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Abstract: In this paper, two transformed functions are presented for constrained global optimization with
multi-extremum objective function. These transformed functions take a key role in the proceeding for the
global optimization. We prove that if the current minimizer is not a global one, there must exist an optimal
point of the transformed function in a “lower region” such that the objective value is less than the current
minimizer. Thus, the primal problem can get a better minimizer. Moreover, an algorithm is given to show
the application of transformed functions.
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1 Introduction

It is well know that for many optimization methods such as [8], [13] et al., convexity is a
key condition to get its global minimizer. However, many practical applications in engi-
neering, finance and management rely on solving such a global optimization problem with
a nonconvex objective function. So, the existence of multiple local minimums is a challenge
because they may bring two difficulties: how to judge the current minimizer is a global one,
and how to leave a minimizer to another better one if it is not global. In the last few years,
many theories and algorithms for global optimizations had been developed. We can see the
literature summary from Horst, Pardalos and Thoai [5]. Specifically, some practical meth-
ods such as the tunnelling algorithm and the filled function algorithm successively make the
movement from current local minimizer to another better one by constructing an auxiliary
function (see [3], [6], [9], [12]).

Let us recall some existing auxiliary functions, tunneling functions and filled functions.
The tunneling function for unconstrained optimization proposed by Levy and Montalvo [6]
is

T (x, x∗) =
f(x)− f(x∗m)∏m

i=1[(x− x∗i )T (x− x∗i )]ηi
,

where x∗i is a local minimizer and ηi is a sufficient large number so that x∗i becomes a pile
of T (x, x∗).
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Program (2007CB814904).
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The first filled function presented by Ge [3] is

P (x, r, ρ) =
1

r + f(x)
exp

(
−‖x− x∗‖2

ρ

)
,

where r and ρ are two adjustable parameters. And another filled function with prefixed
point x0,

U(x,A, h) = η(‖x− x0‖)ϕ(A[f(x)− f(x∗) + h])

was proposed by Ge and Qin [4] and further discussed by Lucidi and Piccialli [7]. In paper
[9], two classes of functions which possess both characters of filled functions and tunneling
functions are discussed. The usage of the filled function is similar to the tunneling function.
Besides the tunneling function and the filled function, other methods such as the dynamic
tunneling function [11] and sub-energy method [1], etc. are also efficient to global opti-
mization. Because all of those auxiliary functions are composite of f(x), they are called the
transformed function method.

The transformed function method for unconstrained global optimization consists of two
phases. In the first phase, a classical algorithm such as Newton’s method or steepest descent
method can be used to find a local minimizer x∗ of objective function f(x). In the second
phase, we search for either a root or a minimizer of the transformed function. Under the
help of the transformed function, move the iterative point out of the current valley. In this
paper, we extend the transformed function method for unconstrained global optimization to
constrained global optimization.

Consider the problem with nonconvex objective and linear constraints as follows:

min{f(x) : x ∈ X} (1.1)

where f(x) : Rn → R is a nonconvex function, X = {x ∈ Rn : Ax ≤ b} is the feasible region,
A is an m × n matrix, and b = (b1, b2, . . . , bm)T ∈ Rm. Our objective is to find a global
minimizer of problem (1.1).

This paper is organized as follows. In Section two, we introduce some assumptions,
notes and two transformed functions. In Section three, we discuss some properties of the
transformed functions defined in section two. In Section four, we introduce an algorithm
for problem (1.1). At last, in the Section 5, we show two numerical results concerning the
algorithm.

2 Notes and Assumptions

Let J(x) = {i : aT
i x = bi, i ∈ {1, 2, . . . , m}} be an index set of active constraints at point

x , where aT
i is ith row of matrix A. If J(x) = ∅,∀x ∈ X, the problem degenerates to

unconstrained. So we always assume that J(x) 6= ∅, and the number of element in J(x) is
|J(x)| = S.

Define hyperplane HJ = {x|Āx = b̄}, where J = J(x̄), Ā = {aT
i : i ∈ J(x̄)}, b̄ = (bi :

i ∈ J(x̄))T ∈ RS for an x̄ ∈ X. Let S1(x̄) = {x|f(x) ≥ f(x̄), x 6= x̄} be the high-level set
and S2(x̄) = {x|f(x) < f(x̄)} be the low-level set. Let L(P ) be the set of local minimizers
and G(P ) be the set of global minimizers of problem (1.1) respectively. xG denotes a global
minimizer of (1.1), i.e. xG ∈ G(P ).

