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Abstract: In 1988, Barzilai and Borwein presented a new choice of step size for the gradient method for
solving unconstrained minimization problems. Their method aimed to accelerate the convergence of the
steepest descent method. The Barzilai-Borwein method has a low storage requirement and inexpensive
computations. Therefore, many authors have paid attention to the Barzilai-Borwein method and have pro-
posed some variants to solve large-scale unconstrained minimization problems. In this paper, we extend
the Barzilai-Borwein-type methods of Friedlander et al. to more general class and establish global and
Q-superlinear convergence properties of the proposed method for minimizing a strictly convex quadratic
function. Furthermore, we apply our method to general objective functions. Finally, some numerical exper-
iments are given.
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1 Introduction

We consider the following large-scale unconstrained minimization problems:

min f(x), (1.1)

where n ∈ N is very large, f : Rn → R is sufficiently smooth and its gradient g ≡ ∇f is
available. Although the Newton method and quasi-Newton methods are effective for solving
unconstrained minimization problems, these methods cannot apply directly to large-scale
unconstrained minimization problems. Therefore, numerical methods which are based on the
steepest descent direction are paid attention to, because they avoid the storage of matrices.
In this paper, we consider the gradient method defined by

xk+1 = xk − 1
αk

gk, (1.2)

where xk is the k-th approximation to the optimal solution x∗ of (1.1), gk is the gradient
vector of f at xk and 1/αk is a step size.

∗The authors would like to thank the associate editor and the referees for valuable comments. The first
and third authors are supported in part by the Grant-in-Aid for Scientific Research (C) 21510164 of Japan
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The steepest descent method is the simplest gradient method for unconstrained minimiza-
tion problems. In the steepest descent method, which can be traced back to Cauchy (1847),
the following exact step size

1
αk

= argmin
α>0

f(xk − 1
α

gk)

is used. Unfortunately, it has been widely known that it converges rather slowly in most
cases. In order to overcome this defect, Barzilai and Borwein [1] proposed another step
size. Specifically, they approximated the Hessian ∇2f(xk) by αkI and based on the secant
condition, they considered the following minimization problem:

αk = arg min
α∈R

||αIsk−1 − yk−1||

where sk−1 = xk − xk−1, yk−1 = gk − gk−1 and ‖ · ‖ denotes the Euclidean norm. This
minimum value is defined by

αk =
sT

k−1yk−1

sT
k−1sk−1

. (1.3)

The gradient method with (1.3) is called the Barzilai-Borwein method.
Moreover, Dai, Hager, Schittkowski and Zhang [4] presented numerical results by using

αk =
sT

ν(k)yν(k)

sT
ν(k)sν(k)

with ν(k) = Mc

⌊
k − 1
Mc

⌋
, (1.4)

where for r ∈ R, brc denotes the largest integer j such that j ≤ r and Mc is a positive integer.
The gradient method with (1.4) is called the cyclic Barzilai-Borwein method. Numerical re-
sults in [4] suggested that their method performed better than the Barzilai-Borwein method
did. Since the search direction of the Barzilai-Borwein method (−(1/αk)gk) is not necessar-
ily a descent direction, Raydan [17] applied the nonmonotone line search by Grippo et al. [10]
to the Barzilai-Borwein method, and proved its global convergence property.

Many researchers study the gradient method for minimizing a strictly convex quadratic
function, namely,

min f(x) =
1
2
xT Ax− bT x, (1.5)

where A ∈ Rn×n is a symmetric positive definite matrix and b ∈ Rn is a given vector. For
an application of the Barzilai-Borwein method to problem (1.5), Raydan [16] established
its global convergence and Dai and Liao [5] proved R-linear rate of convergence. Yuan [19]
proposed a choice of αk such that the solution of (1.5) with n = 2 can be found within
four iterations, and proved that its related method converges linearly for a general case with
n ≥ 2. Friedlander, Martinez, Molina and Raydan [9] proposed a new gradient method with
retards, in which αk is defined by

αk =
gT

ν(k)A
ρ(k)+1gν(k)

gT
ν(k)A

ρ(k)gν(k)

, ν(k) ∈ {k, k − 1, ...,max{0, k −m}} (1.6)

and ρ(k) ∈ {q1, ..., qm}, where m is a positive integer, and q1, ..., qm (≥ −2) are integers.
They established its global convergence for problem (1.5) and proved the Q-superlinear rate
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of convergence in the special case. Within the framework of the gradient method with
retards, some researchers proposed new choices of αk. Raydan and Svaiter [18] proposed
the Cauchy-Barzilai-Borwein method which chooses αk of the steepest descent method and
the Barzilai-Borwein method alternately. Zhou et al. [21] proposed a method which chooses
αk of the steepest descent method and the minimal gradient method alternately. Yuan [20]
proposed a method which chooses αk of the Barzilai-Borwein method and other types of
Barzilai-Borwein method alternately.

The Barzilai-Borwein method and its related methods are reviewed by Dai and Yuan [6]
and Fletcher [8].

In this paper, we propose a new step size by extending (1.6). This paper is organized as
follows. In Section 2, we propose a new step size and present the algorithm of our method
for strictly convex quadratic functions. We show the global convergence property of our
method following Friedlander et al. [9]. Moreover using the Dennis-Moré condition, we
discuss Q-superlinear convergence. In Section 3, we apply a restricted class of the proposed
method to general objective functions by using nonmonotone line search. We establish its
global and Q-superlinear convergence properties. Finally, some numerical results are given
in Section 4.

