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Abstract: Memoryless quasi-Newton method is exactly the quasi-Newton method for which the approxi-
mation to the inverse of Hessian, at each step, is updated from a positive multiple of identity matrix. Hence
its search direction can be computed without the storage of matrices, namely O(n2) storages. In this paper,
a memoryless symmetric rank one (SR1) method for solving large-scale unconstrained optimization prob-
lems is presented. The basic idea is to incorporate the SR1 update within the framework of the memoryless
quasi-Newton method. However, it is well-known that the SR1 update may not preserve positive definiteness
even when updated from a positive definite matrix. Therefore, we propose that the memoryless SR1 method
is updated from a positive scaled of the identity, in which the scaling factor is derived in such a way to
preserve the positive definiteness and improves the condition of the scaled memoryless SR1 update. Under
some standard conditions it is shown that the method is globally and R−linearly convergent. Numerical
results show that the memoryless SR1 method is very encouraging.
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1 Introduction

In this paper, the following unconstrained optimization problem is considered:

minf(x);x ∈ Rn, (1.1)

where f : Rn → R is assumed to be continuous differentiable function, and n, the dimension
of the problem is large. Usually, problem (1.1) is solved iteratively through a line search
scheme:

xk+1 = xk + λkdk, (1.2)

where dk is the search direction and λk > 0 is the steplength. The steplength can be
calculated by an exact line search:

λ∗
k = arg minλ∈ℜ{f(xk + λdk)}, (1.3)
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or by some line search conditions, such as Wolfe [19] conditions:

f(xk + λkdk) ≤ f(xk) + β1λkg
T
k dk (1.4)

gTk+1dk ≥ β2g
T
k dk (1.5)

where 0 < β1 < 1/2, β1 < β2 < 1 and gk = ▽f(xk) denotes the gradient vector of f(x) at
the current iteration point xk.

We are particularly interested in elaborating an algorithm for solving very large cases,
where the dimensions of the problems are up to 106. The need to solve these extremely
large-scale optimization problems forces one to consider methods of O(n) storage as the only
methods of choice. This class of methods, includes those as the steepest descent method,
conjugate gradient methods, limited memory quasi-Newton method and memoryless quasi-
Newton method.

Memoryless quasi-Newton methods or one step limited memory quasi-Newton methods
were first considered by Perry [15] and Shanno [17]. They are actually the quasi-Newton
method for which at each iteration, a periodically restarted quasi-Newton correction is
calculated from the initial approximation, commonly given by a positive multiple of identity
matrix. Hence the memoryless quasi-Newton directions can be computed without the storage
of matrices, namely O(n2) storages. Among the well-studied memoryless quasi-Newton
methods is the memoryless BFGS method, which uses the BFGS update:

Hk+1 =

(
I − yTk sk

sTk yk

)
Hk

(
I − yTk sk

sTk yk

)
+

sks
T
k

sTk yk
, (1.6)

where sk = xk+1 − xk and yk = gk+1 − gk. In fact, a result by Shanno [17] shows that
traditional CG methods such as the Fletcher-Reeves and Polak-Ribiére algorithm can be
interpreted as a memoryless BFGS algorithm. Besides the BFGS update, one can extend
the idea of memoryless updating to SR1 update:

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

T

yTk (sk −Hkyk)
. (1.7)

and get the memoryless SR1 method. Minimization algorithms using SR1 update in both a
line search and trust region context have been shown in computational experiments by Conn
et al. [4] and Khalfan et al. [8] to be competitive with methods using the widely accepted
BFGS update. Hence, it might be reasonable to think that such promising results can be
extended to the memoryless version of SR1 method as well. However, it is well-known that
the SR1 update may not preserve positive definiteness even when updated from a positive
definite matrix. Therefore, to overcome this drawback, we propose a scaled memoryless SR1
method, which uses a periodically restarted SR1 correction from a positive scaled identity
matrix. The scaling factor is derived in such a way the positive definiteness of the updated
SR1 matrix can be preserved naturally and the condition of the SR1 update is also improved.

