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Abstract: The affine rank minimization problem, which consists of finding a matrix of minimum rank
subject to linear equality constraints, has been proposed in many areas of engineering and science. A
specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-
rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minimization
problem minimizes the nuclear norm instead of the rank of the matrix. Another possible model for the rank
minimization problem is the nuclear norm regularized linear least squares problem. This regularized problem
is a special case of an unconstrained nonsmooth convex optimization problem, in which the objective function
is the sum of a convex smooth function with Lipschitz continuous gradient and a convex function on a set of
matrices. In this paper, we propose an accelerated proximal gradient algorithm, which terminates in O(1/

√
ε)

iterations with an ε-optimal solution, to solve this unconstrained nonsmooth convex optimization problem,
and in particular, the nuclear norm regularized linear least squares problem. We report numerical results for
solving large-scale randomly generated matrix completion problems. The numerical results suggest that our
algorithm is efficient and robust in solving large-scale random matrix completion problems. In particular,
we are able to solve random matrix completion problems with matrix dimensions up to 105 each in less than
10 minutes on a modest PC.
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1 Introduction

Let <m×n be the space of m × n matrices endowed with the standard trace inner product
〈X, Y 〉 = trace(XT Y ). For X ∈ <m×n, the Frobenius norm and spectral norm of X
are denoted by ‖X‖F and ‖X‖2, respectively. The nuclear norm of X is defined to be
‖X‖∗ =

∑q
i=1 σi(X) where σi(X)’s are the singular values of X and q = min{m,n}. In our

notation, ‖x‖p =
(∑n

j=1 |xj |p
)1/p

for any x ∈ <n and 1 ≤ p < ∞; Diag(x) denotes the
diagonal matrix with the vector x on its main diagonal.

The affine rank minimization problem consists of finding a matrix of minimum rank that
satisfies a given system of linear equality constraints, namely,

min
X∈<m×n

{
rank(X) : A(X) = b

}
, (1.1)

where A : <m×n → <p is a linear map and b ∈ <p. We denote the adjoint of A by A∗. The
problem (1.1) has appeared in the literature of diverse fields including machine learning [1, 3],
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control [17, 18, 31], and Euclidean embedding [42]. In general, this affine rank minimization
problem (1.1) is an NP-hard nonconvex optimization problem. A recent convex relaxation
of this affine rank minimization problem introduced in [19] minimizes the nuclear norm over
the same constraints:

min
X∈<m×n

{
‖X‖∗ : A(X) = b

}
. (1.2)

The nuclear norm is the best convex approximation of the rank function over the unit ball
of matrices. A particular class of (1.1) is the matrix completion problem; see Section 3. In
the matrix completion problem, we are given a random subset of entries of a matrix, and
we would like to recover the missing entries such that the resulting matrix has the lowest
possible rank.

When the matrix variable is restricted to be diagonal, the problems (1.1) and (1.2) reduce
to the following linearly constrained nonsmooth minimization problems respectively:

min
x∈<n

{
‖x‖0 : Ax = b

}
, (1.3)

where ‖x‖0 denotes the number of nonzero components in the vector x, A ∈ <p×n, and

min
x∈<n

{
‖x‖1 : Ax = b

}
. (1.4)

The problem (1.4) has attracted much interest in compressed sensing [8, 9, 10, 14, 15] and is
also known as the basis pursuit problem. Recently, Recht et al. [38] established analogous
theoretical results in the compressed sensing literature for the pair (1.1) and (1.2).

In the basis pursuit problem (1.4), b is a vector of measurements of the signal x obtained
by using the sampling matrix A. If this observation b is contaminated with noise, then
Ax = b might not be feasible and so an appropriate norm of the residual Ax− b should be
minimized or constrained. In this case, the appropriate models to consider can either be
the following `1-regularized linear least squares problem (also known as the basis pursuit
de-noising problem) [12]:

min
x∈<n

1
2
‖Ax− b‖22 + µ‖x‖1, (1.5)

where µ is a given positive parameter; or the Lasso problem [40]:

min
x∈<n

{
‖Ax− b‖22 : ‖x‖1 ≤ t

}
, (1.6)

where t is a given positive parameter. It is not hard to see that the problem (1.5) is equivalent
to (1.6) in the sense that a solution of (1.5) is also that of (1.6) for some parameters µ, t,
and vice versa. Compressed sensing theory shows that a sparse signal of length n can be
recovered from m < n measurements by solving any appropriate variant of (1.5) or (1.6),
provided that the matrix A satisfies certain restricted isometry property. Many algorithms
have been proposed to solve (1.5) and (1.6), targeting particularly large-scale problems; see
[24, 40, 46] and references therein.

Just like the basis pursuit problem, the data in a matrix completion problem may be
contaminated with noise, and there may not exist low-rank matrices that satisfy the affine
constraints in (1.2). This motivates us to consider an alternative convex relaxation to the
affine rank minimization problem, namely, the following nuclear norm regularized linear
least squares problem:

min
X∈<m×n

1
2
‖A(X)− b‖22 + µ‖X‖∗, (1.7)
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where µ > 0 is a given parameter. Because (1.7) is a matrix generalization of (1.5), it is
natural for us to explore the possibility of extending some of the algorithms developed for
(1.5) to solve (1.7). We note that (1.7) has an optimal solution since the function ‖ · ‖∗ is
coercive.

The problem (1.7) is motivated from our desire to handle matrix completion problems
where the data matrices are contaminated with noise. However, its applicability goes beyond
matrix completions. For example, the problem (1.7) arises naturally in simultaneous dimen-
sion reduction and coefficient estimation in multivariate linear regression [45]. It also appears
in multi-class classification and multi-task learning; see [37] and the references therein.

In this paper, we will develop an accelerated proximal gradient method for a general
unconstrained nonsmooth convex minimization problem which includes (1.7) as a special
case. Specifically, the minimization problem we consider has the form:

min
X∈<m×n

F (X) := f(X) + P (X), (1.8)

where P : <m×n → (−∞,∞] is a proper, convex, lower semicontinuous (lsc) [39] function and
f is convex smooth (i.e., continuously differentiable) on an open subset of <m×n containing
domP = {X | P (X) < ∞}. We assume that domP is closed and ∇f is Lipschitz continuous
on domP , i.e.,

‖∇f(X)−∇f(Y )‖F ≤ Lf‖X − Y ‖F ∀X, Y ∈ domP, (1.9)

for some positive scalar Lf . The problem (1.7) is a special case of (1.8) with f(X) =
1
2‖A(X)− b‖22 and P (X) = µ‖X‖∗ with domP = <m×n.

Recently, Beck and Teboulle [4] proposed a fast iterative shrinkage-thresholding algo-
rithm (abbreviated FISTA) to solve (1.8) for the vector case where n = 1 and domP = <m,
targeting particularly (1.5) arising in signal/image processing, and reported promising nu-
merical results for wavelet-based image deblurring. This algorithm is in the class of acceler-
ated proximal gradient algorithms that were studied by Nesterov, Nemirovski, and others;
see [32, 33, 34, 36, 43] and references therein. These accelerated proximal gradient algo-
rithms have an attractive iteration complexity of O(1/

√
ε) for achieving ε-optimality; see

Section 2. We extend Beck and Teboulle’s algorithm to solve the matrix problem (1.8), and
in particular (1.7) that arises from large-scale matrix completions. More importantly, we
also design practically efficient variants of the algorithm by incorporating linesearch-like,
continuation, and truncation techniques to accelerate the convergence.

We should mention that the FISTA algorithm of Beck and Teboulle in [4] has also been
extended in [26] to the problem (1.8) with P (X) = µ‖X‖∗. But as the authors of [26]
noted, our algorithms were developed independently of theirs. In addition, the numerical
experiments in [26] focused on the problem (1.7) arising from multi-task learning on relatively
small data sets. In contrast, for our paper, the numerical experiments focus on the problem
(1.7) arising from large scale matrix completion problems.

