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Key words: nonlinear mixed random variational-like inclusions, random fuzzy mappings, randomly (ht, η)-
maximal monotone mappings, randomly strongly monotone mappings, randomly relaxed Lipschitz continu-
ous mappings, randomly relaxed monotone mappings, Hausdorff metric

Mathematics Subject Classification: 49J40, 47H19

1 Introduction

A variational inclusion is one of the useful and important generations of variational inequali-
ties. It was introduced and considered by Hassouni and Moudafi [20] in 1994, and a perturbed
algorithm for finding approximate solutions of the variational inclusions was developed by
them. May authors [1, 2, 6, 15, 16, 23, 28, 31, 33, 41] have obtained some important results
on variational inclusions with their algorithms to obtain approximate solutions to them in
various different assumptions.

A fuzzy set introduced by Zadeh [45] is an extension of a crisp set by enlarging the
truth valued set {0, 1} to the real unit interval [0, 1]. A fuzzy set is characterized by, and
identified with a mapping called a membership-grade function from the whole set into [0, 1].
Heilpern [21] introduced the concept of fuzzy mappings and showed a fixed point theorem
for fuzzy contraction mappings which is a fuzzy analogue of Nadler’s fixed point theorem for
multi-valued mappings. In 1989, Chang and Zhu [11] introduced the concept of variational
inequalities with fuzzy mappings and extended some of results of Lassonde [30], Shih and Tan
[37], Takahashi [38], Yen [43] in the fuzzy setting. Later, they were developed by Agarwal
et al. [3], Ahmad et al. [4], Ding [12, 13], etc..

On the other hand, random variational inequality problems and random quasi-variational
inequality problems have been considered by Chang [7], Chang and Huang [9, 10], Huang
[24, 25], Husain et al. [27], Tan et al. [39], Yuan [44], Khan and Salahuddin [29], Salahuddin
[36] and Tan [40], etc..

∗Corresponding author.
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In 2003, Fang and Huang [17] introduced a class of H-monotone operators and the
resolvent operator associated with the operators, with its Lipschitz continuity. They also
considered a class of variational inclusions involving H-monotone operators and constructed
an algorithm for solving the class of variational inclusions by using their resolvent operator
technique.

At the same time, Huang and Fang [26] introduced a class of maximal η-monotone oper-
tors and defined an associated resolvent operator. Using their resolvent operator methods,
they developed some iterative algorithms to approximate the solution of a class of variational
inclusions involving maximal η-monotone operators. Huang and Fang’s method extended
the resolvent operator method associated with an η-subdifferential operator.

In 2005, Fang et al. [18] introduced a new class of (H, η)-monotone operators which
unify a framework for a class of maximal monotone operators, a class of maximal η-monotone
operators and a class of H-monotone operators, and studied a system of variational inclusions
by using the resolvent operators associated with (H, η)-monotone operators in Hilbert spaces.

Very recently, Peng and Zhu [34] introduced and studied one new system of generalized
mixed quasi-variational inclusions with (H, η)-monotone operators. By using the resolvent
technique for the (H, η)-monotone operators, they proved the existence of solutions for
the system of generalized mixed quasi-variational inclusions and the convergence of a new
iterative algorithm approximating the solution for the system.

In [35], they also, very recently, introduced and studied another new system of set-valued
variational inclusions with (H, η)-monotone operators. By using the resolvent technique for
the (H, η)-monotone operators, they showed the existence of solutions for the system, and
proved the convergence of a new three-step iterative algorithm approximating the solution
for the system.

Basing on the notion of (H, η)-monotonicity for solving a generalized inclusion problem,
Verma [42] also developed a generalized framework for the Eckstein-Bertsekas proximal point
algorithm.

Our aim of this paper is to introduce and study generalized nonlinear mixed random
variational-like inclusions for random fuzzy mappings. By using random resolvent operator
technique of randomly (ht, η)-maximal monotone mappings, we prove the approximate so-
lutions obtained by the iterative algorithm converge to the exact solution of the generalized
nonlinear mixed random variational-like inclusions for random fuzzy mappings.

2 Preliminaries

Throughout this paper, (Ω,Σ) is a measurable space with a set Ω and a σ-algebra Σ of
subsets of Ω. H is a real separable Hilbert space endowed with a norm ‖ · ‖ and an inner
product 〈·, ·〉. Notations B(H), 2H and CB(H) denote the class of Borel σ-fields in H, the
family of all nonempty subsets of H, the family of all nonempty closed bounded subsets of
H, respectively.

Let D(·, ·) represent the Hausdorff metric on CB(H) defined by

D(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}

for all A,B ∈ CB(H),

where
d(a,B) = d(B, a) = inf

b∈B
‖a− b‖ for a ∈ A.

Definition 2.1. A mapping u : Ω → H is said to be measurable if for any B ∈ B(H),
u−1(B) = {t ∈ Ω : u(t) ∈ B} ∈ Σ.



FUZZY NONLINEAR MIXED RANDOM VARIATIONAL-LIKE INCLUSIONS 575

Definition 2.2. A mapping f : Ω ×H → H is called a random mapping if for each fixed
x ∈ H, a mapping f(·, x) : Ω → H is measurable. A random mapping f is said to be
continuous if for each fixed t ∈ Ω, a mapping f(t, ·) : H → H is continuous.

Definition 2.3. A multi-valued mapping T : Ω → 2H is said to be measurable if for any
B ∈ B(H), T−1(B) = {t ∈ Ω : T (t) ∩B 6= ∅} ∈ Σ.

Definition 2.4. A mapping u : Ω → H is called a measurable selection of a measurable
multi-valued mapping T : Ω → 2H , if u is measurable and for any t ∈ Ω, u(t) ∈ T (t).

Definition 2.5. A mapping T : Ω ×H → 2H is called a random multi-valued mapping if
for each fixed x ∈ H, T (·, x) : Ω → 2H is a measurable multi-valued mapping. A random
multi-valued mapping T : Ω × H → CB(H) is said to be D-continuous if for each fixed
t ∈ Ω, T (t, ·) : H → 2H is continuous with respect to the Hausdorff metric D.

Let F(H) be a collection of fuzzy sets over H. A mapping F from Ω into F(H) is called
a fuzzy mapping on H. If F is a fuzzy mapping on H, then for any t ∈ Ω, F (t) (denoted by
Ft) is a fuzzy set on H and Ft(x) is the membership-grade of x in Ft.