This paper is organized as follows: in Section 2, we discuss the optimal scaling factor for
the identity matrix. Section 3 gives the convergence result of the scaled memoryless SR1
method for a convex function. Finally we include some numerical tests on a standard set of
test problems in Section 4.

2 Optimal Scaling under the σ Measure

Throughout this section, we will assume that the curvature condition yTk sk > 0. Let Bk be
the current Hessian approximation, and its updated version Bk+1 is computed by the direct
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SR1 update:

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

sTk (yk −Bksk)
. (2.1)

Here when we mention inverse SR1 update, we mean the updating formula (1.7), otherwise
the direct SR1 update is given by (2.1). Since memoryless quasi-Newton methods employ
periodically restart at each iteration, commonly by a positive multiple of identity matrix,
one can view the memoryless SR1 updating formula as the standard SR1 update (2.1) with
Bk = (1/γ)I for some γ > 0.

Hence, our primary aim is to find a scaling γ such that the direct SR1 formula, Bk+1

updated from (1/γ)I is ’optimal’ under some measurements, while satisfying the secant
equation and preserving positive definiteness for Bk+1. To date, various measures have
been used to derive the optimal scaling factor for many well-known quasi-Newton updates.
Commonly used is the κ−measure defined by

κ(A) =
ξmax

ξmin
,

(the l2−condition number) where A is an n×n positive definite matrix, ξmax and ξmin is the
largest and smallest eigenvalue of A, respectively. This measure has been used by Davidon
[6] to choose an optimally conditioned update in Broyden class and also by Shanno and Phua
[18] to derive the optimal scaling factor for the BFGS update. However, since it is difficult
to find the optimal scaling factor for SR1 update in l2−condition number (see Wolkowicz
[5] for details), one may consider the following measure, which is suggested by Dennis and
Wolkowicz [5]:

σ(A) =
ξmax

det(A)1/n
, (2.2)

(σ−condition number) where det denotes determinant. Here, the measure σ acts as a
condition number in that it provides a deviation from a multiple identity as does the
l2−conditioned number, κ. In fact, both Dennis and Wolkowicz [5] and Wolkowicz [20]
had shown that any σ−optimal update will also be κ−optimal as well and have a common
spectral property.

To motivate our memoryless update, we give the following result which is due to Leong
and Hassan [9]:

Lemma 2.1. Let

γk =
yTk yk
sTk yk

−

[(
yTk yk
sTk yk

)2

− yTk yk
sTk sk

]1/2
. (2.3)

Then the direct SR1 matrix updated from 1
γk
I:

Bk+1 =
1

γk
I +

(yk − (1/γk)sk) (yk − (1/γk)sk))
T

sTk (yk − (1/γk)sk)
(2.4)

is the unique solution of

min σ(B−1
k+1)

s.t. B−1
k+1yk = sk

and B−1
k+1 is positive definite.
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Note that, however, the denominator sTk (yk − (1/γk)sk) in (2.4) may become zero and
subsequently the matrix Bk+1 generated by (2.4) is undefined. To deal with this difficulty,
one can let Bk+1 = 1

γk
I whenever this difficulty arises. Hence, together with this safeguard-

ing, we can give the following definition of Bk+1:

Bk+1 =

{
1
γk
I + (yk−(1/γk)sk)(yk−(1/γk)sk))

T

sTk (yk−(1/γk)sk)
; if sTk (yk − (1/γk)sk) ̸= 0,

1
γk
I ; if sTk (yk − (1/γk)sk) = 0.

(2.5)

Observe that in the latter case of (2.5), we will obtain γk =
sTk sk
sTk yk

. This value of γk is equal

to the first stepsize formula proposed by Barzilai and Borwein [2], in which γ is chosen such
that the matrix Bk+1 = (1/γk)I satisfies the following quasi-Newton property:

Bk+1 = arg min
B=(1/γ)I

∥Bsk − yk∥2.