Besides (1.7), another matrix minimization problem that often occur in practice is the
following regularized semidefinite linear least squares problem:

min
{1

2
‖A(X)− b‖22 + µ〈I, X〉 : X ∈ Sn

+

}
, (1.10)

where Sn
+ is the cone of n×n symmetric positive semidefinite matrices, and I is the identity

matrix. An example of (1.10) comes from regularized kernel estimation in statistics [28].
The problem (1.10) is also a special case of (1.8) with f(X) = 1

2‖A(X)− b‖22 + µ〈I, X〉 and

P (X) =

{
0 if X ∈ Sn

+;
∞ otherwise.
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Note that the term 〈I, X〉 is actually the nuclear norm ‖X‖∗ when X ∈ Sn
+, and domP = Sn

+.
The theoretical results and algorithms that we will develop for (1.7) can easily be adapted
for the symmetric matrix problem (1.10). Thus in this paper, we will concentrate mainly
on the problem (1.7) and only briefly explain how the results and algorithms for (1.7) are
adapted for (1.10).

The paper is organized as follows. In section 2, we introduce some gradient algorithms
using proximal regularization and accelerated versions which can be applied to solve (1.8).
We also summarize the iteration complexities of the algorithms. In section 3, we introduce
the matrix completion problem and review recently developed algorithms for solving this
problem. Then we describe our proposed algorithm, which is called the accelerated proximal
gradient singular value thresholding algorithm, for solving the nuclear norm regularized lin-
ear least squares problem (1.7) and introduce three techniques to accelerate the convergence
of our algorithm. In section 4, we compare our algorithm with a fixed point continuation
algorithm [30] for solving (1.7) on randomly generated matrix completion problems with
moderate dimensions. We also present numerical results for solving a set of large-scale ran-
domly generated matrix completion problems with/without noise. The numerical results
show that our algorithm is efficient and robust. In particular, our algorithm is able to solve
a random matrix completion problem with m = n = 105 in less than 10 minutes. We
also present numerical results for solving large-scale random semidefinite matrix comple-
tion problems of the form given in (1.10) and matrix completion problems arising from real
applications. We further evaluate the performance of our algorithm by applying it to the
problem (1.7) arising from simultaneous coefficient estimation and dimension reduction in
multivariate linear regression [45], as well as to the problem (1.10) arising from regularized
kernel estimation [28]. We give our conclusions in section 5.

For readers who are interested in using our proposed algorithm, we have created the
NNLS webpage: http://www.math.nus.edu.sg/∼mattohkc/NNLS.html, which contains
Matlab implementations of the algorithm and additional material including the data used
in the numerical experiments.

2 Proximal Gradient Algorithms

In this section we introduce some proximal gradient algorithms and their accelerated versions
which can be applied to solve (1.8). We also summarize their iteration complexities.

For any Y ∈ domP , consider the following quadratic approximation of F (·) at Y :

Qτ (X, Y ) := f(Y ) + 〈∇f(Y ), X − Y 〉+
τ

2
‖X − Y ‖2F + P (X)

=
τ

2
‖X −G‖2F + P (X) + f(Y )− 1

2τ
‖∇f(Y )‖2F , (2.1)

where τ > 0 is a given parameter, G = Y − τ−1∇f(Y ). Since (2.1) is a strongly convex
function of X, Qτ (X, Y ) has a unique minimizer which we denote by

Sτ (G) := arg min{Qτ (X, Y ) | X ∈ domP}. (2.2)

First, we present a general algorithm that uses (2.2) to update the current iterate.
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Algorithm 1:

Choose X0 = X−1 ∈ domP , t0 = t−1 ∈ [1,∞). For k = 0, 1, 2, ..., generate Xk+1 from Xk

according to the following iteration:

Step 1. Set Y k = Xk + tk−1−1
tk (Xk −Xk−1).

Step 2. Set Gk = Y k − (τk)−1∇f(Y k), where τk > 0, and compute Sτk(Gk).

Step 3. Choose a stepsize αk > 0 and set Xk+1 = Xk + αk(Sτk(Gk)−Xk).

Step 4. Choose tk+1 ∈ [1,∞) satisfying

(tk+1)2 − tk+1 ≤ (tk)2. (2.3)

We note that Y k may be outside of domP , and hence we need f to be smooth outside
of domP . For the regularized semidefinite linear least squares problem (1.10), Y k may not
be a positive semidefinite matrix, but f(X) = 1

2‖A(X)− b‖22 + µ〈I, X〉 is smooth on <n×n

and so we are able to compute Sτk(Gk). In addition, since Sτk(Gk) ∈ Sn
+, we have Xk ∈ Sn

+

if αk ≤ 1 for all k.
For the vector case where n = 1 in (1.8), Fukushima and Mine [22] studied a proximal

gradient descent method using (2.1) to compute a descent direction (i.e., Algorithm 1 with
tk = 1 for all k) with stepsize αk chosen by an Armijo-type rule. If P is separable, the
minimum point Sτ (G) can be found in closed form, which is an advantage of algorithms
using (2.2) to update the current point (i.e., αk = 1 for all k) or compute a direction
for large-scale optimization problems [24, 44, 46, 47]. When the Algorithm 1, with fixed
constants τk > 0, tk = 1, and αk = 1 for all k, is applied to the problem (1.5), i.e., (1.8)
with f(X) = 1

2‖AX − b‖22, P (X) = µ‖X‖1 and n = 1 (hence X ∈ <m), it is the popular
iterative shrinkage/thresholding (IST) algorithms that have been developed and analyzed
independently by many researchers [13, 20, 21, 24].

When P ≡ 0 in the problem (1.8), Algorithm 1 with tk = 1 for all k reduces to the
standard gradient algorithm. For the gradient algorithm, it is known that the sequence of
function values F (Xk) can converge to the optimal function value infX∈<m×n F (X) at a sub-
linear convergence rate that is no worse than O(1/k). That is, F (Xk)− infX∈<m×n F (X) ≤
O(1/k) ∀k. The following theorem gives the O(Lf/ε) iteration complexity for the Algorithm
1 with τk = Lf , tk = 1, and αk = 1 for all k when it is applied to solve (1.8). Since <m×n

can be identified with <mn and domP ⊂ domf , its proof is nearly identical to [4, Theorem
3.1] and is omitted. In what follows, X ∗ denotes the set of optimal solutions.

Theorem 2.1. Assume that X ∗ 6= ∅. Let {Xk} be the sequence generated by the Algorithm
1 with τk = Lf , tk = 1, and αk = 1 for all k. Then, for any k ≥ 1, we have

F (Xk)− F (X∗) ≤ Lf‖X0 −X∗‖2F
2k

∀X∗ ∈ X ∗.

By Theorem 2.1, it can be shown that for IST algorithms, we have

F (Xk)− inf
X∈<m×n

F (X) ≤ O(Lf/k) ∀k,

and so, for any ε > 0, these algorithms terminate in O(Lf/ε) iterations with an ε-optimal
solution. Hence the sequence {Xk} converges slowly.
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In the smooth setting, i.e., when P ≡ 0 in the problem (1.8), Nesterov [33] proposed an
algorithm that does not require more than one gradient evaluation at each iteration, but
use only interpolation strategy to achieve O(1/k2) iteration complexity. Recently, Beck and
Teboulle [4] extended Nesterov’s algorithm in [33] to solve (1.8) with n = 1 and domP = <m

and showed that the generated sequence {Xk} can achieve the following complexity:

F (Xk)− inf
X∈<m×n

F (X) ≤ O(Lf/k2) ∀k,

so that for any ε > 0, the algorithm terminates in O(
√

Lf/ε) iterations with an ε-optimal
solution. And more recently, Tseng [43] proposed a unified framework and simpler analysis
of the O(

√
Lf/ε) algorithms extended to solve (1.8). As noted in [43], the condition (2.3)

allows {tk} to increase, but not too fast. For fastest convergence, {tk} should increase as
fast as possible. The choice tk = k+2

2 satisfies (2.3). We can alternatively solve (2.3) with
the inequality replaced by equality, yielding

tk+1 =
1 +

√
1 + 4(tk)2

2
,

which tends to ∞ somewhat faster and is used in [4]. This choice will be used for our
proposed algorithm in Section 3.

The following lemma is the well known property for a smooth function with Lipschitz
continuous gradient; see [5].

Lemma 2.2. Assume that ∇f is Lipschitz continuous on domP satisfying (1.9). Then

f(X) ≤ f(Y ) + 〈∇f(Y ), X − Y 〉+
Lf

2
‖X − Y ‖2F , ∀X, Y ∈ domP.

