EXTENDED BARZILAI-BORWEIN METHOD FOR UNCONSTRAINED MINIMIZATION PROBLEMS

Yasushi Narushima, Takahiko Wakamatsu and Hiroshi Yabe*

Abstract

In 1988, Barzilai and Borwein presented a new choice of step size for the gradient method for solving unconstrained minimization problems. Their method aimed to accelerate the convergence of the steepest descent method. The Barzilai-Borwein method has a low storage requirement and inexpensive computations. Therefore, many authors have paid attention to the Barzilai-Borwein method and have proposed some variants to solve large-scale unconstrained minimization problems. In this paper, we extend the Barzilai-Borwein-type methods of Friedlander et al. to more general class and establish global and Q-superlinear convergence properties of the proposed method for minimizing a strictly convex quadratic function. Furthermore, we apply our method to general objective functions. Finally, some numerical experiments are given.

Key words: large-scale unconstrained minimization problem, Barzilai-Borwein method, global convergence, Q-superlinear convergence

Mathematics Subject Classification: 90C06, 90C30

1 Introduction

We consider the following large-scale unconstrained minimization problems:

$$
\begin{equation*}
\min \quad f(x), \tag{1.1}
\end{equation*}
$$

where $n \in \boldsymbol{N}$ is very large, $f: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ is sufficiently smooth and its gradient $g \equiv \nabla f$ is available. Although the Newton method and quasi-Newton methods are effective for solving unconstrained minimization problems, these methods cannot apply directly to large-scale unconstrained minimization problems. Therefore, numerical methods which are based on the steepest descent direction are paid attention to, because they avoid the storage of matrices. In this paper, we consider the gradient method defined by

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{1}{\alpha_{k}} g_{k}, \tag{1.2}
\end{equation*}
$$

where x_{k} is the k-th approximation to the optimal solution x_{*} of (1.1), g_{k} is the gradient vector of f at x_{k} and $1 / \alpha_{k}$ is a step size.

[^0]The steepest descent method is the simplest gradient method for unconstrained minimization problems. In the steepest descent method, which can be traced back to Cauchy (1847), the following exact step size

$$
\frac{1}{\alpha_{k}}=\underset{\alpha>0}{\operatorname{argmin}} f\left(x_{k}-\frac{1}{\alpha} g_{k}\right)
$$

is used. Unfortunately, it has been widely known that it converges rather slowly in most cases. In order to overcome this defect, Barzilai and Borwein [1] proposed another step size. Specifically, they approximated the Hessian $\nabla^{2} f\left(x_{k}\right)$ by $\alpha_{k} I$ and based on the secant condition, they considered the following minimization problem:

$$
\alpha_{k}=\underset{\alpha \in R}{\arg \min }\left\|\alpha I s_{k-1}-y_{k-1}\right\|
$$

where $s_{k-1}=x_{k}-x_{k-1}, y_{k-1}=g_{k}-g_{k-1}$ and $\|\cdot\|$ denotes the Euclidean norm. This minimum value is defined by

$$
\begin{equation*}
\alpha_{k}=\frac{s_{k-1}^{T} y_{k-1}}{s_{k-1}^{T} s_{k-1}} \tag{1.3}
\end{equation*}
$$

The gradient method with (1.3) is called the Barzilai-Borwein method.
Moreover, Dai, Hager, Schittkowski and Zhang [4] presented numerical results by using

$$
\begin{equation*}
\alpha_{k}=\frac{s_{\nu(k)}^{T} y_{\nu(k)}}{s_{\nu(k)}^{T} s_{\nu(k)}} \quad \text { with } \quad \nu(k)=M_{c}\left\lfloor\frac{k-1}{M_{c}}\right\rfloor \tag{1.4}
\end{equation*}
$$

where for $r \in \boldsymbol{R},\lfloor r\rfloor$ denotes the largest integer j such that $j \leq r$ and M_{c} is a positive integer. The gradient method with (1.4) is called the cyclic Barzilai-Borwein method. Numerical results in [4] suggested that their method performed better than the Barzilai-Borwein method did. Since the search direction of the Barzilai-Borwein method $\left(-\left(1 / \alpha_{k}\right) g_{k}\right)$ is not necessarily a descent direction, Raydan [17] applied the nonmonotone line search by Grippo et al. [10] to the Barzilai-Borwein method, and proved its global convergence property.

Many researchers study the gradient method for minimizing a strictly convex quadratic function, namely,

$$
\begin{equation*}
\min \quad f(x)=\frac{1}{2} x^{T} A x-b^{T} x \tag{1.5}
\end{equation*}
$$

where $A \in \boldsymbol{R}^{n \times n}$ is a symmetric positive definite matrix and $b \in \boldsymbol{R}^{n}$ is a given vector. For an application of the Barzilai-Borwein method to problem (1.5), Raydan [16] established its global convergence and Dai and Liao [5] proved R-linear rate of convergence. Yuan [19] proposed a choice of α_{k} such that the solution of (1.5) with $n=2$ can be found within four iterations, and proved that its related method converges linearly for a general case with $n \geq 2$. Friedlander, Martinez, Molina and Raydan [9] proposed a new gradient method with retards, in which α_{k} is defined by

$$
\begin{equation*}
\alpha_{k}=\frac{g_{\nu(k)}^{T} A^{\rho(k)+1} g_{\nu(k)}}{g_{\nu(k)}^{T} A^{\rho(k)} g_{\nu(k)}}, \quad \nu(k) \in\{k, k-1, \ldots, \max \{0, k-m\}\} \tag{1.6}
\end{equation*}
$$

and $\rho(k) \in\left\{q_{1}, \ldots, q_{m}\right\}$, where m is a positive integer, and $q_{1}, \ldots, q_{m}(\geq-2)$ are integers. They established its global convergence for problem (1.5) and proved the Q-superlinear rate
of convergence in the special case. Within the framework of the gradient method with retards, some researchers proposed new choices of α_{k}. Raydan and Svaiter [18] proposed the Cauchy-Barzilai-Borwein method which chooses α_{k} of the steepest descent method and the Barzilai-Borwein method alternately. Zhou et al. [21] proposed a method which chooses α_{k} of the steepest descent method and the minimal gradient method alternately. Yuan [20] proposed a method which chooses α_{k} of the Barzilai-Borwein method and other types of Barzilai-Borwein method alternately.

The Barzilai-Borwein method and its related methods are reviewed by Dai and Yuan [6] and Fletcher [8].

In this paper, we propose a new step size by extending (1.6). This paper is organized as follows. In Section 2, we propose a new step size and present the algorithm of our method for strictly convex quadratic functions. We show the global convergence property of our method following Friedlander et al. [9]. Moreover using the Dennis-Moré condition, we discuss Q-superlinear convergence. In Section 3, we apply a restricted class of the proposed method to general objective functions by using nonmonotone line search. We establish its global and Q-superlinear convergence properties. Finally, some numerical results are given in Section 4.

2 Extended Barzilai-Borwein Method for Quadratic Functions

In this section, we consider an extension of the Barzilai-Borwein method for minimizing strictly convex quadratic function (1.5). It is desirable that $\alpha_{k} I$ approximates A (or $1 / \alpha_{k} I$ approximates A^{-1}), and hence Friedlander et al. used a Rayleigh quotient of A. Since a convex combination of Rayleigh quotients possesses more curvature information than (1.6) does, it is significant to construct a method based on such a combination. Accordingly, following Friedlander et al. [9], we propose a new step size for (1.2) as follows:

$$
\begin{align*}
\alpha_{k} & =\sum_{i=1}^{\ell} \phi_{i} \frac{g_{\nu_{i}(k)}^{T} A^{\rho_{i}(k)+1} g_{\nu_{i}(k)}}{g_{\nu_{i}(k)}^{T} A^{\rho_{i}(k)} g_{\nu_{i}(k)}} \tag{2.1}\\
\phi_{i} & \geq 0, \quad \sum_{i=1}^{\ell} \phi_{i}=1, \quad \nu_{i}(k) \in\{k, k-1, \ldots, \max \{0, k-m\}\}
\end{align*}
$$

and $\rho_{i}(k) \in\left\{q_{1}, \ldots, q_{m}\right\}$, where ℓ and m are positive integers, and q_{1}, \ldots, q_{m} are integers. We call this gradient method the extended Barzilai-Borwein (EBB) method.

Now we describe the algorithm of our method as follows.

Algorithm EBB.

Step 0 . Give $x_{0} \in \boldsymbol{R}^{n}$ and $\ell, m \in \boldsymbol{N}$, and set $k=0$. If $g_{0}=0$, then stop. Otherwise go to Step 1.
Step 1 . Compute α_{k} by (2.1).
Step 2 . Let $x_{k+1}=x_{k}-\frac{1}{\alpha_{k}} g_{k}$. If $g_{k+1}=0$, then stop.
Step 3 . Let $k:=k+1$ and go to Step 1 .
Using (1.2) and $g_{k}=A x_{k}-b$, we have

$$
\begin{equation*}
s_{k}=-\frac{1}{\alpha_{k}} g_{k} \quad \text { and } \quad y_{k}=A s_{k} . \tag{2.2}
\end{equation*}
$$

If $\nu_{i}(k) \neq k$ for all k, expression (2.2) gives

$$
\begin{equation*}
\alpha_{k}=\sum_{i=1}^{\ell} \phi_{i} \frac{s_{\nu_{i}(k)}^{T} A^{\rho_{i}(k)+1} s_{\nu_{i}(k)}}{s_{\nu_{i}(k)}^{T} A^{\rho_{i}(k)} s_{\nu_{i}(k)}}=\sum_{i=1}^{\ell} \phi_{i} \frac{y_{\nu_{i}(k)}^{T} A^{\rho_{i}(k)-1} y_{\nu_{i}(k)}}{y_{\nu_{i}(k)}^{T} A^{\rho_{i}(k)-2} y_{\nu_{i}(k)}} . \tag{2.3}
\end{equation*}
$$

We note that if $\ell=1, \nu_{1}(k)=k$ and $\rho_{1}(k)=0$ for all k, (2.1) becomes $\alpha_{k}=g_{k}^{T} A g_{k} / g_{k}^{T} g_{k}$, which implies the steepest descent method. On the other hand, if $\ell=1, \nu_{1}(k)=\max \{0, k-$ $1\}$ and $\rho_{1}(k)=0$ for all k, using (2.2) and (2.3) yields $\alpha_{k}=s_{k-1}^{T} y_{k-1} / s_{k-1}^{T} s_{k-1}$, which is the Barzilai-Borwein method (1.3). Moreover, if $\ell=1$ and $q_{j} \geq-2$, then by (2.1), we see that $\alpha_{k}=g_{\nu_{1}(k)}^{T} A^{\rho_{1}(k)+1} g_{\nu_{1}(k)} / g_{\nu_{1}(k)}^{T} A^{\rho_{1}(k)} g_{\nu_{1}(k)}$, which is the gradient method with retards (1.6). Therefore, (2.1) is the extension of (1.3) and (1.6).

Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}\left(\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}\right)$ be eigenvalues of A and let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be orthonormal eigenvectors of A associated with the eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$. Since α_{k} is the Rayleigh quotient of A, the following relation holds

$$
\begin{equation*}
0<\lambda_{1} \leq \alpha_{k} \leq \lambda_{n} \quad \text { for all } k \tag{2.4}
\end{equation*}
$$

In the following subsections, we consider convergence properties of Algorithm EBB.

2.1 Global Convergence

In this subsection, we establish global convergence of the extended Barzilai-Borwein method for problem (1.5) following Friedlander et al. [9]. Let $\left\{x_{k}\right\}$ be the sequence generated by Algorithm EBB. Letting $e_{k}=x_{*}-x_{k}$, we get

$$
\begin{equation*}
g_{k}=A x_{k}-b=-A e_{k} \tag{2.5}
\end{equation*}
$$

By (2.1) and (2.5), α_{k} can be written by

$$
\begin{equation*}
\alpha_{k}=\sum_{i=1}^{\ell} \phi_{i} \frac{e_{\nu_{i}(k)}^{T} A^{\rho_{i}(k)+3} e_{\nu_{i}(k)}}{e_{\nu_{i}(k)}^{T} A^{\rho_{i}(k)+2} e_{\nu_{i}(k)}} \tag{2.6}
\end{equation*}
$$

For the initial error e_{0}, there exist constants $d_{1}^{0}, d_{2}^{0}, \ldots, d_{n}^{0}$ such that

$$
\begin{equation*}
e_{0}=\sum_{j=1}^{n} d_{j}^{0} v_{j} \tag{2.7}
\end{equation*}
$$

It follows from (2.5) that

$$
\begin{equation*}
e_{k+1}=e_{k}+\frac{1}{\alpha_{k}} g_{k}=\frac{1}{\alpha_{k}}\left(\alpha_{k} I-A\right) e_{k} . \tag{2.8}
\end{equation*}
$$

Thus, using (2.7) and (2.8) yields

$$
e_{k+1}=\left\{\prod_{i=0}^{k} \frac{1}{\alpha_{i}}\left(\alpha_{i} I-A\right)\right\}\left(\sum_{j=1}^{n} d_{j}^{0} v_{j}\right)=\sum_{j=1}^{n} d_{j}^{0}\left\{\prod_{i=0}^{k} \frac{1}{\alpha_{i}}\left(\alpha_{i}-\lambda_{j}\right)\right\} v_{j} .
$$

Therefore, defining

$$
d_{j}^{k+1}=\prod_{i=0}^{k}\left(\frac{\alpha_{i}-\lambda_{j}}{\alpha_{i}}\right) d_{j}^{0} \quad \text { for } \quad j=1, \ldots, n
$$

we have

$$
\begin{equation*}
e_{k+1}=\sum_{j=1}^{n} d_{j}^{k+1} v_{j} \quad \text { for all } k \tag{2.9}
\end{equation*}
$$

which implies the relation

$$
\begin{equation*}
d_{j}^{k+1}=\left(\frac{\alpha_{k}-\lambda_{j}}{\alpha_{k}}\right) d_{j}^{k} \quad \text { for } \quad j=1, \ldots, n \tag{2.10}
\end{equation*}
$$

Moreover, by (2.4), the following relations hold for any k

$$
\begin{equation*}
\left|1-\frac{\lambda_{i}}{\alpha_{k}}\right| \leq \frac{\lambda_{n}-\lambda_{1}}{\lambda_{1}} \quad(i=1, \ldots, n) \tag{2.11}
\end{equation*}
$$

In order to establish global convergence of Algorithm EBB, we give some lemmas. The following lemma corresponds to Lemma 2.1 in Friedlander et al. [9] and the proof is exactly the same as that of Lemma 2.1 in [9], so we omit it.

Lemma 2.1. The sequence $\left\{d_{1}^{k}\right\}$ converges to zero Q-linearly with convergence factor $\hat{c}_{1}=$ $1-\left(\lambda_{1} / \lambda_{n}\right)$.

The following lemma corresponds to Lemma 2.2 in Friedlander et al. [9].
Lemma 2.2. If the sequences $\left\{d_{1}^{k}\right\},\left\{d_{2}^{k}\right\}, \ldots,\left\{d_{p-1}^{k}\right\}$ converge to zero for a fixed integer $p(2 \leq p \leq n)$, then

$$
\liminf _{k \rightarrow \infty}\left|d_{p}^{k}\right|=0
$$

holds.
Proof. In order to prove this lemma by contradiction, we suppose that there exists a positive constant ε such that

$$
\begin{equation*}
\left(d_{p}^{k}\right)^{2} \min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2} \geq \varepsilon \quad \text { for all } k \tag{2.12}
\end{equation*}
$$

Then, by (2.6), (2.9) and the orthonormality of the eigenvectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, we obtain

$$
\begin{equation*}
\alpha_{k}=\sum_{i=1}^{\ell} \phi_{i} \frac{\left(\sum_{j=1}^{n} d_{j}^{\nu_{i}(k)} v_{j}\right)^{T} A^{\rho_{i}(k)+3}\left(\sum_{j=1}^{n} d_{j}^{\nu_{i}(k)} v_{j}\right)}{\left(\sum_{j=1}^{n} d_{j}^{\nu_{i}(k)} v_{j}\right)^{T} A^{\rho_{i}(k)+2}\left(\sum_{j=1}^{n} d_{j}^{\nu_{i}(k)} v_{j}\right)}=\sum_{i=1}^{\ell} \phi_{i} \frac{\sum_{j=1}^{n}\left(d_{j}^{\nu_{i}(k)}\right)^{2} \lambda_{j}^{\rho_{i}(k)+3}}{\sum_{j=1}^{n}\left(d_{j}^{\nu_{i}(k)}\right)^{2} \lambda_{j}^{\rho_{i}(k)+2}} .(\tag{2.13}
\end{equation*}
$$

Since the sequences $\left\{d_{1}^{k}\right\},\left\{d_{2}^{k}\right\}, \ldots,\left\{d_{p-1}^{k}\right\}$ converge to zero, there exists a sufficiently large \hat{k} such that

$$
\begin{equation*}
\sum_{j=1}^{p-1}\left(d_{j}^{k}\right)^{2} \max _{1 \leq u \leq m} \lambda_{j}^{q_{u}+2} \leq \frac{1}{2} \varepsilon \quad \text { for } \text { all } k \geq \hat{k} \tag{2.14}
\end{equation*}
$$

By (2.13) and (2.14), we have for all $k \geq \hat{k}+m$

$$
\begin{align*}
\alpha_{k} & \geq \sum_{i=1}^{\ell} \phi_{i} \frac{\sum_{j=p}^{n}\left(d_{j}^{\nu_{i}(k)}\right)^{2} \lambda_{j}^{\rho_{i}(k)+2} \lambda_{j}}{\sum_{j=1}^{p-1}\left(d_{j}^{\nu_{i}(k)}\right)^{2} \lambda_{j}^{\rho_{i}(k)+2}+\sum_{j=p}^{n}\left(d_{j}^{\nu_{i}(k)}\right)^{2} \lambda_{j}^{\rho_{i}(k)+2}} \\
& \geq \sum_{i=1}^{\ell} \phi_{i} \frac{\lambda_{p} \sum_{j=p}^{n}\left(d_{j}^{\nu_{i}(k)}\right)^{2} \lambda_{j}^{\rho_{i}(k)+2}}{\frac{1}{2} \varepsilon+\sum_{j=p}^{n}\left(d_{j}^{\nu_{i}(k)}\right)^{2} \lambda_{j}^{\rho_{i}(k)+2}} . \tag{2.15}
\end{align*}
$$

Since from (2.12) we get
$\sum_{j=p}^{n}\left(d_{j}^{\nu_{i}(k)}\right)^{2} \lambda_{j}^{\rho_{i}(k)+2} \geq\left(d_{p}^{\nu_{i}(k)}\right)^{2} \lambda_{p}^{\rho_{i}(k)+2} \geq\left(d_{p}^{\nu_{i}(k)}\right)^{2} \min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2} \geq \varepsilon \quad$ for all $k \geq \hat{k}+m$,
(2.4) and (2.15) yield for all $k \geq \hat{k}+m$

$$
\lambda_{n} \geq \alpha_{k} \geq \sum_{i=1}^{\ell} \phi_{i} \frac{\lambda_{p}}{\frac{1}{2} \varepsilon\left(1 / \sum_{j=p}^{n}\left(d_{j}^{\nu_{i}(k)}\right)^{2} \lambda_{j}^{\rho_{i}(k)+2}\right)+1} \geq \frac{2}{3} \lambda_{p}
$$

which implies

$$
\begin{equation*}
\left|1-\frac{\lambda_{p}}{\alpha_{k}}\right| \leq \max \left(\frac{1}{2}, 1-\frac{\lambda_{p}}{\lambda_{n}}\right) \leq \max \left(\frac{1}{2}, 1-\frac{\lambda_{1}}{\lambda_{n}}\right)<1 \quad \text { for } \quad \text { all } k \geq \hat{k}+m . \tag{2.16}
\end{equation*}
$$

Using (2.10) and (2.16) yields

$$
\left|d_{p}^{k+1}\right|=\left|1-\frac{\lambda_{p}}{\alpha_{k}}\right|\left|d_{p}^{k}\right| \leq \hat{c}_{2}\left|d_{p}^{k}\right| \quad \text { for all } k \geq \hat{k}+m
$$

with $\hat{c}_{2}=\max \left(1 / 2,1-\lambda_{1} / \lambda_{n}\right)<1$. Because this conclusion contradicts the hypothesis (2.12), we find that the lemma is true.