2 Extended Barzilai-Borwein Method for Quadratic Functions

In this section, we consider an extension of the Barzilai-Borwein method for minimizing
strictly convex quadratic function (1.5). It is desirable that αkI approximates A (or 1/αkI
approximates A−1), and hence Friedlander et al. used a Rayleigh quotient of A. Since a
convex combination of Rayleigh quotients possesses more curvature information than (1.6)
does, it is significant to construct a method based on such a combination. Accordingly,
following Friedlander et al. [9], we propose a new step size for (1.2) as follows:

αk =
∑̀

i=1

φi

gT
νi(k)A

ρi(k)+1gνi(k)

gT
νi(k)A

ρi(k)gνi(k)

, (2.1)

φi ≥ 0,
∑̀

i=1

φi = 1, νi(k) ∈ {k, k − 1, ...,max{0, k −m}}

and ρi(k) ∈ {q1, ..., qm}, where ` and m are positive integers, and q1, ..., qm are integers. We
call this gradient method the extended Barzilai-Borwein (EBB) method.

Now we describe the algorithm of our method as follows.

Algorithm EBB.

Step 0 . Give x0 ∈ Rn and `, m ∈ N , and set k = 0. If g0 = 0, then stop. Otherwise go to
Step 1.

Step 1 . Compute αk by (2.1).

Step 2 . Let xk+1 = xk − 1
αk

gk. If gk+1 = 0, then stop.

Step 3 . Let k := k + 1 and go to Step 1.

Using (1.2) and gk = Axk − b, we have

sk = − 1
αk

gk and yk = Ask. (2.2)
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If νi(k) 6= k for all k, expression (2.2) gives

αk =
∑̀

i=1

φi

sT
νi(k)A

ρi(k)+1sνi(k)

sT
νi(k)A

ρi(k)sνi(k)

=
∑̀

i=1

φi

yT
νi(k)A

ρi(k)−1yνi(k)

yT
νi(k)A

ρi(k)−2yνi(k)

. (2.3)

We note that if ` = 1, ν1(k) = k and ρ1(k) = 0 for all k, (2.1) becomes αk = gT
k Agk/gT

k gk,
which implies the steepest descent method. On the other hand, if ` = 1, ν1(k) = max{0, k−
1} and ρ1(k) = 0 for all k, using (2.2) and (2.3) yields αk = sT

k−1yk−1/sT
k−1sk−1, which is

the Barzilai-Borwein method (1.3). Moreover, if ` = 1 and qj ≥ −2, then by (2.1), we see
that αk = gT

ν1(k)A
ρ1(k)+1gν1(k)/gT

ν1(k)A
ρ1(k)gν1(k), which is the gradient method with retards

(1.6). Therefore, (2.1) is the extension of (1.3) and (1.6).
Let {λ1, λ2, ..., λn} (λ1 ≤ λ2 ≤ ... ≤ λn) be eigenvalues of A and let {v1, v2, ..., vn} be

orthonormal eigenvectors of A associated with the eigenvalues {λ1, λ2, ..., λn}. Since αk is
the Rayleigh quotient of A, the following relation holds

0 < λ1 ≤ αk ≤ λn for all k. (2.4)

In the following subsections, we consider convergence properties of Algorithm EBB.

2.1 Global Convergence

In this subsection, we establish global convergence of the extended Barzilai-Borwein method
for problem (1.5) following Friedlander et al. [9]. Let {xk} be the sequence generated by
Algorithm EBB. Letting ek = x∗ − xk, we get

gk = Axk − b = −Aek. (2.5)

By (2.1) and (2.5), αk can be written by

αk =
∑̀

i=1

φi

eT
νi(k)A

ρi(k)+3eνi(k)

eT
νi(k)A

ρi(k)+2eνi(k)

. (2.6)

For the initial error e0, there exist constants d0
1, d0

2, ..., d0
n such that

e0 =
n∑

j=1

d0
jvj . (2.7)

It follows from (2.5) that

ek+1 = ek +
1
αk

gk =
1
αk

(αkI −A)ek. (2.8)

Thus, using (2.7) and (2.8) yields

ek+1 =

{
k∏

i=0

1
αi

(αiI −A)

}


n∑

j=1

d0
jvj


 =

n∑

j=1

d0
j

{
k∏

i=0

1
αi

(αi − λj)

}
vj .

Therefore, defining

dk+1
j =

k∏

i=0

(
αi − λj

αi

)
d0

j for j = 1, ..., n,



EXTENDED BARZILAI-BORWEIN METHOD 595

we have

ek+1 =
n∑

j=1

dk+1
j vj for all k, (2.9)

which implies the relation

dk+1
j =

(
αk − λj

αk

)
dk

j for j = 1, ..., n. (2.10)

Moreover, by (2.4), the following relations hold for any k
∣∣∣∣1−

λi

αk

∣∣∣∣ ≤
λn − λ1

λ1
(i = 1, ..., n). (2.11)

In order to establish global convergence of Algorithm EBB, we give some lemmas. The
following lemma corresponds to Lemma 2.1 in Friedlander et al. [9] and the proof is exactly
the same as that of Lemma 2.1 in [9], so we omit it.

Lemma 2.1. The sequence {dk
1} converges to zero Q-linearly with convergence factor ĉ1 =

1− (λ1/λn).

The following lemma corresponds to Lemma 2.2 in Friedlander et al. [9].

Lemma 2.2. If the sequences {dk
1}, {dk

2}, ..., {dk
p−1} converge to zero for a fixed integer

p (2 ≤ p ≤ n), then
lim inf
k→∞

|dk
p| = 0

holds.