By Lemma 2.2, we obtain that for any τ ≥ Lf ,

F (Sτ (G)) ≤ Qτ (Sτ (G), Y ), (2.4)

where G = Y − τ−1∇f(Y ).
The following theorem gives the O(

√
Lf/ε) iteration complexity for the Algorithm 1

when tk ≥ k+2
2 , τk = Lf , and αk = 1 for all k. For the proof, see [43, Corollary 2].

Theorem 2.3. Let {Xk}, {Y k}, {tk} be the sequences generated by the Algorithm 1 with
t0 = 1, tk ≥ k+2

2 , τk = Lf , and αk = 1 for all k. Then, for any X ∈ domP with
F (X) ≤ infX∈<m×n F (X) + ε, we have

min
i=0,1,...,k+1

{F (Xi)} ≤ F (X) + ε whenever k ≥
√

4Lf‖X −X0‖2F
ε

− 2.

Remark 2.4. A drawback of the Algorithm 1 with τk = Lf for all k is that the Lipschitz
constant Lf is not always known or computable in advance, but this can be relaxed by
making an initial estimate of Lf and increasing the estimate by a constant factor and
repeating the iteration whenever (2.4) is violated; see [4].

3 An Accelerated Proximal Gradient Algorithm for Matrix Com-
pletion Problems

In this section, we discuss the application of the Algorithm 1, with tk ≥ k+2
2 , τk = Lf ,

αk = 1 for all k, to the matrix completion problem. We design efficient heuristics to enable
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our proposed algorithm to handle large-scale matrix completion problems, and also to solve
them very efficiently. In section 3.1, we briefly introduce the matrix completion problem. In
section 3.2, we review recent algorithms proposed to solve the matrix completion problem.
In section 3.3, we describe our proposed algorithm for solving the nuclear norm regularized
linear least squares problem (1.7). In section 3.4, we introduce three techniques to accelerate
the convergence of our algorithm.

3.1 Introduction of the Matrix Completion

Recent interests in many areas of engineering and science have focused on the recovery of
an unknown matrix from a sampling of its entries. This is known as the matrix completion
problem. But this problem is ill-posed because there are fewer samples than entries and
we have infinitely many completions. In many instances, however, the matrix we wish to
recover has low rank or nearly low rank. The well-known Netflix problem [2] is a good
example: in the area of recommender systems, users submit ratings on a subset of entries
in a database, and the vendor provides recommendations based on the user’s preferences.
This yields a matrix M with users as rows and items as columns whose (i, j)-th entry Mij

is the rating given by the i-th user to j-th item. Because most users only rate a few items,
one would like to infer their preference for unrated items. That means we want to fill in the
missing entries of the matrix based on the small portion of entries observed. In this case,
the data matrix of all user-ratings may be approximately low-rank because it is commonly
believed that only a few factors contribute to an individual’s preferences.

The above matrix completion problem can be cast as the following minimization problem:

min
X∈<m×n

{
rank(X) : Xij = Mij , (i, j) ∈ Ω

}
, (3.1)

where M is the unknown matrix with p available sampled entries and Ω is a set of pairs
of indices of cardinality p. This is a special case of the affine rank minimization (1.1) with
A(X) = XΩ, where XΩ is the vector in <|Ω| obtained from X by selecting those elements
whose indices are in Ω. Recently, Candés and Recht [11] proved that a random low-rank
matrix can be recovered exactly with high probability from a rather small random sample
of its entries, and it can be done by solving an aforementioned convex relaxation (1.2) of
(1.1), i.e.,

min
X∈<m×n

{
‖X‖∗ : Xij = Mij , (i, j) ∈ Ω

}
. (3.2)

In [11], the convex relaxation (3.2) was solved using SDPT3 [41], which is one of the most
advanced semidefinite programming solvers. The problem (3.2) can be reformulated as a
semidefinite program as follows; see [38] for details:

min
X,W1,W2

1
2 (〈W1, Im〉+ 〈W2, In〉)

subject to Xij = Mij , (i, j) ∈ Ω,

(
W1 X
XT W2

)
º 0.

(3.3)

But the problem (3.3) has one (m + n) × (m + n) semidefinite constraint and p affine
constraints. The solver SDPT3 and others like SeDuMi are based on interior-point methods
and they are not suitable for problems with large m + n or p because the computational
cost grows like O(p(m + n)3 + p2(m + n)2 + p3) and the memory requirement grows like
O((m + n)2 + p2).
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3.2 Review of Existing Algorithms for Matrix Completion

In this section, we review two recently developed algorithms [6, 30] for solving the matrix
completion problem.

First of all, we consider the following minimization problem:

min
X∈<m×n

τ

2
‖X −G‖2F + µ‖X‖∗, (3.4)

where G is a given matrix in <m×n. If G = Y − τ−1A∗(A(Y ) − b), then (3.4) is a special
case of (2.1) with f(X) = 1

2‖A(X)− b‖22 and P (X) = µ‖X‖∗ when we ignore the constant
term. The problem (3.4) has a unique analytical solution which can be computed via the
singular value decomposition (SVD) of G. Suppose the SVD of G is given by:

G = UΣV T , Σ = Diag(σ),

where U and V are respectively m× q and n× q matrices with orthogonal columns, σ ∈ <q

is the vector of positive singular values arranged in descending order σ1 ≥ σ2 ≥ · · · ≥
σq > 0, with q ≤ min{m,n}. (Unless specified otherwise, we will always assume that the
SVD of a matrix is given in the reduced form above.) For a given vector x ∈ <q, we let
x+ = max{x, 0}, where the maximum is taken component-wise. By [6, Theorem 2.1] or [30,
Theorem 3], the solution Sτ (G) of (3.4) is given by

Sτ (G) = UDiag((σ − µ/τ)+)V T . (3.5)

Hence, by using SVD of G, we can obtain a closed form solution of (3.4).
Recently, Ma et al. [30] proposed a fixed point continuation (abbreviated FPC) algorithm

for solving (1.7) and a Bregman iterative algorithm for solving (1.2). Their numerical results
on randomly generated and real matrix completion problems demonstrated that the FPC
algorithm is much faster than semidefinite solvers such as SDPT3. This FPC algorithm for
solving (1.7) is a matrix extension of the fixed point continuation algorithm proposed in [24]
for an `1-regularized convex minimization problem in <m. At each iteration k, the FPC
algorithm solves (3.4) with τk > λmax(A∗A)/2, where λmax(A∗A) is the largest eigenvalue
of A∗A. Hence this algorithm (without continuation) is a special case of the Algorithm 1,
with τk > λmax(A∗A)/2, tk = 1, αk = 1 for all k, and can be expressed as follows:

{
Xk = Sτk(Gk)

Gk+1 = Xk − (τk)−1A∗(A(Xk)− b).
(3.6)

They proved the following global convergence result for the fixed point algorithm when
it is applied to solve (1.7). For the proof, see [30, Theorem 4].

Theorem 3.1. Let {Xk} be the sequence generated by the fixed point algorithm with τk >
λmax(A∗A)/2. Then Xk converges to some X∗ ∈ X ∗.

However this algorithm may terminate in O(Lf/ε) iterations with an ε-optimal solution;
see Theorem 2.1 with τk ≥ λmax(A∗A).

Recently, Cai, et al. [6] proposed a singular value thresholding (abbreviated SVT) algo-
rithm for solving the following Tikhonov regularized version of (1.2):

min
X∈<m×n

{
‖X‖∗ +

1
2β
‖X‖2F : A(X) = b

}
, (3.7)
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where β > 0 is a given parameter. Note the addition of the strongly convex quadratic term
‖X‖2F /(2β) to (1.2) in (3.7). The SVT algorithm can be expressed as follows:

{
Xk = Sτk(Gk)

Gk+1 = Gk − δkA∗(A(Xk)− b),
(3.8)

where τk = 1 for all k and δk is a positive step size. In (3.8), Sτk(Gk) has the form in
(3.13) but with µ replaced by β. This SVT algorithm is a gradient method applied to the
dual problem of (3.7), where each step moves the current dual iterate in the direction of the
gradient.

They proved the following global convergence for the SVT algorithm. For the proof, see
[6, Corollary 4.5].

Theorem 3.2. Let {Xk} be the sequence generated by the SVT algorithm applied to (3.7)
with 0 < δk < 2/λmax(A∗A) for all k. Then Xk converges to the unique solution of (3.7).