By using Lemmas 2.1 and 2.2, we can prove the next theorem.
Theorem 2.3. Let $\left\{x_{k}\right\}$ be the sequence generated by Algorithm EBB for problem (1.5) and let x_{*} be the unique minimizer of f. Then, either $x_{j}=x_{*}$ for some finite j, or the sequence $\left\{x_{k}\right\}$ converges to x_{*}.

Proof. If there exists a finite integer j such that $x_{j}=x_{*}$, then this theorem is true. Hence we only consider the case $x_{k} \neq x_{*}$ for all k. From (2.9) and orthonormality of $v_{i}(i=1, \ldots, n)$, we have

$$
\begin{equation*}
\left\|e_{k}\right\|^{2}=\sum_{i=1}^{n}\left(d_{i}^{k}\right)^{2}, \tag{2.17}
\end{equation*}
$$

and hence if all $\left\{d_{i}^{k}\right\}(i=1, \ldots, n)$ converge to zero, then the sequence $\left\{x_{k}\right\}$ converges to the solution. Now we prove that all $\left\{d_{i}^{k}\right\}(i=1, \ldots, n)$ converge to zero by the induction. Lemma 2.1 shows that $\left\{d_{1}^{k}\right\}$ converges to zero. Let assume that $\left\{d_{1}^{k}\right\}, \ldots,\left\{d_{p-1}^{k}\right\}$ all tend to zero. There exists a sufficiently large \hat{k} such that

$$
\sum_{j=1}^{p-1}\left(d_{j}^{k}\right)^{2} \max _{1 \leq u \leq m} \lambda_{j}^{q_{u}+2} \leq \frac{1}{2} \varepsilon \quad \text { for all } k \geq \hat{k}
$$

for any given $\varepsilon>0$. By Lemma 2.2 , there exists a $k^{\prime}(\geq \hat{k}+m)$ such that

$$
\min _{0 \leq t \leq m}\left(d_{p}^{k^{\prime}-t}\right)^{2} \min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2}<\varepsilon
$$

Let $\left\{\bar{k}_{r}\right\}\left(\geq k^{\prime}\right)$ be a sequence such that the following inequalities hold

$$
\min _{0 \leq t \leq m}\left(d_{p}^{\bar{k}_{r}-1-t}\right)^{2} \min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2}<\varepsilon \quad \text { and } \min _{0 \leq t \leq m}\left(d_{p}^{\bar{k}_{r}-t}\right)^{2} \min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2} \geq \varepsilon
$$

and let $\varphi\left(\bar{k}_{r}\right)$ be the first integer greater than \bar{k}_{r} for which the following inequality holds

$$
\min _{0 \leq t \leq m}\left(d_{p}^{\varphi\left(\bar{k}_{r}\right)-t}\right)^{2} \min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2}<\varepsilon
$$

By taking Lemma 2.2 into account, it suffices to consider the following two cases (i) and (ii).

Case (i). If the sequence $\left\{\bar{k}_{r}\right\}$ is a finite sequence, then there exists a sufficiently large $k^{\prime \prime}\left(\geq k^{\prime}\right)$ such that

$$
\begin{equation*}
\min _{0 \leq t \leq m}\left(d_{p}^{k-t}\right)^{2} \min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2}=\left(d_{p}^{k-t^{\prime}}\right)^{2} \min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2}<\varepsilon \quad \text { for any } k \geq k^{\prime \prime} \tag{2.18}
\end{equation*}
$$

where t^{\prime} is an integer which depends on k. By (2.10), (2.11) and (2.18), we have

$$
\begin{align*}
\left(d_{p}^{k}\right)^{2} & =\left(\prod_{i=k-t^{\prime}}^{k-1} \frac{\alpha_{i}-\lambda_{p}}{\alpha_{i}}\right)^{2}\left(d_{p}^{k-t^{\prime}}\right)^{2} \\
& \leq\left(\prod_{i=k-t^{\prime}}^{k-1} \frac{\lambda_{n}-\lambda_{1}}{\lambda_{1}}\right)^{2}\left(d_{p}^{k-t^{\prime}}\right)^{2} \\
& \leq \max \left(\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{1}}\right)^{2 m}, 1\right)\left(d_{p}^{k-t^{\prime}}\right)^{2} \\
& \leq \max \left(\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{1}}\right)^{2 m}, 1\right) \frac{\varepsilon}{\min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2}} \tag{2.19}
\end{align*}
$$

which implies that for all $k \geq k^{\prime \prime}$, the following holds

$$
\begin{equation*}
\left(d_{p}^{k}\right)^{2} \leq \hat{c}_{3} \varepsilon \quad \text { with } \quad \hat{c}_{3}=\max \left(\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{1}}\right)^{2 m}, 1\right) \frac{1}{\min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2}} \tag{2.20}
\end{equation*}
$$

Case (ii). If the sequence $\left\{\bar{k}_{r}\right\}$ is an infinite sequence, by the definitions of $\left\{\bar{k}_{r}\right\}$ and $\left\{\varphi\left(\bar{k}_{r}\right)\right\}$, we get

$$
\begin{array}{ll}
\min _{0 \leq t \leq m}\left(d_{p}^{k-t}\right)^{2} \min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2} \geq \varepsilon & \text { for } k\left(\bar{k}_{r} \leq k \leq \varphi\left(\bar{k}_{r}\right)-1\right) \\
\min _{0 \leq t \leq m}\left(d_{p}^{k-t}\right)^{2} \min _{1 \leq u \leq m} \lambda_{p}^{q_{u}+2}<\varepsilon & \text { for } k\left(\varphi\left(\bar{k}_{r}\right) \leq k \leq \bar{k}_{r+1}-1\right) \tag{2.22}
\end{array}
$$

As shown in (2.18), (2.19) and (2.20), inequality (2.22) yields

$$
\begin{equation*}
\left(d_{p}^{k}\right)^{2} \leq \hat{c}_{3} \varepsilon \quad \text { for } k\left(\varphi\left(\bar{k}_{r}\right) \leq k \leq \bar{k}_{r+1}-1\right) \tag{2.23}
\end{equation*}
$$

Since (2.15) holds for all $k \geq \hat{k}+m$, we have from (2.21)

$$
\begin{align*}
\lambda_{n} \geq \alpha_{k} & \geq \sum_{i=1}^{\ell} \phi_{i} \frac{\lambda_{p}}{\frac{1}{2} \varepsilon\left(1 / \sum_{j=p}^{n}\left(d_{j}^{\nu_{i}}(k)\right)^{2} \lambda_{j}^{\rho_{i}(k)+2}\right)+1} \\
& \geq \sum_{i=1}^{\ell} \phi_{i} \frac{\lambda_{p}}{\frac{1}{2} \varepsilon\left(1 /\left(d_{p}^{\nu_{i}(k)}\right)^{2} \lambda_{p}^{\rho_{i}(k)+2}\right)+1} \\
& \geq \frac{2}{3} \lambda_{p} \tag{2.24}
\end{align*}
$$

for all k such that $\bar{k}_{r} \leq k \leq \varphi\left(\bar{k}_{r}\right)-1$. As shown in (2.16), inequality (2.24) implies $\left|1-\lambda_{p} / \alpha_{k}\right|<1$, so (2.10) yields

$$
\begin{equation*}
\left|d_{p}^{k+1}\right|=\left|1-\frac{\lambda_{p}}{\alpha_{k}}\right|\left|d_{p}^{k}\right| \leq\left|d_{p}^{k}\right| \quad \text { for } \quad k\left(\bar{k}_{r} \leq k \leq \varphi\left(\bar{k}_{r}\right)-1\right) \tag{2.25}
\end{equation*}
$$

Thus, by (2.25), (2.10) and (2.11), we have

$$
\begin{array}{r}
\left(d_{p}^{k}\right)^{2} \leq\left(d_{p}^{\bar{k}_{r}}\right)^{2} \leq\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{1}}\right)^{2}\left(d_{p}^{\bar{k}_{r}-1}\right)^{2} \leq\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{1}}\right)^{2} \hat{c}_{3} \varepsilon=\hat{c}_{4} \varepsilon \\
\text { for } k\left(\bar{k}_{r} \leq k \leq \varphi\left(\bar{k}_{r}\right)\right)
\end{array}
$$

with $\hat{c}_{4}=\hat{c}_{3}\left\{\left(\lambda_{n}-\lambda_{1}\right) / \lambda_{1}\right\}^{2}$. The last inequality can be obtained by using (2.23).
By summarizing the cases (i) and (ii), we obtain for all $k\left(\geq k^{\prime \prime}\right)\left(d_{p}^{k}\right)^{2} \leq \hat{c}_{5} \varepsilon$ with $\hat{c}_{5}=\max \left(\hat{c}_{3}, \hat{c}_{4}\right)$. Since $\varepsilon>0$ can be chosen arbitrarily small, we deduce $\lim _{k \rightarrow \infty}\left|d_{p}^{k}\right|=0$ as required. Therefore, by induction on p, we have $\lim _{k \rightarrow \infty}\left|d_{i}^{k}\right|=0$ for $i=1, \ldots, n$ and then $\lim _{k \rightarrow \infty}\left\|e_{k}\right\|=0$ holds by (2.17). This completes the proof.

Note that Theorem 2.3 is the extension of Theorem 2.1 in Friedlander et al. [9]. More recently, Yuan [20] independently proved Theorem 2.3 . We does not omit the proof of Theorem 2.3 because the proof in [20] is different from the proof of this theorem.

