005, Chapter 7, pp. 321–391.

[14] S. Moriguchi and N. Tsuchimura, Discrete L-/M-convex function minimization based
on continuous relaxation, Mathematical Engineering Technical Reports METR 2007-59,
Department of Mathematical Informatics, Graduate School of Information Science and
Technology, The University of Tokyo, November 2007.

[15] J.B. Orlin, A faster strongly polynomial algorithm for submodular function minimiza-
tion, Math. Program. Ser. A 118 (2009) 237–251.

[16] A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly
polynomial time, J. Combin. Theory Ser. B 80 (2000) 346–355.

[17] J. Vygen, A note on Schrijver’s submodular function minimization algorithm, J. Com-
bin. Theory Ser. B 88 (2003) 399–402.

[18] P. Wolfe, Finding the nearest point in a polytope, Math. Program. 11 (1976) 128–149.

[19] The First DIMACS international algorithm implementation challenge: The core exper-
iments, 1990. Available at ftp://dimacs.rutgers.edu/pub/netflow/general-info/core.tex .

Manuscript received 25 March 2009
revised 17 June 2009

accepted for publication 17 June 2009

14 S. FUJISHIGE AND S. ISOTANI

Satoru Fujishige
Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606-8502, Japan
E-mail address: fujishig@kurims.kyoto-u.ac.jp

Shigueo Isotani
Faculdade de Ciências Econômicas e Administrativas de Osasco – FAC-FITO
Osasco, SP, Brazil
E-mail address: shigueo.isotani@gmail.com

0.01

0.1

1

10

100

1000

10

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of vertices (power of 2)

FW
HYBRID

SFM3
LEX2

PR

Figure 1: The number of vertices vs. running time on Genrmf-Long

A SUBMODULAR FUNCTION MINIMIZATION ALGORITHM 15

0.01

0.1

1

10

100

1000

10

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of vertices (power of 2)

FW
HYBRID

SFM3
LEX2

PR

Figure 2: The number of vertices vs. running time on Genrmf-Wide

0

500000

1e+06

1.5e+06

2e+06

10 20 30 40 50 60 70 80 90

Iteration

FW

Figure 3: The number of iterations vs. duality gap of FW

16 S. FUJISHIGE AND S. ISOTANI

0

500000

1e+06

1.5e+06

2e+06

0 2000 4000 6000 8000 10000 12000

Iteration

HYBRID

Figure 4: The number of iterations vs. duality gap of HYBRID

0

500000

1e+06

1.5e+06

2e+06

0 5000 10000 15000 20000

Iteration

SFM3

Figure 5: The number of iterations vs. duality gap of SFM3

A SUBMODULAR FUNCTION MINIMIZATION ALGORITHM 17

0

500000

1e+06

1.5e+06

2e+06

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Iteration

SFM8

Figure 6: The number of iterations vs. duality gap of SFM8

0

500000

1e+06

1.5e+06

2e+06

50 100 150 200 250 300 350

Iteration

LEX2

Figure 7: The number of iterations vs. duality gap of LEX2