They also showed that if β goes to∞, then the sequence of optimal solutions X∗
β for (3.7),

which is assumed to be feasible, converges to the optimal solution of (1.2) with minimum
Frobenius norm. Hence the SVT algorithm approximately solves (1.2), in particular (3.2)
for sufficiently large β. The numerical results in [6] demonstrated that the SVT algorithm
is very efficient in recovering large-scale matrices of small rank when it is applied to (3.7)
with an appropriately large parameter β to approximately solve (3.2).

The main computational cost in each iteration of the FPC and SVT algorithms lies in
computing the SVD of Gk. In [30], Ma et al. uses a fast Monte Carlo algorithm such as
the Linear Time SVD algorithm developed by Drineas et al. [16] to reduce the time for
computing the SVD. In addition, they compute only the predetermined svk largest singular
values and corresponding singular vectors to further reduce the computational time at each
iteration k. The expected number svk is set by the following procedure. In the k-th iteration,
svk is set to be equal to the number of components in the vector %k−1 that are no less than
υk max(%k−1), where υk is a small positive number and max(%k−1) is the largest component
in the vector %k−1 used to form Xk−1 = Uk−1Diag(%k−1)(V k−1)T . And if the non-expansive
property (see [30, Lemma 1]) is violated 10 times, svk is increased by 1. In contrast, Cai,
et al. [6] used PROPACK [27] (a variant of the Lanczos algorithm) to compute a partial
SVD of Gk. They also compute only the predetermined svk largest singular values and
corresponding singular vectors to reduce the computational time at each iteration k. The
procedure to set svk is as follows. In the k-th iteration, set svk = rk−1 + 1 where rk−1 is
the number of positive singular values of Xk−1. If all of the computed singular values are
greater than or equal to β, then svk is increased by 5 repeatedly until some of the singular
values fall below β.

3.3 An Accelerated Proximal Gradient Singular Value Thresholding Algorithm

In this section, we describe an accelerated proximal gradient singular value thresholding
algorithm for solving (1.7).

The following lemma shows that the optimal solution set of (1.7) is bounded.

Lemma 3.3. For each µ > 0, the optimal solution set X ∗ of (1.7) is bounded. In addition,
for any X∗ ∈ X ∗, we have

‖X∗‖F ≤ χ (3.9)
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where

χ =

{
min{‖b‖22/(2µ), ‖XLS‖∗} if A is surjective

‖b‖22/(2µ) otherwise.

with XLS = A∗(AA∗)−1b.

Proof. Considering the objective value of (1.7) at X = 0, we obtain that for any X∗ ∈ X ∗,

µ‖X∗‖∗ ≤ 1
2
‖A(X∗)− b‖22 + µ‖X∗‖∗ ≤ 1

2
‖b‖22.

This together with the fact that ‖X∗‖F ≤ ‖X∗‖∗ implies ‖X∗‖F ≤ ‖b‖22/(2µ). In addition,
if A is surjective, then by considering the objective value of (1.7) at X = XLS , we obtain
that for any X∗ ∈ X ∗,

µ‖X∗‖∗ ≤ 1
2
‖A(X∗)− b‖22 + µ‖X∗‖∗ ≤ µ‖XLS‖∗.

This together with the fact that ‖X∗‖F ≤ ‖X∗‖∗ implies (3.9)

Since (1.7) is a special case of (1.8) with f(X) = 1
2‖A(X) − b‖22 and P (X) = µ‖X‖∗,

we can solve (3.4) with τ = Lf to update the current matrix at each iteration. Hence the
updated matrix is given by

Sτ (G) = UDiag
(
(σ − µ/τ)+

)
V T ,

where U, V, σ are obtained from the SVD: Y − τ−1(A∗(A(Y )− b)) = UDiag(σ)V T .

We now describe formally the accelerated proximal gradient singular value thresholding
(abbreviated APG) algorithm for solving (1.7).

APG algorithm:

For a given µ > 0, choose X0 = X−1 ∈ <m×n, t0 = t−1 = 1. For k = 0, 1, 2, ..., generate
Xk+1 from Xk according to the following iteration:

Step 1. Set Y k = Xk + tk−1−1
tk (Xk −Xk−1).

Step 2. Set Gk = Y k − (τk)−1A∗(A(Y k) − b), where τk = Lf . Compute Sτk(Gk) from
the SVD of Gk.

Step 3. Set Xk+1 = Sτk(Gk).

Step 4. Compute tk+1 = 1+
√

1+4(tk)2

2 .

We note that this algorithm is a special case of the Algorithm 1 with t0 = 1, tk+1 =
1+
√

1+4(tk)2

2 , τk = Lf , and αk = 1 for all k.
The following corollary gives an upper bound on the number of iterations for the APG

algorithm to achieve ε-optimality.
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Corollary 3.4. Let {Xk}, {Y k}, {tk} be the sequences generated by APG. Then, for any
k ≥ 1, we have

F (Xk)− F (X∗) ≤ 2Lf‖X∗ −X0‖2F
(k + 1)2

, ∀X∗ ∈ X ∗. (3.10)

Hence

F (Xk)− F (X∗) ≤ ε whenever k ≥
√

2Lf

ε

(‖X0‖F + χ
)− 1, (3.11)

where χ is defined as in Lemma 3.3.

Proof. Since <m×n can be identified with <mn and X ∗ 6= ∅, By [4, Theorem 4.1], we obtain
(3.10). By using the triangular inequality, ‖X∗ − X0‖F ≤ ‖X∗‖F + ‖X0‖F , and Lemma
3.3, we get the required result in (3.11).

We note that the O(
√

Lf/ε) iteration complexity result in Corollary 3.4 holds with τk

smaller than Lf as long as (2.4) is satisfied with τ = τk, G = Gk, Y = Y k; see [4] for details.

Remark 3.5. We observe that the APG algorithm is as simple as the FPC and SVT
algorithms, and yet it has a better iteration complexity. As indicated in section 3.2, the
FPC algorithm has the O(Lf/ε) iteration complexity. For the SVT algorithm, there is no
known iteration complexity. Hence the main advantage of the APG algorithm over the FPC
and the SVT algorithms is its O(

√
Lf/ε) iteration complexity. We can see this iteration

complexity advantage over the FPC (without continuation) from the numerical tests in
section 4.1.

Remark 3.6. The APG algorithm can easily be modified to solve the regularized semidef-
inite linear least squares problem (1.10). The only change required is to replace Sτk(Gk)
in Step 2 of the algorithm by Sτk(Gk) = QDiag((λ− µ/τ)+)QT , where QDiag(λ)QT is the
eigenvalue decomposition of Gk. Since (1.10) is a special case of (1.8) and X ∗ 6= ∅, the
O(

√
Lf/ε) iteration complexity result in Corollary 3.4 still holds when the APG algorithm

is applied to solve (1.10).

Just like the FPC and SVT algorithms, the APG algorithm needs to compute the SVD
of Gk at each iteration. Our implementation uses PROPACK to compute a partial SVD
of Gk. But PROPACK can not automatically compute only those singular values greater
than µ/τk even though one can choose the number of singular values to compute. Hence
we must choose the predetermined number svk of singular values to compute in advance at
each iteration k. We use the following simple formula to update svk. Starting from sv0 = 5,
we set svk+1 as follows:

svk+1 =

{
svpk + 1 if svpk < svk

svpk + 5 if svpk = svk
(3.12)

where svpk is the number of positive singular values of Xk.

3.4 Accelerating the APG Algorithm

In this section, we introduce three techniques to accelerate the convergence of the APG
algorithm.
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The first technique uses a linesearch-like technique. In practice, it is often too conserva-
tive to set τk = Lf for all k in the APG algorithm. To accelerate the convergence of the
APG algorithm, it is desirable to take a smaller value for τk by performing a linesearch-like
procedure. In the algorithm below, we incorporated the linesearch-like acceleration strategy
in the APG algorithm.

APGL algorithm.

Let µ > 0 be a fixed regularization parameter, and η ∈ (0, 1) be a given constant. Choose
X0 = X−1 ∈ <m×n. Set t0 = t−1 = 1 and τ0 = Lf .
For k = 0, 1, 2, ..., generate Xk+1 according to the following iteration:

Step 1. Set Y k = Xk + tk−1−1
tk (Xk −Xk−1).

Step 2. Set τ̂0 = ητk−1.