Proof. In order to prove this lemma by contradiction, we suppose that there exists a positive
constant ε such that

(dk
p)2 min

1≤u≤m
λqu+2

p ≥ ε for all k. (2.12)

Then, by (2.6), (2.9) and the orthonormality of the eigenvectors {v1, v2, ..., vn}, we obtain

αk =
∑̀

i=1

φi

(
∑n

j=1 d
νi(k)
j vj)T Aρi(k)+3(

∑n
j=1 d

νi(k)
j vj)

(
∑n

j=1 d
νi(k)
j vj)T Aρi(k)+2(

∑n
j=1 d

νi(k)
j vj)

=
∑̀

i=1

φi

∑n
j=1(d

νi(k)
j )2λρi(k)+3

j∑n
j=1(d

νi(k)
j )2λρi(k)+2

j

.(2.13)

Since the sequences {dk
1}, {dk

2}, ..., {dk
p−1} converge to zero, there exists a sufficiently large

k̂ such that

p−1∑

j=1

(dk
j )2 max

1≤u≤m
λqu+2

j ≤ 1
2
ε for all k ≥ k̂. (2.14)

By (2.13) and (2.14), we have for all k ≥ k̂ + m

αk ≥
∑̀

i=1

φi

∑n
j=p(d

νi(k)
j )2λρi(k)+2

j λj
∑p−1

j=1(dνi(k)
j )2λρi(k)+2

j +
∑n

j=p(d
νi(k)
j )2λρi(k)+2

j

≥
∑̀

i=1

φi

λp

∑n
j=p(d

νi(k)
j )2λρi(k)+2

j

1
2ε +

∑n
j=p(d

νi(k)
j )2λρi(k)+2

j

. (2.15)
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Since from (2.12) we get

n∑

j=p

(dνi(k)
j )2λρi(k)+2

j ≥ (dνi(k)
p )2λρi(k)+2

p ≥ (dνi(k)
p )2 min

1≤u≤m
λqu+2

p ≥ ε for all k ≥ k̂ + m,

(2.4) and (2.15) yield for all k ≥ k̂ + m

λn ≥ αk ≥
∑̀

i=1

φi
λp

1
2ε

(
1/

∑n
j=p(d

νi(k)
j )2λρi(k)+2

j

)
+ 1

≥ 2
3
λp,

which implies
∣∣∣∣1−

λp

αk

∣∣∣∣ ≤ max
(

1
2
, 1− λp

λn

)
≤ max

(
1
2
, 1− λ1

λn

)
< 1 for all k ≥ k̂ + m. (2.16)

Using (2.10) and (2.16) yields

|dk+1
p | =

∣∣∣∣1−
λp

αk

∣∣∣∣ |dk
p| ≤ ĉ2|dk

p| for all k ≥ k̂ + m

with ĉ2 = max (1/2, 1− λ1/λn) < 1. Because this conclusion contradicts the hypothesis
(2.12), we find that the lemma is true.

By using Lemmas 2.1 and 2.2, we can prove the next theorem.

Theorem 2.3. Let {xk} be the sequence generated by Algorithm EBB for problem (1.5) and
let x∗ be the unique minimizer of f . Then, either xj = x∗ for some finite j, or the sequence
{xk} converges to x∗.

Proof. If there exists a finite integer j such that xj = x∗, then this theorem is true. Hence we
only consider the case xk 6= x∗ for all k. From (2.9) and orthonormality of vi (i = 1, . . . , n),
we have

‖ek‖2 =
n∑

i=1

(dk
i )2, (2.17)

and hence if all {dk
i } (i = 1, ..., n) converge to zero, then the sequence {xk} converges to

the solution. Now we prove that all {dk
i } (i = 1, ..., n) converge to zero by the induction.

Lemma 2.1 shows that {dk
1} converges to zero. Let assume that {dk

1}, ..., {dk
p−1} all tend to

zero. There exists a sufficiently large k̂ such that

p−1∑

j=1

(dk
j )2 max

1≤u≤m
λqu+2

j ≤ 1
2
ε for all k ≥ k̂

for any given ε > 0. By Lemma 2.2, there exists a k′(≥ k̂ + m) such that

min
0≤t≤m

(dk′−t
p )2 min

1≤u≤m
λqu+2

p < ε.

Let {k̄r}(≥ k′) be a sequence such that the following inequalities hold

min
0≤t≤m

(dk̄r−1−t
p )2 min

1≤u≤m
λqu+2

p < ε and min
0≤t≤m

(dk̄r−t
p )2 min

1≤u≤m
λqu+2

p ≥ ε,
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and let ϕ(k̄r) be the first integer greater than k̄r for which the following inequality holds

min
0≤t≤m

(dϕ(k̄r)−t
p )2 min

1≤u≤m
λqu+2

p < ε.

By taking Lemma 2.2 into account, it suffices to consider the following two cases (i) and
(ii).

Case (i). If the sequence {k̄r} is a finite sequence, then there exists a sufficiently large
k′′(≥ k′) such that

min
0≤t≤m

(dk−t
p )2 min

1≤u≤m
λqu+2

p = (dk−t′
p )2 min

1≤u≤m
λqu+2

p < ε for any k ≥ k′′, (2.18)

where t′ is an integer which depends on k. By (2.10), (2.11) and (2.18), we have

(dk
p)2 =

(
k−1∏

i=k−t′

αi − λp

αi

)2

(dk−t′
p )2

≤
(

k−1∏

i=k−t′

λn − λ1

λ1

)2

(dk−t′
p )2

≤ max

((
λn − λ1

λ1

)2m

, 1

)
(dk−t′

p )2

≤ max

((
λn − λ1

λ1

)2m

, 1

)
ε

min
1≤u≤m

λqu+2
p

, (2.19)

which implies that for all k ≥ k′′, the following holds

(dk
p)2 ≤ ĉ3ε with ĉ3 = max

((
λn − λ1

λ1

)2m

, 1

)
1

min
1≤u≤m

λqu+2
p

. (2.20)

Case (ii). If the sequence {k̄r} is an infinite sequence, by the definitions of {k̄r} and
{ϕ(k̄r)}, we get

min
0≤t≤m

(dk−t
p )2 min

1≤u≤m
λqu+2

p ≥ ε for k (k̄r ≤ k ≤ ϕ(k̄r)− 1) (2.21)

min
0≤t≤m

(dk−t
p )2 min

1≤u≤m
λqu+2

p < ε for k (ϕ(k̄r) ≤ k ≤ k̄r+1 − 1). (2.22)

