
 

SMOOTHNESS OF A CLASS OF GENERALIZED MERIT
FUNCTIONS FOR THE SECOND-ORDER CONE

COMPLEMENTARITY PROBLEM∗

Sheng-Long Hu, Zheng-Hai Huang† and Nan Lu

Abstract: In this paper, we consider the second-order cone complementarity problem (SOCCP). We pro-
pose a family of complementarity functions for the second-order cone complementarity problem (SOC C-
functions), which contains several popular SOC C-functions as special cases. Based on the new SOC C-
functions, a family of merit functions for the SOCCP is proposed. We show that the new merit functions
are continuously differentiable and give their derivative formulae. These provide an important theoretical
basis for designing some merit function methods to solve the SOCCP. Some preliminary numerical results
indicate that the new SOC C-functions and the corresponding merit functions are worth investigating.
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1 Introduction

In the last two decades, people have put a lot of their energy and attention on comple-
mentarity problems due to their various applications in operations research, economics, and
engineering (see, for example, [8, 11, 16]). Many algorithms were proposed to solve the non-
linear complementarity problem (NCP) (see the excellent monograph [8]). Recently, there
are great interests in designing various algorithms for solving some conic complementarity
problems, such as the second-order cone complementarity problem (SOCCP) [4, 5, 7, 15],
the semidefinite complementarity problem [6, 18], and the symmetric cone complementarity
problem [10, 19, 20, 26]. In this paper, we are interested in the SOCCP which is to find a
point x ∈ <n such that

x º 0, F (x) º 0, 〈x, F (x)〉 = 0, (1.1)

where 〈·, ·〉 is the Euclidean inner product, F : <n → <n is a continuously differentiable
mapping, and º is a partial order induced by a second-order cone K (i.e., x º 0 means
x ∈ K; similarly, x Â 0 means x ∈ int K (the interior of K)) defined by

K := Kn1 ×Kn2 × · · · × Knm ,
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here integers m,n1, . . . , nm ≥ 1, n1 + · · · + nm = n, and Kni := {(x1, x2) ∈ < × <ni−1 :
‖x2‖ ≤ x1} with ‖ · ‖ denoting the Euclidean norm. For simplicity, we assume that K = Kn

without loss of generality.
Many solution methods have been developed to solve the SOCCP (1.1). One of the

most popular methods is to reformulate the SOCCP (1.1) as an unconstrained optimization
problem and then to solve the reformulated problem by using unconstrained optimization
techniques. This kind of methods is called the merit function method, where the merit
function is generally constructed by some SOC C-function.

Definition 1.1. A function φ : <n × <n → <n is called an SOC C-function [5, 25], if it
satisfies that φ(a, b) = 0 if and only if a º 0, b º 0, 〈a, b〉 = 0. In addition, if a function
Ψ : <n → < is nonnegative and Ψ(x) = 0 if and only if x solves the SOCCP (1.1), then Ψ
is called a merit function for the SOCCP (1.1).

If φ is an SOC C-function, then it is easy to see that the function Ψ : <n → < defined
by Ψ(x) := 1

2‖φ(x, F (x))‖2 is a merit function for the SOCCP (1.1). Thus, finding a so-
lution of the SOCCP (1.1) is equivalent to finding a global minimum of the unconstrained
minimization minx∈<nΨ(x) with optimal value 0. It is well known that most effective un-
constrained minimization methods require the smoothness of the objective function. Thus,
in such a reformulation method for the SOCCP, a basic requirement is that the objective
function (i.e., Ψ) is smooth. In this paper, we will propose a new class of generalized SOC
C-functions and discuss the smoothness of their related merit functions.

When Kn = <n
+(:= {(x1, . . . , xn) ∈ <n | xi ≥ 0}), the SOCCP reduces to the NCP and

the SOC C-function reduces to the NCP-function. Many NCP-functions have been proposed
in the literature [1, 22, 21, 27, 29]. Among them, the FB function is one of the most popular
NCP-functions, which is defined by

φ(a, b) :=
√

a2 + b2 − a− b, ∀(a, b) ∈ <2.

One of the main generalizations of the FB function was given by Kanzow and Kleinmichel
[21]:

φθ(a, b) :=
√

(a− b)2 + θab− a− b, θ ∈ (0, 4), ∀(a, b) ∈ <2. (1.2)

Another main generalization was given by Luo and Tseng [22], and studied by Chen [2]:

φp(a, b) :=
p
√
|a|p + |b|p − a− b, p ∈ (1,∞), ∀(a, b) ∈ <2. (1.3)

The NCP-functions given in (1.2) and (1.3) had been extended to the framework of second-
order cones [24, 25], and it had been proved that they enjoy a lot of favorable properties.
Both of the papers [24, 25] pointed out that many best numerical results of the functions φθ

given in (1.2) and φp given in (1.3) do not appear in the case of θ = 2 and p = 2, respectively.
It is easy to see that both φθ and φp reduce to the well-known FB function when θ = 2 and
p = 2, respectively. Hence, it is of great interest and importance to investigate the theoretical
properties and numerical behavior of these two classes of generalized SOC C-functions and
their generalization. In this paper, we propose a new family of SOC C-functions which is
a generalization of both the generalized SOC C-functions mentioned above. The proposed
SOC C-functions are new even in the case of Kn = <n

+. Since the NCP is a special case of
the SOCCP [4, 5, 24, 25], our results can be directly applied to the NCP. Now, we formally
propose the following function, which will be proved to be an SOC C-function later.

φθp(x, y) := (θ(|x|p + |y|p) + (1− θ)|x + y|p)1/p − x− y, (1.4)
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where x, y ∈ <n, and θ ∈ (0, 2), p = 2 or θ ∈ (0, 1], p ∈ (1, 2)
⋃

(2,+∞), see (2.2) for the
definition of | · |.
Remark 1.2. (i) It is easy to see that the function defined by (1.4) reduces to φp under
the framework of second-order cones when θ = 1 and to φθ under the framework of second-
order cones when p = 2 and θ ∈ (0, 2). In particular, it reduces to the FB function under
the framework of second-order cones when θ = 1 and p = 2. Thus, the new family of the
functions defined by (1.4) is a generalization of several SOC C-functions mentioned above.

(ii) It should be pointed out that it is possible that the function φθp defined by (1.4)
is not an SOC C-function for θ ∈ (1, 2) and p ∈ (1, 2)

⋃
(2,+∞). For example, if we let

n = 1, θ = 1.5, p = 4, x = 2, y = 2, then 1.5× (24 + 24)− 0.5× (2 + 2)4 = −80 < 0. Hence,
the function φθp in this case is even not well-defined.

(iii) When Kn = <n
+, a similar family of NCP-functions

φθp(x, y) := (θ(|x|p + |y|p) + (1− θ)|x− y|p)1/p − x− y, ∀x, y ∈ <, ∀θ ∈ (0, 1], p > 1

was proposed in [17]. We don’t know whether this family of functions can be extended to
the case of second-order cones or not. In addition, it was mentioned in [3] that the best
numerical results of the algorithms involving φθ happens when θ = 2.5 or 3.0 for the SOCCP.
Obviously, this case is not included in the function φθp proposed in [17], however, it is a
special case of φθp defined by (1.4).