Next, by interchange the role of s and y, one can also obtain the following result:

Lemma 2.2. Let

γk =
sTk sk
sTk yk

−

[(
sTk sk
sTk yk

)2

− sTk sk
yTk yk

]1/2
. (2.6)

Then the inverse SR1 matrix updated from γkI:

Hk+1 = γkI +
(sk − γkyk)(sk − γkyk)

T

yTk (sk − γkyk)
(2.7)

is the unique solution of

min σ(H−1
k+1)

s.t. H−1
k+1sk = yk

and H−1
k+1 is positive definite.

Because of the same reason that is stated above, we use the following updating formula
for Hk+1:

Hk+1 =

{
γkI +

(sk−γkyk)(sk−γkyk)
T

yT
k (sk−γkyk)

; if yTk (sk − γkyk) ̸= 0,

γkI ; if yTk (sk − γkyk) = 0.
(2.8)

Equivalently, the value of γk in the second case of (2.8) is equal to
yT
k yk

sTk yk
, which is also

the second stepsize formula of Barzilai-Borwein method. In addition, the corresponding
Hk+1 = γkI is also satisfying the following:

Hk+1 = arg min
H=γI

∥Hyk − sk∥2.

For algorithmic purpose, we adopt formula (2.8) and compute our scaled memoryless
SR1 direction, dk = −Hkgk as follows:

1. If yTk (sk − γkyk) ̸= 0:
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dk = −γk−1gk + γk−1

(
sTk−1gk − γk−1y

T
k−1gk

yTk−1sk−1 − γk−1yTk−1yk−1

)
yk−1

−

(
sTk−1gk − γk−1y

T
k−1gk

yTk−1sk−1 − γk−1yTk−1yk−1

)
sk−1, (2.9)

where γk−1 is given by (2.6) with the index k be replaced by k − 1.

2. If yTk (sk − γkyk) = 0:

dk = −γk−1gk (2.10)

where γk−1 =
yT
k−1yk−1

sTk−1yk−1
.

Finally, note that the computation of (2.9) involving only 4 vector products and requires
only 3n storage requirements.

3 Convergence Results

For the analysis of this section, we make the following assumptions about the objective
function f :

Assumption 3.1. Let G be the matrix of second derivatives of f .

1. The objective function f is twice continuously differentiable.

2. The level set D = {x ∈ Rn : f(x0) ≤ f(x)} is convex.

3. There exist positive constants M1 and M2 such that

M1∥z∥2 ≤ zTG(x)z ≤ M2∥z∥2 (3.1)

for all z ∈ Rn and all x ∈ D.

Before we proceed further, we give the following result on the boundedness of ∥Bk∥:

Lemma 3.2. Let x0 be a starting point for which f satisfies Assumption 3.1. Then for any
positive definite B0, the sequence {∥Bk∥} generated by (2.5) is bounded for all k if sk ̸= 0.

Proof. Since yk = Ḡksk where Ḡk =
∫ 1

0
G(xk + θsk)dθ, we have

sTk yk = sTk Ḡksk and yTk yk = sTk Ḡ
2
ksk, (3.2)

which also implies that both sTk yk and yTk yk are bounded away from 0 under Assumption

1.3. Hence we can show the boundedness of
yT
k yk

sTk yk
and

yT
k yk

sTk sk
as follows:

M1 ≤ yTk yk
sTk yk

≤ M2 and M2
1 ≤ yTk yk

sTk sk
≤ M2

2 (3.3)

(see Section 6.4 of Nocedal and Wright [14]).
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Obviously, ∥Bk+1∥ is bounded if Bk+1 is defined by (1/γk)I where γk =
sTk sk
sTk yk

. On

the other hand, if Bk+1 is defined by (2.4) where γk is given by (2.3), then by using both
Theorem 3.1 and Corollary 3.1 of Wolkowicz [20], one can show that the distinct eigenvalues
of Bk+1 are:

1

γk
and

1

γ̂k
(3.4)

where γ̂k =
yT
k yk

sTk yk
+

[(
yT
k yk

sTk yk

)2
− yT

k yk

sTk sk

]1/2
. Furthermore, by utilizing the Cauchy-Schwarz

inequality, we have(
yTk yk
sTk yk

)2

− yTk yk
sTk sk

=

(
yTk yk
sTk yk

)2(
1− (sTk yk)

2

(sTk sk)(y
T
k yk)

)
> 0

and yields γ̂k > γk. In addition, since we can rewrite γ̂k and γk as follows:

γ̂k =
yTk yk
sTk yk

[
1 +

(
1− sTk yk/s

T
k sk

yTk yk/s
T
k yk

)1/2
]
,

and

γk =
yTk yk
sTk yk

[
1−

(
1− sTk yk/s

T
k sk

yTk yk/s
T
k yk

)1/2
]
,

it follows that

0 < M1

[
1−

(
1− M1

M2

)1/2
]
≤ γk < γ̂k ≤ M2

[
1 +

(
1− M1

M2

)1/2
]
.

This implies that there exist positive constants q and Q where

q =
1

M2

[
1 +

(
1− M1

M2

)1/2] and Q =
1

M1

[
1−

(
1− M1

M2

)1/2] (3.5)

such that q ≤ µi ≤ Q for each eigenvalues µi of Bk+1. It follows that the sequence {∥Bk∥}
is also bounded, i.e.

q∥v∥2 ≤ vTBkv ≤ Q∥v∥2 (3.6)

for all k and v ∈ Rn.

Theorem 3.3. Let x0 be a starting point for which f satisfies Assumption 3.1. Consider
{xk} the a sequence of points generated by the updating scheme xk+1 = xk−λkB

−1
k gk where

Bk is defined by (2.4) and λk satisfies the Wolfe conditions (1.4)-(1.5). Then the sequence
{xk} converges globally to x∗. Moreover there is a constant 0 ≤ r < 1 such that

f(xk)− f(x∗) ≤ rk(f(x0)− f(x∗)) (3.7)

which implies that {xk} converges R−linearly.

Proof. Using Wolfe condition (1.4), the positive-definiteness and boundedness of the mem-
oryless SR1 matrix, it follows that

f(xk+1) ≤ f(xk)− β1λkq∥gk∥2, (3.8)
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for some positive constants q. Therefore f(xk+1) ≤ f(xk) for all k and since f is bounded
below, it follows that

lim
k→∞ f(xk)− f(xk+1) = 0.

As a consequence ∥gk∥ goes to zero, i.e. xk converges to x∗.
Furthermore, since each eigenvalue µi of Bk+1 is bounded by q and Q such that q ≤ µi ≤

Q for q and Q that are given by (3.5), we can see that the trace of Bk+1 is bounded above:

tr(Bk+1) ≤ nQ (3.9)

and the determinant of Bk+1 is bounded below:

det(Bk+1) ≥ qn. (3.10)

(In the case where Bk+1 = (1/γk)I is used, we have tr(Bk+1) ≤ n/M1 and det(Bk+1) ≥
1/Mn

2 .) Therefore from (3.9) and (3.10), we conclude that there exists a constant positive δ
such that

cos θk =
sTkBksk

∥sk∥∥Bksk∥
≥ δ, ∀k.

One can show that the line search conditions (1.4)-(1.5) and Assumption 3.1 (see for example,
Powell [16]) imply that there is a constant c > 0 such that

f(xk+1)− f(x∗) ≤ (1− c cos2 θk)(f(xk)− f(x∗)). (3.11)

Applying (3.11) recursively we obtain (3.7). Finally, from (3.1)

1

2
M1∥xk − x∗∥2 ≤ f(xk)− f(x∗),

which together with (3.7) implies ∥xk − x∗∥ ≤ rk/2[2(f(x0) − f(x∗))/M1]
1/2 so that the

sequence {xk} is also R−linearly converged.