We need the following assumptions:

Assumption 2.1. f(x) has only a finite number of local minima (minimal function values).
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Assumption 2.2. f(x) is coercive, namely, f(x) → +∞ as ||x|| → +∞.

Assumption 2.3. The gradient ∇f(x) is continuous on Ω, where Ω is a box.

Assumption 2.4. The row vectors of sub-matrix Ax are linearly independent.

Assumption 2.1 means that there is a large enough box Ω such that L(P ) ⊂ Ω, i.e. Ω
contains all of local minimizers of f(x) in its interior. According to Assumption 2.1 and
2.2, we only consider the global minimizers of (1.1) in X ∩ Ω. So, we suppose that X is a
bounded domain.

In the paper, two transformed functions for problem (1.1) at point x′ ∈ X are defined

T (x, x′) =
f(x)− f(x′) + r

‖x− x′‖α
, (2.1)

Q(x, x′) =
1

‖x− x′‖α
[f(x)− f(x′) + r + α3 max

1≤j≤m
{0, aT

j x− bj}] (2.2)

where r, α are two parameters satisfying that r > 0 is a small number and α ≥ 1 is a large
one. In (2.1) and (2.2), the parameter r > 0 is regarded as a user-defined tolerance because
it would to be adjusted in the computing process. If the zero point of the transformed
function can not be found when r > 0 is small enough, then the current local minimizer is
a global minimizer. Based on this idea, the parameter r plays a key role in deciding when
the method should stop. Theoretically, r can be set as

0 < r < min{f(x∗)− f(xG)}. (2.3)

where x∗ ∈ L(P ) \G(P ).
The auxiliary problem of (1.1) at x′ is defined

min{T (x, x′) : Āx = b̄} (2.4)

where Ā is an S × n matrix, b̄ ∈ RS .

3 Properties of Transformed Functions

From Assumption 2.4, the following lemma holds obviously.

Lemma 3.1. If Ā is full of row rank , then the projection matrix P = I − ĀT (ĀĀT )−1Ā is
positive semi-definite and ĀP = 0.

If we define df (x) = −P∇f(x), then the following result is clear.

Theorem 3.2. (1) df (x) 6= 0 is a feasible descent direction of subproblem

min{f(x) : Āx = b̄, x ∈ Ω}. (3.1)

(2) There exists an x′ ∈ HJ ∩Ω satisfying df (x′) = 0 if and only if x′ is a KKT point of
subproblem (3.1).
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If x′ is a local minimizer of subproblem (3.1), then the transformed function (2.1) has
both characters of the filled functions and the tunneling functions [9]. The descend direction
of auxiliary problem (2.4) can be taken as

dT = df +
α(f(x)− f(x′) + r)

‖x− x′‖2 (x− x′)

= −P∇f(x) +
α(f(x)− f(x′) + r)

‖x− x′‖2 (x− x′). (3.2)

The gradient of T (x, x′) is

∇T (x, x′) =
1

‖x− x′‖α
[∇f(x)− α(f(x)− f(x′) + r)

‖x− x′‖2 (x− x′)].

Let Ā = (B N), where matrix B is an invertible matrix of size S. From x = (xB , xN )T

and Āx = b̄, we get xB = B−1b̄−B−1NxN and f(x) = f(xB , xN ) = f(B−1b̄−B−1NxN , xN ).
Denote f̄(xN ) = f(B−1b̄−B−1NxN , xN ), then

∇f̄(xN ) = −(B−1N)T∇fB(x) +∇fN (x). (3.3)

Theorem 3.3. Under Assumption 2.1 − 2.4, the following two results are true on the in-
tersection set of hyperplane H = HJ = {x| Āx = b̄} and Ω.

(1) If x 6= x′ and f(x) ≥ f(x′), then , (x− x′)T∇T (x, x′) < 0 holds for sufficiently large
α.

(2) If x′ is not a global minimizer of subproblem (3.1), there must be an x̄
′ ∈ {x| f(x) <

f(x′), x ∈ H ∩ Ω} to be the minimizer of function T (x, x′) on H ∩ Ω with some α and r.