Since the family of generalized SOC C-functions (1.4) reduces to the SOC C-functions
studied in [3] when θ ∈ (0, 2] and p = 2, and it reduces to the generalized SOC C-function
studied in [25] when θ = 1, we only consider the case where θ ∈ (0, 1) and p ∈ (1,+∞) in
the rest of this paper.

The rest of this paper is organized as follows. In Section 2, we review some basic concepts
and results of second-order cones. In Section 3, we show that the functions defined by (1.4)
are SOC C-functions. Some other properties are also discussed. In Section 4, we propose a
family of merit functions based on the new SOC C-functions; and show the smoothness of
this family of merit functions. Some preliminary numerical results are reported in Section
5, where most of the very well performed numerical results do not appear in the case when
φθp proposed in this paper reduces to the existing SOC C-functions. Some conclusions are
given in Section 6.

2 Preliminaries

In the following, we review some basic concepts and results of second-order cones, see also
the excellent summarizations [4, 12, 25]. It should be noted that the second-order cone is
a special case of the square cone of some Euclidean Jordan algebra, see the monograph by
Faraut and Korányi [9]. In the following, we will use (x1, x2) to denote (x1, x

T
2 )T for any

x1 ∈ < and x2 ∈ <n−1 for convenience. For any x = (x1, x2), y = (y1, y2) ∈ < × <n−1 with
n ≥ 1, we define

〈x, y〉 := xT y, and x ◦ y := (〈x, y〉, x1y2 + y1x2),

where the former is just the usual inner product on the finite Euclidean space, and the latter
is called the Jordan product [9]. It is well known that the second-order cone is a closed convex
cone with nonempty interior [9], i.e., int(Kn) :=

{
x = (x1, x2) ∈ < × <n−1 | x1 > ‖x2‖

} 6= ∅.
The determinant and trace of x are defined by det(x) := x2

1 − ‖x2‖2 and tr(x) := 2x1,
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respectively. A vector x ∈ <n is invertible if and only if det(x) 6= 0, and its inverse is denoted
by x−1. Given a vector x = (x1, x2) ∈ <×<n−1, we will use the following symmetric matrix
to describe some key properties of second-order cones:

Lx :=
[

x1 xT
2

x2 x1I

]
,

where I is the identity matrix with appreciate size. We can view it as a linear operator from
<n to <n. It is easy to verify that Lxy = x ◦ y and Lx+y = Lx + Ly for all x, y ∈ <n. We
note that Lθx = θLx holds for all x ∈ <n and θ ∈ <. It should be noted that there are some
connections between the second-order cone and the positive semidefinite cone (the set of all
positive semidefinte symmetric matrices on <n×n), which are listed below:

x ∈ Kn ⇐⇒ Lx ∈ Sn
+;

x ∈ int Kn ⇐⇒ Lx ∈ Sn
++, and L−1

x = 1
det(x)

[
x1 −xT

2

−x2
det(x)

x1
I + 1

x1
x2x

T
2

]
in this case,

where Sn
+ denotes the positive semidefinite cone, while Sn

++ is the interior of the positive
semidefinite cone (i.e., the set of all positive definite symmetric matrices on <n×n).

For any x = (x1, x2) ∈ < × <n−1, the spectral decomposition (or spectral factorization)
of x is given by x = λ1(x)u(1)(x)+λ2(x)u(2)(x), where λi(x) (i = 1, 2) and u(i)(x) (i = 1, 2)
are the spectral values and the associated spectral vectors of x, respectively, with

λi(x) := x1 + (−1)i‖x2‖, and u(i)(x) :=
1
2

(
1, (−1)ix̂2

)
, i = 1, 2, (2.1)

here, if x2 6= 0 then x̂2 := x2
‖x2‖ , and otherwise, x̂2 ∈ <n−1 is arbitrarily taken satisfying

‖x̂2‖ = 1. It is obvious that the spectral decomposition of x is unique if x2 6= 0.

Lemma 2.1. Let x, s ∈ <n. Then, x º 0, s º 0, x ◦ s = 0 if and only if x º 0, s º 0,
〈x, s〉 = 0. Moreover, x and s share a common Jordan system of spectral vectors in each
case.

Proof. The results are special cases of [13, Propositions 6 and 7]. ¤
We next review some basic results about Löwner operator [28]. For any scalar function

g : < → <, the spectral function ḡ induced by g is defined by

ḡ(x) := g(λ1(x))u(1)(x) + g(λ2(x))u(2)(x), ∀x ∈ <n.

This function was first introduced and analyzed by Löwner [23], and hence, was called
Löwner function (or Löwner operator) in honor of Löwner’s contribution. From [4, Propo-
sition 5] and [12, Proposition 5.2], ḡ is (continuously) differentiable on <n if and only if g is
(continuously) differentiable on <. When g(α) = |α|p (p ≥ 1) for any α ∈ <,

|x|p := ḡ(x) = |λ1(x)|pu(1)(x) + |λ2(x)|pu(2)(x), ∀x ∈ <n; (2.2)

and when g(α) = α1/p (p > 1) for any α ∈ <+,

x1/p := ḡ(x) = (λ1(x))1/pu(1)(x) + (λ2(x))1/pu(2)(x), ∀x ∈ Kn.

Hence, the function φθp defined by (1.4) is well-defined. Similarly, we can define xp for
p > 1.

The following results are evident.
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Proposition 2.2. For any x ∈ <n, let λ1(x), λ2(x) and u(1)(x), u(2)(x) be the spectral
values and the associated spectral vectors of x, respectively. Then x º 0 if and only if
0 ≤ λ1(x) ≤ λ2(x); and x Â 0 if and only if 0 < λ1(x) ≤ λ2(x).

3 Complementarity Function

In the following, we will show that the new functions defined by (1.4) are indeed SOC
C-functions. Before starting our analysis, we list some symbols for convenience. For any
x = (x1, x2), y = (y1, y2) ∈ < × <n−1 and p > 1, we have

|x|p + |y|p =

(
|λ1(x)|p+|λ2(x)|p

2 + |λ1(y)|p+|λ2(y)|p
2|λ2(x)|p−|λ1(x)|p

2 x̂2 + |λ2(y)|p−|λ1(y)|p
2 ŷ2

)
,

|x + y|p =

( |λ1(x+y)|p+|λ2(x+y)|p
2

|λ2(x+y)|p−|λ1(x+y)|p
2

̂(x + y)2

)
,

where

λ1 := λ1(x) = x1 − ‖x2‖, λ2 := λ2(x) = x1 + ‖x2‖; (3.1)
µ1 := λ1(y) = y1 − ‖y2‖, µ2 := λ2(y) = y1 + ‖y2‖; (3.2)
λ̄1 := λ1(x + y) = x1 + y1 − ‖x2 + y2‖, λ̄2 := λ2(x + y) = x1 + y1 + ‖x2 + y2‖, (3.3)

and x̂2, ŷ2, ̂(x + y)2 are defined similarly as those in (2.1).

Theorem 3.1. The functions φθp defined by (1.4) are SOC C-functions.

Proof. We divide the proof into the following two parts.
Part I For any x, y ∈ <n with x ∈ Kn, y ∈ Kn and x ◦ y = 0, it follows from Lemma 2.1

that x and y share a common system of spectral vectors:

x = λ1(x)c1 + λ2(x)c2; y = λ1(y)c1 + λ2(y)c2.