4 Numerical Results

In this section we give some numerical results on solving a set of 36 general test problems
with dimensions varying from 104 to 106. Table 1 presents names, and references of the
problem set.

The algorithm, in general is given as follows:

Step 1. Consider an initial point x0 and set k = 0.

Step 2. Compute the search direction dk (let d0 = −g0).

Step 3. Find a value λk via the line search procedure. Update xk+1 = xk + λkdk.

Step 4. Test a criterion for stopping the iterations. If the test satisfied, then stop, else set
k := k + 1 and return to Step 2.

For each algorithm, we use a line search routine of Moré and Thuente [13], which is
based on cubic interpolation and satisfies the Wolfe conditions (1.4)-(1.5). The line search
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parameters are chosen as: β1 = 10−4, β2 = 0.9. Default values are used for all other
parameters, and the stopping criterion is that

∥gk∥ < 10−5 (4.1)

is satisfied. We also force the algorithm to stop when the number of iterations excess 1000
and the number of function/gradient calls excess 10000. All codes are written in Fortran77
and in double precision arithmetic. All runs are performed on a PC with CoreDuo CPU.
The methods tested include:

1. MLSR1: Memoryless SR1 method with the search direction given by (2.9).

2. MLBFGS: Memoryless BFGS method. It is exactly the limited memory BFGS method
of Liu and Nocedal [10] with m = 1.

3. CG-FR: CG method which uses the Fletcher-Reeve formula with Powell’s restart.

4. CG-PR: CG method which uses the Polak-Ribière formula with Powell’s restart.

5. LBFGS(5): The limited memory BFGS method of Liu and Nocedal [10] with m = 5.

6. LBFGS(7): The limited memory BFGS method of Liu and Nocedal [10] with m = 7.

The performances of these algorithms, relative to number of iterations and number of
function/gradient calls, are evaluated using the profiles of Dolan and Morè [7]. The numerical
comparative results for n = 104, 5 × 104, 105 are given in Figure 1-2. In addition, we also
give in Table 2, the detail numerical results for the all six algorithms in solving problems
with dimension 106. For this purpose, in Table 2 we give: nI and nf/g denote the number of
iterations and effective calls for function and gradient evaluation. The symbol – in the table
indicates that either the method failed to initial or failed to converge within 999 iteration
or the number of function/gradient evaluations exceeds 10000.

In this series of experiments, both MLSR1 and MLBFGS perform reasonably well when
compared with those LBFGS and CG methods. However, it is shown that in general both
LBFGS(5) and LBFGS(7) require somehow lesser function/gradient calls. While the LBFGS
methods work well for moderate size problems, LBFGS(7) fails to start when attempts to
solve problems of dimension 106 due to the ”out-of-memory” situation. Furthermore, the
figures also indicate that CG methods, in particular CG-FR seems to be the worst by
comparison with the other algorithms. This is not surprising that without an efficient
scaling/preconditioning strategy, especially when solving large-scale problems, CG methods
are necessary inferior. Table 2 also shows that that memoryless quasi-Newton method is a
good alternative if the dimensions of the problem are very large. Finally, we can conclude
that the memoryless method could be a reliable method for large-scale optimization.

5 Conclusion

This paper proposed algorithm based on employing SR1 update within the memoryless
quasi-Newton framework for solving large-scale unconstrained optimization. The proposed
method uses a scaled identity matrix to update SR1 matrix, in which the scaling factor is
derived in such a way that the scaled memoryless SR1 update is optimally conditioned and
the lack of positive definiteness is eliminated. For a wider perspective, the memoryless SR1
method is appealing for several reasons: it is simple to implement, low storage requirement,
globally converged and possesses R−linear rate of convergence.
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Table 1: List of test functions and their references
Function’s name Reference

