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Abstract: In this paper, we consider a class of randomly h-n-maximal monotone mappings and a class
of generalized nonlinear mixed random variational-like inclusions for random fuzzy mappings and define an
iterative algorithm for finding approximate solutions for the class of variational inclusions. By using the
random resolvent operator of randomly h-n-maximal monotone mappings, we establish the approximate
solutions obtained by our algorithm converge to the exact solutions of the generalized nonlinear mixed
random variational-like inclusions for random fuzzy mappings.
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Introduction

A variational inclusion is one of the useful and important generations of variational inequali-
ties. It was introduced and considered by Hassouni and Moudafi [20] in 1994, and a perturbed
algorithm for finding approximate solutions of the variational inclusions was developed by
them. May authors [1, 2, 6, 15, 16, 23, 28, 31, 33, 41] have obtained some important results
on variational inclusions with their algorithms to obtain approximate solutions to them in
various different assumptions.

A fuzzy set introduced by Zadeh [45] is an extension of a crisp set by enlarging the
truth valued set {0,1} to the real unit interval [0,1]. A fuzzy set is characterized by, and
identified with a mapping called a membership-grade function from the whole set into [0, 1].
Heilpern [21] introduced the concept of fuzzy mappings and showed a fixed point theorem
for fuzzy contraction mappings which is a fuzzy analogue of Nadler’s fixed point theorem for
multi-valued mappings. In 1989, Chang and Zhu [11] introduced the concept of variational
inequalities with fuzzy mappings and extended some of results of Lassonde [30], Shih and Tan
[37], Takahashi [38], Yen [43] in the fuzzy setting. Later, they were developed by Agarwal
et al. [3], Ahmad et al. [4], Ding [12, 13], etc..

On the other hand, random variational inequality problems and random quasi-variational
inequality problems have been considered by Chang [7], Chang and Huang [9, 10], Huang
[24, 25], Husain et al. [27], Tan et al. [39], Yuan [44], Khan and Salahuddin [29], Salahuddin
[36] and Tan [40], etc..
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In 2003, Fang and Huang [17] introduced a class of H-monotone operators and the
resolvent operator associated with the operators, with its Lipschitz continuity. They also
considered a class of variational inclusions involving H-monotone operators and constructed
an algorithm for solving the class of variational inclusions by using their resolvent operator
technique.

At the same time, Huang and Fang [26] introduced a class of maximal n-monotone oper-
tors and defined an associated resolvent operator. Using their resolvent operator methods,
they developed some iterative algorithms to approximate the solution of a class of variational
inclusions involving maximal n-monotone operators. Huang and Fang’s method extended
the resolvent operator method associated with an n-subdifferential operator.

In 2005, Fang et al. [18] introduced a new class of (H,n)-monotone operators which
unify a framework for a class of maximal monotone operators, a class of maximal n-monotone
operators and a class of H-monotone operators, and studied a system of variational inclusions
by using the resolvent operators associated with (H,n)-monotone operators in Hilbert spaces.

Very recently, Peng and Zhu [34] introduced and studied one new system of generalized
mixed quasi-variational inclusions with (H,7)-monotone operators. By using the resolvent
technique for the (H,n)-monotone operators, they proved the existence of solutions for
the system of generalized mixed quasi-variational inclusions and the convergence of a new
iterative algorithm approximating the solution for the system.

In [35], they also, very recently, introduced and studied another new system of set-valued
variational inclusions with (H,7)-monotone operators. By using the resolvent technique for
the (H,n)-monotone operators, they showed the existence of solutions for the system, and
proved the convergence of a new three-step iterative algorithm approximating the solution
for the system.

Basing on the notion of (H,n)-monotonicity for solving a generalized inclusion problem,
Verma [42] also developed a generalized framework for the Eckstein-Bertsekas proximal point
algorithm.

Our aim of this paper is to introduce and study generalized nonlinear mixed random
variational-like inclusions for random fuzzy mappings. By using random resolvent operator
technique of randomly (h¢,7)-maximal monotone mappings, we prove the approximate so-
lutions obtained by the iterative algorithm converge to the exact solution of the generalized
nonlinear mixed random variational-like inclusions for random fuzzy mappings.

Preliminaries

Throughout this paper, (£2,X) is a measurable space with a set {2 and a o-algebra ¥ of
subsets of . H is a real separable Hilbert space endowed with a norm || - | and an inner
product (-,-). Notations B(H), 2/ and CB(H) denote the class of Borel o-fields in H, the
family of all nonempty subsets of H, the family of all nonempty closed bounded subsets of
H, respectively.

Let D(-,-) represent the Hausdorff metric on CB(H) defined by

D(A,B) = max{sup d(a, B), sup d(A,b)} for all A,B € CB(H),
acA beB
where

d(a,B) = d(B,a) = bigg la —0b] for ac A.

Definition 2.1. A mapping u :  — H is said to be measurable if for any B € B(H),
uwI(B)={teQ: u(t) e B} ex.
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Definition 2.2. A mapping f : Q x H — H is called a random mapping if for each fixed
x € H, a mapping f(-,z) : @ — H is measurable. A random mapping f is said to be
continuous if for each fixed t € Q, a mapping f(¢,-) : H — H is continuous.