For j = 0, 1, 2, . . . ,
Set G = Y k − (τ̂j)−1A∗(A(Y k)− b), compute Sbτj

(G).
If F (Sbτj

(G)) ≤ Qbτj
(Sbτj

(G), Y k),
set τk = τ̂j , stop;

else,
τ̂j+1 = min{η−1τ̂j , Lf}

end
end

Step 3. Set Xk+1 = Sτk(G).

Step 4. Compute tk+1 = 1+
√

1+4(tk)2

2 .

Besides accelerating the convergence of the APG algorithm, the linesearch-like procedure
in Step 2 of the APGL algorithm has another important advantage. One can see from Step
2 of the APGL algorithm that τk has the form τk = ηlkLf for some nonnegative integer lk
for each k. Thus τk is typically smaller than Lf , and this implies that the vector (σ−µ/τk)+
would have fewer positive components when we compute Sτk(G) from the SVD of G. Thus
the iterate Xk+1 would generally have lower rank compared to that of the corresponding
iterate generated by the APG algorithm.

As indicated in [6], the convergence of the SVT algorithm for the matrix completion
problem of the form (3.7) is guaranteed provided that 0 < δk < 2 for all k; see Theorem
3.2. But it was observed that this stepsize range is too conservative and the convergence of
the algorithm is typically very slow. Hence in [6], the actual algorithm used a much larger
stepsize (δk = 1.2nm

p for all k) to accelerate the convergence of the SVT algorithm and the
authors gave a heuristic justification. But for our APGL algorithm above, the complexity
result in Corollary 3.4 remains valid as noted in section 3.3.

The second technique to accelerate the convergence of the APG algorithm is a contin-
uation technique. When we update the current point Xk at iteration k, we have to obtain
Sτk(Gk) via the SVD of Gk. This is the main computation of the APG algorithm. However
it suffices to know those singular values and corresponding singular vectors greater than the
scaled regularization parameter µ/τk. Hence if the parameter is larger, then the number
of singular values to be evaluated is smaller. But the target parameter µ̄ is usually cho-
sen to a moderately small number. This motivates us to use the continuation technique
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employed in [24, 30]. If the problem (1.7) is to be solved with the target parameter value
µ = µ̄, we propose solving a sequence of problems (1.7) defined by a decreasing sequence
{µ0, µ1, . . . , µ` = µ̄} with a given finite positive integer `. When a new problem, associated
with µj+1 is to be solved, the approximate solution for the current problem with µ = µj

is used as the starting point. In our numerical experiments in sections 4.2, 4.3, and 4.4,
we set µ̄ = 10−4µ0 with the initial µ0 = ‖A∗(b)‖2, and update µk = max{0.7µk−1, µ̄} at
iteration k. The above updating formula for µk is guided by the observation that a greater
reduction on µk results in more singular values being evaluated but l is smaller, while a
smaller reduction on µk has the opposite effect. The reduction factor 0.7 was found after
some experimentation. Another updating rule for µk used in FPC algorithm [30] was tested
in our setting but it was worse than the above updating rule.

Our computational experience indicate that the performance of the APG and FPC al-
gorithms with continuation techniques is generally superior to that of directly applying the
APG and FPC algorithms to (1.7) with the target value µ = µ̄; see section 4.1.

The third technique to accelerate the convergence of the APG algorithm is a truncation
technique. We note that for the APG algorithm without any acceleration techniques, the
iterate Xk is generally not low-rank before the final phase of the algorithm, but the number
of positive singular values of Xk typically would separate into two clusters with the first
cluster having much large mean value than that of the second cluster. One may view the
number of singular values in the first cluster as a good estimate on the rank of the low-
rank optimal solution of (1.7). The second cluster of smaller positive singular values (at
the level of about µ/τk) can be attributed to the presence of noise in the given data b, and
also the fact that Xk has yet to converge to a low-rank optimal solution of (1.7). We have
observed that the second cluster of smaller singular values can generally be discarded without
affecting the convergence of the APG algorithm. This motivates us to set the second cluster
of small positive singular values to zero when the new iterate is updated. The procedure is
as follows. Let the SVD of Gk be Gk = UDiag(σ)V T , and % = (σ − µ/τk)+. Let q be the
number of positive components of %. We evaluate χj := mean(%(1 : j))/mean(%(j + 1 : q))
for j = 1, . . . , q − 1. If χj < gap ∀ j = 1, . . . , q − 1 (where gap is a given positive scalar),
set Xk+1 = UDiag(%)V T ; otherwise, let r be the smallest integer such that χr ≥ gap, set
Xk+1 = UDiag(%̄)V T , where %̄ is obtained from % by setting %̄i = %i for i = 1, ..., r, and
%̄i = 0 for i = r+1, ..., q. In our implementation of the APG algorithm, we set gap = 5 after
some experimentation on small problems.

Remark 3.7. As noted in [6], there are two main advantages of the SVT algorithm over
the FPC (without continuation) and the APG algorithms when the former is applied to
solve the problem (3.7) arising from matrix completions. First, selecting a large β in (3.7)
gives a sequence of low-rank iterates. In contrast, the parameter µ for (1.7) is chosen
to be a moderately small number and so many iterates at the initial phase of the FPC
or APG algorithms may not have low rank even though the optimal solution itself has
low rank. We observed this property when we applied the FPC and APG algorithms to
solve the matrix completion problem. But this drawback can be ameliorated by using the
linesearch-like and continuation techniques. Second, the matrix Gk in (3.8) is sparse for
all k because the sparsity pattern of Ω is fixed throughout. This makes the SVT algorithm
computationally attractive. In contrast, the matrix Gk in (3.6) and the APG algorithm may
not be sparse. But, by using the continuation and truncation techniques, Xk in (3.6) and
Y k in the APG algorithm can keep the low-rank property for all k. In addition, Xk, Y k need
not be computed explicitly, but their low-rank SVD factors are stored so that matrix-vector
products can be evaluated in PROPACK or any other iterative algorithms for computing a
partial SVD. Also the matrices A∗(A(Xk)− b) and A∗(A(Y k)− b) are sparse because of the
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sparsity pattern of Ω. Therefore the matrix Gk in (3.6) and the APG algorithm is typically
the sum of a low-rank matrix and a sparse matrix. The last property can also make the
FPC and APG algorithms computationally as attractive as the SVT algorithm.

3.5 A Stopping Condition for the APG and APGL Algorithms

The natural stopping condition for the unconstrained convex minimization problem (1.7) is
that δ(X) := dist(0, ∂(f(X) + µ‖X‖∗)) is sufficiently small, where f(X) = 1

2‖A(X) − b‖22
and ∂(·) denotes the sub-differential. Here dist(x, S) denotes the distance between a point
x and a set S.

In practice, it is difficult to compute δ(X), but in the course of running the APG and
APGL algorithms, one can actually get a good upper bound on δ(X) without incurring
extra computational cost as follows. At the k-th iteration, let Gk = Y k − (τk)−1∇f(Y k).
Observe that

∂(µ‖Xk+1‖∗) 3 τk(Gk −Xk+1) = τk(Y k −Xk+1)−∇f(Y k).

Let

Sk+1 := τk(Y k −Xk+1) +∇f(Xk+1)−∇f(Y k)
= τk(Y k −Xk+1) +A∗(A(Xk+1)−A(Y k)). (3.13)

Thus we have Sk+1 ∈ ∂(f(Xk+1) + µ‖Xk+1‖∗) and hence the following upper bound for
δ(Xk+1):

δ(Xk+1) ≤ ‖Sk+1‖F .

From the above, we derive the following stopping condition for the APG and APGL algo-
rithms:

‖Sk+1‖F

τk max{1, ‖Xk+1‖F } ≤ Tol, (3.14)

where Tol is a moderately small tolerance.

4 Numerical Experiments on Matrix Completion Problems

In this section, we report some numerical results for solving a collection of matrix completion
problems of the form (1.7) and (1.10). In section 4.1, we compare our APG algorithm with a
variant of the FPC algorithm [30] for solving (1.7) on randomly generated matrix completion
problems with moderate dimensions. In section 4.2, we present some numerical results for
solving (1.7) on a set of large-scale randomly generated matrix completion problems with
noise/without noise. In section 4.3, we present some numerical results for solving (1.10)
on a set of large-scale randomly generated semidefinite matrix completion problems with
noise/without noise. In section 4.4, we present some numerical results for solving (1.7) on
real matrix completion problems. In section 4.5, we evaluate the performance of the APGL
algorithm for solving (1.7) on randomly generated multivariate linear regression problems.
In section 4.6, we report numerical results of the APGL algorithm for solving the problem
of the form (1.10) arising from regularized kernel estimation.