As shown in (2.18), (2.19) and (2.20), inequality (2.22) yields

(dk
p)2 ≤ ĉ3ε for k (ϕ(k̄r) ≤ k ≤ k̄r+1 − 1). (2.23)

Since (2.15) holds for all k ≥ k̂ + m, we have from (2.21)

λn ≥ αk ≥
∑̀

i=1

φi
λp

1
2ε

(
1/

∑n
j=p(d

νi(k)
j )2λρi(k)+2

j

)
+ 1

≥
∑̀

i=1

φi
λp

1
2ε

(
1/(dνi(k)

p )2λρi(k)+2
p

)
+ 1

≥ 2
3
λp (2.24)
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for all k such that k̄r ≤ k ≤ ϕ(k̄r) − 1. As shown in (2.16), inequality (2.24) implies
|1− λp/αk| < 1, so (2.10) yields

|dk+1
p | =

∣∣∣∣1−
λp

αk

∣∣∣∣ |dk
p| ≤ |dk

p| for k (k̄r ≤ k ≤ ϕ(k̄r)− 1). (2.25)

Thus, by (2.25), (2.10) and (2.11), we have

(dk
p)2 ≤ (dk̄r

p )2 ≤
(

λn − λ1

λ1

)2

(dk̄r−1
p )2 ≤

(
λn − λ1

λ1

)2

ĉ3ε = ĉ4ε

for k (k̄r ≤ k ≤ ϕ(k̄r))

with ĉ4 = ĉ3 {(λn − λ1)/λ1}2. The last inequality can be obtained by using (2.23).
By summarizing the cases (i) and (ii), we obtain for all k(≥ k′′) (dk

p)2 ≤ ĉ5ε with
ĉ5 = max(ĉ3, ĉ4). Since ε > 0 can be chosen arbitrarily small, we deduce lim

k→∞
|dk

p| = 0

as required. Therefore, by induction on p, we have lim
k→∞

|dk
i | = 0 for i = 1, ..., n and then

lim
k→∞

||ek|| = 0 holds by (2.17). This completes the proof.

Note that Theorem 2.3 is the extension of Theorem 2.1 in Friedlander et al. [9]. More
recently, Yuan [20] independently proved Theorem 2.3. We does not omit the proof of
Theorem 2.3 because the proof in [20] is different from the proof of this theorem.

2.2 Q-superlinear Convergence

In this subsection, we analyze the local behavior of Algorithm EBB. To this end, we deal
with the case where νi(k) 6= k and ρi(k) does not depend on k in (2.1), say ρi(k) = ri for a
given integer ri (i = 1, . . . , `). Then (2.3) implies

αk =
∑̀

i=1

φi

sT
νi(k)A

ri+1sνi(k)

sT
νi(k)A

risνi(k)

, (2.26)

where νi(k) ∈ {k − 1, ...,max{0, k −m}} for i = 1, . . . , `.
The following theorem is the extension of Theorem 3.1 in Friedlander et al. [9].

Theorem 2.4. Let {xk} be the sequence generated by Algorithm EBB with (2.26) for problem
(1.5). Assume that the sequence {sk/||sk||} is convergent, that is, there exists s ∈ Rn

such that limk→∞ sk/||sk|| = s and ||s|| = 1. Then s becomes an eigenvector of A with
the eigenvalue sT As and limk→∞ αk = sT As. Moreover, the sequence {xk} converges Q-
superlinearly to x∗.

Proof. It follows immediately from Theorem 2.3 that {xk} converges to x∗. Thus, we need
only show that {xk} converges Q-superlinearly to x∗.

Letting Ari/2 =
∑n

j=1 λ
ri/2
j vjv

T
j , we have (Ari/2)2 = Ari and (Ari/2)T = Ari/2 for i =

1, ..., `. Then, equation (2.26) can be written by

αk =
∑̀

i=1

φi

(
Ari/2sνi(k)

||Ari/2sνi(k)||

)T

A

(
Ari/2sνi(k)

||Ari/2sνi(k)||

)
. (2.27)
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For simplicity, we define

ŝ(i) =
Ari/2s

||Ari/2s|| for i = 1, ..., ` and α =
∑̀

i=1

φiŝ
(i)T Aŝ(i).

From the fact that νi(k) ≥ k −m (i = 1, ..., `), we get

lim
k→∞

Ari/2sνi(k)

||Ari/2sνi(k)||
= ŝ(i) for i = 1, ..., `. (2.28)

Therefore, by (2.27) and (2.28), we have

lim
k→∞

αk =
∑̀

i=1

φiŝ
(i)T Aŝ(i) = α.

It follows from (2.2) and xk+1 = xk + sk that

sk+1 = − 1
αk+1

(A− αkI)sk.

Premultiplying this equation by Ari/2 and normalizing it, we have

Ari/2sk+1

||Ari/2sk+1||
= − (A− αkI)Ari/2sk/||Ari/2sk||

||(A− αkI)Ari/2sk/||Ari/2sk||||
,

which implies
∥∥∥∥(A− αkI)

Ari/2sk

||Ari/2sk||

∥∥∥∥
Ari/2sk+1

||Ari/2sk+1||
= −(A− αkI)

Ari/2sk

||Ari/2sk||
for i = 1, ..., `.

Taking limits on both sides of this equation, we have

||(A− αI)ŝ(i)||ŝ(i) = −(A− αI)ŝ(i) for i = 1, ..., `.

Furthermore, premultiplying this equation by ŝ(i)T yields

||(A− αI)ŝ(i)|| = −ŝ(i)T Aŝ(i) + α for i = 1, ..., `. (2.29)

Thus, by (2.29) and the fact that
∑̀

i=1

φi = 1, we have

∑̀

i=1

φi||(A− αI)ŝ(i)|| = −
∑̀

i=1

φiŝ
(i)T Aŝ(i) + α = 0.