Let A ∈ F(H), α ∈ [0, 1], then the set

(A)α = {x ∈ H : A(x) ≥ α}
is called an α-cut of A.

Definition 2.6. A fuzzy mapping F : Ω → F(H) is said to be measurable, if for any
α ∈ (0, 1], a multi-valued mapping (F (·))α : Ω → 2H is measurable.

Definition 2.7. A fuzzy mapping F : Ω ×H → F(H) is called a random fuzzy mapping,
if for each fixed x ∈ H, F (·, x) : Ω → F(H) is a measurable fuzzy mapping.

Let A, T,G : Ω×H → F(H) be random fuzzy mappings satisfying the following condition
(∗) ;

(∗) there exist functions α, β, γ : H → (0, 1] such that (At,x)α(x), (Tt,x)β(x) and (Gt,x)γ(x) ∈
CB(H) for all (t, x) ∈ Ω×H, where At,x denotes the value of A at (t, x).

Induce random multi-valued mappings Ã, T̃ and G̃ from A, T and G, respectively as
follows:

Ã : Ω×H → CB(H), (t, x) 7→ (At,x)α(x),

T̃ : Ω×H → CB(H), (t, x) 7→ (Tt,x)β(x),

and
G̃ : Ω×H → CB(H), (t, x) 7→ (Gt,x)γ(x) for all (t, x) ∈ Ω×H.

Let N : Ω × H × H × H → H and η : Ω × H × H → H be random mappings. Let
g : Ω × H → H be a random mapping with g(t, x(t)) ∩ Dom∂ϕ(·, y(t)) 6= ∅ for t ∈ H,
x(t) ∈ H and fixed y(t) ∈ H, where ∂ϕ denotes the subdifferential of a proper, convex and
lower semi-continuous functional ϕ : H ×H → R ∪ {+∞}.

Now we consider the following problem;
Find measurable mappings x, u, v, w : Ω → H such that for all t ∈ Ω and each fixed y(t) ∈ H,
At,x(t)(u(t)) ≥ α(x(t)), Tt,x(t)(v(t)) ≥ β(x(t)), Gt,x(t)(w(t)) ≥ γ(x(t)),

g(t, x(t)) ∩Dom ∂ϕ(·, y(t)) 6= ∅
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and

〈N(t, u(t), v(t), w(t)), η(t, y(t), g(t, x(t)))〉 ≥ ϕ(g(t, x(t)), x(t))− ϕ(x(t), y(t)),

called a fuzzy nonlinear mixed random variational-like inclusion (FNMRVLI). The set of
measurable mappings (x, u, v, w) is called a random solution of FNMRVLI.

If α(x) = β(x) = γ(x) = 1, for all x ∈ H, then FNMRVLI is reduced to finding
measurable mappings x, u, v, w : Ω → H such that for t ∈ Ω and fixed y(t) ∈ H, u(t) ∈
Ã(t, x(t)), v(t) ∈ T̃ (t, x(t)), w(t) ∈ G̃(t, x(t)), g(t, x(t)) ∩Dom∂ϕ(·, y(t)) 6= ∅ and

〈N(t, u(t), v(t), w(t)), η(t, y(t), g(t, x(t)))〉 ≥ ϕ(g(t, x(t)), x(t))− ϕ(x(t), y(t)),

called a nonlinear mixed random variational-like inclusion. In fact, FNMRVLI includes
many kind of variational inequalities, quasi-variational inequalities and variational inclusions
as well as quasi-variational inclusions in [5, 17, 19, 24, 36] as special cases.

3 Conceptual Background

We recall some useful concepts and results. Throughout this section, x, y, u, v, w : Ω → H
denote measurable mappings.

Lemma 3.1 ([8]). Let G : Ω × H → CB(H) be a D-continuous random multi-valued
mapping. Then for a measurable mapping u : Ω → H, a multi-valued mapping G(·, u(·)) :
Ω → CB(H) is measurable.

Lemma 3.2 ([8]). Let A, T : Ω → CB(H) be measurable multi-valued mappings and u :
Ω → H be a measurable selection of A. Then there exists a measurable selection v : Ω → H
of T such that for all t ∈ Ω and ε > 0,

‖u(t)− v(t)‖ ≤ (1 + ε) D(A(t), T (t)).

Definition 3.3. Let x, y : Ω → H be random mappings and t ∈ Ω. A random mapping
η : Ω×H ×H → H is said to be

(i) randomly monotone if

〈x(t)− y(t), η(t, x(t), y(t))〉 ≥ 0, for all x(t), y(t) ∈ H;

(ii) randomly strictly monotone if η is randomly monotone and the equality holds if and
only if x(t) = y(t) for all t ∈ Ω;

(iii) randomly αη-strongly monotone if there exists a function αη : Ω → (0,∞) such that

〈x(t)− y(t), η(t, x(t), y(t))〉 ≥ αη(t)‖x(t)− y(t)‖2, for all x(t), y(t) ∈ H;

(iv) randomly Lη-Lipschitz continuous if there exists a function Lη : Ω → (0,∞) such that

‖η(t, x(t), y(t))‖ ≤ Lη(t)‖x(t)− y(t)‖, for all x(t), y(t) ∈ H.

Remark 3.4. If αη(t) = 1 and Lη(t) = 1 for all t ∈ Ω, then η is called randomly strongly
monotone and randomly continuous, respectively.
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Definition 3.5. Let x, y : Ω → H, h : Ω ×H → H and η : Ω ×H ×H → H be random
mappings. If we design h(t, x(t)) = ht(x(t)) for all t ∈ Ω, ht is said to be

(i) randomly η-monotone if

〈ht(x(t))− ht(y(t)), η(t, x(t), y(t))〉 ≥ 0, for all x(t), y(t) ∈ H;

(ii) randomly η-strictly monotone if ht is randomly η-monotone and

〈ht(x(t))− ht(y(t)), η(t, x(t), y(t))〉 = 0 iff x(t) = y(t), for all t ∈ Ω;

(iii) randomly αht-η-strongly monotone if there exists a function αht : Ω → (0,∞) such
that

〈ht(x(t))− ht(y(t)), η(t, x(t), y(t))〉 ≥ αht(t)‖x(t)− y(t)‖2, for all x(t), y(t) ∈ H;

(iv) randomly Lht-Lipschitz continuous if there exists a function Lht : Ω → (0,∞) such
that

‖ht(x(t))− ht(y(t))‖ ≤ Lht(t)‖x(t)− y(t)‖, for all x(t), y(t) ∈ H.