We have implemented the APG and APGL algorithms in Matlab, using PROPACK
package to evaluate partial singular value decompositions. All runs are performed on an Intel
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Xeon 3.20GHz, running Linux and Matlab (Version 7.6). Throughout the experiments, we
choose the initial iterate to be X0 = 0.

The random matrix completion problems we consider in our numerical experiments are
generated as in [11]. For each (n, r, p) triple, where n (we set m = n) is the matrix dimension,
r is the predetermined rank, and p is the number entries to sample, we repeat the following
procedure 5 times. We generate M = MLMT

R as suggested in [11], where ML and MR are
n×r matrices with i.i.d. standard Gaussian entries. We then select a subset Ω of p elements
uniformly at random from {(i, j) : i = 1, . . . , n, j = 1, . . . , n}. Hence

b = A(M)

where the linear map A is given by

A(X) = XΩ.

Here, XΩ is the vector in <p that is obtained from X by selecting those elements whose
indices are in Ω. For the above linear map, we have the Lipschitz constant Lf = 1 for (1.7).
For each of the test problems, we set the regularization parameter in (1.7) to be µ̄ = 10−4µ0

where µ0 = ‖A∗(b)‖2.
We also conduct numerical experiments on random matrix completion problems with

noisy data. For the noisy random matrix completion problems, the matrix M are corrupted
by a noise matrix Ξ, and

b = A(M + σΞ),

where the elements of Ξ are i.i.d. standard Gaussian random variables. In our experiments,
σ is chosen to be

σ = nf
‖A(M)‖F

‖A(Ξ)‖F
,

where nf is a given noise factor.
The stopping criterion we use for the APG and APGL algorithms in our numerical

experiments is as follows:

‖Sk‖F

τk−1 max{1, ‖Xk‖F } < Tol, (4.1)

where Tol is a moderately small number, and Sk is defined as in (3.13). In our experiments,
unless otherwise specified, we set Tol = 10−4. In addition, we also stop the APG and APGL
algorithms when

∣∣‖A(Xk)− b‖2 − ‖A(Xk−1)− b‖2
∣∣

max{1, ‖b‖2} < 5× Tol. (4.2)

We measure the accuracy of the computed solution Xsol of an algorithm by the relative
error defined by:

error := ‖Xsol −M‖F /‖M‖F , (4.3)

where M is the original matrix.
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Table 1: Comparison of APG and FPC, without using any acceleration techniques.

Unknown M FPC APG
n/r p p/dr µ iter #sv error iter #sv error

100/10 5666 3 8.21e-03 7723 61 1.88e-01 655 13 1.06e-03
200/10 15665 4 1.05e-02 12180 96 2.45e-01 812 12 1.02e-03
500/10 49471 5 1.21e-02 10900 203 5.91e-01 1132 16 7.63e-04

Table 2: Comparison of APG and FPC, with continuation techniques.

Unknown M FPC-M APG-C
n/r p p/dr µ iter #sv error iter #sv error

100/10 5666 3 8.21e-03 429 32 1.06e-03 74 10 1.46e-04
200/10 15665 4 1.05e-02 278 49 4.38e-04 73 10 1.02e-04
500/10 49471 5 1.21e-02 484 125 5.50e-04 72 10 8.06e-05

4.1 Comparison of the APG and FPC Algorithms

In this section, we compare the performance of the APG and FPC algorithms with/without
continuation techniques to solve (1.7) for randomly generated matrix completion problems
with moderate dimensions.

As noted in section 3.2, the FPC algorithm solves the problem (1.7) and this algorithm
(without continuation technique) can be considered as a special case of the Algorithm 1. As
suggested in [30], we set τk = 1 for all k in (3.6).

In this section, we set Tol in (4.1) to 5 × 10−5 to prevent the FPC algorithm from
terminating prematurely with a poor relative error in the computed solution. In order to
free ourselves from the distraction of having to estimate the number of singular values that
are greater than µk/τk when computing Sτk(Gk) from a partial SVD of Gk, we compute
the full SVD of Gk at each iteration k.

For the APG algorithm with continuation technique (which we call APG-C), we update
µk = max{κµk−1, µ̄} at iteration k whenever k = 0 (mod 3) or (4.1) is satisfied and κ = 0.7.
This updating formula for µk is guided by the observation mentioned in section 3.4. The
thresholds 0.7 and 3 were found after some experimentation.

For the FPC algorithm with continuation technique in [30], the update strategy for µk is
µk = max{0.25µk−1, µ̄} whenever (4.1) is satisfied with Tol = 10−5 (In [30], the denominator
of (4.1) is replaced by ‖Xk−1‖F ). We call this version as FPC-M.

Tables 1 and 2 report the average number of iterations, the average number (#sv) of
nonzero singular values of the computed solution matrix, and the average relative error (4.3),
of 5 random runs without noise. The tables also report the mean value of the regularization
parameter µ for the 5 runs and gives the ratio (denoted by p/dr) between the number of
sampled entries and the degrees of freedom in an n×n matrix of rank r. As indicated in [6],
an n × n matrix of rank r depends on dr := r(2n − r) degrees of freedom. As can be seen
from Table 1, APG outperforms FPC greatly in terms of the number of iterations when no
acceleration techniques are used. In addition, the solutions computed by the APG algorithm
are much more accurate than those delivered by the FPC algorithm. From Table 2, we see
that the APG-C algorithm also substantially outperformed the FPC-M algorithm in terms
of iteration counts, and the former also delivered more accurate solutions. In conclusion,
the APG algorithm is superior to the FPC algorithm with/without continuation. This
conclusion is not surprising given that the former has better iteration complexity result
than the latter.
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4.2 Numerical Experiments on Large Random Matrix Completion Problems

In this section, we report the performance of the APGL algorithm with continuation and
truncation techniques on randomly generated matrix completion problems with and without
noise. We created the random matrices the same way described at the beginning of section
4.

Table 3 reports the results for random matrix completion problems without noise. In
the table, we report the ratio p/dr, the mean value of the regularization parameter µ, the
mean value of the number of iterations, the number (#sv) of positive singular values of the
computed solution matrix, the CPU time (in seconds), and the relative error (4.3) of 5 runs.
As indicated in the table, it took the APGL algorithm no more than 70 iterations on the
average to solve all the problems in our experiments. In addition, the errors of the computed
solutions are all smaller than 4× 10−4. Observe that the APGL algorithm was able to solve
random matrix completion problems with m = n = 105 each in less than 10 minutes. For
each of the problems with m = n = 105, the percentage of entries sampled is about 0.12%.
It is rather surprising that the original random low-rank matrix M can be recovered given
only such a small portion of its entries.

Table 4 reports the same results as Table 3 for random matrix completion problems with
noisy data. As indicated in the table, the APGL algorithm took no more than 65 iterations
on the average to solve all the problems in our experiments, and yet the errors are all smaller
than the noise level (nf = 0.1) in the given data. The errors obtained here are consistent
with (actually more accurate) the theoretical result established in [7].

Table 3: Numerical results on random matrix completion problems without noise.

Unknown M Results
n p r p/dr µ iter #sv time error

1000 119406 10 6 1.44e-02 38 10 2.66e+00 2.94e-04

389852 50 4 5.39e-02 40 50 1.55e+01 3.08e-04

569900 100 3 8.63e-02 48 100 4.79e+01 3.82e-04

5000 597973 10 6 1.38e-02 48 10 1.20e+01 2.53e-04

2486747 50 5 6.10e-02 55 50 1.19e+02 3.79e-04

3957533 100 4 1.03e-01 53 100 2.97e+02 2.77e-04

10000 1199532 10 6 1.36e-02 48 10 2.36e+01 2.62e-04

4987078 50 5 5.96e-02 67 50 3.14e+02 1.96e-04

7960222 100 4 9.94e-02 67 100 8.61e+02 2.69e-04

20000 2401370 10 6 1.35e-02 57 10 5.60e+01 2.09e-04

30000 3599920 10 6 1.35e-02 53 10 7.91e+01 2.72e-04

50000 5998352 10 6 1.35e-02 63 10 1.76e+02 1.75e-04

100000 12000182 10 6 1.34e-02 69 10 4.63e+02 2.16e-04

Table 4: Numerical results on random matrix completion problems with noise.
The noise factor nf is set to 0.1.