Since there exists some j such that φj > 0, we have

||(A− αI)ŝ(j)|| = 0. (2.30)

On the other hand, we get

||(A− αkI)sk||
||sk|| ≤ ||A−rj/2||||(A− αkI)Arj/2sk||

||Arj/2sk||
||Arj/2sk||
||sk||

≤ ||Arj/2||||A−rj/2|| ||(A− αkI)Arj/2sk||
||Arj/2sk||

. (2.31)
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Therefore, using (2.31) and (2.30), we obtain

lim
k→∞

||(A− αkI)sk||
||sk|| = 0. (2.32)

Because we can regard αkI as an approximation matrix of ∇2f(xk)(= A) in Dennis and
Moré condition (see [7], for example), the sequence {xk} converges Q-superlinearly to x∗.
In addition, (2.32) yields (A−αI)s = 0, which means that s is an eigenvector of A with the
eigenvalue α = sT As. Therefore, the proof is complete.

3 Extended Barzilai-Borwein Method for General Functions

In this section, we consider an application of Algorithm EBB to general unconstrained
minimization problems (1.1). In (2.1), we use the positive definite matrix A which is the
Hessian of the objective function. On the other hand, calculations of the Hessian of the
objective function are very expensive if the objective function is not quadratic. Accordingly,
we would like to express (2.26) without using the Hessian A. To this end, we fix ri = 0 or 1
in (2.26) and consider the following:

αk =
∑̀

i=1

(
φ

(1)
i

sT
νi(k)yνi(k)

sT
νi(k)sνi(k)

+ φ
(2)
i

yT
νi(k)yνi(k)

sT
νi(k)yνi(k)

)
(3.1)

φ
(1)
i ≥ 0, φ

(2)
i ≥ 0,

∑̀

i=1

(φ(1)
i + φ

(2)
i ) = 1, νi(k) ∈ {k − 1, ...,max{0, k −m}},

where ` and m are positive integers. We note that the first and the second term in (3.1)
correspond to the cases ri = 0 and ri = 1, respectively. Since (3.1) does not explicitly use
the matrix A, it can be applied to general objective functions.

For general unconstrained minimization problems, we should use globalization technique.
Since αk in (3.1) is not necessarily positive, i.e. the direction −(1/αk)gk is not necessarily
a descent search direction of the objective function, it is appropriate to use a nonmono-
tone line search, which was originally developed by Grippo et al. [10, 11] for Newton type
methods. Recently, several researchers applied the nonmonotone line search to gradient-
based methods, and obtained efficient methods for large-scale unconstrained optimization
problems. For example, Dai [2] showed the global convergence of the nonmonotone conju-
gate gradient method, and Raydan [17] proved the global convergence of the nonmonotone
Barzilai-Borwein method. Moreover, Grippo and Sciandrone [12] proposed another type of
the nonmonotone Barzilai-Borwein method. Dai [3] gives the basic analysis of the nonmono-
tone line search strategy.

The proposed algorithm with the nonmonotone line search is given by the following:

Algorithm NEBB.

Step 0 . Give x0 ∈ Rn and `, m ∈ N . Set k = 0, 0 < ᾱ ¿ 1, δ > 0, 0 < η1 ≤ η2,
0 < η3 ≤ η4 < 1 and ξ ∈ (0, 1), and let M̄ be a positive integer. Go to Step 1.

Step 1 . Compute αk by (3.1). If ᾱ ≤ αk ≤ 1
ᾱ

, set pk = − 1
αk

gk, and otherwise set pk = −δgk.

Step 2 . Give t
(0)
k ∈ [η1, η2] and M(k) such that M(0) = 0 and 0 ≤ M(k) ≤ min{M(k −

1) + 1, M̄} if k ≥ 1. Set i = 0 and go to Step 2.1.
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Step 2.1 . If f(xk + t
(i)
k pk) ≤ max0≤j≤M(k){f(xk−j)}+ ξt

(i)
k gT

k pk holds, set tk ≡ t
(i)
k and

go to Step 3.

Step 2.2 . Choose σ
(i)
k ∈ [η3, η4] and compute t

(i+1)
k such that t

(i+1)
k = t

(i)
k σ

(i)
k .

Step 2.3 . Set i := i + 1 and go to Step 2.1.

Step 3 . Let xk+1 = xk + tkpk. If the stopping criterion is satisfied, then stop.

Step 4 . Let k := k + 1 and go to Step 1.

In Step 2, we usually choose t
(0)
k = 1. Since we choose a small value as ᾱ, pk = − 1

αk
gk

would be chosen in almost all iterations as far as αk > 0. We note that the search direction
pk satisfies

gT
k pk ≤ −c1‖gk‖2 and ‖pk‖ ≤ c2‖gk‖ for all k (3.2)

for some positive constants c1 and c2. These relations lead to the following theorem.

Theorem 3.1. Assume that the objective function f is bounded below on Rn and is con-
tinuously differentiable in a neighborhood N of the level set L = {x ∈ Rn : f(x) ≤ f(x0)}.
We also assume that the gradient g is Lipschitz continuous in N . Let the sequence {xk} be
generated by Algorithm NEBB. Then our method converges in the sense that

lim
k→∞

‖gk‖ = 0.

Proof. From (3.2) and Theorem 2.1 of Dai [3], we have the results immediately.

In the rest of this section, we consider the local behavior of Algorithm NEBB for general
functions. For this purpose, we make the following assumptions. In what follows, we denote
∇2f by H, and ∇2f(x∗) by H∗.

Assumption 3.2.