Proof. (1). Let x ∈ H, x 6= x′, and f(x) ≥ f(x′), then

(x− x′)T∇T (x, x′) ≤ 1
‖x− x′‖α

[
(xN − x′N )T

( −B−1N
In−S

)T ( ∇fB(x)
∇fN (x)

)
− αr

]

=
1

‖x− x′‖α

[
(xN − x′N )T∇f̄(xN )− αr

]
.

From Assumption 2.1 and Assumption 2.3, there exists an M > 0 such that ‖(xN −
x′N )T∇f̄(xN )‖ ≤ M . So, (x− x′)T∇T (x, x′) < 0 holds for α > M

r .
(2). Since x′ is not a global minimizer of subproblem (3.1) on H ∩Ω, the set {x| f(x) <

f(x′), x ∈ H ∩ Ω} is not empty. From the definition of T (x, x′), we get

T (x, x′) =
f(x)− f(x′) + r

‖x− x′‖α
=

f̄(xN )− f̄(x′N ) + r∥∥∥∥
( −B−1N

In−S

)
(xN − x′N )

∥∥∥∥
α

, T̄ (xN , x′N ).

It implies that auxiliary problem (2.4) is an unconstrained optimization with dimension
n− S on hyperplane H.

From Assumption 2.3 and T̄ (xN , x′N ) → +∞ as xN → x′N , we learn that there is a
neighborhood of x′N , O(x′N ) ⊂ H such that T̄ (xN , x′N ) is continuous in H\O(x′N ). Therefore,
function T (x, x′) is continuous on bounded closed region H ∩ {Ω \O(x̄)}, and it must have
a minimizer. Let

x̄
′
= arg min

x∈H∩{Ω\O(x̄)}
T (x, x′). (3.4)
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Then both x′ and x̄
′
are in hyperplane H.

On the other hand, according to the assumption of the theorem, f(x′) is not a global
minimum of the subproblem(3.1). But, f(x) certainly obtain its global minimum on the
bounded closed region H ∩ Ω from the continuity. Now, we denote this global minimizer of
subproblem (3.1) by xH . If let 0 < r < f(x′) − f(xH), then it is true that T (xH , x′) < 0
based on the definition of T (x, x′) in (2.1).

From (3.4) and the definition of x̄
′

, we have T (x̄
′
, x′) ≤ T (xH , x′) < 0, which implies

f(x̄
′
) < f(x′) from (2.1), namely, x̄

′ ∈ {x| f(x) < f(x′), x ∈ H ∩ Ω}. We finish the proof.
¤

Theorem 3.3 shows that transformed function T (x, x′) has not any stationary point in
H ∩ S1(x′), since x − x′ is a descent direction of T (x, x′). Therefore, if x∗ is a stationary
point of T (x, x′), there must be x∗ ∈ H ∩S2(x′). The following theorem holds, provided the
descent method is used for T (x, x′).

Theorem 3.4. If x ∈ H ∩Ω and dT 6= 0, then dT is a feasible descent direction of auxiliary
problem (2.4) .

Proof. From (3.2), Lemma 3.1 and Āx = b̄ = Āx′, we have

ĀdT = −ĀP∇f(x) +
α(f(x)− f(x′) + r)

‖x− x′‖2 Ā(x− x′) = 0,

i.e. dT is feasible. To prove the descent, we only need to show ∇T (x, x′)T dT < 0. From
Ā(x− x′) = 0, we have

∇T (x, x′)T dT

= −∇T (x, x′)T

{
P∇f(x)− α(f(x)− f(x′) + r)

‖x− x′‖2 [(x− x′)− ĀT (ĀĀT )−1Ā(x− x′)]
}

= −‖x− x′‖α∇T (x, x′)T P∇T (x, x′).

From dT 6= 0 and P (x− x′) = x− x′, we have

‖x− x′‖αP∇T (x, x′) = P

[
∇f(x)− α(f(x)− f(x′) + r)

‖x− x′‖2 (x− x′)
]

= −dT 6= 0.

Finally, from the positive semi-definition of P , we get ∇T (x, x′)T dT < 0. ¤

Now we discuss the properties of another transformed function (2.2).