Unknown M Results
n p r p/dr µ iter #sv time error

1000 /0.10 119406 10 6 1.44e-02 34 10 2.62e+00 4.44e-02

389852 50 4 5.39e-02 38 50 1.40e+01 5.45e-02
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Table 4: Numerical results on random matrix completion problems with noise.
The noise factor nf is set to 0.1.

Unknown M Results
n p r p/dr µ iter #sv time error

569900 100 3 8.65e-02 44 100 3.99e+01 6.32e-02

5000 /0.10 597973 10 6 1.38e-02 41 10 1.41e+01 4.47e-02

2486747 50 5 6.10e-02 54 50 1.18e+02 4.92e-02

3957533 100 4 1.03e-01 47 100 2.37e+02 5.63e-02

10000 /0.10 1199532 10 6 1.37e-02 45 10 2.89e+01 4.48e-02

4987078 50 5 5.97e-02 62 50 2.89e+02 5.01e-02

7960222 100 4 9.95e-02 64 100 8.17e+02 5.81e-02

20000 /0.10 2401370 10 6 1.36e-02 49 10 5.98e+01 4.48e-02

30000 /0.10 3599920 10 6 1.35e-02 51 10 1.01e+02 4.49e-02

50000 /0.10 5998352 10 6 1.35e-02 55 10 2.02e+02 4.51e-02

100000 /0.10 12000182 10 6 1.34e-02 59 10 5.50e+02 4.52e-02

4.3 Numerical Experiments on Random Positive Semidefinite Matrix Comple-
tion Problems

Here evaluate the performance of the APGL algorithm, with continuation and truncation
techniques, for solving semidefinite linear least squares problems (1.10) arising from positive
semidefinite random matrix completions. The format of the experiment is the same as that
in section 4.2, and the data matrix M is generated in the same way but with MR = ML.
The index set Ω is generated by selecting p elements uniformly at random from the set
{(i, j) : i = 1, . . . , j, j = 1, . . . , n}.

From Tables 5 and 6, we observe that the APGL algorithm performed very well on
random positive semidefinite matrix completion problems.

Table 5: Numerical results on semidefinite random matrix completion problems
without noise.

Unknown M Results
n p r p/dr µ iter #sv time error

1000 60497 10 6 1.59e-02 38 10 2.47e+00 2.41e-04

195544 50 4 6.34e-02 39 50 9.86e+00 3.22e-04

285424 100 3 1.04e-01 48 100 2.85e+01 3.16e-04

5000 304051 10 6 1.54e-02 46 10 1.12e+01 2.55e-04

1249477 50 5 6.86e-02 55 50 8.20e+01 2.68e-04

1984850 100 4 1.19e-01 53 100 2.01e+02 2.90e-04

10000 609765 10 6 1.51e-02 51 10 2.48e+01 2.05e-04

2502872 50 5 6.64e-02 66 50 2.18e+02 1.96e-04

3988660 100 4 1.14e-01 55 100 4.69e+02 3.70e-04

20000 1220822 10 6 1.49e-02 56 10 5.95e+01 2.02e-04

30000 1831551 10 6 1.49e-02 59 10 9.66e+01 3.00e-04

50000 3049294 10 6 1.48e-02 63 10 1.92e+02 1.59e-04

100000 6099941 10 6 1.47e-02 65 10 5.00e+02 1.68e-04



AN APG METHOD FOR NUCLEAR NORM REGULARIZED LS PROBLEMS 633

Table 6: Numerical results on semidefinite random matrix completion problems
with noise. The noise factor nf is set to 0.1.

Unknown M Results
n p r p/dr µ iter #sv time error

1000 /0.10 60497 10 6 1.59e-02 33 10 2.66e+00 2.85e-02

195544 50 4 6.34e-02 39 50 1.01e+01 3.63e-02

285424 100 3 1.04e-01 44 100 2.43e+01 4.36e-02

5000 /0.10 304051 10 6 1.54e-02 41 10 1.61e+01 2.87e-02

1249477 50 5 6.86e-02 49 50 8.30e+01 3.22e-02

1984850 100 4 1.19e-01 49 100 1.78e+02 3.79e-02

10000 /0.10 609765 10 6 1.51e-02 45 10 3.14e+01 2.87e-02

2502872 50 5 6.64e-02 60 50 2.33e+02 3.25e-02

3988660 100 4 1.14e-01 52 100 4.59e+02 3.84e-02

20000 /0.10 1220822 10 6 1.50e-02 50 10 7.98e+01 2.89e-02

30000 /0.10 1831551 10 6 1.49e-02 52 10 1.44e+02 2.90e-02

50000 /0.10 3049294 10 6 1.48e-02 56 10 3.50e+02 2.90e-02

100000 /0.10 6099941 10 6 1.47e-02 61 10 1.02e+03 2.89e-02

4.4 Numerical Experiments on Real Matrix Completion Problems

In this section, we consider matrix completion problems based on some real data sets,
namely, the Jester joke data set [23] and the MovieLens data set [25]. The Jester joke data
set contains 4.1 million ratings for 100 jokes from 73421 users and is available on the website
http://www.ieor.berkeley.edu/~goldberg/jester-data/. The whole data is stored in
three excel files with the following characteristics.

(1) jester-1: 24983 users who have rated 36 or more jokes;
(2) jester-2: 23500 users who have rated 36 or more jokes;
(3) jester-3: 24938 users who have rated between 15 and 35 jokes.

We let jester-all be the data set obtained by combining all the above data sets.

For each data set, we let M be the original incomplete data matrix such that the i-th
row of M corresponds to the ratings given by the i-th user on the jokes. For convenience, let
Γ be the set of indices for which Mij is given. We tested the jester joke data sets as follows.
For each user, we randomly choose 10 ratings. Thus we select a subset Ω randomly from Γ,
and hence a vector MΩ which we take as the vector b in the problem (1.7).

Since some of the entries in M are missing, we cannot compute the relative error of the
estimated matrix X as we did for the randomly generated matrices in section 4.2. Instead,
we computed the Normalized Mean Absolute Error (NMAE) as in [23, 30]. The Mean
Absolute Error (MAE) is defined as

MAE =
1

|Γ\Ω|
∑

(i,j)∈Γ\Ω
|Mij −Xij |, (4.4)

where Mij and Xij are the original and computed ratings of joke j by user i, respectively.
The normalized MAE is defined as

NMAE =
MAE

rmax − rmin
, (4.5)
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where rmin and rmax are lower and upper bounds for the ratings. For the jester joke data
sets, all ratings are scaled to the range [−10,+10], and we have rmin = −10 and rmax = 10.

The MovieLens data has 3 data sets (available from http://www.grouplens.org/) with
the following characteristics.

(1) movie-100K: 100,000 ratings for 1682 movies by 943 users;
(2) movie-1M: 1 million ratings for 3900 movies by 6040 users;
(3) movie-10M: 10 million ratings for 10681 movies by 71567 users.

Here we have rmin = 1 and rmax = 5. In all the above data sets, each user has rated at least
20 movies. We note that some of the movies in the data sets are not rated by any of the
users, and in our numerical experiments, those movies are removed.

For the MovieLens data sets, the matrices M are very sparse. In our experiments, we
randomly select about 50% of the ratings given by each user to form the data vector b, i.e.,
|Ω|/|Γ| ≈ 50%.

Table 7 reports the results for the APGL algorithm on the real matrix completion prob-
lems arising from the jester joke and MovieLens data sets. Here, we set the maximum
number of iterations allowed in the APGL algorithm to 100. In the table, we report the
regularization parameter µ, the number of iterations, the CPU time (in seconds), and the
NMAE value. We also report #sv, σmax and σmin, which are the rank, the largest and
smallest positive singular values of the final solution matrix, respectively. From Table 7,
observe that we can solve the matrix completion problem with dimension 73421 × 100 for
the jester-all data set within 4 minutes with a relatively low NMAE. We can also solve
the matrix completion problem with dimension 71567 × 10674 arising from the moive-10M
data set in less than 4 minutes with an NMAE value of 1.64× 10−1.