1. The objective function f is twice continuously differentiable in an open convex neigh-
borhood N of the local solution x∗. In addition, there exist positive constants m1 and
m2 such that

m1‖v‖2 ≤ vT H(x)v ≤ m2‖v‖2 for all x ∈ N and v ∈ Rn. (3.3)

2. In Step 2 of Algorithm NEBB, tk = 1 is chosen for k sufficiently large. The parameter

ᾱ satisfies ᾱ ≤ m1 and m2 ≤ 1
ᾱ

.

3. The sequence {xk} generated by Algorithm NEBB converges to the solution x∗.

Under Assumption 3.2, we obtain the following theorem.

Theorem 3.3. Let {xk} be the sequence generated by Algorithm NEBB. Suppose that As-
sumption 3.2 holds, and that the sequence {sk/‖sk‖} is convergent, that is, there exists
s ∈ Rn such that limk→∞ sk/||sk|| = s and ||s|| = 1. Then s becomes an eigenvector of H∗
with the eigenvalue sT H∗s and limk→∞ αk = sT H∗s. Moreover, the sequence {xk} converges
Q-superlinearly to x∗.
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Proof. We assume that k is sufficiently large. From Assumption 3.2, xk ∈ N for all k. By the

mean value theorem, we have yk =
∫ 1

0

H(xk + tsk)sk dt. Since from (3.3) H(x) is symmetric

positive definite in N , H(x)1/2 is well-defined in N . We define H̃k ≡
∫ 1

0

H(xk + tsk) dt and

s̃k ≡ H̃
1/2
k sk. Then (3.1) yields

αk =
∑̀

i=1

{
φ

(1)
i

sT
νi(k)H̃νi(k)sνi(k)

sT
νi(k)sνi(k)

+ φ
(2)
i

s̃T
νi(k)H̃νi(k)s̃νi(k)

s̃T
νi(k)s̃νi(k)

}

=
∑̀

i=1

{
φ

(1)
i

(
sνi(k)

‖sνi(k)‖
)T

H̃νi(k)

(
sνi(k)

‖sνi(k)‖
)

+ φ
(2)
i

(
s̃νi(k)

‖s̃νi(k)‖
)T

H̃νi(k)

(
s̃νi(k)

‖s̃νi(k)‖
)}

.(3.4)

It follows from the definition of s̃νi(k) that

s̃ ≡ lim
k→∞

s̃νi(k)

‖s̃νi(k)‖
= lim

k→∞

H̃
1/2
νi(k)sνi(k)/‖sνi(k)‖

‖H̃1/2
νi(k)sνi(k)‖/‖sνi(k)‖

=
H

1/2
∗ s

‖H1/2
∗ s‖

.

Therefore, by taking limit in (3.4), we obtain

α ≡ lim
k→∞

αk =
∑̀

i=1

(
φ

(1)
i sT H∗s + φ

(2)
i s̃T H∗s̃

)
. (3.5)

On the other hand, (3.3), (3.4) and Assumption 3.2 yield ᾱ ≤ m1 ≤ αk ≤ m2 ≤ 1/ᾱ. Thus,

it follows that

pk = − 1
αk

gk, xk+1 = xk − 1
αk

gk and sk = − 1
αk

gk (3.6)

hold. By using the mean value theorem, we have

gk = g(x∗) +
∫ 1

0

H(x∗ + t(xk − x∗))(xk − x∗) dt = −
∫ 1

0

H(x∗ − tek) dt ek, (3.7)

where ek = x∗ − xk. Set Ĥk ≡
∫ 1

0

H(x∗ − tek) dt. Since (3.6) and (3.7) yield

sk = − 1
αk

gk =
1
αk

Ĥkek, (3.8)

we have

ek+1 = ek − sk = ek − 1
αk

Ĥkek =
(

I − 1
αk

Ĥk

)
ek. (3.9)

It follows from (3.8) and (3.9) that

sk+1 =
1

αk+1
Ĥk+1

(
I − 1

αk
Ĥk

)
ek

=
1

αk+1
Ĥk+1

(
I − 1

αk
Ĥk

)
αkĤ−1

k sk

= − 1
αk+1

Ĥk+1Ĥ
−1
k (Ĥk − αkI)sk. (3.10)
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We normalize the above equation, and we get

sk+1

‖sk+1‖ = − Ĥk+1Ĥ
−1
k (Ĥk − αkI)sk

‖Ĥk+1Ĥ
−1
k (Ĥk − αkI)sk‖

,

which implies

∥∥∥∥Ĥk+1Ĥ
−1
k (Ĥk − αkI)

sk

‖sk‖

∥∥∥∥
sk+1

‖sk+1‖ = −Ĥk+1Ĥ
−1
k (Ĥk − αkI)

sk

‖sk‖ .

Taking limits on both sides of this equation, we have

‖(H∗ − αI)s‖s = −(H∗ − αI)s,

and hence, premultiplying this equation by sT , we have from ‖s‖ = 1

‖(H∗ − αI)s‖ = −sT H∗s + α. (3.11)

Moreover, since (3.10) yields H
1/2
∗ sk+1 = − 1

αk+1
H

1/2
∗ Ĥk+1Ĥ

−1
k (Ĥk − αkI)sk, we also have,

in a similar way,

‖(H∗ − αI)s̃‖ = −s̃T H∗s̃ + α. (3.12)

Therefore, from (3.5), (3.11) and (3.12), we get

∑̀

i=1

(φ(1)
i ‖(H∗ − αI)s‖+ φ

(2)
i ‖(H∗ − αI)s̃‖) = −

∑̀

i=1

(φ(1)
i sT H∗s + φ

(2)
i s̃T H∗s̃) + α

= 0,

which implies that either ‖(H∗ − αI)s‖ = 0 or ‖(H∗ − αI)s̃‖ = 0 holds. Since conditions
‖(H∗ − αI)s‖ = 0 and ‖(H∗ − αI)s̃‖ = 0 are equivalent, we consider only the case ‖(H∗ −
αI)s‖ = 0. Thus we obtain

lim
k→∞

‖(H∗ − αkI)sk‖
‖sk‖ = ‖(H∗ − αI)s‖ = 0. (3.13)

Because we can regard αkI as an approximation matrix of ∇2f(xk) in Dennis and Moré
condition (see [7], for example), the sequence {xk} converges Q-superlinearly to x∗. In
addition, (3.13) yields (H∗ − αI)s = 0. This means that s is an eigenvector of H∗ with the
eigenvalue α = sT H∗s. Therefore, the proof is complete.