Remark 3.6. If ht = I, the identity mapping on H, then conditions (i), (ii) and (iii) in
Definition 3.5 reduce to (i), (ii) and (iii) in Definition 3.3, respectively.

Definition 3.7. Let h : Ω ×H → H and η : Ω ×H ×H → H be random mappings and
M : H → 2H be a multi-valued mapping, M is said to be

(i) randomly η-monotone if

〈u(t)− v(t), η(t, x(t), y(t))〉 ≥ 0,

for all x(t), y(t) ∈ H, u(t) ∈ M(x(t)), v(t) ∈ M(y(t));

(ii) randomly η-maximal monotone if M is randomly η-monotone and

(I + ρ(t)M)(H) = H,

where ρ : Ω → (0,∞) is a function.

(iii) randomly (ht, η)-maximal monotone if M is randomly η-monotone and

(ht + ρ(t)M)(H) = H,

where ρ : Ω → (0,∞) is a function.

Remark 3.8. For ht = I, the identity mapping, the randomly I-η-maximal monotonicity
coincides with the randomly η-maximal monotonicity. If η(t, x(t), y(t)) = x(t)− y(t) for all
x(t), y(t) ∈ H, the concept of a randomly (ht, η)-maximal monotone mapping reduces to
that of a random mapping, which is called a randomly ht-monotone mapping.
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Definition 3.9. Let η : Ω ×H ×H → H be a random mapping and ϕ : H → R ∪ {+∞}
be a proper functional, ϕ is said to be η-subdifferentiable at a point x(t) ∈ H if there exists
a point f∗ ∈ H such that

ϕ(y(t))− ϕ(x(t)) ≥ 〈f∗, η(t, y(t), x(t))〉 for all y(t) ∈ H,

where f∗ is called a η-subgradient of ϕ at x(t). The set of all η-subgradients of ϕ at x(t) is
designed by ∂ηϕ(x(t)). A multi-valued mapping ∂ηϕ : H → 2H defined by

∂ηϕ(x(t)) = {f∗ ∈ H : ϕ(y(t))− ϕ(x(t)) ≥ 〈f∗, η(t, y(t), x(t))〉 for all y(t) ∈ H}

is called a η-subdifferential of ϕ at x(t).

Proposition 3.10. Let η : Ω×H×H → H be a randomly continuous and randomly strongly
monotone mapping such that η(t, x(t), y(t)) + η(t, y(t), x(t)) = 0 for all x(t), y(t) ∈ H and
for any given x(t) ∈ H, a function

h(y(t), u(t)) = 〈x(t)− u(t), η(t, y(t), u(t))〉

is 0-diagonally quasi-concave in y(t), where u : Ω → (0,∞) is a function. Let ϕ : H → R ∪
{+∞} be a lower semi-continuous η-subdifferentiable proper functional. Then ∂ηϕ : H → 2H

is randomly η-maximal monotone, hence for any ρ(t) > 0, (I + ρ(t)∂ηϕ)(H) = H.

Remark 3.11. It may be considered that Theorem 2.8 of Ding and Luo [15] is a determin-
istic case of Proposition 3.10.

Proposition 3.12. Let a mapping h : Ω × H → H be randomly η-strictly monotone and
a multi-valued mapping M : H → 2H be randomly (ht, η)-maximal monotone. Then M is
randomly η-maximal monotone.

Proof. Since M is randomly η-monotone. From [14] it is sufficient to prove that

〈u(t)− v(t), η(t, x(t), y(t))〉 ≥ 0 for all (y(t), v(t)) ∈ Gr(M) implies u(t) ∈ M(x(t)),

where Gr(M) = {(x(t), u(t)) ∈ H ×H : u(t) ∈ M(x(t))} denotes the graph of M .
Suppose that M is not randomly η-maximal monotone, then there exists (x0(t), u0(t)) 6∈

Gr(M) such that

〈u0(t)− v(t), η(t, x0(t), y(t))〉 ≥ 0 for all (y(t), v(t)) ∈ Gr(M).

By assumption, for any ρ(t) > 0, (ht + ρ(t)M)(H) = H, there exists (x1(t), u1(t)) ∈
Gr(M) such that

ht(x1(t)) + ρ(t)u1(t) = ht(x0(t)) + ρ(t)u0(t).

It follows that

ρ(t)〈u0(t)− u1(t), η(t, x0(t), x1(t))〉 = − 〈ht(x0(t))− ht(x1(t)), η(t, x0(t), x1(t))〉 ≥ 0.

Since ht is randomly η-strictly monotone, we must have x0(t) = x1(t) and so u0(t) =
u1(t). Hence (x0(t), u0(t)) ∈ Gr(M), which is a contradiction. Therefore M is randomly
η-maximal monotone.
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Theorem 3.13. Let η : Ω × H × H → H be a random mapping. Let a random mapping
h : Ω×H → H be randomly η-strictly monotone and a multi-valued mapping M : H → 2H

be randomly (ht, η)-maximal monotone. Then for a funtion ρ : Ω → (0,∞), the inverse
mapping (ht + ρ(t)M)−1 : H → H is single-valued.

Proof. For any u(t) ∈ H, let x(t), y(t) ∈ (ht + ρ(t)M)−1(u(t)). Then we have

u(t)− ht(x(t)) ∈ ρ(t)M(x(t))

and
u(t)− ht(y(t)) ∈ ρ(t)M(y(t)).

Since M is random η-monotone, we have

0 ≤ 〈u(t)− ht(x(t))− (u(t)− ht(y(t))), η(t, x(t), y(t))〉

= −〈ht(x(t))− ht(y(t)), η(t, x(t), y(t))〉.
It follows from the randomly η-strict monotonicity of ht that x(t) = y(t).
Therefore (ht + ρ(t)M)−1 is a single-valued mapping.