Table 7: Numerical results on real data sets. In the table, N := |Γ| denotes the total number of
known ratings in M.

m/n N, |Ω|/N µ iter time NMAE #sv σmax/σmin
jester-1 24983/ 100 1.81e+06, 13.80% 5.76e-01 50 7.15e+01 1.89e-01 79 3.85e+03/ 1.13e+01

jester-2 23500/ 100 1.71e+06, 13.75% 5.66e-01 50 6.86e+01 1.88e-01 79 3.84e+03/ 9.74e+00

jester-3 24938/ 100 6.17e+05, 40.42% 8.30e-01 47 6.24e+01 1.94e-01 78 2.79e+03/ 6.46e+00

jester-all 73421/ 100 4.14e+06, 17.75% 1.06e+00 51 2.18e+02 1.91e-01 79 5.95e+03/ 2.22e+01

moive-100K 943/ 1682 1.00e+05, 49.92% 3.21e-01 100 7.39e+00 2.05e-01 5 3.06e+03/ 6.70e+02

moive-1M 6040/ 3706 1.00e+06, 49.86% 9.47e-01 89 2.45e+01 1.76e-01 5 1.19e+04/ 1.76e+03

moive-10M 71567/ 10674 9.91e+06, 49.84% 2.66e+00 100 2.02e+02 1.64e-01 5 4.23e+04/ 9.37e+03

4.5 Numerical Experiments on Dimension Reduction in Multivariate Linear
Regression

Recently Lu et al. [29] considered a nuclear norm regularized linear least squares problem
(1.7) arising from simultaneous coefficient estimation and dimension reduction in multivari-
ate linear regression (MLR). For this problem, the linear mapA is given by A(X) = vec(ΛX)
for X ∈ <m×n with m > n, and Λ ∈ <m×m is a given positive definite diagonal matrix.
Here, vec(M) denotes the vector obtained from the matrix M by stacking its columns se-
quentially. In [29], the authors proposed a variant of the Nesterov’s smooth method [43] for
solving smooth saddle point reformulations of the MLR problem.

In this section, we evaluate the performance of the APGL algorithm on randomly gen-
erated MLR problems. For a given m, set n = m/2 and r = 50, we generate the matrix Λ
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and vector b as follows:

Λ = diag(rand(m, 1)); M = randn(m, r) ∗ randn(r, n); R = randn(m, n);

b = vec(ΛM + 0.01‖ΛM‖F/‖R‖F R);

Table 8 reports the results for randomly generated MLR problems. For these problems,
we set µ = 10−3‖A∗(b)‖2. In the table, we report the matrix dimension m/n, the mean value
of the regularization parameter µ, the mean value of the number of iterations, the number
(#sv) of positive singular values of the computed solution matrix, the final objective value
attained for (1.7), the CPU time (in seconds), and the relative error (4.3) of 5 runs. In the
table, we also report the results obtained by the codes created for the algorithm in [29].
Note that we stop the algorithm in [29] when the relative gap computed in the codes is less
than 0.02. (This stopping criterion is much less stringent than the default.)

It is clear from Table 8 that the APGL algorithm substantially outperformed the algo-
rithm in [29] in terms of the CPU time taken to solve the problems. The APGL algorithm
also obtained smaller objective values for all the instances. But interestingly, the relative
errors (4.3) in the solutions obtained by the algorithm in [29] are slightly better than those
obtained by the APGL algorithm. We note the number of iterations taken by the algorithm
in [29] can vary widely. For example, for the 5 random instances with dimension 200/100,
the number of iterations vary from 144 to 2733.

Table 8: Numerical results for randomly generated multivariate linear regression problems.

4.6 Numerical Experiments on Regularized Kernel Estimation Problems

In this section, we consider a regularized semidefinite linear least squares problem arising
from regularized kernel estimation (RKE) [28]. In RKE, we are given a set of n objects
and dissimilarity measures dij for certain object pairs (i, j) ∈ Ω. Our goal is to estimate a
positive semidefinite kernel matrix X ∈ Sn

+ such that the fitted squared distances between
objects induced by X satisfy

Xii + Xjj − 2Xij = 〈Aij , X〉 ≈ d2
ij ∀ (i, j) ∈ Ω,

where Aij = (ei − ej)T (ei − ej). Formally, one version of the RKE problem solves the
following semidefinite linear least squares problem:

min
{ ∑

(i,j)∈Ω

Wij(〈Aij , X〉 − d2
ij)

2 + µ〈I, X〉 : 〈E, X〉 = 0, X º 0
}

, (4.6)

where Wij > 0, (i, j) ∈ Ω, are given weights, and µ is a positive regularization parameter.
The linear equality in the above problem is a normalization constraint, and E is the matrix
of all ones normalized to have unit Frobenius norm.
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In this section, we apply the APGL algorithm to the problem (4.6) where the data dij ,
(i, j) ∈ Ω, are protein sequences dissimilarities considered in [28]. The data are normalized
to be in the interval [0, 1], and Ω = {(i, j) : 1 ≤ i < j, 1 ≤ j ≤ 630}. In order to apply
the APGL algorithm, we need to transform (4.6) into the form (1.10). In our case, we
approximately enforce the linear equality constraint, 〈E, X〉 = 0, in (4.6) by penalizing its
violation in the objective function.

In [28], due to the computational limitation of the interior-point method used to solve
(4.6), a subset of 280 globin proteins were selected from the entire set of 630 proteins. And
for each of the selected proteins, 55 dissimilarities were randomly selected out of the total of
280. Here we are able to consider the entire set of n = 630 proteins and the dissimilarities
among all the pairs of proteins. In our numerical experiments, we set Wij = 1 for all
(i, j) ∈ Ω and µ = 10−3‖A∗(b)‖2, where A is the linear map that maps a matrix X to the
vector [(〈Aij , X〉 : (i, j) ∈ Ω) ; 〈E, X〉]. We set the maximum number of iterations allowed
in the APGL algorithm to 100.

As mentioned in [28], the purpose of RKE is to perform clustering of proteins by repre-
senting each protein seqeunce as a point in the space <h for some appropriate dimension h
so that clusters can subsequently be identified by checking the Euclidean distances between
pairs of points. For visualization purpose, it is desirable to choose h = 3 by projecting the
solution X̄ in (4.6) to a 3D subspace. More specifically, consider the eigenvalue decom-
position: X̄ = Qdiag(λ)QT . Let Yh = diag(

√
λ1, . . . ,

√
λh)[Q1, . . . , Qh]T ∈ <h×n, where

λ1, . . . , λh are the largest h eigenvalues of X̄, and Q1, . . . Qh are their corresponding eigen-
vectors. Then Y T

h Yh is the best rank-h approximation of X̄ and each column of Yh is a
point in <h representing a protein sequence. For the choice h = 3, Figure 1 displays the 3D
representation of the set of 630 proteins. It shows the first three coordinates of the protein
sequence space, corresponding to three largest eigenvalues. The figure shows that there are
at least 4 clusters in the set of 630 proteins. This finding is consistent with the observations
reported in [28]. The numerical results for computing an approximate solution X̄ of (4.6)
using our APGL algorithm are reported in Table 9. For our computed solution X̄, we have
〈X̄, E〉 = 1.11× 10−12 and 〈X̄, I〉 = 1.85× 102.

Table 9: Numerical results on an RKE problem arising from protein
clustering.

n p µ iter time #sv
RKE 630 198136 5.07e-01 100 7.36e+01 138

5 Conclusions

In this paper we have proposed an accelerated proximal gradient algorithm for solving the
convex nonsmooth minimization problem on a set of real matrices, in particular, the nuclear
norm regularized linear least squares problem arising in the applications such as the ma-
trix completion, and presented its iteration complexity. This accelerated proximal gradient
algorithm with a fast method, such as PROPACK, for computing partial singular value
decomposition is simple and suitable for solving large-scale matrix completion problems of
the form (1.7) when the solution matrix has low-rank. Three techniques, linesearch-like,
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Figure 1: 3D representation of the sequence space for 630 proteins.

continuation, and truncation techniques, have been developed to accelerate the convergence
of the original APG algorithm. From the numerical tests in section 4.1, we see that these
techniques can accelerate the convergence of proximal gradient algorithms when applied to
solve (1.7). Our numerical results suggest that our APGL algorithm is a promising algo-
rithm for large-scale matrix completion problems, as well as other nuclear norm regularized
linear least squares problems such as those arising from simultaneous coefficient estimation
and dimension reduction in multivariate linear regression [45].
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