2.2 Q-superlinear Convergence

In this subsection, we analyze the local behavior of Algorithm EBB. To this end, we deal with the case where $\nu_{i}(k) \neq k$ and $\rho_{i}(k)$ does not depend on k in (2.1), say $\rho_{i}(k)=r_{i}$ for a given integer $r_{i}(i=1, \ldots, \ell)$. Then (2.3) implies

$$
\begin{equation*}
\alpha_{k}=\sum_{i=1}^{\ell} \phi_{i} \frac{s_{\nu_{i}(k)}^{T} A^{r_{i}+1} s_{\nu_{i}(k)}}{s_{\nu_{i}(k)}^{T} A^{r_{i}} s_{\nu_{i}(k)}} \tag{2.26}
\end{equation*}
$$

where $\nu_{i}(k) \in\{k-1, \ldots, \max \{0, k-m\}\}$ for $i=1, \ldots, \ell$.
The following theorem is the extension of Theorem 3.1 in Friedlander et al. [9].
Theorem 2.4. Let $\left\{x_{k}\right\}$ be the sequence generated by Algorithm EBB with (2.26) for problem (1.5). Assume that the sequence $\left\{s_{k} /\left\|s_{k}\right\|\right\}$ is convergent, that is, there exists $s \in \boldsymbol{R}^{n}$ such that $\lim _{k \rightarrow \infty} s_{k} /\left\|s_{k}\right\|=s$ and $\|s\|=1$. Then s becomes an eigenvector of A with the eigenvalue s^{T} As and $\lim _{k \rightarrow \infty} \alpha_{k}=s^{T}$ As. Moreover, the sequence $\left\{x_{k}\right\}$ converges Q superlinearly to x_{*}.

Proof. It follows immediately from Theorem 2.3 that $\left\{x_{k}\right\}$ converges to x_{*}. Thus, we need only show that $\left\{x_{k}\right\}$ converges Q-superlinearly to x_{*}.

Letting $A^{r_{i} / 2}=\sum_{j=1}^{n} \lambda_{j}^{r_{i} / 2} v_{j} v_{j}^{T}$, we have $\left(A^{r_{i} / 2}\right)^{2}=A^{r_{i}}$ and $\left(A^{r_{i} / 2}\right)^{T}=A^{r_{i} / 2}$ for $i=$ $1, \ldots, \ell$. Then, equation (2.26) can be written by

$$
\begin{equation*}
\alpha_{k}=\sum_{i=1}^{\ell} \phi_{i}\left(\frac{A^{r_{i} / 2} s_{\nu_{i}(k)}}{\left\|A^{r_{i} / 2} s_{\nu_{i}(k)}\right\|}\right)^{T} A\left(\frac{A^{r_{i} / 2} s_{\nu_{i}(k)}}{\left\|A^{r_{i} / 2} s_{\nu_{i}(k)}\right\|}\right) . \tag{2.27}
\end{equation*}
$$

For simplicity, we define

$$
\hat{s}^{(i)}=\frac{A^{r_{i} / 2} s}{\left\|A^{r_{i} / 2} s\right\|} \quad \text { for } \quad i=1, \ldots, \ell \quad \text { and } \quad \alpha=\sum_{i=1}^{\ell} \phi_{i} \hat{s}^{(i) T} A \hat{s}^{(i)} .
$$

From the fact that $\nu_{i}(k) \geq k-m(i=1, \ldots, \ell)$, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{A^{r_{i} / 2} s_{\nu_{i}(k)}}{\left\|A^{r_{i} / 2} s_{\nu_{i}(k)}\right\|}=\hat{s}^{(i)} \quad \text { for } \quad i=1, \ldots, \ell \tag{2.28}
\end{equation*}
$$

Therefore, by (2.27) and (2.28), we have

$$
\lim _{k \rightarrow \infty} \alpha_{k}=\sum_{i=1}^{\ell} \phi_{i} \hat{s}^{(i) T} A \hat{s}^{(i)}=\alpha
$$

It follows from (2.2) and $x_{k+1}=x_{k}+s_{k}$ that

$$
s_{k+1}=-\frac{1}{\alpha_{k+1}}\left(A-\alpha_{k} I\right) s_{k}
$$

Premultiplying this equation by $A^{r_{i} / 2}$ and normalizing it, we have

$$
\frac{A^{r_{i} / 2} s_{k+1}}{\left\|A^{r_{i} / 2} s_{k+1}\right\|}=-\frac{\left(A-\alpha_{k} I\right) A^{r_{i} / 2} s_{k} /\left\|A^{r_{i} / 2} s_{k}\right\|}{\left\|\left(A-\alpha_{k} I\right) A^{r_{i} / 2} s_{k} /\right\| A^{r_{i} / 2} s_{k}\| \|},
$$

which implies

$$
\left\|\left(A-\alpha_{k} I\right) \frac{A^{r_{i} / 2} s_{k}}{\left\|A^{r_{i} / 2} s_{k}\right\|}\right\| \frac{A^{r_{i} / 2} s_{k+1}}{\left\|A^{r_{i} / 2} s_{k+1}\right\|}=-\left(A-\alpha_{k} I\right) \frac{A^{r_{i} / 2} s_{k}}{\left\|A^{r_{i} / 2} s_{k}\right\|} \quad \text { for } \quad i=1, \ldots, \ell
$$

Taking limits on both sides of this equation, we have

$$
\left\|(A-\alpha I) \hat{s}^{(i)}\right\| \hat{s}^{(i)}=-(A-\alpha I) \hat{s}^{(i)} \text { for } i=1, \ldots, \ell
$$

Furthermore, premultiplying this equation by $\hat{s}^{(i) T}$ yields

$$
\begin{equation*}
\left\|(A-\alpha I) \hat{s}^{(i)}\right\|=-\hat{s}^{(i) T} A \hat{s}^{(i)}+\alpha \text { for } i=1, \ldots, \ell \tag{2.29}
\end{equation*}
$$

Thus, by (2.29) and the fact that $\sum_{i=1}^{\ell} \phi_{i}=1$, we have

$$
\sum_{i=1}^{\ell} \phi_{i}\left\|(A-\alpha I) \hat{s}^{(i)}\right\|=-\sum_{i=1}^{\ell} \phi_{i} \hat{s}^{(i) T} A \hat{s}^{(i)}+\alpha=0 .
$$

Since there exists some j such that $\phi_{j}>0$, we have

$$
\begin{equation*}
\left\|(A-\alpha I) \hat{s}^{(j)}\right\|=0 \tag{2.30}
\end{equation*}
$$

On the other hand, we get

$$
\begin{align*}
\frac{\left\|\left(A-\alpha_{k} I\right) s_{k}\right\|}{\left\|s_{k}\right\|} & \leq \frac{\left\|A^{-r_{j} / 2}\right\|\left\|\left(A-\alpha_{k} I\right) A^{r_{j} / 2} s_{k}\right\|}{\left\|A^{r_{j} / 2} s_{k}\right\|} \frac{\left\|A^{r_{j} / 2} s_{k}\right\|}{\left\|s_{k}\right\|} \\
& \leq\left\|A^{r_{j} / 2}\right\|\left\|A^{-r_{j} / 2}\right\| \frac{\left\|\left(A-\alpha_{k} I\right) A^{r_{j} / 2} s_{k}\right\|}{\left\|A^{r_{j} / 2} s_{k}\right\|} \tag{2.31}
\end{align*}
$$

Therefore, using (2.31) and (2.30), we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\left(A-\alpha_{k} I\right) s_{k}\right\|}{\left\|s_{k}\right\|}=0 \tag{2.32}
\end{equation*}
$$

Because we can regard $\alpha_{k} I$ as an approximation matrix of $\nabla^{2} f\left(x_{k}\right)(=A)$ in Dennis and Moré condition (see [7], for example), the sequence $\left\{x_{k}\right\}$ converges Q-superlinearly to x_{*}. In addition, (2.32) yields $(A-\alpha I) s=0$, which means that s is an eigenvector of A with the eigenvalue $\alpha=s^{T} A s$. Therefore, the proof is complete.

3 Extended Barzilai-Borwein Method for General Functions

In this section, we consider an application of Algorithm EBB to general unconstrained minimization problems (1.1). In (2.1), we use the positive definite matrix A which is the Hessian of the objective function. On the other hand, calculations of the Hessian of the objective function are very expensive if the objective function is not quadratic. Accordingly, we would like to express (2.26) without using the Hessian A. To this end, we fix $r_{i}=0$ or 1 in (2.26) and consider the following:

$$
\begin{align*}
\alpha_{k} & =\sum_{i=1}^{\ell}\left(\phi_{i}^{(1)} \frac{s_{\nu_{i}(k)}^{T} y_{\nu_{i}(k)}}{s_{\nu_{i}(k)}^{T} s_{\nu_{i}(k)}}+\phi_{i}^{(2)} \frac{y_{\nu_{i}(k)}^{T} y_{\nu_{i}(k)}}{s_{\nu_{i}(k)}^{T} y_{\nu_{i}(k)}}\right) \tag{3.1}\\
\phi_{i}^{(1)} & \geq 0, \quad \phi_{i}^{(2)} \geq 0, \quad \sum_{i=1}^{\ell}\left(\phi_{i}^{(1)}+\phi_{i}^{(2)}\right)=1, \quad \nu_{i}(k) \in\{k-1, \ldots, \max \{0, k-m\}\},
\end{align*}
$$

where ℓ and m are positive integers. We note that the first and the second term in (3.1) correspond to the cases $r_{i}=0$ and $r_{i}=1$, respectively. Since (3.1) does not explicitly use the matrix A, it can be applied to general objective functions.

For general unconstrained minimization problems, we should use globalization technique. Since α_{k} in (3.1) is not necessarily positive, i.e. the direction $-\left(1 / \alpha_{k}\right) g_{k}$ is not necessarily a descent search direction of the objective function, it is appropriate to use a nonmonotone line search, which was originally developed by Grippo et al. [10, 11] for Newton type methods. Recently, several researchers applied the nonmonotone line search to gradientbased methods, and obtained efficient methods for large-scale unconstrained optimization problems. For example, Dai [2] showed the global convergence of the nonmonotone conjugate gradient method, and Raydan [17] proved the global convergence of the nonmonotone Barzilai-Borwein method. Moreover, Grippo and Sciandrone [12] proposed another type of the nonmonotone Barzilai-Borwein method. Dai [3] gives the basic analysis of the nonmonotone line search strategy.