Then, x + y = (λ1(x) + λ1(y))c1 + (λ2(x) + λ2(y))c2. So,

φθp(x, y) = (θ(|λ1(x)|p + |λ1(y)|p) + (1− θ)|λ1(x) + λ1(y)|p)c1

+(θ(|λ2(x)|p + |λ2(y)|p) + (1− θ)|λ2(x) + λ2(y)|p)c2)1/p

−((λ1(x) + λ1(y))c1 + (λ2(x) + λ2(y))c2)
= ((θ(|λ1(x)|p + |λ1(y)|p) + (1− θ)|λ1(x) + λ1(y)|p)1/p − (λ1(x) + λ1(y)))c1

+((θ(|λ2(x)|p + |λ2(y)|p) + (1− θ)|λ2(x) + λ2(y)|p)1/p − (λ2(x) + λ2(y)))c2

= 0c1 + 0c2

= 0,

where the third equality follows from the fact that λ1(x)λ1(y) = 0 and λ2(x)λ2(y) = 0
because of x ◦ y = 0, x, y ∈ Kn, and Proposition 2.2.

Part II Suppose that φθp(x, y) = 0. Then

(θ(|x|p + |y|p) + (1− θ)|x + y|p)1/p = x + y,
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which implies x + y ∈ Kn. Hence, |x + y|p = (x + y)p. So,

(θ(|x|p + |y|p) + (1− θ)|x + y|p)1/p = (θ(|x|p + |y|p) + (1− θ)(x + y)p)1/p = x + y,

which yields that θ(|x|p + |y|p) + (1 − θ)(x + y)p, i.e., θ(|x|p + |y|p) = θ(x + y)p. Since
θ ∈ (0, 1), by using [25, Lemma 3.1] we can obtain the desired result.

Combining Part I with Part II, we complete the proof. ¤
In the following, we establish a technique lemma which plays a crucial role in the sequel

analysis. For convenience, we give some notations first. For all θ ∈ (0, 1) and p ∈ (1,+∞),
we define

s := (s1, s2) := s(x, y) := θ(|x|p + |y|p) + (1− θ)|x + y|p; (3.4)

t := (t1, t2) := t(x, y) := (θ(|x|p + |y|p) + (1− θ)|x + y|p)1/p
, (3.5)

where s = (s1, s2) ∈ < × <n−1 and t = (t1, t2) ∈ < × <n−1.

Lemma 3.2. For any θ ∈ (0, 1), p > 1, x = (x1, x2), and y = (y1, y2) ∈ <n, let the function
s be defined by (3.4) with s /∈ int Kn. Then we have

s1 = ‖s2‖ = 2p−1(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p); (3.6)

x2
1 = ‖x2‖2; y2

1 = ‖y2‖2; x1y1 = xT
2 y2; x1y2 = y1x2. (3.7)

Furthermore, when s2 6= 0, we have

xT
2

s2

‖s2‖ = x1; x1
s2

‖s2‖ = x2; yT
2

s2

‖s2‖ = y1; y1
s2

‖s2‖ = y2. (3.8)

Proof. We will divide the proof into the following two parts.
Part I In this part, we prove (3.6) and (3.7).
When θ ∈ (0, 1) and p > 1, we have θ|x|p ∈ Kn, θ|y|p ∈ Kn and (1− θ)|x + y|p ∈ Kn for

all x = (x1, x2), y = (y1, y2) ∈ <n. Since s /∈ int Kn and Kn is a closed convex cone with
nonempty interior, it follows that θ|x|p /∈ int Kn, θ|y|p /∈ int Kn and (1 − θ)|x + y|p /∈ int
Kn, and hence, |x| /∈ int Kn, |y| /∈ int Kn and |x + y| /∈ int Kn. Furthermore,

x2
1 = ‖x2‖2; y2

1 = ‖y2‖2; (x1 + y1)2 = ‖x2 + y2‖2

by a simple analysis of spectral values. Then x1y1 = xT
2 y2 follows directly from the above

equalities. So, if one of x1 and y1 is zero, then the last equality in (3.7) holds trivially;
otherwise, we have ‖x2‖‖y2‖ = |x1y1| = |xT

2 y2|. That is, x2 = αy2 for some α 6= 0 since
both x1 6= 0 and y1 6= 0 (so are x2 and y2 by the above analysis). It follows from x1y1 =
xT

2 y2 = αyT
2 y2 = αy2

1 that α = x1
y1

. Hence, the last equality of (3.7) holds in this case. Thus,
(3.7) is proved to be true. While s1 = 1

2 (θ(|λ1|p+|λ2|p+|µ1|p+|µ2|p)+(1−θ)(|λ̄1|p+|λ̄2|p)),
(3.6) follows from (3.7) and s /∈ int Kn immediately.

Part II We prove (3.8) by discussing several cases in the following way.
(i) x2 = y2 = 0. This case can not happen since s2 6= 0.
(ii) x2 = 0, y2 6= 0. In this case, we have x = 0 by (3.7). Hence, s = θ|y|p + (1− θ)|y|p =

|y|p. It is evident that (3.8) holds.
(iii) x2 6= 0, y2 = 0. In this case, the results are evidently satisfied by the symmetry of x

and y in s and the item (ii) above.
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(iv) x2 6= 0, y2 6= 0 while x2 + y2 = 0. In this case, |x + y|p /∈ int Kn since θ ∈ (0, 1).
We have x + y = 0, and hence, it reduces to the one considered in [25, Lemma 3.3] by
multiplying a constant. So, the result holds from a similar proof as the one in [25, Lemma
3.3].

(v) x2 6= 0, y2 6= 0, x2 + y2 6= 0. Using (3.7), we could get

‖x2 + y2‖ = ‖x1

y1
y2 + y2‖ =

|x1 + y1|
|y1| ‖y2‖ =

|x1 + y1|
|x1| ‖x2‖.

So, if x1 = ‖x2‖ and y1 = −‖y2‖, we have

λ1 = 0; λ2 = 2x1; µ1 = 2y1; µ2 = 0;
λ̄1 = 0; λ̄2 = 2(x1 + y1), if x1 + y1 > 0;
λ̄1 = 2(x1 + y1); λ̄2 = 0, if x1 + y1 < 0.

Furthermore,

2x1s2 = θ

(
(|λ2|p − |λ1|p) x1

‖x2‖x2 + (|µ2|p − |µ1|p) x1

‖y2‖y2

)

+(1− θ)(|λ̄2|p − |λ̄1|p)x1x2 + x1y2

‖x2 + y2‖
= θ

(
(|λ2|p − |λ1|p) x1

‖x2‖x2 + (|µ2|p − |µ1|p) y1

‖y2‖x2

)

+(1− θ)(|λ̄2|p − |λ̄1|p)x1x2 + y1x2

‖x2 + y2‖ . (3.9)

If x1 + y1 > 0, from (3.9) we have

2x1s2 = θ

(
(|λ2|p − |λ1|p) x1

‖x2‖ + (|µ2|p − |µ1|p) y1

‖y2‖
)

x2

+(1− θ)(|λ̄2|p − |λ̄1|p) x1 + y1

‖x2 + y2‖x2

= 2pθ (|x1|p + |y1|p)x2 + 2p(1− θ)|x1 + y1|px2

= 2‖s2‖x2;

and if x1 + y1 < 0, similar analysis will yield x1s2 = ‖s2‖x2. Similarly, x1s2 = ‖s2‖x2 can
be obtained under each of the following cases: (a) x1 = ‖x2‖ and y1 = ‖y2‖; (b) x1 = −‖x2‖
and y1 = ‖y2‖; (c) x1 = −‖x2‖ and y1 = −‖y2‖. So, we obtain that the second equality
of (3.8) holds. Furthermore, xT

2 s2 = xT
2 x2‖s2‖/x1 = x1‖s2‖, i.e., the first equality of (3.8)

holds. The rest equalities of (3.8) can be obtained directly from the symmetry of x and y
in s.