Theorem 3.5. If x ∈ Ω but x 6∈ X, then ∇xQ(x, x̄∗) 6= 0 for large enough α.

Proof. Set V = {j | aT
j x > bj , j ∈ J}. Then V 6= ∅ from x 6∈ X. Let

aT
j0x− bj0 = max

j∈V
{aT

j x− bj}.

Suppose x 6∈ X. From (2.2), we have

∇xQ(x, x̄∗) =
1

‖x− x̄∗‖α

[
∇f(x) + α3aj0 −

α(f(x)− f(x̄∗) + r + α3(aT
j0

x− bj0))(x− x̄∗)
‖x− x̄∗‖2

]
.
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Therefore,

(x− x̄∗)T∇xQ(x, x̄∗) =
1

‖x− x̄∗‖α
[(x− x̄∗)T∇f(x)− α(f(x)− f(x̄∗) + r)

+ α3aT
j0(x− x̄∗)− α4(aT

j0x− bj0)].

Since x 6∈ X, we learn (aT
j0

x− bj0) > 0. And according to Assumption 2.1 and Assumption
2.3, both (x− x̄∗)T∇f(x) and f(x)− f(x̄∗) + r are bounded. Thus,

(x− x̄∗)T∇xQ(x, x̄∗) < 0

holds for large enough α. This implies that

∇xQ(x, x̄∗) 6= 0, ∀x 6∈ X.

We finish the proof. ¤

Theorem 3.6. If x ∈ X ∩ S1(x̄∗), then ∇xQ(x, x̄∗) 6= 0 for sufficiently large α.

Proof. For x ∈ X,

Q(x, x̄∗) =
1

‖x− x̄∗‖α
[f(x)− f(x̄∗) + r].

For x ∈ S1(x̄∗), namely f(x) ≥ f(x̄∗) and x 6= x̄∗,

(x− x̄∗)T∇xQ(x, x̄∗) ≤ 1
‖x− x̄∗‖α

[(x− x̄∗)T∇f(x)− αr].

As we know, |(x−x̄∗)T∇f(x)| is bounded and r > 0. So, there must be (x−x̄∗)T∇xQ(x, x̄∗, aj)
< 0 when α is large enough. This means ∇xQ(x, x̄∗) 6= 0. ¤

Theorem 3.7. Suppose that x̄∗ ∈ X is a local minimizer of f(x), x1, x2 ∈ X ∩S1(x̄∗), and
‖x1 − x̄∗‖ ≤ ‖x2 − x̄∗‖ − ε, where 0 < ε < 1. If

α > max
{

1,
ln(f(x1)− f(x̄∗) + r)− ln(f(x2)− f(x̄∗) + r)

ln(1− ε)

}
, (3.5)

then
Q(x1, x̄

∗) > Q(x2, x̄
∗).

Proof. For x1, x2 ∈ X ∩ S1(x̄∗), we have f(x1)− f(x̄∗) + r > 0, f(x2)− f(x̄∗) + r > 0, and

Q(xi, x̄
∗) =

1
‖xi − x̄∗‖α

[f(xi)− f(x̄∗) + r], i = 1, 2.

Consider the following two cases.
(i) f(x1) ≥ f(x2). Take notice of ‖x1 − x̄∗‖ < ‖x2 − x̄∗‖, it is obvious that

f(x1)− f(x̄∗) + r

f(x2)− f(x̄∗) + r
>

[‖x1 − x̄∗‖
‖x2 − x̄∗‖

]α

, α ≥ 1.

This means Q(x1, x̄
∗) > Q(x2, x̄

∗) .
(ii) f(x1) < f(x2). From ‖x2 − x̄∗‖ − ‖x1 − x̄∗‖ ≥ ε, we can get

‖x1 − x̄∗‖
‖x2 − x̄∗‖ ≤ 1− ε. (3.6)
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From (3.5), we have
f(x1)− f(x̄∗) + r

f(x2)− f(x̄∗) + r
> (1− ε)α.

Combining (3.6) and (3.5), we know Q(x1, x̄
∗) > Q(x2, x̄

∗). The proof is ended. ¤

Theorem 3.7 shows that as long as α is sufficiently large, the further a point leave the
current local minimizer x̄∗, the less the value of Q(x, x̄∗) would be in X ∩ S1(x̄∗).