The proposed algorithm with the nonmonotone line search is given by the following:

Algorithm NEBB.

Step 0 . Give $x_{0} \in \boldsymbol{R}^{n}$ and $\ell, m \in \boldsymbol{N}$. Set $k=0,0<\bar{\alpha} \ll 1, \delta>0,0<\eta_{1} \leq \eta_{2}$, $0<\eta_{3} \leq \eta_{4}<1$ and $\xi \in(0,1)$, and let \bar{M} be a positive integer. Go to Step 1 .
Step 1 . Compute α_{k} by (3.1). If $\bar{\alpha} \leq \alpha_{k} \leq \frac{1}{\bar{\alpha}}$, set $p_{k}=-\frac{1}{\alpha_{k}} g_{k}$, and otherwise set $p_{k}=-\delta g_{k}$.
Step 2 . Give $t_{k}^{(0)} \in\left[\eta_{1}, \eta_{2}\right]$ and $M(k)$ such that $M(0)=0$ and $0 \leq M(k) \leq \min \{M(k-$ 1) $+1, \bar{M}\}$ if $k \geq 1$. Set $i=0$ and go to Step 2.1.

Step 2.1. If $f\left(x_{k}+t_{k}^{(i)} p_{k}\right) \leq \max _{0 \leq j \leq M(k)}\left\{f\left(x_{k-j}\right)\right\}+\xi t_{k}^{(i)} g_{k}^{T} p_{k}$ holds, set $t_{k} \equiv t_{k}^{(i)}$ and go to Step 3.
Step 2.2. Choose $\sigma_{k}^{(i)} \in\left[\eta_{3}, \eta_{4}\right]$ and compute $t_{k}^{(i+1)}$ such that $t_{k}^{(i+1)}=t_{k}^{(i)} \sigma_{k}^{(i)}$.
Step 2.3. Set $i:=i+1$ and go to Step 2.1.
Step 3 . Let $x_{k+1}=x_{k}+t_{k} p_{k}$. If the stopping criterion is satisfied, then stop.
Step 4 . Let $k:=k+1$ and go to Step 1 .
In Step 2, we usually choose $t_{k}^{(0)}=1$. Since we choose a small value as $\bar{\alpha}, p_{k}=-\frac{1}{\alpha_{k}} g_{k}$ would be chosen in almost all iterations as far as $\alpha_{k}>0$. We note that the search direction p_{k} satisfies

$$
\begin{equation*}
g_{k}^{T} p_{k} \leq-c_{1}\left\|g_{k}\right\|^{2} \quad \text { and } \quad\left\|p_{k}\right\| \leq c_{2}\left\|g_{k}\right\| \quad \text { for all } k \tag{3.2}
\end{equation*}
$$

for some positive constants c_{1} and c_{2}. These relations lead to the following theorem.
Theorem 3.1. Assume that the objective function f is bounded below on \boldsymbol{R}^{n} and is continuously differentiable in a neighborhood \mathcal{N} of the level set $\mathcal{L}=\left\{x \in \boldsymbol{R}^{n}: f(x) \leq f\left(x_{0}\right)\right\}$. We also assume that the gradient g is Lipschitz continuous in \mathcal{N}. Let the sequence $\left\{x_{k}\right\}$ be generated by Algorithm NEBB. Then our method converges in the sense that

$$
\lim _{k \rightarrow \infty}\left\|g_{k}\right\|=0
$$

Proof. From (3.2) and Theorem 2.1 of Dai [3], we have the results immediately.
In the rest of this section, we consider the local behavior of Algorithm NEBB for general functions. For this purpose, we make the following assumptions. In what follows, we denote $\nabla^{2} f$ by H, and $\nabla^{2} f\left(x_{*}\right)$ by H_{*}.

Assumption 3.2.

1. The objective function f is twice continuously differentiable in an open convex neigh$\operatorname{borhood} \mathcal{N}$ of the local solution x_{*}. In addition, there exist positive constants m_{1} and m_{2} such that

$$
\begin{equation*}
m_{1}\|v\|^{2} \leq v^{T} H(x) v \leq m_{2}\|v\|^{2} \quad \text { for all } x \in \mathcal{N} \text { and } v \in \boldsymbol{R}^{n} \tag{3.3}
\end{equation*}
$$

2. In Step 2 of Algorithm NEBB, $t_{k}=1$ is chosen for k sufficiently large. The parameter $\bar{\alpha}$ satisfies $\bar{\alpha} \leq m_{1}$ and $m_{2} \leq \frac{1}{\bar{\alpha}}$.
3. The sequence $\left\{x_{k}\right\}$ generated by Algorithm NEBB converges to the solution x_{*}.

Under Assumption 3.2, we obtain the following theorem.
Theorem 3.3. Let $\left\{x_{k}\right\}$ be the sequence generated by Algorithm NEBB. Suppose that Assumption 3.2 holds, and that the sequence $\left\{s_{k} /\left\|s_{k}\right\|\right\}$ is convergent, that is, there exists $s \in \boldsymbol{R}^{n}$ such that $\lim _{k \rightarrow \infty} s_{k} /\left\|s_{k}\right\|=s$ and $\|s\|=1$. Then s becomes an eigenvector of H_{*} with the eigenvalue $s^{T} H_{*} s$ and $\lim _{k \rightarrow \infty} \alpha_{k}=s^{T} H_{*} s$. Moreover, the sequence $\left\{x_{k}\right\}$ converges Q-superlinearly to x_{*}.

Proof. We assume that k is sufficiently large. From Assumption 3.2, $x_{k} \in \mathcal{N}$ for all k. By the mean value theorem, we have $y_{k}=\int_{0}^{1} H\left(x_{k}+t s_{k}\right) s_{k} d t$. Since from (3.3) $H(x)$ is symmetric positive definite in $\mathcal{N}, H(x)^{1 / 2}$ is well-defined in \mathcal{N}. We define $\tilde{H}_{k} \equiv \int_{0}^{1} H\left(x_{k}+t s_{k}\right) d t$ and $\tilde{s}_{k} \equiv \tilde{H}_{k}^{1 / 2} s_{k}$. Then (3.1) yields

$$
\begin{align*}
\alpha_{k} & =\sum_{i=1}^{\ell}\left\{\phi_{i}^{(1)} \frac{s_{\nu_{i}(k)}^{T} \tilde{H}_{\nu_{i}(k)} s_{\nu_{i}(k)}}{s_{\nu_{i}(k)}^{T} s_{\nu_{i}(k)}}+\phi_{i}^{(2)} \frac{\tilde{s}_{\nu_{i}(k)}^{T}}{\tilde{s}_{\nu_{i}(k)}^{T} \tilde{H}_{\nu_{i}(k)} \tilde{s}_{\nu_{i}(k)}}\right\} \\
& =\sum_{i=1}^{\ell}\left\{\phi_{i}^{(1)}\left(\frac{s_{\nu_{i}(k)}}{\left\|s_{\nu_{i}(k)}\right\|}\right)^{T} \tilde{H}_{\nu_{i}(k)}\left(\frac{s_{\nu_{i}(k)}}{\left\|s_{\nu_{i}(k)}\right\|}\right)+\phi_{i}^{(2)}\left(\frac{\tilde{s}_{\nu_{i}(k)}}{\left\|\tilde{s}_{\nu_{i}(k)}\right\|}\right)^{T} \tilde{H}_{\nu_{i}(k)}\left(\frac{\tilde{s}_{\nu_{i}(k)}}{\left\|\tilde{s}_{\nu_{i}(k)}\right\|}\right)\right\} . \tag{3.4}
\end{align*}
$$

It follows from the definition of $\tilde{s}_{\nu_{i}(k)}$ that

$$
\tilde{s} \equiv \lim _{k \rightarrow \infty} \frac{\tilde{s}_{\nu_{i}(k)}}{\left\|\tilde{s}_{\nu_{i}(k)}\right\|}=\lim _{k \rightarrow \infty} \frac{\tilde{H}_{\nu_{i}(k)}^{1 / 2} s_{\nu_{i}(k)} /\left\|s_{\nu_{i}(k)}\right\|}{\left\|\tilde{H}_{\nu_{i}(k)}^{1 / 2} s_{\nu_{i}(k)}\right\| /\left\|s_{\nu_{i}(k)}\right\|}=\frac{H_{*}^{1 / 2} s}{\left\|H_{*}^{1 / 2} s\right\|} .
$$

Therefore, by taking limit in (3.4), we obtain

$$
\begin{equation*}
\alpha \equiv \lim _{k \rightarrow \infty} \alpha_{k}=\sum_{i=1}^{\ell}\left(\phi_{i}^{(1)} s^{T} H_{*} s+\phi_{i}^{(2)} \tilde{s}^{T} H_{*} \tilde{s}\right) \tag{3.5}
\end{equation*}
$$

On the other hand, (3.3), (3.4) and Assumption 3.2 yield $\bar{\alpha} \leq m_{1} \leq \alpha_{k} \leq m_{2} \leq 1 / \bar{\alpha}$. Thus, it follows that

$$
\begin{equation*}
p_{k}=-\frac{1}{\alpha_{k}} g_{k}, \quad x_{k+1}=x_{k}-\frac{1}{\alpha_{k}} g_{k} \quad \text { and } \quad s_{k}=-\frac{1}{\alpha_{k}} g_{k} \tag{3.6}
\end{equation*}
$$

hold. By using the mean value theorem, we have

$$
\begin{equation*}
g_{k}=g\left(x_{*}\right)+\int_{0}^{1} H\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\left(x_{k}-x_{*}\right) d t=-\int_{0}^{1} H\left(x_{*}-t e_{k}\right) d t e_{k}, \tag{3.7}
\end{equation*}
$$

where $e_{k}=x_{*}-x_{k}$. Set $\hat{H}_{k} \equiv \int_{0}^{1} H\left(x_{*}-t e_{k}\right) d t$. Since (3.6) and (3.7) yield

$$
\begin{equation*}
s_{k}=-\frac{1}{\alpha_{k}} g_{k}=\frac{1}{\alpha_{k}} \hat{H}_{k} e_{k}, \tag{3.8}
\end{equation*}
$$

we have

$$
\begin{equation*}
e_{k+1}=e_{k}-s_{k}=e_{k}-\frac{1}{\alpha_{k}} \hat{H}_{k} e_{k}=\left(I-\frac{1}{\alpha_{k}} \hat{H}_{k}\right) e_{k} . \tag{3.9}
\end{equation*}
$$