Thus, Part II holds from (i)-(v).
By combining Part I with Part II, we complete the proof. ¤
Unless stated otherwise, we always assume in the following that g(α) := |α|p (α ∈ <) for

all p > 1. Let sgn(α) denote the sign function. By [12, Proposition 5.2], we have

∇ḡ(x) = p · sgn(x1)|x1|p−1I if x2 = 0, (3.10)

and

∇ḡ(x) =
[

b(x) c(x)x̂T
2

c(x)x̂2 a(x)I + (b(x)− a(x))x̂2x̂
T
2

]
if x2 6= 0, (3.11)
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where

x̂2 = x2
‖x2‖ , a(x) = |λ2(x)|p−|λ1(x)|p

λ2(x)−λ1(x) ,

b(x) = p[sgn(λ2(x))|λ2(x)|p−1+sgn(λ1(x))|λ1(x)|p−1]
2 ,

c(x) = p[sgn(λ2(x))|λ2(x)|p−1−sgn(λ1(x))|λ1(x)|p−1]
2 .

(3.12)

Through a similar discussion as the one given in [25, Page 10], we have that ∇ḡ(t) ∈ Sn
++

for any (x, y) satisfying s ∈ int Kn, and furthermore, for q > 1 satisfying 1
p + 1

q = 1,

∇ḡ(t)−1 =
1
2p




1
(λ2(s))1/q + 1

(λ1(s))1/q

ŝT
2

(λ2(s))1/q − ŝT
2

(λ1(s))1/q

ŝ2
(λ2(s))1/q − ŝ2

(λ1(s))1/q

ŝ2ŝT
2

(λ2(s))1/q + ŝ2ŝT
2

(λ1(s))1/q + 2p(I−ŝ2ŝT
2 )

a(t)


 . (3.13)

From the above analysis, the following lemma can be easily obtained.

Lemma 3.3. The function t defined by (3.5) is continuously differentiable at any (x, y) ∈
<n ×<n satisfying s ∈ int Kn, and furthermore,

∇xt(x, y) = (θ∇ḡ(x) + (1− θ)∇ḡ(x + y))∇ḡ(t)−1;
∇yt(x, y) = (θ∇ḡ(y) + (1− θ)∇ḡ(x + y))∇ḡ(t)−1,

where ḡ is the Löwner function induced by the scalar function g.

4 Smoothness of Merit Function Ψθp

For x, y ∈ <n, and θ ∈ (0, 1), p ∈ (1,+∞), we define

ψθp(x, y) :=
1
2
‖φθp(x, y)‖2 and Ψθp(x) := ψθp(x, F (x)), (4.1)

where F is given in (1.1). Then, Ψθp is a merit function of (1.1). In this section, we
investigate the smoothness of the functions Ψθp defined by (4.1).

Theorem 4.1. The function ψθp defined by (4.1) is differentiable everywhere when θ ∈ (0, 1)
and p ∈ (1, 2). Furthermore, the following results hold.

(i) If (x, y) = (0, 0), then ∇xψθp(x, y) = ∇yψθp(x, y) = 0.

(ii) If s ∈ int Kn, then

∇xψθp(x, y) =
(
(θ∇ḡ(x) + (1− θ)∇ḡ(x + y))∇ḡ(t)−1 − I

)
φθp(x, y);

∇yψθp(x, y) =
(
(θ∇ḡ(y) + (1− θ)∇ḡ(x + y))∇ḡ(t)−1 − I

)
φθp(x, y), (4.2)

with ∇ḡ given by (3.10)-(3.12) and ∇ḡ−1 given by (3.13).

(iii) If s /∈ int Kn, then

∇xψθp(x, y) = D1(x, y)φθp(x, y); ∇yψθp(x, y) = D2(x, y)φθp(x, y), (4.3)

with

D1(x, y) :=
θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)1/q
− 1;

D2(x, y) :=
θsgn(y1)|y1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)1/q
− 1.
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Proof. We divide the proof into three parts, i.e., Part I, Part II, and Part III, to show
the results in (i), (ii), and (iii) listed in this theorem, respectively. In Part III, we first
show the differentiability of ψθp in Step 1 and Step 2, and then derive the formulae given
in case (iii) in Step 3.

Part I In this part, we prove the results given in the case (i). Obviously, φθp(x, y) = 0.
For any (h, k) ∈ <n ×<n, let l1 and l2 (l1 ≤ l2) denote the spectral values of s(h, k), and c1

and c2 denote the corresponding spectral vectors. Then,

‖φθp(h, k)‖ = ‖l
1
p

1 c1 + l
1
p

2 c2 − h− k‖ ≤ ‖l
1
p

1 c1‖+ ‖l
1
p

2 c2‖+ ‖h‖+ ‖k‖
≤ 2l

1
p

2

1√
2

+ ‖h‖+ ‖k‖ =
√

2l
1
p

2 + ‖h‖+ ‖k‖,

while

l2 = θ

( |λ1|p + |λ2|p + |µ1|p + |µ2|p
2

)
+ (1− θ)

|λ̄1|p + |λ̄2|p
2

+‖θ
( |λ2|p − |λ1|p

2
ĥ2 +

|µ2|p − |µ1|p
2

k̂2

)
+ (1− θ)

|λ̄2|p − |λ̄1|p
2

̂(h + k)2‖

≤ θ

2
(|λ1|p + |λ2|p + |µ1|p + |µ2|p) +

(1− θ)
2

(|λ̄1|p + |λ̄2|p)

+
θ

2
(|λ1|p + |λ2|p + |µ1|p + |µ2|p) +

(1− θ)
2

(|λ̄1|p + |λ̄2|p)
= θ(|λ1|p + |λ2|p + |µ1|p + |µ2|p)

+(1− θ)(|h1 + k1 − ‖h2 + k2‖|p + |h1 + k1 + ‖h2 + k2‖|p)
≤ θ(|λ1|p + |λ2|p + |µ1|p + |µ2|p) + 2p+1(1− θ)(|h1 + k1|p + ‖h2 + k2‖p)
≤ θ(|λ1|p + |λ2|p + |µ1|p + |µ2|p) + 22p+1(1− θ)(|h1|p + |k1|p + ‖h2‖p + ‖k2‖p)
≤ θ(|λ1|p + |λ2|p + |µ1|p + |µ2|p) + 22p+3(1− θ)(|λ1|p + |µ1|p + |λ2|p + |µ2|p)
= κ0(|λ1|p + |λ2|p + |µ1|p + |µ2|p),

where the notations are similarly defined as (2.1), (3.1)-(3.3) with h, k instead of x, y; the
second inequality follows from the fact that |a + b|p ≤ ||a| + |b||p ≤ (2max{|a|, |b|})p ≤
2p(|a|p + |b|p) for any a, b ∈ < and p ∈ (1, 2); the third inequality from the above fact
and that ‖h2 + k2‖p ≤ (‖h2‖ + ‖k2‖)p; the last inequality from the above fact and |h1|p ≤
(max{|λ1|, |λ2|})p; and κ0 used in the last equality is given by κ0 = 22p+3 + (1 − 22p+3)θ.
Furthermore,

l
1
p

2 ≤ (κ0(|λ1|p + |λ2|p + |µ1|p + |µ2|p))
1
p = κ

1
p

0 ((|λ1|p + |λ2|p + |µ1|p + |µ2|p))
1
p

≤ κ
1
p

0 (|λ1|+ |λ2|+ |µ1|+ |µ2|) ≤ κ
1
p

0

√
2(‖h‖+ ‖k‖).