Definition 2.3. A multi-valued mapping 7 : Q — 2 is said to be measurable if for any
BeBH), T"Y(B)={teQ: Tt)NB#0} .

Definition 2.4. A mapping u :  — H is called a measurable selection of a measurable
multi-valued mapping 7 : Q — 2 if u is measurable and for any t € Q, u(t) € T(t).

Definition 2.5. A mapping 7 : Q x H — 2¥ is called a random multi-valued mapping if
for each fixed x € H, T(-,z) :  — 2 is a measurable multi-valued mapping. A random
multi-valued mapping T : Q@ x H — CB(H) is said to be D-continuous if for each fixed
teQ,T(t,-): H— 2" is continuous with respect to the Hausdorff metric D.

Let F(H) be a collection of fuzzy sets over H. A mapping F from  into F(H) is called
a fuzzy mapping on H. If F' is a fuzzy mapping on H, then for any ¢t € Q, F(t) (denoted by
F) is a fuzzy set on H and Fy(x) is the membership-grade of z in Fj.

Let A€ F(H), a € [0,1], then the set

(A)y = {z€H: Alz) > o}
is called an a-cut of A.

Definition 2.6. A fuzzy mapping F' : Q — F(H) is said to be measurable, if for any
a € (0,1], a multi-valued mapping (F(+))q : Q — 2 is measurable.

Definition 2.7. A fuzzy mapping F : Q x H — F(H) is called a random fuzzy mapping,
if for each fixed x € H, F(-,z) : @ — F(H) is a measurable fuzzy mapping.

Let A, T,G : Qx H — F(H) be random fuzzy mappings satisfying the following condition

(*) Y

(*) there exist functions a, 3, v : H — (0, 1] such that (At 2)a(z), (Tt2)s(z) and (Gt 2)y @) €
CB(H) for all (t,z) € Q x H, where A, , denotes the value of A at (¢, ).

Induce random multi-valued mappings A, T and G from A, T and G, respectively as
follows:

A QOx H— C’B(.E[)7 (t,x) — (At,x)(x(r)7

T:QxH— CB(H), (t,z)— (Ti2)sx),

and
G:Qx H— CB(H), (t,2)+ (Giu)yw forall (t,z)eQx H.

Let N: Qx HxHxxH — Handn:QxHxH — H be random mappings. Let
g : Qx H — H be a random mapping with g(¢,z(t)) N Domdp(-,y(t)) # 0 for t € H,
x(t) € H and fixed y(t) € H, where d¢ denotes the subdifferential of a proper, convex and
lower semi-continuous functional ¢ : H x H — R U {+oco}.

Now we consider the following problem;
Find measurable mappings z, u, v, w :  — H such that for all ¢t € Q and each fixed y(t) € H,

Ap ooy (u(t)) = a(z(t), Ty (v(t) = B(@(1)), Graw(w(t) = y(z(t)),
g(t, z(t)) N Dom A (-, y(t)) # 0
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and

(Nt u(t), v(t), w(t),n(t, y(8), gt x(8)) = @(g(t,=(1)), 2(1)) — p((t), y(1)),

called a fuzzy nonlinear mixed random variational-like inclusion (FNMRVLI). The set of
measurable mappings (z,u, v, w) is called a random solution of FNMRVLI.

If a(z) = B(z) = v(z) = 1, for all z € H, then FNMRVLI is reduced to finding
measurable mappings x,u,v,w : © — H such that for ¢t € © and fixed y(t) € H, u(t) €
A(t,z(t)), v(t) € T(t, z(t)), w(t) € G(t,z(t)), g(t,z(t)) N Domdp(-, y(t)) # O and

(Nt ut), v(t), w(t),n(t, y(8), gt x(8)) = @(g(t,=(1)), 2(1)) — p(x(t), y(1)),

called a nonlinear mixed random variational-like inclusion. In fact, FNMRVLI includes
many kind of variational inequalities, quasi-variational inequalities and variational inclusions
as well as quasi-variational inclusions in [5, 17, 19, 24, 36] as special cases.

Conceptual Background

We recall some useful concepts and results. Throughout this section, z,y,u,v,w : Q@ — H
denote measurable mappings.

Lemma 3.1 ([8]). Let G : Q@ x H — CB(H) be a D-continuous random multi-valued
mapping. Then for a measurable mapping u : Q@ — H, a multi-valued mapping G(-,u(-)) :
QO — CB(H) is measurable.

Lemma 3.2 ([8]). Let A, T : Q@ — CB(H) be measurable multi-valued mappings and u :
Q — H be a measurable selection of A. Then there exists a measurable selection v : Q — H
of T' such that for allt € Q and € > 0,

[u(t) —o@)] < (1+€) D(A(#), T(t)).