Theorem 3.8. If x̄∗ 6∈ G(P ), then there exists an x
′ ∈ X ∩ S2(x̄∗) to be a minimizer of

Q(x, x̄∗) for suitable r > 0 and α ≥ 1.

Proof. Assumption x̄∗ 6∈ G(P ) has two meanings: X∩S2(x̄∗) 6= ∅ and f(xG) < f(x̄∗), where
xG is a global minimizer of problem (1.1) .

From xG ∈ X and (2.3), we obtain

Q(xG, x̄∗) =
1

‖xG − x̄∗‖ [f(xG)− f(x̄∗) + r] < 0.

We set O(x̄∗) to be a neighborhood of x̄∗. Since Q(x, x̄∗) is continuous on bounded and
closed region Ω \O(x̄∗), there is a minimizer x

′
such that

Q(x
′
, x̄∗) ≤ Q(xG, x̄∗) < 0. (3.7)

Now we prove that x
′ ∈ X ∩ S2(x̄∗). Firstly, suppose x

′ 6∈ X. Then, expression (2.2)
becomes

Q(x
′
, x̄∗) =

1
‖x′ − x̄∗‖α

[f(x
′
)− f(x̄∗) + r + α3(aT

j0x− bj0)],

Because aT
j0

x − bj0 > 0 (j0 ∈ V ), we have Q(x
′
, x̄∗) > 0 for large enough α. This is a

contradiction to (3.7). So x
′ ∈ X.

Secondly, suppose x
′
= x̄∗. Then, from the definition of Q(x, x̄∗), we get lim

x→x̄∗
Q(x, x̄∗) =

+∞. This contradicts (3.7) also.
Thirdly, suppose x ∈ X ∩ S1(x̄∗). Then, from f(x) ≥ f(x̄∗), we have

Q(x, x̄∗) =
1

‖x− x̄∗‖α
[f(x)− f(x̄∗) + r] > 0.

This still contradicts (3.7).
So, x

′ ∈ X ∩ S2(x̄∗) is true. We finish the proof. ¤

Combining the theorem 3.3, the theorem 3.5, the theorem 3.6 and the theorem 3.8, we
conclude that if there is a minimizer of the transformed function, it should be in low-level set
X ∩ S2(x̄∗). In other words, the transformed function has no stationary point in high-level
set X ∩ S1(x̄∗) or out of feasible X. As a result, we know that if any stationary point of
the transformed function can not be found, the current minimizer can be looked as a global
minimizer.
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4 Transformed Function Method and Numerical Results

In the section, we present the algorithm based on the transformed functions.

Algoritheorem 4.1 (TFM).

1 Take an initial point x0 ∈ X.

2 Solve the problem (1.1) and obtain a local minimizer x̄.

3.1 Set P = I − ĀT (ĀĀT )−1Ā, x̄1 = x̄, and t = 1.

3.2 Solve the auxiliary problem :

min{T (x, x̄t) : Āx = b̄}. (4.1)

If auxiliary problem (4.1) has no solution when α is large enough and r > 0 is small
enough, then x̄∗ = x̄t, goto step 4.1.

3.3 Let x̄
′
be a solution of (4.1). If Ax̄

′ ≤ b, goto step 3.4; otherwise, let x̄∗ = x̄t and goto
step 4.1.

3.4 Let x̄
′

be an initial point and df (x) = −P∇f(x) be a descent direction at point x.
Solve subproblem (3.1) and get a local minimizer x̄t+1. If Ax̄t+1 ≤ b, let t = t + 1 and
goto step 3.2; otherwise, let x0 = x̄

′
and goto step 2.

4.1 Set
λJ = −(ĀĀT )−1Ā∇f(x̄∗) = (λj , j ∈ J(x̄1))T . (4.2)

4.2 If there exist j ∈ J(x̄1) such that λj < 0, let x0 = x̄∗ and goto step 2.

4.3 If λJ ≥ 0 and there is a j ∈ {1, 2, . . . .m} \ J(x̄1) such that aT
j x̄∗ = bj , then let

J(x̄1) = J(x̄1) ∪ {j} and goto step 4.1.