4 Numerical Experiments

In this section, we present some numerical results of Algorithms EBB and NEBB to compare
with other methods. Since the steepest descent method converged very slowly, we omit its
numerical results. Moreover, we investigate how a choice of the parameters included in our
methods affects numerical performance.
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In our numerical experiments, we set ` = 2 and r1 = r2(= r) in (2.26). Moreover, we fix
r = 0 or 1. Thus αk is rewritten by the forms

• r = 0

αk = φ1

sT
ν1(k)yν1(k)

sT
ν1(k)sν1(k)

+ φ2

sT
ν2(k)yν2(k)

sT
ν2(k)sν2(k)

, φ1 + φ2 = 1, φ1 ≥ 0, φ2 ≥ 0

• r = 1

αk = φ1

yT
ν1(k)yν1(k)

sT
ν1(k)yν1(k)

+ φ2

yT
ν2(k)yν2(k)

sT
ν2(k)yν2(k)

, φ1 + φ2 = 1, φ1 ≥ 0, φ2 ≥ 0.

As mentioned in Section 2, if we choose φ1 = 1, φ2 = 0, r = 0, and ν1(k) = k − 1, then it
becomes the Barzilai-Borwein method, and if we choose φ1 = 1 and φ2 = 0, then it becomes
a gradient method with retards.

Following Dai et al. [4], we used the following choice of νi(k):

νi(k) = Mc

⌊
k −mi

Mc

⌋
, (4.1)

where mi(i = 1, 2) are positive integers. In this section, we call Algorithms EBB and NEBB
with (4.1) cyclic EBB and cyclic NEBB, respectively. If φ1 = 1, φ2 = 0, m1 = 1 and r = 0,
we see that

αk =
sT

ν1(k)yν1(k)

sT
ν1(k)sν1(k)

and ν1(k) = Mc

⌊
k − 1
Mc

⌋
,

which is the cyclic Barzilai-Borwein method. In each experiment, we set α0 = 1. The
parameters used in our experiments are described in each table. Note that the values of
parameters νi(k),Mc and mi (i = 1, 2) indicate how old information we use. For example,
if we choose ν1(k) = k − 5 and ν2(k) = k − 6, we use gk−5 and gk−6 at the k-th iteration,
and if we choose Mc = 5, m1 = 3 and m2 = 4, we use gk−9 according to circumstances.

We used the following stopping condition:

‖gk‖ ≤ 10−5.

4.1 Numerical Results of Algorithm EBB for (1.5)

In this subsection, we give some numerical results of Algorithm EBB. The objective function
we used is

f(x) =
1
2
xT Ax, x ∈ Rn.

The following matrices were chosen as the matrix A:

• Diag: the diagonal matrix defined by

diag
{

1,
λn

n
2, ...,

λn

n
i, ..., λn

}

• Hilbert: the Hilbert matrix.
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• bcsstm: symmetric positive definite matrices in Matrix Market [13].

We set x0 = (1, ..., 1)T as a starting point.
The numerical results of Algorithm EBB are summarized in Tables 1–3. We give the

number of iterations in each table, and “ Sum ” denotes the sum of the number of iterations
in each column. In addition, “ Failed ” means that the number of iterations exceeds 10000.
In each column, if “ Failed ” occurred, then we wrote “ ∗ ” in “ Sum ”.

From Table 1, we see the following observations.

• By comparing each “Sum”, the method with (r, φ1, φ2, ν1(k), ν2(k)) = (1, 1, 0, k−3,−)
performed well. In addition, the methods with (r, φ1, φ2, ν1(k), ν2(k)) = (0, 1, 0, k −
3,−), (1, 0.25, 0.75, k − 3, k − 4), (1, 0.75, 0.25, k − 3, k − 4) also performed well.

• For the cases ν1(k) = k − 1 and ν2(k) = k − 2, our methods did not converge to the
solution occasionally.

• Choices of ν1(k), ν2(k) and r affected the numerical results more than choices of φ1

and φ2 did.

From Tables 2 and 3, we see the following observations.

• The cyclic EBB with (Mc,m1,m2) = (3, 3, 4) and (3, 3,−) (which means φ1, φ2 and r
are any parameters) performed better than other methods.

• For the cases (Mc,m1,m2) = (3, 1, 2), our methods did not converge to the solution
occasionally.

Summarizing our numerical results, we conclude that the numerical performance of our
method was greatly affected by the choice of νi(k) or (Mc,mi). Taking into account that
the steepest descent method is involved in the case ν1(k) = k (it means current information),
we see that our method with old information performed better than that with current or
near current information. However, if we use too old information, then our method becomes
unstable. It is important to find proper choices of νi(k) or (Mc,mi). In our numerical results,
EBB with (ν1(k), ν2(k)) = (k − 3, k − 4), and the cyclic EBB with (Mc,m1,m2) = (3, 3, 4)
performed well. On the other hand, the choices of the other parameters also affected the
numerical performance of our method, but we cannot observe any remarkable tendency.

4.2 Numerical Results of Algorithm NEBB for (1.1)

In this subsection, we give some numerical results of Algorithm NEBB. The test problems
we used are described in Grippo et al. [11] and Moré et al. [14]. In Table 4, the first column,
the second column, the third column and the fourth column denote the problem number
used in this paper, the problem name, the dimension of the problem and the references,
respectively.