Definition 3.3. Let z,y : © — H be random mappings and ¢t € Q. A random mapping
n:Qx Hx H— H is said to be

(i) randomly monotone if

(x(t) —y(t), n(t, =(t), y(t))) > 0, forall x(t),y(t) € H;

(ii) randomly strictly monotone if 7 is randomly monotone and the equality holds if and
only if (t) = y(t) for all t €

(ili) randomly cv,-strongly monotone if there exists a function a,, : @ — (0, c0) such that
(@(t) = y(t), n(t, (1), y(1)) > an@®)]a(t) —y@)|*, for all x(t),y(t) € H;
(iv) randomly L,-Lipschitz continuous if there exists a function L, : 2 — (0, co) such that
In(t, x(t), yO) < Ly@)llz(t) —y(@)|, forall z(t),y(t) € H.

Remark 3.4. If o, (t) = 1 and L,(t) = 1 for all t € Q, then 7 is called randomly strongly
monotone and randomly continuous, respectively.
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Definition 3.5. Let z, y : Q@ - H, h: Qx H — H and n: Q x H x H — H be random
mappings. If we design h(t, z(t)) = hy(x(t)) for all t € Q, h; is said to be

(i) randomly n-monotone if
(he(x(t)) — he(y(1)), n(t, 2(t), y(t))) = 0, forall x(t),y(t) € H;
(ii) randomly n-strictly monotone if h; is randomly 7-monotone and

(1)) — hu(y(D). n(t, 2(t), y(1)) = 0 iff (t) = y(t), forall te

(iii) randomly «p,-n-strongly monotone if there exists a function ap, : 2 — (0,00) such
that

(he((t)) = he(y (1), nt, x(t), y(2))) > an, (B)llz(t) —y(@)|?, forall x(t),y(t) € H;

(iv) randomly Lp,-Lipschitz continuous if there exists a function Ly, : & — (0,00) such
that

1he(2(8)) = he (YOI < L, (D)) =y @), for all 2(t),y(t) € H.

Remark 3.6. If h; = I, the identity mapping on H, then conditions (i), (ii) and (iii) in
Definition 3.5 reduce to (i), (ii) and (iii) in Definition 3.3, respectively.

Definition 3.7. Let h : @ x H — H and n: Q x H x H — H be random mappings and
M : H — 29 be a multi-valued mapping, M is said to be

(i) randomly n-monotone if

(u(t) —v(t), n(t, z(t), y(t)) = O,
for all z(t),y(t) € H, u(t) € M(z(t)), v(t) € M(y(t));

(ii) randomly n-maximal monotone if M is randomly n-monotone and
(I+ p()M)(H) = H,
where p: Q — (0,00) is a function.
(iii) randomly (h¢,n)-maximal monotone if M is randomly 7-monotone and
(he + p(t)M)(H) = H,
where p: Q — (0,00) is a function.
Remark 3.8. For hy; = I, the identity mapping, the randomly I-n-maximal monotonicity
coincides with the randomly n-maximal monotonicity. If n(t, z(t), y(t)) = z(t) — y(¢) for all

x(t),y(t) € H, the concept of a randomly (hs,n)-maximal monotone mapping reduces to
that of a random mapping, which is called a randomly h;-monotone mapping.
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Definition 3.9. Let n: Q x H x H — H be a random mapping and ¢ : H — RU {400}
be a proper functional, ¢ is said to be n-subdifferentiable at a point x(t) € H if there exists
a point f* € H such that

e(y(t) —p(x(t)) > (f*, n(t, y(t), z(t))) for all y(t) € H,

where f* is called a n-subgradient of ¢ at x(¢). The set of all n-subgradients of ¢ at x(t) is
designed by 0,¢(z(t)). A multi-valued mapping 9,¢ : H — 28 defined by

Onp(a(t)) = {f" € H:oy(t) —p(z(t) = (f7 0t y(t), (1)) forall y(t) € H}
is called a n-subdifferential of ¢ at z(t).

Proposition 3.10. Letn: Qx Hx H — H be a randomly continuous and randomly strongly
monotone mapping such that n(t, z(t),y(t)) + n(t,y(t),z(t)) = 0 for all z(t),y(t) € H and
for any given x(t) € H, a function

h(y(1), u(t)) = (e(t) = u(t), n(t, y(t), u(t)))

is 0-diagonally quasi-concave in y(t), where u : Q@ — (0,00) is a function. Let ¢ : H — RU
{400} be a lower semi-continuous n-subdifferentiable proper functional. Then Oy : H — 2H
is randomly n-mazimal monotone, hence for any p(t) >0, (I + p(t)0y,p)(H) = H.

Remark 3.11. It may be considered that Theorem 2.8 of Ding and Luo [15] is a determin-
istic case of Proposition 3.10.

Proposition 3.12. Let a mapping h : Q2 x H — H be randomly n-strictly monotone and
a multi-valued mapping M : H — 28 be randomly (hs, n)-mazimal monotone. Then M is
randomly n-mazimal monotone.