Definition 3.14. Let η : Ω×H ×H → H be a random mapping. Let a random mapping
h : Ω×H → H be randomly η-strictly monotone and a multi-valued mapping M : H → 2H

be randomly (ht, η)-maximal monotone. Then for a function ρ : Ω → (0,∞), the resolvent
operator RM

ht,ρ
: H → H of M is defined by

RM
ht,ρ(x(t)) = (ht + ρ(t)M)−1(x(t)), for all x(t) ∈ H.

Remark 3.15. If η : Ω×H ×H → H is a random mapping, h : Ω×H → H is a randomly
η-strictly monotone mapping and ϕ : H ×H → R ∪ {+∞} is a functional such that

Range(ht(·) + ρ(t)∂ηϕ(·, ·)) = H

for any measurable function ρ : Ω → (0,∞), then from Proposition 3.12 and Theorem 3.13,
we have

R
∂ηϕ(·,·)
ht,ρ

(x(t)) = (ht(·) + ρ(t)∂ηϕ(·, ·))−1(x(t)), for all x(t) ∈ H, t ∈ Ω.

The single-valued mapping R
∂ηϕ(·,·)
ht,ρ

= (ht(·) + ρ(t)∂ηϕ(·, ·))−1 is called a random proximal
mapping.

Assumption 3.16. A random mapping η : Ω×H ×H → H satisfies the condition

η(t, x(t), y(t)) + η(t, y(t), x(t)) = 0, for all x(t), y(t) ∈ H, t ∈ Ω.

Theorem 3.17. Let ϕ : H×H → R∪{+∞} be a functional with Domϕ(·, y(t)) 6= ∅ for fixed
y(t) ∈ H. Then t ∈ Ω, u(t) ∈ Ã(t, x(t)), v(t) ∈ T̃ (t, x(t)), w(t) ∈ G̃(t, x(t)) is a solution set
of FNMRVLI if and only if g(t, x(t)) ∈ ∂ηϕ(·, y(t)) and

N(t, u(t), v(t), w(t)) ∈ ∂ηϕ(·, g(t, x(t))).

Proof. This directly follows from the definition of η-subdifferential.
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Theorem 3.18. Let η : Ω×H×H → H be randomly Lη-Lipschitz continuous, h : Ω×H →
H be randomly αht

-η-strongly monotone and ∂ηϕ : H×H → 2H be randomly (ht, η)-maximal

monotone. Then resolvent operator R
∂ηϕ(·,·)
ht,ρ

of ∂ηϕ is randomly
Lη

αht

-Lipschitz continuous.

Proof. By the definition of the resolvent operator R
∂ηϕ(·,·)
ht,ρ

of ∂ηϕ(·, ·), for any x(t), y(t) ∈ H

R
∂ηϕ(·,·)
ht,ρ

(x(t)) = (ht + ρ(t)∂ηϕ(·, ·))−1(x(t))

and
R

∂ηϕ(·,·)
ht,ρ

(y(t)) = (ht + ρ(t)∂ηϕ(·, ·))−1(y(t)).

It follows that

1
ρ(t)

(x(t)− ht(R
∂ηϕ(·,·)
ht,ρ

(x(t)))) ∈ ∂ηϕ(R∂ηϕ(·,·)
ht,ρ

(x(t)))

and
1

ρ(t)
(y(t)− ht(R

∂ηϕ(·,·)
ht,ρ

(y(t)))) ∈ ∂ηϕ(R∂ηϕ(·,·)
ht,ρ

(y(t))).

Since ∂ηϕ(·, ·) is randomly η-monotone, we have

〈x(t)− ht(R
∂ηϕ(·,·)
ht,ρ

(x(t)))− (y(t)− ht(R
∂ηϕ(·,·)
ht,ρ

(y(t)))),

η(t, (R∂ηϕ(·,·)
ht,ρ

(x(t))), (R∂ηϕ(·,·)
ht,ρ

(y(t))))〉 ≥ 0.

It follows that

〈x(t)− y(t)− (ht(R
∂ηϕ(·,·)
ht,ρ

(x(t)))− ht(R
∂ηϕ(·,·)
ht,ρ

(y(t)))),

η(t, (R∂ηϕ(·,·)
ht,ρ

(x(t))), (R∂ηϕ(·,·)
ht,ρ

(y(t))))〉 ≥ 0

or
〈x(t)− y(t), η(t, (R∂ηϕ(·,·)

ht,ρ
(x(t))), (R∂ηϕ(·,·)

ht,ρ
(y(t))))〉 ≥

〈ht(R
∂ηϕ(·,·)
ht,ρ

(x(t)))− ht(R
∂ηϕ(·,·)
ht,ρ

(y(t))), η(t, (R∂ηϕ(·,·)
ht,ρ

(x(t))), (R∂ηϕ(·,·)
ht,ρ

(y(t))))〉.
Since η is randomly Lη-Lipschitz continuous and ht is randomly αht

-η-strongly monotone,
we have

Lη(t)‖x(t)− y(t)‖ ‖R∂ηϕ(·,·)
ht,ρ

(x(t))−R
∂ηϕ(·,·)
ht,ρ

(y(t))‖

≥ αht
(t)‖R∂ηϕ(·,·)

ht,ρ
(x(t))−R

∂ηϕ(·,·)
ht,ρ

(y(t))‖2.
Hence

‖R∂ηϕ(·,·)
ht,ρ

(x(t))−R
∂ηϕ(·,·)
ht,ρ

(y(t))‖ ≤ Lη(t)
αht

(t)
‖x(t)− y(t)‖,

for all x(t), y(t) ∈ H, t ∈ Ω.
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4 Iterative Algorithm

We first give the following lemma.

Lemma 4.1. The set of measurable mappings x, u, v, w : Ω → H is a random solution of
FNMRVLI if and only if for all t ∈ Ω, x(t) ∈ H, u(t) ∈ Ã(t, x(t)), v(t) ∈ T̃ (t, x(t)),
w(t) ∈ G̃(t, x(t)) and

g(t, x(t)) = R
∂ηϕ(·,x(t))
ht,ρ

[g(t, x(t))− ρ(t)N(t, u(t), v(t), w(t))], (4.1)

where ρ : Ω → (0,∞) is a measurable function and R
∂ηϕ(·,x(t))
ht,ρ

= (ht(x(t))+ρ(t)∂ηϕ(·, x(t)))−1.