Hence, ψθp(h, k) = 1
2‖φθp(h, k)‖2 = O(‖h‖2 + ‖k‖2), which demonstrates that ψθp is differ-

entiable at (0, 0) with the gradient (0, 0).
Part II In this part, we prove the results given in the case (ii). From Lemma 3.3 and

the definition of ψθp, it is easy to obtain that ψθp is continuously differentiable in this case
with the gradient formulae given by (4.2).

Part III In this part, we prove the results given in the case (iii). It is sufficient to
consider the case of (x, y) 6= (0, 0) ∈ <n × <n and s(x, y) /∈ int Kn (hence s2 6= 0 by using
Lemma 3.2 when (x, y) 6= (0, 0)). Denote s = s(x, y) = (s1, s2) = η1c1 + η2c2 with η1 and
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η2 being the spectral values of s and c1 and c2 being the corresponding spectral vectors. It
follows from the definition of ψθp(x, y) that

2ψθp(x, y) = ‖φθp(x, y)‖2 = ‖s 1
p − x− y‖2 = ‖s 1

p ‖2 + ‖x + y‖2 − 2〈s 1
p , x + y〉,

while

‖s 1
p ‖2 =

1
2
η

2
p

1 +
1
2
η

2
p

2 ; (4.4)

2〈s 1
p , x + y〉 = 2

〈


η
1
p
1 +η

1
p
2

2

η
1
p
2 −η

1
p
1

2 ŝ2


 ,

(
x1 + y1

x2 + y2

)〉

= η
1
p

1 (x1 + y1 − sT
2 (x2 + y2)
‖s2‖ ) + η

1
p

2 (x1 + y1 +
sT
2 (x2 + y2)
‖s2‖ ). (4.5)

Hence, in order to prove that ψθp(·, ·) is differentiable at (x, y), it is sufficient to prove that
both functions given in (4.4) and (4.5) are differentiable at (x, y). We complete the proof
by the following three steps.

Step 1 This step is dedicated to the differentiability of s1 and s2, which are viewed as
functions of x and y. For any (x̃, ỹ) ∈ <n × <n, with x̃2 6= 0, ỹ2 6= 0 and x̃2 + ỹ2 6= 0,
sufficiently close to (x, y), we define

s̃1 = θ
(
|λ̃1|p+|λ̃2|p+|µ̃1|p+|µ̃2|p

2

)
+ (1− θ) |

˜̄λ1|p+|˜̄λ2|p
2 ;

s̃2 = θ
(
|λ̃2|p−|λ̃1|p

2
x̃2
‖x̃2‖ + |µ̃2|p−|µ̃1|p

2
ỹ2
‖ỹ2‖

)
+ (1− θ) |

˜̄λ2|p−|˜̄λ1|p
2

x̃2+ỹ2
‖x̃2+ỹ2‖ ,

where the related notations are similar to those in the above analysis. Then, s̃1 and s̃2,
viewed as functions of (x̃, ỹ), are differentiable at (x̃, ỹ) = (x, y). Indeed, when x2 6= 0, y2 6= 0
and x2 + y2 6= 0, s̃1 and s̃2 are clearly differentiable at (x̃, ỹ) = (x, y) since λ̃1, λ̃2, µ̃1, µ̃2,
˜̄λ1, ˜̄λ2, ‖x̃2‖, ‖ỹ2‖, ‖x̃2 + ỹ2‖ are differentiable at (x̃, ỹ) = (x, y) and |α|p is continuously
differentiable on < for p > 1. When x2 = 0 and y2 6= 0 (hence x2 + y2 6= 0),

|µ̃1|p + |µ̃2|p
2

,
|˜̄λ1|p + |˜̄λ2|p

2
,

|µ̃2|p − |µ̃1|p
2

ỹ2

‖ỹ2‖ , and
|˜̄λ2|p − |˜̄λ1|p

2
x̃2 + ỹ2

‖x̃2 + ỹ2‖

are differentiable at (x̃, ỹ) = (x, y). By using the continuous differentiability of |α|p and the
Mean-Valued Theorem, we obtain that

|λ̃1|p = |λ1|p + p · sgn[(1− α1)λ̃1 + α1λ1]|α1λ1 + (1− α1)λ̃1|p−1(λ̃1 − λ1)
= p · sgn((1− α1)λ̃1)|(1− α1)λ̃1|p−1(x̃1 − ‖x̃2‖) (0 < α1 < 1),

|λ̃2|p = p · sgn((1− α2)λ̃2)|(1− α2)λ̃2|p−1(x̃1 + ‖x̃2‖) (0 < α2 < 1),
|λ̃2|p = |λ̃1|p + 2p · sgn[α3λ̃1 + (1− α3)λ̃2]|α3λ̃1 + (1− α3)λ̃2|p−1‖x̃2‖ (0 < α3 < 1).

Since x = 0 by Lemma 3.2 in this case (i.e., x2 = 0), it follows that λ̃2, λ̃1 → 0 when (x̃, ỹ)
tends to (x, y), and hence, the above equalities imply that

|λ̃1|p = o(‖x̃‖), |λ̃2|p = o(‖x̃‖), and
|λ̃2|p − |λ̃1|p

2
x̃2

‖x̃2‖ = o(‖x̃‖).
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Therefore, |λ̃1|p + |λ̃2|p and |λ̃2|p−|λ̃1|p
2

x̃2
‖x̃2‖ are differentiable at (x̃, ỹ) = (x, y). Similarly,

s̃1 and s̃2 are differentiable at (x̃, ỹ) = (x, y) in each of the following cases: (a) y2 = 0 and
x2 6= 0 (hence x2 + y2 6= 0); (b) x2 6= 0, y2 6= 0 and x2 + y2 = 0.

Step 2 In this step, we prove the differentiability of ψθp given in the case (iii). It
follows from Step 1 that the second items in the right-hand side of both (4.4) and (4.5)
are differentiable at (x̃, ỹ) = (x, y). Similarly, η̃1 (defined similarly), viewed as a function of
(x̃, ỹ), is also differentiable at (x̃, ỹ) = (x, y) since s̃2 6= 0. Since s̃ /∈ int Kn, we have η1 = 0.
Using the first Taylor’s expansion of η̃1 at (x, y) we obtain that η̃1 = O(‖x̃− x‖+ ‖ỹ − y‖),
so, η̃

2
p

1 = O[(‖x̃ − x‖ + ‖ỹ − y‖) 2
p ]. Thus, the first item in the right-hand side of (4.4)

is differentiable at (x̃, ỹ) = (x, y) since 2 > p > 1. Furthermore, x̃1 + ỹ1 − s̃T
2 (x̃2+ỹ2)
‖s̃2‖ is

differentiable at (x̃, ỹ) = (x, y) by Step 1. From the fact that s2 6= 0, s /∈ int Kn and (3.8),
we get x1 + y1 − sT

2 (x2+y2)
‖s2‖ = 0. So, x̃1 + ỹ1 − s̃T

2 (x̃2+ỹ2)
‖s̃2‖ = O(‖x̃− x‖+ ‖ỹ− y‖), and hence,

η̃
1
p

1

(
x̃1 + ỹ1 − s̃T

2 (x̃2 + ỹ2)
‖s̃2‖

)
= O

(
(‖x̃− x‖+ ‖ỹ − y‖)1+ 1

p

)

= o(‖x̃− x‖+ ‖ỹ − y‖).