4.4 If λJ ≥ 0 and aT
j x̄∗ < bj for all j ∈ {1, 2, . . . .m} \ J(x̄1), goto step 5.

5 At point x̄∗ , solve the problem

min{Q(x, x̄∗) : x ∈ Ω}. (4.3)

If problem (4.3) has no solution when α is large enough and r > 0 is small enough, x̄∗

is a global minimizer of (1.1) and stop; If (4.3) has a solution x̂, then let x0 = x̂ and
goto step 2.

From our discussion in section 3, we have the following convergent theorem.

Theorem 4.2. When algorithm (TFM) stops, (x̄∗, λ) is a KKT-pair of problem (1.1), where
λj for j ∈ J(x̄∗) is defined by (4.2) and λj = 0 for j 6∈ J(x̄∗).

5 Numerical Test

In the section we show some results of numerical test for the algorithm. We choose two
problems which are from [10] and [2]. The problems are computed by MATLAB and the
adjustable parameters are selected as 3 ≤ α ≤ 15, 0.001 ≤ r ≤ 0.1. We use the gradient
projection method to find a local minimizer. In the following Table 1 and Table 2, xk, x̄k
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and x̂k represent the local minimizer of (1.1) , the solution of (4.1) and the solution of
(4.3) concerning with the k-th iterative for searching local minimizer of the primal problem
respectively.

Example 5.1 (Consider the problem [10]).

min f(x) = −1
3
x3

1 + x2
2 + x2

3 + x2x3 + sinx4 + 2x1 − 4x2 + 3x3 − 4x4

s.t. 2x1 + 2x2 + x3 + x4 ≤ 0
3x1 − x2 + 2x3 − 4x4 + 2 ≤ 0
−1 ≤ xi ≤ 1, i = 1, 2, 3, 4.

In this problem, x∗ = (−1, 1,−1, 1) is a global minimizer with an objective value f∗ =
−10.8249. We choose the initial point x0 = (−1, 0, 0, 0) , then f(x0) = −1.6667. The
numerical results are showed in Table 1.

Table 1
k xk f(xk) x̄k x̂k f(x̄) or f(x̂)

1




−1.0000
0.9999
−0.7499
0.7499


 -9.4217




−1.0000
0.9996
−0.7505
0.7506


 -9.4246

2




−1.0000
0.9999
−0.7507
0.7509


 -9.4269 no solution




−1.0000
0.9969
−0.7726
0.7596


 -9.5014

3




−1.0000
0.9753
−0.9158
0.9650


 -10.4565




−1.0000
0.9978
−0.9890
0.9911


 -10.7657

4




−1.0000
0.9986
−0.9895
0.9921


 -10.7726 no solution




−1.0000
1.0000
−1.0000
0.9967


 -10.8138

5




−1.0000
1.0000
−1.0000
0.9999


 -10.8248 no solution no solution

Example 5.2 (Consider the problem).

min f(x) = −50(x2
1 + x2

2 + x2
3 + x2

4 + x2
5)− 10.5x1 − 7.5x2 − 3.5x3 − 2.5x4 − 1.5x5 − 10x6

s.t. 6x1 + 3x2 + 3x3 + 2x4 + x5 ≤ 6.5
10x1 + 10x3 + x6 ≤ 20
0 ≤ xi ≤ 1, i = 1, 2, 3, 4, 5; x6 ≥ 0

This example is taken from Test Problem 2 of Ref. [2]. x∗ = (0, 1, 0, 1, 1, 20) is a global mini-
mizer with an objective value f∗ = −361.5. We choose the initial point x0 = (0, 0.5, 0, 0, 0, 1).
The numerical results are showed in Table 2.
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Table 2
k xk f(xk) x̄k x̂k f(x̄) or f(x̂)

1




0.0000
0.9999
0.0000
0.0000
0.0000
1.0867




-68.3565




0.0000
0.9951
0.0000
0.0000
0.0977
1.1022




-68.6097

2




0.0000
1.0000
0.0000
0.0000
0.9999
1.9075




-128.0649




0.0000
1.0000
0.0000
0.0000
1.0000
1.9995




-128.9950

3




0.0000
1.0000
0.0000
0.0000
1.0000
19.9999




-308.9990




0.0000
1.0000
0.0000
0.0457
1.0000
20.0000




4




0.0000
1.0000
0.0000
0.9999
1.0000
20.0000




-361.4898 no solution no solution
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