To obtain an approximate solution of FNMRVLI, we can apply a successive approxi-
mate method to the problem of solving

x(t) ∈ Q(t, x(t)), for all t ∈ Ω,

where

Q(t, x(t)) =
{
x(t)− g(t, x(t)) + R

∂ηϕ(·,x(t))
ht,ρ

[g(t, x(t))− ρ(t)N(t, u(t), v(t), w(t))]

: u(t) ∈ Ã(t, x(t)), v(t) ∈ T̃ (t, x(t)), w(t) ∈ G̃(t, x(t))
}
. (4.2)

Based on (4.1) and (4.2), we propose the following random iterative algorithm to compute
the approximate solution of FNMRVLI.

Algoritheorem 4.2. Suppose that A, T, G : Ω × H → F(H) be random fuzzy mappings
satisfying the condition (∗). Let Ã, T̃ , G̃ : Ω×H → CB(H) be D-continuous random multi-
valued mappings induced by A, T and G, respectively and g : Ω×H → H be a continuous
random mapping. Let η : Ω×H×H → H, N : Ω×H×H×H → H and h : Ω×H → H be
random mappings. For any given measurable mapping x0 : Ω → H, multi-valued mappings,
Ã(·, x0(·)), T̃ (·, x0(·)), G̃(·, x0(·)) : Ω → CB(H) are measurable by Lemma 3.1. Hence there
exist selections u0 : Ω → H of Ã(·, x0(·)), v0 : Ω → H of T̃ (·, x0(·)) and w0 : Ω → H of
G̃(·, x0(·)) by Himmelberg [22]. Let

x1(t) = x0(t)− g(t, x0(t)) + R
∂ηϕ(·,x0(t))
ht,ρ

[g(t, x0(t)− ρ(t)N(t, u0(t), v0(t), w0(t)],

then is easy to see that x1 : Ω → H is measurable. By Lemma 3.2 and Nadler [32] there exist
measurable selections u1 : Ω → H of Ã(·, x1(·)), v1 : Ω → H of T̃ (·, x1(·)) and w1 : Ω → H
of G̃(·, x1(·)) such that

‖u0(t)− u1(t)‖ ≤ (1 + 1)D(Ã(t, x0(t)), Ã(t, x1(t))),

‖v0(t)− v1(t)‖ ≤ (1 + 1)D(T̃ (t, x0(t)), T̃ (t, x1(t))),

‖w0(t)− w1(t)‖ ≤ (1 + 1)D(G̃(t, x0(t)), G̃(t, x1(t))).

Let

x2(t) = x1(t)− g(t, x1(t)) + R
∂ηϕ(·,x1(t))
ht,ρ

[g(t, x1(t))− ρ(t)N(t, u1(t), v1(t), w1(t))].

Then x2 : Ω → H is measurable. Continuing the above process inductively we can
obtain the following random iterative sequences {xn(t)} of measurable mappings and three



582 B.-S. LEE, M.F. KHAN AND SALAHUDDIN

sequences {un(t)}, {vn(t)} and {wn(t)} of measurable selections for solving FNMRVLI as
follows:

xn+1(t) = xn(t)−g(t, xn(t))+R
∂ηϕ(·,xn(t))
ht,ρ

[g(t, xn(t))−ρ(t)N(t, un(t), vn(t), wn(t))]. (4.3)

un(t) ∈ Ã(t, xn(t)), ‖un(t)− un+1(t)‖ ≤ (1 + (1 + n)−1)D(Ã(t, xn(t)), Ã(t, xn+1(t))),

vn(t) ∈ T̃ (t, xn(t)), ‖vn(t)− vn+1(t)‖ ≤ (1 + (1 + n)−1)D(T̃ (t, xn(t)), T̃ (t, xn+1(t))),

wn(t) ∈ G̃(t, xn(t)), ‖wn(t)− wn+1(t)‖ ≤ (1 + (1 + n)−1)D(G̃(t, xn(t)), G̃(t, xn+1(t)))

for any t ∈ Ω and n = 0, 1, 2, . . . .

Definition 4.3. A random mapping g : Ω×H → H is said to be

(i) randomly rg-strongly monotone, if there exists a measurable function rg : Ω → (0,∞)
such that

〈g(t, x(t))− g(t, y(t)), x(t)− y(t)〉 ≥ rg(t)‖x(t)− y(t)‖2, for x(t), y(t) ∈ H;

(ii) randomly sg-Lipschitz continuous, if there exists a measurable function sg : Ω → (0,∞)
such that

‖g(t, x(t))− g(t, y(t))‖ ≤ sg(t)‖x(t)− y(t)‖2, for x(t), y(t) ∈ H.

Definition 4.4. Let N : Ω×H×H×H → H be a random mapping and Ã, T̃ , G̃ : Ω×H →
CB(H) random multi-valued mappings:

(i) N is said to be randomly λT̃ -relaxed monotone with respect to the second argument
for the mapping T̃ , if there exists a measurable function λT̃ : Ω → (0,∞) such that

〈N(t, ·, v1(t), ·)−N(t, ·, v2(t), ·), x1(t)− x2(t)〉 ≥ − λT̃ (t)‖x1(t)− x2(t)‖2,

for all xi(t) ∈ H, vi(t) ∈ T̃ (t, xi(t)), t ∈ Ω, i = 1, 2.

(ii) N is said to be randomly ζG̃-relaxed Lipschitz continuous with respect to the third
argument for the mapping G̃, if there exists a measurable function ζG̃ : Ω → (0,∞)
such that

〈N(t, ·, ·, w1(t))−N(t, ·, ·, w2(t)), x1(t)− x2(t)〉 ≤ − ζG̃(t)‖x1(t)− x2(t)‖2,

for all xi(t) ∈ H, wi(t) ∈ G̃(t, xi(t)), t ∈ Ω, i = 1, 2.

(iii) N is said to be randomly Lipschitz continuous with respect to the first, the second
and the third arguments, if there exist measurable functions dN , εN , pN : Ω → (0,∞)
such that

‖N(t, x1(t), x2(t), x3(t))−N(t, y1(t), y2(t), y3(t))‖

≤ dN (t)‖x1(t)− y1(t)‖+ εN (t)‖x2(t)− y2(t)‖+ pN (t)‖x3(t)− y3(t)‖
for xi(t), yi(t) ∈ H, i = 1, 2, 3 and t ∈ Ω.
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(iv) N is said to be randomly ξÃ,g-strongly monotone with respect to the first argument
for the mapping Ã if there exists a measurable function ξÃ,g : Ω →∞ such that

〈N(t, u1(t), ·, ·)−N(t, u2(t), ·, ·), g(t, x1(t))− g(t, x2(t))〉 ≥ ξÃ,g(t)‖x1(t)− x2(t)‖2

for xi(t) ∈ H, ui(t) ∈ Ã(t, xi(t)), i = 1, 2, where g : Ω×H → H is a random mapping.