Proof. Since M is randomly n-monotone. From [14] it is sufficient to prove that
(u(t) —o(t), n(t, z(t), y(t))) > 0 forall (y(t), v(t)) € Gr(M) implies u(t) € M(z(t)),

where Gr(M) = {(x(t),u(t)) € H x H : u(t) € M(z(t))} denotes the graph of M.
Suppose that M is not randomly n-maximal monotone, then there exists (xo(t), uo(t)) &
Gr(M) such that

(o (t) — v(t), n(t, 2o(t), y(1))) > 0 forall (y(t), v(t)) € Cr(M).

By assumption, for any p(t) > 0, (hy + p(¢)M)(H) = H, there exists (z1(t),u1(t)) €
Gr(M) such that

hi(z1(t)) + p(H)ur(t) = he(zo(t)) + p(t)uo(?).
It follows that
p(t){uo(t) —ui(t), n(t, zo(t), z1(1))) = — (he(zo(t)) — he(21(2)), n(t, zo(t), 21(t))) = 0.

Since h; is randomly 7-strictly monotone, we must have xo(t) = x1(t) and so ug(t) =
u1(t). Hence (x0(t),uo(t)) € Gr(M), which is a contradiction. Therefore M is randomly
n-maximal monotone. O



FUZZY NONLINEAR MIXED RANDOM VARIATIONAL-LIKE INCLUSIONS 579

Theorem 3.13. Letn: Q x H x H — H be a random mapping. Let a random mapping
h:Qx H — H be randomly n-strictly monotone and a multi-valued mapping M : H — 2H
be randomly (hy,n)-mazimal monotone. Then for a funtion p : Q — (0,00), the inverse
mapping (hy + p(t)M)~' : H — H is single-valued.

Proof. For any u(t) € H, let z(t),y(t) € (he + p(t)M)~ ! (u(t)). Then we have

u(t) — he(z(t)) € p(t) M (x(t))
and
u(t) — he(y(t)) € p(t)M(y(t)).

Since M is random n-monotone, we have
0 < (u(t) = he(a(t)) — (u(t) — he(y(1))), n(t, z(t), y(t)))
= —(he(a(t)) = ha(y(t)), n(t, x(t), y(1)))-

It follows from the randomly 7-strict monotonicity of h; that x(t) = y(t).
Therefore (h; + p(t)M)~! is a single-valued mapping. O

Definition 3.14. Let n: Q) x H x H — H be a random mapping. Let a random mapping
h:Q x H — H be randomly 7-strictly monotone and a multi-valued mapping M : H — 28
be randomly (h¢,n)-maximal monotone. Then for a function p : Q — (0, 00), the resolvent
operator R,]l‘/t[,p : H — H of M is defined by

R%’p(x(t)) = (ht + p(t)M) " (2(t)), forall =(t) € H.

Remark 3.15. If n: Q x H x H — H is a random mapping, h : ) x H — H is a randomly
n-strictly monotone mapping and ¢ : H x H — RU {+o0} is a functional such that

Range(h:(-) + p(£)9,(-,-)) = H

for any measurable function p : Q — (0, 00), then from Proposition 3.12 and Theorem 3.13,
we have

R0 (1)) = (ha(?) + p(H)ye(, )" (1), for all a(t) € H, teq.

The single-valued mapping Ri;’f)("') _

mapping.

(he(:) + p(t)0yp(-,+)) ! is called a random proximal

Assumption 3.16. A random mapping n: Q2 x H x H — H satisfies the condition
n(t, z(t), y(t)) +n(t, y(t), x(t)) = 0, forall xz(t), y(t) € H, t € Q.

%l(t)) £ 0 for fized

is a solution set

Theorem 3.17. Let ¢ : H x H — RU{+00} be a functional with Domp(-,
y(t) € H. Thent € Q, u(t) € A(t,z(t)), v(t) € T(t,x(t)), w(t) € G(t, z(t)
of FNMRVLI if and only if g(t,z(t)) € Oyp(-,y(t)) and

N(t, u(t), v(t), w(t)) € Iyl g(t, x(t))).

Proof. This directly follows from the definition of n-subdifferential. O
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Theorem 3.18. Letn : QQx Hx H — H be randomly L, -Lipschitz continuous, h : Q x H —
H be randomly aup,, -n-strongly monotone and Oyyp : Hx H — 2 be randomly (hy,n)-mazimal

1 _Lipschitz continuous.
Qp,

monotone. Then resolvent operator Rng;("') of Oy is randomly
Proof. By the definition of the resolvent operator Ri;’ i("') of 0,¢(:,-), for any x(¢),y(t) € H

B2 @(0) = (et p()dye( ) (1)

and
B w(0) = (he+ p0)dye(- )7 (w(0).
It follows that
1

S @) = BB @(0) € Oy Ry (@ (1))

and

— (y(t) — he (B2 (y(1)))) € Dyp(Ry 20 (1)),

Since 9,¢(-, ) is randomly n-monotone, we have
677 N 877 N
(@(t) — he(R 207 (2(1))) — (y(t) — ho(RY7 20 (y(1)))),

n(t, (R o) (x(8)), (B2 (y(2))))) > 0.
It follows that

(@(t) — y(t) — (he (B2 (2(1))) — he (R 20 (y(1)),

n(t, (R0 (2(0))), (R0 (y(1))) = 0
or
(@(t) —y(6),nt, (R0 (2(8)), (Ry720) (y(1)))) >