This implies that the first item in the right-hand side of (4.5) is differentiable at (x̃, ỹ) = (x, y)
with the gradient being zero. Thus, the differentiability of ψθp is proved in this case.

Step 3 In this step, we derive the derivative formulae given in the case (iii). Without
loss of generality, we assume that x2 6= 0, y2 6= 0, x2 + y2 6= 0. It follows from the definition
of ψθp and Step 2 that the gradient of 2ψθp is the sum of the gradients of ‖x + y‖2, the
right-hand side of (4.4), and the second item in the right-hand side of (4.5). The gradient
of ‖x̃ + ỹ‖2 with respect to x̃ evaluated at (x̃, ỹ) = (x, y) is 2(x + y); and the gradients of s̃1

and ‖s̃2‖ with respect to x̃ evaluated at (x̃, ỹ) = (x, y) are

p

2

(
m1

m2

)
and

p

2‖s2‖
(

m3

m4

)

with

m1 = θ(sgn(λ2)|λ2|p−1 + sgn(λ1)|λ1|p−1) + (1− θ)(sgn(λ̄2)|λ̄2|p−1 + sgn(λ̄1)|λ̄1|p−1);

m2 = θ(sgn(λ2)|λ2|p−1 − sgn(λ1)|λ1|p−1)
x2

‖x2‖
+(1− θ)(sgn(λ̄2)|λ̄2|p−1 − sgn(λ̄1)|λ̄1|p−1)

x2 + y2

‖x2 + y2‖ ;

m3 = θ(sgn(λ2)|λ2|p−1 − sgn(λ1)|λ1|p−1)
xT

2 s2

‖x2‖

+(1− θ)(sgn(λ̄2)|λ̄2|p−1 − sgn(λ̄1)|λ̄1|p−1)
(x2 + y2)T s2

‖x2 + y2‖ ;

m4 = θ((sgn(λ2)|λ2|p−1 + sgn(λ1)|λ1|p−1)
x2x

T
2

‖x2‖2 + (|λ2|p − |λ1|p)‖x2‖2 − xT
2 x2

‖x2‖3 )s2

+(1− θ)(sgn(λ̄2)|λ̄2|p−1 + sgn(λ̄1)|λ̄1|p−1)
(x2 + y2)(x2 + y2)T

‖x2 + y2‖2 s2

+(1− θ)(|λ̄2|p − |λ̄1|p)‖x2 + y2‖2 − (x2 + y2)T (x2 + y2)
‖(x2 + y2)‖3 s2.
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By using the equalities x2
1 = ‖x2‖2, xT

2
s2
‖s2‖ = x1, x1

s2
‖s2‖ = x2, y2

1 = ‖y2‖2, yT
2

s2
‖s2‖ = y1,

and y1
s2
‖s2‖ = y2 in Lemma 3.2, both the above gradient formulae could be simplified as

(
2p−2p(θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1)

2p−2p(θsgn(x1)|x1|p−1 x2
‖x2‖ + (1− θ)sgn(x1 + y1)|x1 + y1|p−1) x2+y2

‖x2+y2‖

)

= 2p−2p(θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1)
(

1
s2
‖s2‖

)
.

Hence, the gradient of η̃2 = s̃1 + ˜‖s2‖ with respect to x̃ evaluated at (x̃, ỹ) = (x, y) is

2p−1p(θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1)
(

1
s2
‖s2‖

)
.

Furthermore, by using the product and quotient rules of differentiation, the gradient of
x1 + y1 + sT

2 (x2+y2)
‖s2‖ with respect to x̃ evaluated at (x̃, ỹ) = (x, y) is

(
1

s2
‖s2‖ +

∇x2s2(x2+y2)‖s2‖−∇x2s2
s2
‖s2‖ sT

2 (x2+y2)

‖s2‖2

)

=

(
1

s2
‖s2‖ +∇x2s2

(x2+y2)‖s2‖− s2
‖s2‖ sT

2 (x2+y2)

‖s2‖2

)
=

(
1
s2
‖s2‖

)
,

where the last equality follows from Lemma 3.2 (i.e., we use the fact that sT
2 (x2+y2)
‖s2‖ = x1+y1

and (x1 + y1) s2
‖s2‖ = x2 + y2). Hence, the gradients of the second items in the right-hand

sides of (4.4) and (4.5) with respect to x̃ evaluated at (x̃, ỹ) = (x, y) are respectively given
by

(η2)
2
p−12p−1(θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1)

(
1
s2
‖s2‖

)

and

(x1 + y1)(η2)
1
p−12p(θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1)

(
1
s2
‖s2‖

)

+(η2)
1
p

(
1
s2
‖s2‖

)
.

It is easy to see that the gradient of the first item in the right-hand side of (4.4) with respect
to x̃ evaluated at (x̃, ỹ) = (x, y) is zero when 1 < p < 2. Hence,

2∇xψθp = (η2)
2
p−12p−1(θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1)

(
1
s2
‖s2‖

)

−(x1 + y1)(η2)
1
p−12p(θsgn(x1)|x1|p−1 − (η2)

1
p

(
1
s2
‖s2‖

)
+ 2(x + y)

+(1− θ)sgn(x1 + y1)|x1 + y1|p−1)
(

1
s2
‖s2‖

)
, 1 < p < 2, ∀θ ∈ (0, 1).
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From s /∈ int Kn, we have η1 = 0, and hence,

φθp(x, y) = t(x, y)− x− y =
1
2
(η2)

1
p

(
1
s2
‖s2‖

)
− (x + y).

The last two equalities, together with x1
s2
‖s2‖ = x2 and y1

s2
‖s2‖ = y2 by Lemma 3.2, yield

that

2∇xψθp = (η2)
1
p−12p(θsgn(x1)|x1|p−1

+(1− θ)sgn(x1 + y1)|x1 + y1|p−1)(φθp(x, y) + x + y)− 2φθp(x, y)

−(η2)
1
p−12p(θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1)(x + y)

= (η2)
1
p−12p(θsgn(x1)|x1|p−1

+(1− θ)sgn(x1 + y1)|x1 + y1|p−1)(φθp(x, y))− 2φθp(x, y)

= 2
(

θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)1/q
− 1

)
φθp(x, y),

(1 < p < 2, ∀θ ∈ (0, 1))

where the last equality follows from η2 = 2s1 = 2p(θ(|x1|p + |y1|p) + (1 − θ)|x1 + y1|p).
Hence, the first equality of (4.3) follows. In addition, the second equality of (4.3) follows
immediately from the symmetry of x and y in s.