(v) Mappings Ã, T̃ , G̃ are said to be randomly D-Lipschitz continuous, if there exist mea-
surable functions βÃ, γT̃ , σG̃ : Ω → (0,∞) such that

‖u1(t)− u2(t)‖ ≤ D(Ã(t, x1(t)), Ã(t, x2(t))) ≤ βÃ(t)‖x1(t)− x2(t)‖,
‖v1(t)− v2(t)‖ ≤ D(T̃ (t, x1(t)), T̃ (t, x2(t))) ≤ γT̃ (t)‖x1(t)− x2(t)‖,
‖w1(t)− w2(t)‖ ≤ D(G̃(t, x1(t)), G̃(t, x2(t))) ≤ σG̃(t)‖x1(t)− x2(t)‖

for xi(t) ∈ H, ui(t) ∈ Ã(t, xi(t)), vi(t) ∈ T̃ (t, xi(t)), wi(t) ∈ G̃(t, xi(t)), t ∈ Ω, i = 1,
2.

Theorem 4.5. Let a random mapping η : Ω × H × H → H be randomly Lη-Lipschitz
continuous and a random mapping h : Ω ×H → H be randomly αht

-η-strongly monotone.
Let N : Ω×H ×H ×H → H be a random mapping which is randomly Lipschitz continuous
with respect to the first, the second and the third arguments with random coefficients dN (t),
εN (t) and pN (t), respectively. Let A, T, G : Ω × H → F(H) be random fuzzy mappings
satisfying the condition (∗). Let Ã, T̃ , G̃ : Ω×H → CB(H) be random multi-valued mappings
induced by A, T and G, respectively, which are randomly D-Lipschitz continuous with random
coefficients βÃ(t), γT̃ (t) and σG̃(t), respectively. Let g : Ω×H → H be randomly rg-strongly
monotone and randomly sg-Lipschitz continuous. Let N be randomly λT̃ -relaxed monotone
with respect to the second argument for the mapping T̃ and randomly ζG̃-relaxed Lipschitz
continuous with respect to the third argument for the mapping G̃. Let N be randomly ξÃ,g-
strongly monotone with respect to the first argument for the mapping Ã. Let ϕ : H ×H →
R∪{+∞) be a functional such that for fixed x(t) ∈ H, Ran(ht(x(t))+ρ(t)∂ηϕ(·, x(t))) = H,
where ρ : Ω → (0,∞) is a measurable function.

Assume that

‖R∂ηϕ(·,x(t))
ht,ρ

(z(t))−R
∂ηϕ(·,y(t))
ht,ρ

(z(t))‖ ≤ δ(t)‖x(t)− y(t)‖ for x(t), y(t) and z(t) ∈ H,

where δ : Ω → (0,∞) is a function and the following conditions hold;
∣∣∣∣ρ(t)− (ξÃ,g(t)s2

g(t)Lη(t)−χ(t)αht (t)(1−κ(t)))

Lη(t)(d2
N (t)β2

Ã
(t)−χ2(t))

∣∣∣∣

<

q
(ξÃ,g(t)s2

g(t)Lη(t)−χ(t)αht (t)(1−κ(t)))2−(d2
N (t)β2

Ã
(t)−χ2(t))(L2

η(t)s2
g(t)−α2

ht
(t)(1−κ(t))2)

L2
η(t)(d2

N (t)β2
Ã

(t)−χ2(t))

ξÃ,g(t)s
2
g(t)Lη(t) > χ(t)αht

(t)(1−κ(t))2

+
√

(d2
N (t)β2

Ã
(t)− χ2(t))(L2

η(t)s2
g(t)− α2

ht
(t)(1− κ(t))2) (4.4)

ξÃ,g(t)s
2
g(t)Lη(t) > χ(t)αht(t)(1−κ(t))2, κ(t) < 1, χ(t) < d2

N (t)β2
Ã
(t),
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αht
(t)(1− κ(t)) < Lη(t)s2

g(t) and χ(t) = ∆ + `,

where κ(t) =
√

1− 2rg(t) + s2
g(t) + δ(t),

∆ =
√

1− 2ζG̃(t) + σ2
G̃

(t)p2
N (t) and ` =

√
1− 2λT̃ (t) + ε2N (t)γ2

T̃
(t).

Then there exist measurable mappings x, u, v, w : Ω → H such that FNMRVLI holds.
Moreover xn(t) → x(t), un(t) → u(t), vn(t) → v(t) and wn(t) → w(t) in H, where {xn(t)},
{un(t)}, {vn(t)} and {wn(t)} are random sequences obtained by Algorithm 4.2.

Proof. From (4.3), for any t ∈ Ω, we have

‖xn+1(t)−xn(t)‖ = ‖xn(t)−xn−1(t)−(g(t, xn(t))−g(t, xn−1(t)))

+R
∂ηϕ(·,xn(t))
ht,ρ

(zn(t))−R
∂ηϕ(·,xn−1(t))
ht,ρ

(zn−1(t))‖
≤ ‖xn(t)− xn−1(t)− (g(t, xn(t))− g(t, xn−1(t)))‖

+‖R∂ηϕ(·,xn(t))
ht,ρ

(zn(t))−R
∂ηϕ(·,xn−1(t))
ht,ρ

(zn−1(t))‖
≤ ‖xn(t)− xn−1(t)− (g(t, xn(t))− g(t, xn−1(t)))‖

+‖R∂ηϕ(·,xn(t))
ht,ρ

(zn(t))−R
∂ηϕ(·,xn(t))
ht,ρ

(zn−1(t))‖
+‖R∂ηϕ(·,xn(t))

ht,ρ
(zn−1(t))−R

∂ηϕ(·,xn−1(t))
ht,ρ

(zn−1(t))‖
≤ ‖xn(t)− xn−1(t)− (g(t, xn(t))− g(t, xn−1(t)))‖

+
Lη(t)
αht

(t)
‖zn(t)− zn−1(t)‖+ δ(t)‖xn(t)− xn−1(t)‖, (4.5)

where
zn(t) = g(t, xn(t))− ρ(t)N(t, un(t), vn(t), wn(t)).