(ha(Ry™ 0 (2(1))) — he(RY7 ) (y(1)), nt, (Rp7 2 (2(1))), (R0 (1))

Since 77 is randomly L, -Lipschitz continuous and h; is randomly ay,,-n-strongly monotone,
we have

Ly®)|x(t) =y IR0 (2(1) — Ry 25 (y(t)|

> an, (8)| Ry (@(t)) — R0 () 1%

Hence

IR0 () — B2 N < 22D o) -yl

for all (t),y(t) € H, t € Q. O
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Iterative Algorithm

We first give the following lemma.

Lemma 4.1. The set of measurable mappings x,u,v,w : & — H is a random solution of
FNMRVLI if and only if for all t € Q, x(t) € H, u(t) € A(t,z(t)), v(t) € T(t,z(t)),
w(t) € G(t,z(t)) and

gt.z(t) = Ry 2 Dlg(t,z(t)) — p(t)N (2, u(t), v(t), w(t))], (4.1)

where p : Q@ — (0,00) is a measurable function and Rij’i(i’m(t)) = (he(z())+p(t)One(-, z(t))) L.

To obtain an approximate solution of FNMRVLI, we can apply a successive approxi-
mate method to the problem of solving

z(t) € Q(t,x(t)), forall te,

where
Q(t, {x —g(t,z(t) + Ry U D gt 2(t) — p(&)N(E u(t), v(t), w(t)]
u(t) € At,z(t)), v(t) € T(t,x(t)), w(t) € G(t,x(1))}. (4.2)

Based on (4.1) and (4.2), we propose the following random iterative algorithm to compute
the approximate solution of FNMRVLI.

Algoritheorem 4.2. Suppose that A,T,G : Q x H — F(H) be random fuzzy mappings
satisfying the condition (x). Let A,T,G : Q x H — CB(H) be D-continuous random multi-
valued mappings induced by A,T and G, respectively and g : Q2 x H — H be a continuous
random mapping. Let n: QxHXxH - H, N: QxHXxHxH — Hand h:QxH — H be
random mappings. For any given measurable mapping zg : 2 — H, multi-valued mappings,
A(, x0(-), T(-,z0(-)), G(-,20()) : @ — CB(H) are measurable by Lemma 3.1. Hence there
exist selections ug : Q@ — H of A(-,z0(-)), vo : @ — H of T(-,x0(-)) and wo : @ — H of
G(-,z0(-)) by Himmelberg [22]. Let

w1 (t) = zo(t) — g(t, 2o(t)) + Ry 20" D g(t, wo(t) — p(H)N(t, uo(t), vo(t), wo(t)),

then is easy to see that x; : 2 — H is measurable. By Lemma 3.2 and Nadler [32] there exist
measurable selections u; : @ — H of A(-,z1(-)), v1: Q— H of T(-,z1(-)) and wy : Q@ — H
of G(-,x1(-)) such that

luo(t) —wr ()| < (1+ 1)D(A(L, @o(t)), At,z1(1))),

lvo(t) = vi(®)]l < (1+1)D(T(t,
[wo(t) —wi(@)] < (1+1)D (é( ())ﬂ(tawl(t)))-

IN

A

Let
22(t) = 1(t) — g(t,e1()) + Re 2O Vg2, 21(1)) — p()N (2, ua(t), v (1), wi(t)))-

Then x4 :  — H is measurable. Continuing the above process inductively we can
obtain the following random iterative sequences {z,(t)} of measurable mappings and three
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sequences {u,(t)}, {vn(t)} and {w,(t)} of measurable selections for solving FNMRVLI as
follows:

g1 () = 2 (t) = g(t, 20 () + Ry D gt 2 (8) = p(E)N (8, wn (1), va(t), wa(1))]. (4.3)

un(t) € Alt,z(1)), Jun(t) —unrr(@®)l < (L4 (1 +n)")DAR, za(1)), Alt, 2041(1)),

va(t) € T(t,xa()), [lon(t) = vara1 (@)l < (L4 (L +n) ") D(L(tan(t)), Tt znsa (1)),

wa(t) € Gt,xa(1)), [lwa(t) —warr ()] < L+ (1+n)")D(G(t2a(t)), G(t, zns1(t)))
foranyt€ Q and n=0,1,2,....

<
<

Definition 4.3. A random mapping g :  x H — H is said to be

(i) randomly r,-strongly monotone, if there exists a measurable function r4 : Q© — (0, 00)
such that

(g(t,z(t)) — g(t,y(1),x(t) —y(t)) > roe(®)llx(t) —y@)|?, for w(t), y(t) € H;

(ii) randomly s4-Lipschitz continuous, if there exists a measurable function s, : © — (0, 00)
such that

lg(t,z(t)) — gty < sq(t)lla(t) —y@)|?, for =(t), y(t) € H.