Combining Step 1, Step 2 and Step 3, the proof of Part III is complete.
Combining Part I, Part II and Part III, the theorem is proved. ¤

Remark 4.2. It is hard for us to prove that the function ψθp defined by (4.1) is differentiable
for θ ∈ (0, 1) and p > 2 just following the proof of Theorem 4.1, since α

2
p (p > 2) is not

differentiable at α = 0 (hence, it is hard to get the differentiability of the function given in
Eq. (4.4)).

In the following, we will show the continuity of the gradient of ψθp defined by (4.1), i.e.,
the smoothness of ψθp, when θ ∈ (0, 1) and p ∈ (1, 2).

Lemma 4.3. Suppose that θ ∈ (0, 1) and p ∈ (1, 2). Let s and t be defined by (3.4) and
(3.5), respectively. Then, there exists a constant κ̂ > 0 such that for all x, y ∈ <n satisfying
s ∈ int Kn,

‖Lθ|x|p−1L−1
tp−1‖F ≤ κ̂, ‖Lθ|y|p−1L−1

tp−1‖F ≤ κ̂, ‖L(1−θ)|x+y|p−1L−1
tp−1‖F ≤ κ̂,

where ‖ · ‖F denotes the matrix Frobenius norm on <n×n.

Proof. The proof is similar to that in [25, Lemma 4.1], we omit it here. ¤
Under the assumptions of Lemma 4.3, it follows from Lemma 4.3 and Lθ|x|p−1 = θL|x|p−1

that ‖L|x|p−1L−1
tp−1‖F ≤ κ̂

θ . Thus, we have

λ2(s)
1
q ≥

(
θ(|λ1|p + |λ2|p)

2

) 1
q

≥
(

θ
(|λ1|2 + |λ2|2) p

2

2

) 1
q

= θ
1
q 2

p−2
2q ‖x‖ p

q .

Furthermore, by a similar analysis as the one in [25, Remark 4.1], it follows that for all
x, y ∈ <n satisfying s ∈ int Kn,

|λ2|p−1(1− x̂T
2 ŝ2) + |λ1|p−1(1 + x̂T

2 ŝ2)

λ1(s)
1
q

= O(1),
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and

|λ2|2p−2(1− x̂T
2 ŝ2) + |λ1|2p−2(1 + x̂T

2 ŝ2)

λ1(s)
2
q

= O(1).

Lemma 4.4. Suppose that θ ∈ (0, 1) and p ∈ (1, 2). Let s and t be defined by (3.4) and
(3.5), respectively, and ∇ḡ(x) be given by (3.10)-(3.12). Then, there exists a constant κ > 0
such that for all x, y ∈ <n satisfying s ∈ int Kn,

‖(θ∇ḡ(x) + (1− θ)∇ḡ(x + y))∇ḡ(t)−1‖F ≤ κ,

‖(θ∇ḡ(y) + (1− θ)∇ḡ(x + y))∇ḡ(t)−1‖F ≤ κ.

Proof. The results could be similarly proved as those in [25, Lemma 4.2]. We omit it here.
¤

In the following, we establish one main result of this section, i.e., the continuity of the
gradient function of ψθp defined by (4.1).

Theorem 4.5. The function ψθp defined by (4.1) is smooth everywhere on <n ×<n for all
θ ∈ (0, 1) and p ∈ (1, 2).

Proof. It is sufficient to prove ∇xψθp is continuous on <n×<n for all θ ∈ (0, 1) and p ∈ (1, 2)
by Theorem 4.1 and the symmetry of x and y in∇ψθp. We divide the proof into the following
three parts.

Part I For any (x, y) ∈ <n × <n satisfying t ∈ int Kn, the result follows form Part II
in the proof of Theorem 4.1 immediately.

Part II If (x, y) = (0, 0), then ∇xψθp(0, 0) = 0 by Theorem 4.1. Let (h, k) ∈ <n × <n.
On one hand, if t(h, k) ∈ int Kn, then by Theorem 4.1,

∇xψθp(h, k) =
(
(θ∇ḡ(h) + (1− θ)∇ḡ(h + k))∇ḡ(t(h, k))−1 − I

)
φθp(h, k).

Thus, by using Lemma 4.4, the continuity of φθp, and φθp(0, 0) = 0 by Theorem 3.1, we
have that ∇xψθp(h, k) → 0 as (h, k) → 0. On the other hand, if (h, k) 6= (0, 0) and t(h, k) /∈
int Kn, then by Theorem 4.1,

∇xψθp(h, k) =
(

θsgn(h1)|h1|p−1 + (1− θ)sgn(h1 + k1)|h1 + k1|p−1

(θ(|h1|p + |k1|p) + (1− θ)|h1 + k1|p)1/q
− 1

)
φθp(h, k).

Thus, by combining the continuity of φθp with φθp(0, 0) = 0 and the uniform boundedness
of the function

θsgn(h1)|h1|p−1 + (1− θ)sgn(h1 + k1)|h1 + k1|p−1

(θ(|h1|p + |k1|p) + (1− θ)|h1 + k1|p)1/q
− 1,

we obtain that ∇xψθp(h, k) → 0 as (h, k) → 0.
Part III For any (x, y) 6= (0, 0) ∈ <n×<n satisfying t /∈ int Kn, we consider the case of

(h, k) → (x, y) with (h, k) ∈ <n ×<n. Since (x, y) 6= (0, 0), it follows that (h, k) 6= (0, 0) for
any (h, k) sufficiently close to (x, y).

On one hand, if (h, k) 6= (0, 0) and t(h, k) /∈ int Kn, then by Theorem 4.1,

∇xψθp(h, k) =
(

θsgn(h1)|h1|p−1 + (1− θ)sgn(h1 + k1)|h1 + k1|p−1

(θ(|h1|p + |k1|p) + (1− θ)|h1 + k1|p)1/q
− 1

)
φθp(h, k).
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Thus, from the continuality of both φθp and

θsgn(h1)|h1|p−1 + (1− θ)sgn(h1 + k1)|h1 + k1|p−1

(θ(|h1|p + |k1|p) + (1− θ)|h1 + k1|p)1/q
− 1,

it follows that ∇xψθp(h, k) → ∇xψθp(x, y).
On the other hand, if t(h, k) ∈ int Kn, then

∇xψθp(h, k) = ((θ∇ḡ(h) + (1− θ)∇ḡ(h + k))∇ḡ(t(h, k))−1 − I)φθp(h, k)
= (θ∇ḡ(h) + (1− θ)∇ḡ(h + k))∇ḡ(t(h, k))−1t(h, k)− φθp(h, k)

−(θ∇ḡ(h) + (1− θ)∇ḡ(h + k))∇ḡ(t(h, k))−1(h + k). (4.6)

Since s2(x, y) 6= 0 by Lemma 3.2, we have s2(h, k) 6= 0 for any (h, k) sufficiently close to
(x, y). Thus, from (3.13) and the spectral decomposition, we have

t(h, k) = λ1(s(h, k))
1
p

(
1

− s2(h,k)
‖s2(h,k)‖

)
+ λ2(s(h, k))

1
p

(
1

s2(h,k)
‖s2(h,k)‖

)
.

Furthermore, we have

∇ḡ(t(h, k))−1t(h, k) =
1
2p

(
λ1(s(h, k))

1
p− 1

q + λ2(s(h, k))
1
p− 1

q

) (
1

s2(h,k)
‖s2(h,k)‖

)
.