Now

‖zn(t)− zn−1(t)‖
=‖g(t, xn(t))− ρ(t)N(t, un(t), vn(t), wn(t))
− g(t, xn−1(t)) + ρ(t)N(t, un−1(t), vn−1(t), wn−1(t))‖

≤‖g(t, xn(t))− g(t, xn−1(t))− ρ(t)(N(t, un(t), vn(t), wn(t))−N(t, un−1(t), vn(t), wn(t)))‖
+ ρ(t)‖xn(t)− xn−1(t) + (N(t, un−1(t), vn(t), wn(t))−N(t, un−1(t), vn−1(t), wn(t)))‖
+ ρ(t)‖xn(t)− xn−1(t)− (N(t, un−1(t), vn−1(t), wn(t))−N(t, un−1(t), vn−1(t), wn−1(t)))‖.

(4.6)

Adding (4.5) and (4.6), we get

‖xn+1(t)− xn(t)‖
≤‖xn(t)− xn−1(t)− (g(t, xn(t))− g(t, xn−1(t)))‖

+
Lη(t)
αht

(t)
[‖g(t, xn(t))− g(t, xn−1(t))− ρ(t)(N(t, un(t), vn(t), wn(t))

−N(t, un−1(t), vn(t), wn(t)))‖+ ρ(t)‖xn(t)− xn−1(t) + (N(t, un−1(t), vn(t), wn(t))
−N(t, un−1(t), vn−1(t), wn(t)))‖+ ρ(t)‖xn(t)− xn−1(t)− (N(t, un−1(t), vn−1(t), wn(t))
−N(t, un−1(t), vn−1(t), wn−1(t)))‖+ δ(t)‖xn(t)− xn−1(t)‖. (4.7)
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By the random sg-Lipschitz continuity and the random rg-strong monotonicity of g, we
have

‖xn(t)− xn−1(t)− (g(t, xn(t))− g(t, xn−1(t)))‖2
=‖xn(t)− xn−1(t)‖2 − 2〈g(t, xn(t))− g(t, xn−1(t)), xn(t)− xn−1(t)〉

+ ‖g(t, xn(t))− g(t, xn−1(t))‖2
≤‖xn(t)− xn−1(t)‖2 − 2rg(t)‖xn(t)− xn−1(t)‖2 + s2

g(t)‖xn(t)− xn−1(t)‖2
≤(1− 2rg(t) + s2

g(t))‖xn(t)− xn−1(t)‖2. (4.8)

Since N is randomly Lipschitz continuous with measurable mappings dN (·), εN (·), pN (·) :
Ω → (0,∞) and Ã, T̃ , G̃ are randomly D-Lipschitz continuous with mappings βÃ(·), γT̃ (·),
σG̃(·) : Ω → (0,∞), respectively, we have

‖N(t, un(t), vn(t), wn(t))−N(t, un−1(t), vn(t), wn(t))‖
≤ dN (t)‖un(t)− un−1(t)‖
≤ dN (t)D(Ã(t, xn(t)), Ã(t, xn−1(t)))

≤ dN (t)βÃ(t)(1 + n−1)‖xn(t)− xn−1(t)‖, (4.9)

‖N(t, un−1(t), vn(t), wn(t))−N(t, un−1(t), vn−1(t), wn(t))‖
≤ εN (t)‖vn(t)− vn−1(t)‖
≤ εN (t)D(T̃ (t, xn(t)), T̃ (t, xn−1(t)))

≤ εN (t)γT̃ (t)(1 + n−1)‖xn(t)− xn−1(t)‖, (4.10)

and

‖N(t, un−1(t), vn−1(t), wn(t))−N(t, un−1(t), vn−1(t), wn−1(t))‖
≤ pN (t)‖wn(t)− wn−1(t)‖
≤ pN (t)D(G̃(t, xn(t)), G̃(t, xn−1(t)))

≤ pN (t)σG̃(t)(1 + n−1)‖xn(t)− xn−1(t)‖. (4.11)

Since N is randomly λT̃ -relaxed monotone with respect to the second argument, from
(4.10), we have

‖xn(t)− xn−1(t) + (N(t, un−1(t), vn(t), wn(t))−N(t, un−1(t), vn−1(t), wn(t)))‖2
≤ ‖xn(t)− xn−1(t)‖2

+ 2〈N(t, un−1(t), vn(t), wn(t))−N(t, un−1(t), vn−1(t), wn(t)), xn(t)− xn−1(t)〉
+ ‖N(t, un−1(t), vn(t), wn(t))−N(t, un−1(t), vn−1(t), wn(t))‖2

≤ ‖xn(t)− xn−1(t)‖2 − 2λT̃ (t)‖xn(t)− xn−1(t)‖2
+ ε2N (t)γ2

T̃
(t)(1 + n−1)2‖xn(t)− xn−1(t)‖2

= (1− 2λT̃ (t) + ε2N (t)γ2
T̃
(t)(1 + n−1)2)‖xn(t)− xn−1(t)‖2 . (4.12)

Since N is randomly ζG̃-relaxed Lipschitz continuous with respect to the third argument,
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from (4.11), we obtain

‖xn(t)− xn−1(t)− (N(t, un−1(t), vn−1(t), wn(t))−N(t, un−1(t), vn−1(t), wn−1(t)))‖2
≤ ‖xn(t)− xn−1(t)‖2 − 2〈N(t, un−1(t), vn−1(t), wn(t))−N(t, un−1(t), vn−1(t), wn−1(t)),

xn(t)− xn−1(t)〉+ ‖N(t, un−1(t), vn−1(t), wn(t))−N(t, un−1(t), vn−1(t), wn−1(t))‖2
≤ ‖xn(t)− xn−1(t)‖2 + 2ζG̃(t)‖xn(t)− xn−1(t)‖2 + σ2

G̃
(t)p2

N (t)(1 + n−1)2‖xn(t)− xn−1(t)‖2
= (1 + 2ζG̃(t) + σ2

G̃
(t)p2

N (t))(1 + n−1)2‖xn(t)− xn−1(t)‖2 . (4.13)