It follows from (3.8) and (3.9) that

$$
\begin{align*}
s_{k+1} & =\frac{1}{\alpha_{k+1}} \hat{H}_{k+1}\left(I-\frac{1}{\alpha_{k}} \hat{H}_{k}\right) e_{k} \\
& =\frac{1}{\alpha_{k+1}} \hat{H}_{k+1}\left(I-\frac{1}{\alpha_{k}} \hat{H}_{k}\right) \alpha_{k} \hat{H}_{k}^{-1} s_{k} \\
& =-\frac{1}{\alpha_{k+1}} \hat{H}_{k+1} \hat{H}_{k}^{-1}\left(\hat{H}_{k}-\alpha_{k} I\right) s_{k} \tag{3.10}
\end{align*}
$$

We normalize the above equation, and we get

$$
\frac{s_{k+1}}{\left\|s_{k+1}\right\|}=-\frac{\hat{H}_{k+1} \hat{H}_{k}^{-1}\left(\hat{H}_{k}-\alpha_{k} I\right) s_{k}}{\left\|\hat{H}_{k+1} \hat{H}_{k}^{-1}\left(\hat{H}_{k}-\alpha_{k} I\right) s_{k}\right\|}
$$

which implies

$$
\left\|\hat{H}_{k+1} \hat{H}_{k}^{-1}\left(\hat{H}_{k}-\alpha_{k} I\right) \frac{s_{k}}{\left\|s_{k}\right\|}\right\| \frac{s_{k+1}}{\left\|s_{k+1}\right\|}=-\hat{H}_{k+1} \hat{H}_{k}^{-1}\left(\hat{H}_{k}-\alpha_{k} I\right) \frac{s_{k}}{\left\|s_{k}\right\|}
$$

Taking limits on both sides of this equation, we have

$$
\left\|\left(H_{*}-\alpha I\right) s\right\| s=-\left(H_{*}-\alpha I\right) s
$$

and hence, premultiplying this equation by s^{T}, we have from $\|s\|=1$

$$
\begin{equation*}
\left\|\left(H_{*}-\alpha I\right) s\right\|=-s^{T} H_{*} s+\alpha . \tag{3.11}
\end{equation*}
$$

Moreover, since (3.10) yields $H_{*}^{1 / 2} s_{k+1}=-\frac{1}{\alpha_{k+1}} H_{*}^{1 / 2} \hat{H}_{k+1} \hat{H}_{k}^{-1}\left(\hat{H}_{k}-\alpha_{k} I\right) s_{k}$, we also have, in a similar way,

$$
\begin{equation*}
\left\|\left(H_{*}-\alpha I\right) \tilde{s}\right\|=-\tilde{s}^{T} H_{*} \tilde{s}+\alpha . \tag{3.12}
\end{equation*}
$$

Therefore, from (3.5), (3.11) and (3.12), we get

$$
\begin{aligned}
\sum_{i=1}^{\ell}\left(\phi_{i}^{(1)}\left\|\left(H_{*}-\alpha I\right) s\right\|+\phi_{i}^{(2)}\left\|\left(H_{*}-\alpha I\right) \tilde{s}\right\|\right) & =-\sum_{i=1}^{\ell}\left(\phi_{i}^{(1)} s^{T} H_{*} s+\phi_{i}^{(2)} \tilde{s}^{T} H_{*} \tilde{s}\right)+\alpha \\
& =0
\end{aligned}
$$

which implies that either $\left\|\left(H_{*}-\alpha I\right) s\right\|=0$ or $\left\|\left(H_{*}-\alpha I\right) \tilde{s}\right\|=0$ holds. Since conditions $\left\|\left(H_{*}-\alpha I\right) s\right\|=0$ and $\left\|\left(H_{*}-\alpha I\right) \tilde{s}\right\|=0$ are equivalent, we consider only the case $\|\left(H_{*}-\right.$ $\alpha I) s \|=0$. Thus we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\left(H_{*}-\alpha_{k} I\right) s_{k}\right\|}{\left\|s_{k}\right\|}=\left\|\left(H_{*}-\alpha I\right) s\right\|=0 \tag{3.13}
\end{equation*}
$$

Because we can regard $\alpha_{k} I$ as an approximation matrix of $\nabla^{2} f\left(x_{k}\right)$ in Dennis and Moré condition (see [7], for example), the sequence $\left\{x_{k}\right\}$ converges Q-superlinearly to x_{*}. In addition, (3.13) yields $\left(H_{*}-\alpha I\right) s=0$. This means that s is an eigenvector of H_{*} with the eigenvalue $\alpha=s^{T} H_{*} s$. Therefore, the proof is complete.

4 Numerical Experiments

In this section, we present some numerical results of Algorithms EBB and NEBB to compare with other methods. Since the steepest descent method converged very slowly, we omit its numerical results. Moreover, we investigate how a choice of the parameters included in our methods affects numerical performance.

In our numerical experiments, we set $\ell=2$ and $r_{1}=r_{2}(=r)$ in (2.26). Moreover, we fix $r=0$ or 1 . Thus α_{k} is rewritten by the forms

- $r=0$

$$
\alpha_{k}=\phi_{1} \frac{s_{\nu_{1}(k)}^{T} y_{\nu_{1}(k)}^{T}}{s_{\nu_{1}(k)}^{T} s_{\nu_{1}(k)}}+\phi_{2} \frac{s_{\nu_{2}(k)}^{T} y_{\nu_{2}(k)}}{s_{\nu_{2}(k)}^{T} s_{\nu_{2}(k)}}, \quad \phi_{1}+\phi_{2}=1, \quad \phi_{1} \geq 0, \quad \phi_{2} \geq 0
$$

- $r=1$

$$
\alpha_{k}=\phi_{1} \frac{y_{\nu_{1}(k)}^{T} y_{\nu_{1}(k)}^{T}}{s_{\nu_{1}(k)}^{T} y_{\nu_{1}(k)}}+\phi_{2} \frac{y_{\nu_{2}(k)}^{T} y_{\nu_{2}(k)}}{s_{\nu_{2}(k)}^{T} y_{\nu_{2}(k)}}, \quad \phi_{1}+\phi_{2}=1, \quad \phi_{1} \geq 0, \quad \phi_{2} \geq 0 .
$$

As mentioned in Section 2, if we choose $\phi_{1}=1, \phi_{2}=0, r=0$, and $\nu_{1}(k)=k-1$, then it becomes the Barzilai-Borwein method, and if we choose $\phi_{1}=1$ and $\phi_{2}=0$, then it becomes a gradient method with retards.

Following Dai et al. [4], we used the following choice of $\nu_{i}(k)$:

$$
\begin{equation*}
\nu_{i}(k)=M_{c}\left\lfloor\frac{k-m_{i}}{M_{c}}\right\rfloor, \tag{4.1}
\end{equation*}
$$

where $m_{i}(i=1,2)$ are positive integers. In this section, we call Algorithms EBB and NEBB with (4.1) cyclic $E B B$ and cyclic $N E B B$, respectively. If $\phi_{1}=1, \phi_{2}=0, m_{1}=1$ and $r=0$, we see that

$$
\alpha_{k}=\frac{s_{\nu_{1}(k)}^{T} y_{\nu_{1}(k)}}{s_{\nu_{1}(k)}^{T} s_{\nu_{1}(k)}} \quad \text { and } \quad \nu_{1}(k)=M_{c}\left\lfloor\frac{k-1}{M_{c}}\right\rfloor
$$

which is the cyclic Barzilai-Borwein method. In each experiment, we set $\alpha_{0}=1$. The parameters used in our experiments are described in each table. Note that the values of parameters $\nu_{i}(k), M_{c}$ and $m_{i}(i=1,2)$ indicate how old information we use. For example, if we choose $\nu_{1}(k)=k-5$ and $\nu_{2}(k)=k-6$, we use g_{k-5} and g_{k-6} at the k-th iteration, and if we choose $M_{c}=5, m_{1}=3$ and $m_{2}=4$, we use g_{k-9} according to circumstances.

We used the following stopping condition:

$$
\left\|g_{k}\right\| \leq 10^{-5}
$$

4.1 Numerical Results of Algorithm EBB for (1.5)

In this subsection, we give some numerical results of Algorithm EBB. The objective function we used is

$$
f(x)=\frac{1}{2} x^{T} A x, \quad x \in \boldsymbol{R}^{n} .
$$

The following matrices were chosen as the matrix A :

- Diag: the diagonal matrix defined by

$$
\operatorname{diag}\left\{1, \frac{\lambda_{n}}{n} 2, \ldots, \frac{\lambda_{n}}{n} i, \ldots, \lambda_{n}\right\}
$$

- Hilbert: the Hilbert matrix.
- bcsstm: symmetric positive definite matrices in Matrix Market [13].

We set $x_{0}=(1, \ldots, 1)^{T}$ as a starting point.
The numerical results of Algorithm EBB are summarized in Tables 1-3. We give the number of iterations in each table, and "Sum " denotes the sum of the number of iterations in each column. In addition, " Failed " means that the number of iterations exceeds 10000. In each column, if " Failed " occurred, then we wrote "*" in "Sum ".

From Table 1, we see the following observations.

- By comparing each "Sum", the method with $\left(r, \phi_{1}, \phi_{2}, \nu_{1}(k), \nu_{2}(k)\right)=(1,1,0, k-3,-)$ performed well. In addition, the methods with $\left(r, \phi_{1}, \phi_{2}, \nu_{1}(k), \nu_{2}(k)\right)=(0,1,0, k-$ $3,-),(1,0.25,0.75, k-3, k-4),(1,0.75,0.25, k-3, k-4)$ also performed well.
- For the cases $\nu_{1}(k)=k-1$ and $\nu_{2}(k)=k-2$, our methods did not converge to the solution occasionally.
- Choices of $\nu_{1}(k), \nu_{2}(k)$ and r affected the numerical results more than choices of ϕ_{1} and ϕ_{2} did.