Definition 4.4. Let N : Qx H x H x H — H be a random mapping and A,T,G : Qx H —
CB(H) random multi-valued mappings:

(i) N is said to be randomly As-relaxed monotone with respect to the second argument
for the mapping T, if there exists a measurable function Az : Q@ — (0, 00) such that

(N(t,vi(t), ) = Nt va(t), ), 21 (t) —a2() > = Ap(®)]laa(t) — a2,
for all z;(t) € H, v;(t) € T(t,z:(t)), t € Q,i=1, 2.

(ii) N is said to be randomly (s-relaxed Lipschitz continuous with respect to the third

argument for the mapping G, if there exists a measurable function (z : @ — (0, 00)
such that

(N(t,-, - wi(t)) = N(t,- - wa(t), 21 (t) = 22(t)) < = (o)l (t) — z2(t)]1%,
for all z;(t) € H, wi(t) € G(t,z;(t)), t € Q, i =1, 2.
(iii) N is said to be randomly Lipschitz continuous with respect to the first, the second

and the third arguments, if there exist measurable functions dy, ey, py : Q@ — (0,00)
such that

IN(t 21(2), 22(t), 23(8)) = N (&, 51(8), y2(2), y3 (1))

< dn@®ll21(t) =y Ol + en(®)llz2(t) — y2 (O + oy (O)[l23() — y3(D)]]
for x;(t), yi(t) € H,i=1,2,3 and t € 2.
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(iv) N is said to be randomly £ -strongly monotone with respect to the first argument

for the mapping A if there exists a measurable function & Ag: Q0 — oo such that
<N(t7 ul(t)7 "y ) - N(t7 u2(t)7 "y ')a g(t7 xl(t)) - g(t? .132(t))> > gﬁ,g(t)”qjl(t) - x?(t)”2

for z;(t) € H, u;(t) € A(t,x;(t)), i = 1,2, where g : Q x H — H is a random mapping.

(v) Mappings A, T, G are said to be randomly D-Lipschitz continuous, if there exist mea-
surable functions 3z, ¢, o5 : @ — (0,00) such that

lur () — w2 (O]l < D(A(t, 21(1)), A(t,22(1))) < B4(t)l|lw1(t) — z2(D)])
t e (t) — 2 (8],

)z (t) = z2(t)]]

<
iy
—~
o~
~—
|
<
\V]
—~~
~
=
N
E

for ;(t) € H, ui(t) € A(t,xi(t)), vi(t) € T(t,z;(t)), wi(t) € G(t,z:(t)), t € Q, i = 1,
2.

Theorem 4.5. Let a random mapping n : Q@ x H x H — H be randomly L, -Lipschitz
continuous and a random mapping h : Q x H — H be randomly ap,-n-strongly monotone.
Let N : Qx Hx Hx H — H be a random mapping which is randomly Lipschitz continuous
with respect to the first, the second and the third arguments with random coefficients dy(t),
en(t) and pn(t), respectively. Let A,/ T,G : Q x H — F(H) be random fuzzy mappings
satisfying the condition (). Let AT, G Ox H — CB(H) be random multi-valued mappings
induced by A, T and G, respectively, which are randomly D-Lipschitz continuous with random
coefficients 3;(t), v(t) and o4(t), respectively. Let g : Qx H — H be randomly r4-strongly
monotone and randomly s4-Lipschitz continuous. Let N be randomly \j-relazed monotone
with respect to the second argument for the mapping T and randomly Ca-relazed Lipschitz
continuous with respect to the third argument for the mapping G. Let N be randomly 5A,g‘

strongly monotone with respect to the first argument for the mapping A. Let p:HxH—
RU{+00) be a functional such that for fived x(t) € H, Ran(h¢(x(t))+ p(t)0ye(-, 2(t))) = H,
where p: Q — (0,00) is a measurable function.

Assume that
0. Sx(t 0. Syt
B CH O () = BV )] < 6@ a(t) — y(@)]| for w(t),y(t) and 2(t) € H,
where 0 : Q@ — (0, 00) is a function and the following conditions hold,;

f _ €an 020 Ly (- x(Den, (V1=K (1))
p(t) - L, (D@, (OB% 0 ()

\/(5A 4 ()55 () Ly () =x(B)an, (1) (1=r(2)))? = (3, () 8% (1) —x> () (L3 (1) 55 () —af,, (1) (1—~(2))?)
L2 () (dy (1)B% () —x> (1))

+\/(d?v(t)ﬂf;(t) = X2 (0)(L5(1)s5(t) — o, (1 = K(1))?) (4.4)

Ei,y(1)s5 (1) Ly(t) > x(O)an, () (1=k(1)?, K(t) <1, x(t) < dy()B5(D),
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ap, (1) (1 — k() < Ln(t)sﬁ(t) and x(t) = A+,

where (t) = \/1 — 27, () + 52(t) + 8(1),

A = \/1—2<é(t)+aé(t)p%v(t) and ¢ = \/1_2Af(t)+e§v(t)~y;(t).