Again, since N is randomly ξÃ,g-strongly monotone with respect to the first argument
of the mapping Ã, from (4.9), we obtain

‖g(t, xn(t))− g(t, xn−1(t))− ρ(t)(N(t, un(t), vn(t), wn(t))−N(t, un−1(t), vn(t), wn(t)))‖2
≤ ‖g(t, xn(t))− g(t, xn−1(t))‖2
− 2ρ(t)〈N(t, un(t), vn(t), wn(t))−N(t, un−1(t), vn(t), wn(t)), g(t, xn(t))− g(t, xn−1(t))〉
+ ρ2(t)‖N(t, un(t), vn(t), wn(t))−N(t, un−1(t), vn(t), wn(t))‖2
≤ s2

g(t)‖xn(t)− xn−1(t)‖2 − 2ρ(t)ξÃ,g(t)‖g(t, xn(t))− g(t, xn−1(t))‖2
+ ρ2(t)d2

N (t)β2
Ã
(t)(1 + n−1)2‖xn(t)− xn−1(t)‖2

≤ (s2
g(t)− 2ρ(t)ξÃ,g(t)s

2
g(t) + ρ2(t)d2

N (t)β2
Ã
(t)(1 + n−1)2)‖xn(t)− xn−1(t)‖2 . (4.14)

Combining (4.7)-(4.14), we obtain

‖xn+1(t)− xn(t)‖

≤
[√

1− 2rg(t) + s2
g(t) +

Lη(t)
αht

(t)

{√
(s2

g(t)− 2ρ(t)ξÃ,g(t)s2
g(t) + ρ2(t)d2

N (t)β2
Ã
(t)(1 + n−1)2

+ ρ(t)
√

1− 2λT̃ (t) + ε2N (t)γ2
T̃
(t)(1 + n−1)2

+ ρ(t)
√

1 + 2ζG̃(t) + σ2
G̃

(t)p2
N (t)(1 + n−1)2

}]
‖xn(t)− xn−1(t)‖,

‖xn(t)− xn−1(t)‖+ δ(t)‖xn(t)− xn−1(t)‖

≤
[√

1− 2rg(t) + s2
g(t) +

Lη(t)
αht

(t)

{√
(s2

g(t)− 2ρ(t)ξÃ,g(t)s2
g(t) + ρ2(t)d2

N (t)β2
Ã
(t)(1 + n−1)2

+ ρ(t)
√

1− 2λT̃ (t) + ε2N (t)γ2
T̃
(t)(1 + n−1)2

+ρ(t)
√

1 + 2ζG̃(t) + σ2
G̃

(t)p2
N (t)(1 + n−1)2

}
+ δ(t)

]
‖xn(t)− xn−1(t)‖

≤
[
κ(t) +

Lη(t)
αht

(t)

(√
(s2

g(t)− 2ρ(t)ξÃ,g(t)s2
g(t) + ρ2(t)d2

N (t)β2
Ã
(t)(1 + n−1)2

+ ρ(t)χn(t)
)]

‖xn(t)− xn−1(t)‖

≤ θn(t)‖xn(t)− xn−1(t)‖, (4.15)

where κ(t) =
√

1− 2rg(t) + s2
g(t) + δ(t), ∆n =

√
1 + 2ζG̃(t) + σ2

G̃
(t)p2

N (t)(1 + n−1)2, and

`n =
√

1− 2λT̃ (t) + ε2N (t)γ2
T̃
(t)(1 + n−1)2, and

χn(t) = ∆n + `n



FUZZY NONLINEAR MIXED RANDOM VARIATIONAL-LIKE INCLUSIONS 587

θn(t) = κ(t)+
Lη(t)
αht

(t)

(√
s2

g(t)− 2ρ(t)ξÃ,g(t)s2
g(t) + ρ2(t)d2

N (t)β2
Ã
(t)(1 + n−1)2 + χn(t)ρ(t)

)
.

Letting

θ(t) = κ(t) +
Lη(t)
αht

(t)

(√
s2

g(t)− 2ρ(t)ξÃ,g(t)s2
g(t) + ρ2(t)d2

N (t)β2
Ã
(t) + χ(t)ρ(t)

)
,

we know that θn(t) → θ(t) for all t ∈ Ω. It follows from (4.5) that θ(t) < 1 for all t ∈ Ω.
Hence for any t ∈ Ω, θn(t) < 1 for n sufficiently large.

Therefore {xn(t)} is a Cauchy sequence in H. Since H is complete, there exists a
measurable mapping x : Ω → H such that xn(t) → x(t) ∈ H, for all t ∈ Ω.

From Algorithm 4.2, we have

‖un(t)− un−1(t)‖ ≤ βÃ(t)(1 + n−1)‖xn(t)− xn−1(t)‖,

‖vn(t)− vn−1(t)‖ ≤ γT̃ (t)(1 + n−1)‖xn(t)− xn−1(t)‖,
‖wn(t)− wn−1(t)‖ ≤ σG̃(t)(1 + n−1)‖xn(t)− xn−1(t)‖,

which implies that {xn(t)}, {un(t)}, {vn(t)} and {wn(t)} are also Cauchy sequences in H.
Let un(t) → u(t), vn(t) → v(t) and wn(t) → w(t). Since {un(t)}, {vn(t)} and {wn(t)} are
sequences of measurable mappings. We know that x, u, v, w : Ω → H are measurable.

Now we will prove that u(t) ∈ Ã(t, x(t)), v(t) ∈ T̃ (t, x(t)) and w(t) ∈ G̃(t, x(t)). For any
t ∈ Ω, we have

d(u(t), Ã(t, x(t)) = inf{‖u(t)− z‖ : z ∈ Ã(t, x(t))}
≤ ‖u(t)− un(t)‖+ d(un(t), Ã(t, x(t)))

≤ ‖u(t)− un(t)‖+ D(Ã(t, xn(t)), Ã(t, x(t)))
≤ ‖u(t)− un(t)‖+ βÃ(t)‖xn(t)− x(t)‖ → 0 as n →∞.

Hence, u(t) ∈ Ã(t, x(t)), for all t ∈ Ω. Similarly, we can prove that v(t) ∈ T̃ (t, x(t)) and
w(t) ∈ G̃(t, x(t)) for all t ∈ Ω. This completes the proof.
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