Trigonometric Moré et al. [12]
Extended Rosenbrock Moré et al. [12]
Beale Moré et al. [12]
Wood Moré et al. [12]
Penalty I Moré et al. [12]
Broyden Tridiagonal Moré et al. [12]
Raydan Andrei [1]
Extended White and Holst Andrei [1]
Extended Tridiagonal Andrei [1]
Extended Three Expo Term Andrei [1]
Generalized Tridiagonal Andrei [1]
Diagonal 4 Andrei [1]
Diagonal 5 Andrei [1]
Extended Maratos Andrei [1]
Extended Block-Diagonal BD1 Andrei [1]
Extended Hiebert Andrei [1]
Extended Quadratic Penalty QP2 Andrei [1]
Extended EP1 Andrei [1]
Extended Tridiagonal 2 Andrei [1]
Diagonal 6 Andrei [1]
ARWHEAD CUTE [3]
NONDIA CUTE [3]
DQDRTIC CUTE [3]
DIXMAANA CUTE [3]
DIXMAANB CUTE [3]
DIXMAANC CUTE [3]
HIMMELBC CUTE [3]
CLIFF CUTE [3]
EDENSCH CUTE [3]
LIARWHD CUTE [3]
ENGVAL1 CUTE [3]
FLETCHCR CUTE [3]
COSINE CUTE [3]
DENSCHNB CUTE [3]
DENSCHNF CUTE [3]
FREUROTH CUTE [3]
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Table 2: Results for the methods in solving problems with n = 106

Test function MLSR1 MLBFGS CG-FR CG-PR LBFGS(5) LBFGS(7)
nI/nf/g nI/nf/g nI/nf/g nI/nf/g nI/nf/g nI/nf/g

Trigonometric 133/644 – – – – –
Ext Rosenbrock 25/59 43/69 182/315 28/58 37/53 –
Beale 12/23 19/30 18/32 17/35 14/18 –
Wood 113/207 98/166 118/229 62/136 69/100 –
Penalty I – – – – – –
Broyden Tridiagonal 67/106 37/48 – 88/139 45/51 –
Raydan 3/9 7/11 4/9 4/9 7/11 –
Ext White and Holst 25/47 56/90 134/246 34/69 39/52 –
Ext Tridiagonal 17/18 30/44 21/42 22/40 28/35 –
Ext Three Expo Term – – 35/122 12/24 – –
Generalized Tridiagonal – – – – – –
Diagonal 4 – – 13/27 7/13 – –
Diagonal 5 – – 6/33 6/33 – –
Ext Maratos 69/70 88/144 – 101/420 88/144 –
Ext Block-Diagonal BD1 22/33 25/39 42/76 32/111 14/23 –
Ext Hiebert 52/114 98/16 118/229 62/136 69/100 –
Ext Quad Penalty QP2 28/81 50/81 291/444 31/80 57/83 –
Ext EP1 2/3 4/6 2/5 2/5 4/6 –
Ext Tridiagonal 2 17/28 30/44 21/42 14/40 28/35 –
Diagonal 6 3/9 7/11 4/9 4/9 7/11 –
ARWHEAD 28/37 10/16 8/95 15/169 13/18 –
NONDIA 3/7 4/5 4/7 4/7 4/5 –
DQDRTIC 30/60 30/41 120/191 40/77 11/19 –
DIXMAANA 11/16 11/15 13/26 9/17 12/16 –
DIXMAANB 10/11 11/15 12/21 12/21 11/15 –
DIXMAANC 13/22 13/17 15/30 15/29 13/17 –
HIMMELBC 6/15 19/26 14/26 9/18 8/15 –
CLIFF 21/98 50/108 55/112 29/51 53/58 –
EDENSCH 45/46 21/26 – 46/658 18/23 –
LIARWHD 17/35 39/61 81/172 21/43 33/40 –
ENGVAL1 – – – – – –
FLETCHCR – – – – – –
COSINE – 703/767 – – 801/821 –
DENSCHNB – – – – – –
DENSCHNF – – – – – –
FREUROTH 11/24 36/51 129/618 60/169 17/22 –