Then there exist measurable mappings x,u,v,w : @ — H such that FNMRVLI holds.
Moreover z,,(t) — x(t), un(t) — u(t), v, (t) — v(t) and w,(t) — w(t) in H, where {z,(¢)},
{un(t)}, {vn(t)} and {w,(t)} are random sequences obtained by Algorithm 4.2.

Proof. From (4.3), for any t € Q, we have
|2 na1 () =2a (O] = Nea(t) =201 (8)—(9(t, 20 () —g(t, 2a1(1)))
R (1) = RS ()]
< zn(t) = 2o (8) = (9t za(t) — gt 201 (1)))]
HIR O (2 (1) — Ry O (1)
< wa(t) = znor(t) — <g<t xn< )) = g(t, 21 (1))l
HIR 20O (2 (1)) — Ry el (8D < O
HIR 2D (o (1)) — Ry O (1)
< @n(t) = @ (8) = (9(t, 2a(8)) = g(t, 201 (1))
Ly(t)
ol ®) = 2O+ 5O a(®) = on-a ()], (4.5)
h¢

where
zn(t) = g(t,2n(t)) — p()N(t, un(t), va(t), wn(t)).

Now

20 (t) — 2n—1(t)|l
=llg(t, zn(t)) = p(O)N (t, un(t), vn(t), wn(t))
— 9t 2n-1(t)) + p(E)N (£, tn—1(t), vn—1(t), wn—1(t))]|
<llg(t, zn(t)) — g(t, n-1(t)) — p(t)(N (£, un(t), vn(t), wn(t)) = N(t, un—1(t), vn(t), wn(t)))|
+ p()[|zn () = 2n-1(t) + (N(E, un—1(t), vn(t), wn(t)) = N(t; un—1(t), vn-1(t), wn(t)))ll
+ p(O)|zn(t) = 2n-1(t) = (N, un-1(t), vp—1(t), wn(t)) — N(tyunfl(f%vnfl(f),wnflgi))G)JL

Adding (4.5) and (4.6), we get

1 () = 2a(2)]
<ln(t) = 2n1(t) = (9(t,20(t)) — gt 2ar (1))
jh 00t 2 (6) = g0, 01 0)) = PN 0 100 (1) 0 (1), (1)
— Nt 1 (8), 0 (8), wa (D) + P20 (8) = 1 () + (Nt 1 (8), v (8), wa(£))
— Nt 1 (8), 01 () w0 (ODI] 4+ () [ (8) = 2ar (8) = (N (E 1 (8), v (8), w0 (1))
= Nt 1 (8, v a () w0 (D] + 50 [ (t) — 2ar (1] (4.7)
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By the random sg4-Lipschitz continuity and the random r4-strong monotonicity of g, we
have

2 (t) = 2n-1(t) = (9(t, 2 (t)) = g(t, 2n-1(t)))II?
=l (t) = 2a1 ()7 = 2(g(t, 2a(t) — 9(t, 2n-1(8)), 2n(t) — Tn—1(1))
+lg(t, zn(t)) = g(t, 2n-1(t))
l2n(8) = Zn_1 (O = 2rg () [[2n(t) = 2n_1 (@)I* + s5 (1) |20 (t) — 2n—1(B)]?
t) + 55 ()2 (t) — zaa ()] (4.8)
Since N is randomly Lipschitz continuous with measurable mappings dy (+), en(+), pn(+) :

Q — (0,00) and A, T, G are randomly D-Lipschitz continuous with mappings Bil), v7(),
oa(+) 1 2 — (0,00), respectively, we have

[Nt 0 (8), 00 (8), w0 (8)) = Nty 1 (8), 0 (), 0, (1)

< dn(®)ua(t) = unr ()]

< dy (DAL, 2a(t)), Alt, 20 (1))

< dv(OBO1 +n Ylen(t) — zar ()], (4.9)
[N, 1 (), v (8, wa(£)) = N (E 1 (8), v (8), wa ()]

< en(®)lla(t) = vasr (1)

< en(O)D(T(t (), T(t, 201 (1))

< en (a1 +n Y 2a(t) - 2 (D], (4.10)

and

||N(t7 unfl(t% ’Unfl(t% wn(t)) - N(lf, unfl(t)a Unfl(t)v wnfl(t))H

< p(8)|lwn(t) — wp—1 ()]
< pN(t)D(é(ta Tn (t))7 é(t7 xnfl(t)))
< pn(Oos®) 1+ 1Y)z (t) — 21 (0] (4.11)

Since NV is randomly Aj-relaxed monotone with respect to the second argument, from
(4.10), we have

2 () = @n—1(8) + (N (£, -1 (£), v (8), wi (£)) = N (t =1 (8), vn-1.(t), wa (1)) ||
)

< lan() = za-a (D)
+ 2N (w1 (£), 0n (), wn (£) = Nt thn1 (8), 001 (£), w03 (£))s @ (£) — 21 (1))
+ Nt tn—1 (1), va (8), wn (1)) = N (L un—1(8), va—1(t), wa (1))

< an(®) = 2a-1(O? = 20z (@)llza (t) = 21 (B)]