From Tables 2 and 3, we see the following observations.

- The cyclic EBB with $\left(M_{c}, m_{1}, m_{2}\right)=(3,3,4)$ and $(3,3,-)$ (which means ϕ_{1}, ϕ_{2} and r are any parameters) performed better than other methods.
- For the cases $\left(M_{c}, m_{1}, m_{2}\right)=(3,1,2)$, our methods did not converge to the solution occasionally.

Summarizing our numerical results, we conclude that the numerical performance of our method was greatly affected by the choice of $\nu_{i}(k)$ or $\left(M_{c}, m_{i}\right)$. Taking into account that the steepest descent method is involved in the case $\nu_{1}(k)=k$ (it means current information), we see that our method with old information performed better than that with current or near current information. However, if we use too old information, then our method becomes unstable. It is important to find proper choices of $\nu_{i}(k)$ or $\left(M_{c}, m_{i}\right)$. In our numerical results, EBB with $\left(\nu_{1}(k), \nu_{2}(k)\right)=(k-3, k-4)$, and the cyclic EBB with $\left(M_{c}, m_{1}, m_{2}\right)=(3,3,4)$ performed well. On the other hand, the choices of the other parameters also affected the numerical performance of our method, but we cannot observe any remarkable tendency.

4.2 Numerical Results of Algorithm NEBB for (1.1)

In this subsection, we give some numerical results of Algorithm NEBB. The test problems we used are described in Grippo et al. [11] and Moré et al. [14]. In Table 4, the first column, the second column, the third column and the fourth column denote the problem number used in this paper, the problem name, the dimension of the problem and the references, respectively.

The numerical results of Algorithm NEBB are summarized in Tables 5-7. In Algorithm NEBB, we set $\bar{\alpha}=10^{-16}, \delta=1, \xi=0.0001, t_{k}^{(0)}=1, \bar{M}=10, \sigma_{k}^{(i)}=0.5$. The numerical results are given in the form of "the number of iterations / the number of function evaluations", and "Sum I" and "Sum F " denote the sum of the number of iterations and the sum of the number of function evaluations, respectively. We note that the number of gradient evaluations is the same as the number of iterations. In addition, "Failed " means that the number of iterations exceeds 1000 .

Table 1: Numerical results of EBB

Table 2: Numerical results of cyclic EBB with $M_{c}=3$

		0	1	0	1	0	1	0	1
r ϕ_{1}		1	1	1	1	0.5	0.5	0.5	0.5
ϕ_{2}		0		0	0	0.5	0.5	0.5	0.5
M_{c}		3	3	3	3	3	3	3	3
m_{1}		1	1	3	3	1	1	3	3
m_{2}		-	-	-	-	2	2	4	4
P	n								
Diag ($\lambda_{n}=1000$)	1000	254	359	287	311	263	323	329	265
Diag ($\lambda_{n}=10000$)	1000	320	308	351	362	332	350	297	376
Hilbert	100	209	143	116	141	128	194	134	122
Hilbert	1000	380	260	221	275	386	240	236	300
bcsstm19	817	8008	7760	5483	5156	Failed	Failed	5197	6065
besstm20	485	6575	5842	3776	3341	6542	7805	3692	3575
bcsstm21	3600	11	11	13	6	11	11	12	6
bcsstm22	138	87	68	142	68	80	72	98	62
bcsstm26	1922	1593	1559	2289	1760	2036	2038	1553	2147
Sum		17437	16310	12678	11420	*	*	11548	12918
r		0	0	1	1	0	0	1	1
ϕ_{1}		0.25	0.75	0.25	0.75	0.25	0.75	0.25	0.75
ϕ_{2}		0.75	0.25	0.75	0.25	0.75	0.25	0.75	0.25
M_{c}		3	3	3	3	3	3	3	3
m_{1}			1	1	1	3	3	3	3
m_{2}		2	2	2	2	4	4	4	4
P	n								
Diag ($\lambda_{n}=1000$)	1000	255	305	262	236	324	302	272	299
Diag ($\lambda_{n}=10000$)	1000	426	363	359	356	344	314	369	357
Hilbert	100	228	144	158	203	116	116	122	125
Hilbert	1000	401	263	404	311	374	317	227	278
bcsstm19	817	Failed	8946	Failed	7073	6200	4983	6344	5723
bcsstm 20	485	8132	7993	7976	6893	3807	3809	3647	3539
bcsstm21	3600	11	11	11	11	12	13	6	6
bcsstm22	138	81	71	62	65	140	92	62	65
bcsstm26	1922	1857	1692	1742	1369	1396	1775	1340	1398
Sum		*	19788	*	16517	12713	11721	12389	11790

Table 3: Numerical results of cyclic EBB with $M_{c}=5$

r		0	1	0	1	0	1	0	1
ϕ_{1}		1	1	1	1	0.5	0.5	0.5	0.5
ϕ_{2}		0	0	0	0	0.5	0.5	0.5	0.5
M_{c}		5	5	5	5	5	5	5	5
m_{1}		1	1	3	3	1	1	3	3
m_{2}	-	-	-	-	2	2	4	4	
P	n								
Diag $\left(\lambda_{n}=1000\right)$	1000	294	322	303	307	302	277	302	282
Diag $\left(\lambda_{n}=10000\right)$	1000	412	353	353	354	353	352	334	362
Hilbert	100	162	137	Failed	182	112	117	237	112
Hilbert	1000	302	282	467	Failed	397	232	302	282
bcsstm19	817	6657	6312	6515	6717	7182	7212	7042	7007
bcsstm20	485	3963	3737	4277	4452	5012	4335	5087	4624
bcsstm21	3600	12	12	13	6	12	12	13	6
bcsstm22	138	102	83	72	107	75	87	72	62
bcsstm26	1922	1587	1797	1442	1857	1697	1422	1727	1897
Sum		13491	13035	$*$	$*$	15142	14046	15116	14634
r									
ϕ_{1}		0	0	1	1	0	0	1	1
		0.25	0.75	0.25	0.75	0.25	0.75	0.25	0.75
ϕ_{2}		5	0.25	0.75	0.25	0.75	0.25	0.75	0.25
M_{c}		1	1	5	5	5	5	5	5
m_{1}		2	2	1	1	3	3	3	3
m_{2}			2	2	4	4	4	4	
P	n								
Diag ($\left.\lambda_{n}=1000\right)$	1000	298	312	292	306	306	290	287	290
Diag ($\left.\lambda_{n}=10000\right)$	1000	352	405	328	357	377	353	433	338
Hilbert	100	137	102	127	182	147	172	237	142
Hilbert	1000	212	307	227	227	323	Failed	317	347
bcsstm19	817	6442	6332	5622	5882	6608	6382	6577	6221
bcsstm20	485	4987	4862	5202	5612	6208	5591	4687	4487
bcsstm21	3600	12	12	12	12	13	13	6	6
bcsstm22	138	103	102	74	82	127	88	62	67
bcsstm26	1922	1658	1552	1742	1527	1678	2048	1912	1447
Sum		14201	13986	13626	14187	15787	$*$	14518	13345

Table 4: Test problems

P	Name	Dimension	References
1	Extended Rosenbrock Function	$n=10000$	Moré et al. [14]
2	Extended Powell Singular Function	$n=10000$	Moré et al. [14]
3	Trigonometric Function	$n=10000$	Moré et al. [14]
4	Broyden Tridiagonal Function	$n=10000$	Moré et al. [14]
5	Oren Function	$n=100$	Grippo et al. [11]
6	Cube Function	$n=2$	Grippo et al. [11]
7	Wood Function	$n=4$	Moré et al. [14]
8	Beale Function	$n=2$	Moré et al. [14]
9	Helical Valley Function	$n=3$	Moré et al. [14]
10	Jennrich and Sampson Function	$n=2$	Moré et al. [14]
11	Freudenstein and Roth Function	$n=2$	Moré et al. [14]

In order to compare our method with conjugate gradient (CG) methods, we examined typical CG methods (Fletcher-Reeves (FR) method, Hestenes-Stiefel (HS) method, PolakRibière Plus (PR+) method, and Dai-Yuan (DY) method, see [15] for example). It is reasonable to use a monotone line search for CG methods. Thus we used the Armijo condition and the bisection method in the line search procedure, which means Step 2 of Algorithm NEBB with $\xi=0.1, M(k)=0, t_{k}^{(0)}=1$ and $\sigma_{k}^{(i)}=0.5$. In each iteration, if CG methods did not generate a descent direction, then we used the steepest descent direction. However such a case rarely occurred. The CG methods, for Problems 4 and 5 , did not converge to the solution. So we omit these numerical results. The numerical results of CG methods are given in Table 8.

For Algorithm NEBB, we investigate the frequency of taking $t_{k}=1$, namely $x_{k+1}=$ $x_{k}-1 / \alpha_{k} g_{k}$. The frequency of taking $t_{k}=1$ depended on problems and the choice of parameters. The ratio (the frequency of taking $t_{k}=1$ /the number of iterations) are 65% - 100%. In Tables 5-7, the averages of the ratio are $85 \%, 82 \%$ and 79%, respectively. It seems that the older information becomes, the lower the ratio becomes.

From Tables 5-7, we see the following observations.

- NEBB with $\left(r, \phi_{1}, \phi_{2}, \nu_{1}(k), \nu_{2}(k)\right)=(1,0.5,0.5, k-1, k-2)$ and $(1,0.25,0.75, k-$ $1, k-2)$ performed better than the other variants.
- NEBB with $\left(\nu_{1}(k), \nu_{2}(k)\right)=(k-1, k-2)$ needed the number of function evaluations less than NEBB with $\left(\nu_{1}(k), \nu_{2}(k)\right)=(k-3, k-4)$.
- The cyclic NEBB with $\left(r, M_{c}, m_{1}, m_{2}\right)=(0,3,1,2),(0,5,3,-)$ and $(0,5,3,4)$ performed very poorly for Problem 2.