The numerical results of Algorithm NEBB are summarized in Tables 5–7. In Algorithm
NEBB, we set ᾱ = 10−16, δ = 1, ξ = 0.0001, t

(0)
k = 1, M̄ = 10, σ

(i)
k = 0.5. The numerical

results are given in the form of “the number of iterations / the number of function eval-
uations”, and “ Sum I ” and “ Sum F ” denote the sum of the number of iterations and
the sum of the number of function evaluations, respectively. We note that the number of
gradient evaluations is the same as the number of iterations. In addition, “ Failed ” means
that the number of iterations exceeds 1000.
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Table 1: Numerical results of EBB

Table 2: Numerical results of cyclic EBB with Mc = 3
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Table 3: Numerical results of cyclic EBB with Mc = 5

Table 4: Test problems
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In order to compare our method with conjugate gradient (CG) methods, we examined
typical CG methods (Fletcher-Reeves (FR) method, Hestenes-Stiefel (HS) method, Polak-
Ribière Plus (PR+) method, and Dai-Yuan (DY) method, see [15] for example). It is reason-
able to use a monotone line search for CG methods. Thus we used the Armijo condition and
the bisection method in the line search procedure, which means Step 2 of Algorithm NEBB
with ξ = 0.1, M(k) = 0, t

(0)
k = 1 and σ

(i)
k = 0.5. In each iteration, if CG methods did

not generate a descent direction, then we used the steepest descent direction. However such
a case rarely occurred. The CG methods, for Problems 4 and 5, did not converge to the
solution. So we omit these numerical results. The numerical results of CG methods are
given in Table 8.

For Algorithm NEBB, we investigate the frequency of taking tk = 1, namely xk+1 =
xk − 1/αkgk. The frequency of taking tk = 1 depended on problems and the choice of
parameters. The ratio (the frequency of taking tk = 1/the number of iterations) are 65%
– 100%. In Tables 5–7, the averages of the ratio are 85%, 82% and 79%, respectively. It
seems that the older information becomes, the lower the ratio becomes.

From Tables 5–7, we see the following observations.

• NEBB with (r, φ1, φ2, ν1(k), ν2(k)) = (1, 0.5, 0.5, k − 1, k − 2) and (1, 0.25, 0.75, k −
1, k − 2) performed better than the other variants.

• NEBB with (ν1(k), ν2(k)) = (k − 1, k − 2) needed the number of function evaluations
less than NEBB with (ν1(k), ν2(k)) = (k − 3, k − 4).

• The cyclic NEBB with (r,Mc,m1,m2) = (0, 3, 1, 2), (0, 5, 3,−) and (0, 5, 3, 4) per-
formed very poorly for Problem 2.

Summarizing our numerical results, we conclude that the numerical performance of our
method was greatly affected by not only the choice of νi(k) or (Mc,mi) but also r. Especially,
we find that the choice r = 1 is more appropriate than the choice r = 0 for general objective
functions. It seems that the older information becomes, the more the number of function
evaluations we need. We recommend NEBB with (r, φ1, φ2, ν1(k), ν2(k)) = (1, 0.5, 0.5, k −
1, k−2) and (1, 0.25, 0.75, k−1, k−2). By comparing NEBB (with (r, φ1, φ2, ν1(k), ν2(k)) =
(1, 0.5, 0.5, k − 1, k − 2) and (1, 0.25, 0.75, k − 1, k − 2)) with CG methods, NEBB needed
the number of iterations more than CG methods, while NEBB is superior to CG methods
from the viewpoint of the number of function evaluations. When the number of variables is
very large, the computational effort is sometimes dominated by the cost of evaluating the
function value and the cost of evaluating the gradient. Therefore we can regard our methods
as efficient methods for large scale problems.

Finally, in order to investigate the local behavior of NEBB, we tested the following convex
function:

f(x) =
1
2
xT Ax + ‖x‖4 + e‖x‖

2/n2
, (4.2)

where n = 1000. Here we set

A = A1 =




c 1 0
1 c 1

. . . . . . . . .
1 c 1

0 1 c




or A = A2 =




c 1 · · · 1

1 c
. . .

...
...

. . . . . . 1
1 · · · 1 c



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Table 5: Numerical results of NEBB

where c is chosen such that A becomes at least positive semidefinite. We tested NEBB with
(r, φ1, φ2, ν1(k), ν2(k)) = (1, 0.5, 0.5, k − 1, k − 2) for the problem (4.2) with various values
of c. We should note the following:

• a solution of the problem (4.2) is x∗ = 0,

• NEBB did not converge within “1000” iterations for the case A = A1 with c = 2,

• A2 with c = 1 is not positive definite but positive semidefinite.

Figure 1 gives the behavior of log10 ‖xk − x∗‖ for the problem (4.2) with A = A1 and
c = 2.1, 10, 100, and Figure 2 gives the behavior of log10 ‖xk − x∗‖ for the problem (4.2)
with A = A2 and c = 1, 10, 100, 1000, 10000. In each figure, (b) is the same as (a) except for
the scale of transverse axis.

From Figures 1 and 2, we see that NEBB did not achieve fast rate of convergence when
∇2f(x∗) is ill-conditioned. On the other hand, NEBB achieved fast rate of convergence for
large c.

5 Concluding Remarks

In this paper, we have proposed the extended Barzilai-Borwein method which includes the
steepest descent method, the Barzilai-Borwein method and the gradient method with re-
tards. We have established the global and Q-superlinear convergence properties of the
proposed method. Moreover, numerical performance of our method has been investigated
by numerical experiments. Our further interests are to find a suitable choice of parameters
included in our method.
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Table 6: Numerical results of cyclic NEBB with Mc = 3

Table 7: Numerical results of cyclic NEBB with Mc = 5
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Table 8: Numerical results of typical CG methods
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Figure 1: Behavior of log10 ‖xk − x∗‖ for A = A1
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