+en OO+ lon () — za_a (D]
(1= 2X7(t) + X ()72 (A + 07 |2 (t) = 2p-1 ()] - (4.12)

Since IV is randomly (z-relaxed Lipschitz continuous with respect to the third argument,
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from (4.11), we obtain

2 () = @n—1(t) = (N (t, tn—1(£), Va1 (£), Wi (£)) = N (8, 1n—1(8), vi-1(t), wn1(1))) ||
() = @1 (O] = 2N (8, un—1(8), va—1 (), wn (8)) = N (t, -1 (t), vn-1(t), wn-1(t),

@ (t) = 21 () + [IN(t un-1(t), va1(t), wa (1)) = N(t un-1(t), vn—1(t), wn—1(t))||*
2 (t) = 201 (DI + 2 (O)llzn(t) = 2aaa (O + G OPR (A + 07" [ln(t) — 2 ()]
(1+2C5(8) + og (PN ()1 + 0712l (t) — 2 (B - (4.13)

Again, since N is randomly £z g—strongly monotone with respect to the first argument

IA

A

of the mapping A, from (4.9), we obtain

lg(t 2n () = g(t, 2n—1(t) = PN (t, un (£), v (8), wn (£) = N (t =1 (£), vn (1), wn (1))
< Ng(t.za(t) — g(t, zn—1(1)]?

—20( YN (E un (£), vn (8), wn () = N (& up—1(8), vn(t), wn(t)), gt 2n(t)) = gt 2n1(t)))
PPNt un(t), va (), wn (1)) = Nt un—1(t), va (t), wa (1))
SgW)llzn(t) — 2na (B = 2p(1)8 4., (Dt 2n () — gt 2n-1(8))[|*
PPy (OBFOA +n" 12|z (t) — 2pr ()]

< <s3<t> 2001, (D2(0) + PAOBADFEO + 7)) fea(t) — 2aa I (414)
Combining (4.7)-(4.14), we obtain

01 () = ()]

<[ Vim0 g0+ 220 0 - 20065, 0550+ AOR OB O+
PR+ )2

(01420 + ZOR O+ 12 | lea(t) = 210

+ p(t)\/1 - 22z (1) + & (¢

[0 (t) = 21 ()] + 6(8) l2n(t) — 2n-1(t)||
< Wl 2, (t) + 53(0) + th((?) {530~ 20061, 020 + 2OBDFD + 1)
+ p(t)\ /1= 227(t) + & (D2 ()(1 +n)?

p()y/1+ 266(0) + o2 (PR O + 0702 b+ 8(0)] lan(®) = 2a1(0)]

< [m<t>+ 20 (630~ 200063, (0530 + A OB T+ )P
o0 (0)) | ) = a0
< 0,0 a(t) — 2 (O], (1.15)

where k(t) = \/1 = 2rg(t) +s2(t) + 0(t), Ay = \/1 +2(5(t) + % (PR (1) (1 +n~1)2, and
n_\/1—2/\ ) + & (D21 +n~1)2, and
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0,(1) = w0+ 2 [e2(0) 2p(0)61, (053(0) + P OBOFE DL+ 1)+ xaB)p(1))

an, (t)
Letting

o (V530 = 20085, (030) + OB (083 0) + x(0p())
we know that 6, (t) — 0(t) for all t € Q. Tt follows from (4.5) that 6(t) < 1 for all ¢ € Q.
Hence for any t € Q, 0,(t) < 1 for n sufficiently large.

Therefore {z,(t)} is a Cauchy sequence in H. Since H is complete, there exists a
measurable mapping x : Q@ — H such that x,(t) — x(t) € H, for all t € Q.

From Algorithm 4.2, we have

[un(t) = un—1 (W)l < Ba(OA+ 07" [on(t) — 2 (B)],

Jon(t) = na (@) < A+ nlan(t) — 2as (O]
[wn (t) = wna (B < UG( YA +n"Hza(t) — a1 @B,
which implies that {z,(t)}, {un(t)}, {vn(t)} and {wy(t)} are also Cauchy sequences in H.
Let un(t) — u(t), vn(t) — v(t) and wy,(t) — w(t). Since {u,(¢)}, {v,(t)} and {w,(¢)} are
sequences of measurable mappings. We know that z,u, v, w : Q — H are measurable.
Now we will prove that u(t) € A(t,z(t)), v(t) € T'(¢, z(t)) and w(t) € G(¢, z(t)). For any
t € 2, we have

d(u(t), A(t,z(t)) = mf{|lu(t) - 2|| : z € At 2(t))}
< ult) = un (@) + d(un(t), Alt, 2(t)))
< ut) = un (@)l + DA, za(2)), A(t, 2(t)))
< lu(®) = un®N + Ba@O) |2 (t) — 2(t)]| = 0 as n — oo.

Hence, u(t) € A(t,z(t)), for all t € Q. Similarly, we can prove that v(t) € T(t,z(t)) and
w(t) € G(t,z(t)) for all t € Q. This completes the proof. O
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