Summarizing our numerical results, we conclude that the numerical performance of our method was greatly affected by not only the choice of $\nu_{i}(k)$ or $\left(M_{c}, m_{i}\right)$ but also r. Especially, we find that the choice $r=1$ is more appropriate than the choice $r=0$ for general objective functions. It seems that the older information becomes, the more the number of function evaluations we need. We recommend NEBB with $\left(r, \phi_{1}, \phi_{2}, \nu_{1}(k), \nu_{2}(k)\right)=(1,0.5,0.5, k-$ $1, k-2)$ and $(1,0.25,0.75, k-1, k-2)$. By comparing NEBB (with $\left(r, \phi_{1}, \phi_{2}, \nu_{1}(k), \nu_{2}(k)\right)=$ $(1,0.5,0.5, k-1, k-2)$ and $(1,0.25,0.75, k-1, k-2)$) with CG methods, NEBB needed the number of iterations more than CG methods, while NEBB is superior to CG methods from the viewpoint of the number of function evaluations. When the number of variables is very large, the computational effort is sometimes dominated by the cost of evaluating the function value and the cost of evaluating the gradient. Therefore we can regard our methods as efficient methods for large scale problems.

Finally, in order to investigate the local behavior of NEBB, we tested the following convex function:

$$
\begin{equation*}
f(x)=\frac{1}{2} x^{T} A x+\|x\|^{4}+e^{\|x\|^{2} / n^{2}} \tag{4.2}
\end{equation*}
$$

where $n=1000$. Here we set

$$
A=A_{1}=\left(\begin{array}{ccccc}
c & 1 & & & 0 \\
1 & c & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & c & 1 \\
0 & & & 1 & c
\end{array}\right) \quad \text { or } \quad A=A_{2}=\left(\begin{array}{cccc}
c & 1 & \cdots & 1 \\
1 & c & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & c
\end{array}\right)
$$

where c is chosen such that A becomes at least positive semidefinite. We tested NEBB with $\left(r, \phi_{1}, \phi_{2}, \nu_{1}(k), \nu_{2}(k)\right)=(1,0.5,0.5, k-1, k-2)$ for the problem (4.2) with various values of c. We should note the following:

- a solution of the problem (4.2) is $x_{*}=0$,
- NEBB did not converge within " 1000 " iterations for the case $A=A_{1}$ with $c=2$,
- A_{2} with $c=1$ is not positive definite but positive semidefinite.

Figure 1 gives the behavior of $\log _{10}\left\|x_{k}-x_{*}\right\|$ for the problem (4.2) with $A=A_{1}$ and $c=2.1,10,100$, and Figure 2 gives the behavior of $\log _{10}\left\|x_{k}-x_{*}\right\|$ for the problem (4.2) with $A=A_{2}$ and $c=1,10,100,1000,10000$. In each figure, (b) is the same as (a) except for the scale of transverse axis.

From Figures 1 and 2, we see that NEBB did not achieve fast rate of convergence when $\nabla^{2} f\left(x_{*}\right)$ is ill-conditioned. On the other hand, NEBB achieved fast rate of convergence for large c.

5 Concluding Remarks

In this paper, we have proposed the extended Barzilai-Borwein method which includes the steepest descent method, the Barzilai-Borwein method and the gradient method with retards. We have established the global and Q-superlinear convergence properties of the proposed method. Moreover, numerical performance of our method has been investigated by numerical experiments. Our further interests are to find a suitable choice of parameters included in our method.

Table 6: Numerical results of cyclic NEBB with $M_{c}=3$

Table 7: Numerical results of cyclic NEBB with $M_{c}=5$

r		${ }^{0}$	1	${ }^{0}$	1	0	1	0	1
ϕ_{1}		1	1	1	1	0.5	0.5	0.5	0.5
ϕ_{2}		0	0		0	0.5	0.5	0.5	0.5
M_{c}		5	5		5	5	5	5	5
m_{1}		1	1	3	3	1	1	3	3
m_{2}		-	-	-	-	2	2	4	4
P	n								
1	10000	182/663	132/426	217/675	87/270	167/592	132/402	132/397	87/251
2	10000	402/1402	342/1159	Failed	617/2053	427/1295	462/1371	Failed	452/1239
3	10000	68/131	87/107	72/150	112/157	68/154	87/108	87/193	97/116
4	10000	203/371	118/170	267/687	142/255	188/322	103/141	162/320	147/222
5	100	117/204	107/166	138/248	129/209	132/225	93/121	143/236	124/200
6	2	87/321	119/432	107/429	112/391	82/286	87/337	222/820	107/381
7	4	272/688	217/470	532/1793	177/385	272/661	327/651	327/1005	172/391
8	2	8/13	8/13	11/16	11/16	7/12	7/12	12/17	12/17
9	3	22/29	17/24	24/32	22/29	17/24	18/25	22/30	27/34
10	2	37/65	27/54	32/74	32/73	42/76	32/74	32/74	27/54
11	2	53/171	48/149	57/158	63/193	77/239	52/154	48/147	47/116
Sum I		1451	1222	*	1504	1479	1400	*	1299
Sum F		4058	3170	*	4031	3886	3396	*	3021

| r | | 0 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 8: Numerical results of typical CG methods

P	n	FR	HS	PR +	DY
1	10000	$170 / 2001$	$43 / 350$	$69 / 622$	$43 / 372$
2	10000	$595 / 4627$	$173 / 1082$	$307 / 2207$	$634 / 4467$
3	10000	$403 / 1912$	$70 / 73$	$70 / 75$	$125 / 431$
6	2	$127 / 1501$	$29 / 238$	$95 / 939$	$46 / 454$
7	4	$301 / 3475$	$208 / 1969$	$197 / 1915$	Failed
8	2	$9 / 24$	$7 / 43$	$6 / 23$	$11 / 28$
9	3	$26 / 274$	$45 / 371$	$33 / 271$	$85 / 1360$
10	2	$41 / 305$	$15 / 95$	$31 / 229$	$31 / 213$
11	2	$48 / 470$	$81 / 699$	$140 / 1380$	$57 / 511$

Figure 1: Behavior of $\log _{10}\left\|x_{k}-x^{*}\right\|$ for $A=A_{1}$

Figure 2: Behavior of $\log _{10}\left\|x_{k}-x^{*}\right\|$ for $A=A_{2}$

References

[1] J. Barzilai and J.M. Borwein, Two-point step size gradient methods, IMA Journal of Numerical Analysis 8 (1988) 141-148.
[2] Y.H. Dai, A nonmonotone conjugate gradient algorithm for unconstrained optimization, Journal of System Science and Complexity 15 (2002) 139-145.
[3] Y.H. Dai, On the nonmonotone line search, Journal of Optimization Theory and Applications 112 (2002) 315-330.
[4] Y.H. Dai, W.W. Hager, K. Schittkowski and H. Zhang, The cyclic Barzilai-Borwein method for unconstrained optimization, IMA Journal of Numerical Analysis 26 (2006) 604-627.
[5] Y.H. Dai and L.Z. Liao, R-linear convergence of the Barzilai and Borwein gradient method, IMA Journal of Numerical Analysis 22 (2002) 1-10.
[6] Y.H. Dai and Y. Yuan, Analysis of monotone gradient methods, Journal of Industrial and Management Optimization 1 (2005) 181-192.
[7] J.E. Dennis and J.J. Moré, A characterization of superlinear convergence and its application to quasi-Newton methods, Mathematics of Computation 28 (1974) 549-560.
[8] R. Fletcher, On the Barzilai-Borwein method, Numerical Analysis Report NA/207, Department of Mathematics, University of Dundee, 2001 (See also Optimization and Control with Applications, Springer series in Applied Optimization 96, Springer-Verlag, 2005, pp. 235-256.
[9] A. Friedlander, J.M. Martinez, B. Molina and M. Raydan, Gradient method with retards and generalizations, SIAM Journal on Numerical Analysis 36 (1999) 275-289.
[10] L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM Journal on Numerical Analysis 23 (1986) 707-716.
[11] L. Grippo, F. Lampariello and S. Lucidi, A truncated Newton method with nonmonotone line search for unconstrained optimization, Journal of Optimization Theory and Applications 60 (1989) 401-419.
[12] L. Grippo and M. Sciandrone, Nonmonotone globalization techniques for the BarzilaiBorwein gradient method, Computational Optimization and Applications, 23 (2002) 143-169.
[13] Matrix Market, http://math.nist.gov/MatrixMarket/
[14] J.J. Moré, B.S. Garbow and K.E. Hillstrom, Testing unconstrained optimization software, ACM Transactions on Mathematical Software 7 (1981) 17-41.
[15] J. Nocedal and S.J. Wright, Numerical Optimization, second edition, Springer Series in Operations Research, Springer Verlag, New York, 2006.
[16] M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method, IMA Journal of Numerical Analysis 13 (1993) 321-326.
[17] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM Journal on Optimization 7 (1997) 26-33.
[18] M. Raydan and B. Svaiter, Relaxed steepest descent and Cauchy-Barzilai-Borwein method, Computational Optimization and Applications 21 (2002) 155-167.
[19] Y.X. Yuan, A new stepsize for the steepest descent method, Journal of Computational Mathematics 24 (2006) 149-156.
[20] Y.X. Yuan, Gradient methods for large scale convex quadratic functions, Technical Report (see also Y.F. Wang, A. Yagola and C. Yang eds., Optimization and Regularization for Computational Inverse Problems and Applications, (Higher Education Press, 2009)).
[21] B. Zhou, L. Gao and Y.H. Dai, Gradient methods with adaptive step-size, Computational Optimization and Applications 35 (2006) 69-86.

Yasushi Narushima
Tokyo University of Science, Japan
E-mail address: narusima@rs.kagu.tus.ac.jp
Takahiko Wakamatsu
Hitach, Ltd., Software Division
E-mail address: takahiko.wakamatsu.ya@hitachi.com
Hiroshi Yabe
Tokyo University of Science, Japan
E-mail address: yabe@rs.kagu.tus.ac.jp

[^0]: *The authors would like to thank the associate editor and the referees for valuable comments. The first and third authors are supported in part by the Grant-in-Aid for Scientific Research (C) 21510164 of Japan Society for the Promotion of Science.