Since s2(x, y) 6= 0, 1
p − 1

q ≥ 0 and t ≥ 0, it follows that s2 and t
1
p− 1

q are continuous at (x, y).
From Lemma 3.2, when (h, k) → (x, y), we have

∇ḡ(t(h, k))−1t(h, k) → 1
p
2−

p
q (θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)

1
p− 1

q

(
1

s2(x,y)
‖s2(x,y)‖

)
.

Since ∇ḡ(·) is continuous, it follows that ∇ḡ(h) → ∇ḡ(x) when (h, k) → (x, y). From
Lemma 3.2 we have that min{|λ1|, |λ2|} = 0 and min{|λ̄1|, |λ̄2|} = 0, and hence,

a(x) = 2p−1sgn(x1)|x1|p−1, b(x) = 2p−2p · sgn(x1)|x1|p−1, c(x) = 2p−2p|x1|p−1;
a(x + y) = 2p−1sgn(x1 + y1)|x1 + y1|p−1,
b(x + y) = 2p−2p · sgn(x1 + y1)|x1 + y1|p−1, c(x + y) = 2p−2p|x1 + y1|p−1,

where a(·), b(·) and c(·) are defined by (3.12). So,

∇ḡ(x) = 2p−2p · sgn(x1)|x1|p−1


 1 xT

2
x1

x2
x 1

2
pI + (1− 2

p )x2xT
2

x2
1


 ;

∇ḡ(x + y) = 2p−2p · sgn(x1 + y1)|x1 + y1|p−1

[
1 (x2+y2)

T

x1+y1
x2+y2
x1+y1

2
pI + (1− 2

p ) (x2+y2)(x2+y2)
T

(x1+y1)2

]
.

Hence, when (h, k) → (x, y), we have

(θ∇ḡ(h) + (1− θ)∇ḡ(h + k))∇ḡ(t(h, k))−1t(h, k)

→ θsgn(x1)|x1|p−1m5 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1m6

2(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)
1
q− 1

p

, (4.7)
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where

m5 =


 1 xT

2
x1

x2
x1

2
pI + (1− 2

p )x2xT
2

x2
1




(
1

s2(x,y)
‖s2(x,y)‖

)
;

m6 =

[
1 (x2+y2)

T

x1+y1
x2+y2
x1+y1

2
pI + (1− 2

p ) (x2+y2)(x2+y2)
T

(x1+y1)2

](
1

s2(x,y)
‖s2(x,y)‖

)
.

Thus, the right-hand side of (4.7) can be simplified by Lemma 3.2 as

θsgn(x1)|x1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)−
1
p + 1

q

(
1

s2(x,y)
‖s2(x,y)‖

)

+
(1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)−
1
p + 1

q

(
1

s2(x,y)
‖s2(x,y)‖

)

=
θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)−
1
p + 1

q

(
1

s2(x,y)
‖s2(x,y)‖

)
. (4.8)

In addition,

∇xψθp(x, y) =
(

θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)1/q
− 1

)
φθp(x, y)

=
θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)−
1
p + 1

q

(
1

s2(x,y)
‖s2(x,y)‖

)

−θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)−
1
p + 1

q

(x + y)

−φθp(x, y), (4.9)

where the first equality follows from Theorem 4.1; and the second follows from

(θ(|x|p + |y|p) + (1− θ)|x + y|p) =
(2s1(x, y))

1
p

2

(
1

s2(x,y)
‖s2(x,y)‖

)

= (θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)
1
p

(
1

s2(x,y)
‖s2(x,y)‖

)
.

To complete the proof, by (4.6), (4.8), and (4.9), we only need to prove that

(θ∇ḡ(h) + (1− θ)∇ḡ(h + k))∇ḡ(t(h, k))−1(h + k)

→ θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)−
1
p + 1

q

(x + y) (4.10)

when (h, k) → (x, y). Let

(l1, l2) := (θ∇ḡ(h) + (1− θ)∇ḡ(h + k))∇ḡ(t(h, k))−1(h + k).

Then (4.10) reduces to

l1 → θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)−
1
p + 1

q

(x1 + y1); (4.11)

l2 → θsgn(x1)|x1|p−1 + (1− θ)sgn(x1 + y1)|x1 + y1|p−1

(θ(|x1|p + |y1|p) + (1− θ)|x1 + y1|p)−
1
p + 1

q

(x2 + y2). (4.12)
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The proofs of (4.11) and (4.12) are omitted here. Hence, the proof of Part III is complete.
Combining Part I, Part II with Part III, we complete the proof. ¤
From Theorem 4.5, we obtain the main result of this paper as follows.

Theorem 4.6. If F is smooth everywhere on <n, then the merit function Ψθp defined by
(4.1) for the SOCCP (1.1) is smooth everywhere on <n for all θ ∈ (0, 1) and p ∈ (1, 2).

5 Numerical Results

In this section, we report some numerical results for solving

min
x∈<n

Ψθp(x), (5.1)

where Ψθp(x) is the merit function defined by (4.1) for the SOCCP (1.1). The purpose of
the numerical testings is to show some intuitive usefulness of the merit functions proposed
in this paper, which is also one of the motivations of this work. All experiments are done
on a PC with CPU of 2.4GHz and RAM of 2.0GB, and all codes are written in MATLAB.

We use an iterative algorithm to solve problem (5.1), where the iterative direction is
chosen as the steepest descent direction, and the iterative step-length is obtained by a non-
monotone Armijo line search [14], i.e., we compute the smallest nonnegative integer h such
that

Ψθp(xk + ρhdk) ≤ Ck − σρhΨθp(xk),

where

dk := −∇Ψθp(xk), Ck := max
i=k−mk,...,k

Ψθp(xi), and mk :=
{

0 if k ≤ s,
min{mk−1 + 1, m̂} otherwise.

Throughout the experiments, the parameters we used are: m̂ = 5, s = 5, ρ = 0.25 and
σ = 10−6. We adopt the following stopping rule: gap ≤ 10−3 and Ψθp(xk) ≤ 10−6, where
gap :=

∑nm

i=1 |xT
i Fi(x)| with xi ∈ Kni and Fi(x) being the corresponding part to xi of F (x).

We test problem (1.1) using (5.1) with different θ ∈ (0, 1], p ∈ (1, 2) or θ ∈ (0, 2), p = 2. The
test problems are the following Examples 1 and 2. We will map the number of iterations
for the two examples into Figures 1 and 2 for numerical analysis. We divide the cases we
tested into four groups according to different values of p (1.25, 1.5, 1.75 and 2). For every
p, a marked point on the corresponding curve in Figures 1 and 2 represents a tested θ.

Example 5.1. We test the SOCCP (2.2) with F (x) := Mx + q, where M ∈ <100×100 and
q ∈ <100; and we let K := K10 ×K10 × · · · K10. We generate a random matrix A ∈ <100×100

and a vector q ∈ <100 uniformly on [−1, 1] for its every element, respectively, then we set
M := A + 10I. The starting point x0 is chosen randomly uniformly on [−1, 1] for its every
element. We test every case ten times, and record the average number of iteration for every
case for numerical analysis. The numerical results are mapped in Figure 1.

Example 5.2. Consider a nonlinear SOCCP (1.1), which is taken from [15] with

F (x) :=




24(2x1 − x2)3 + exp(x1 − x3)− 4x4 + x5

−12(2x1 − x2)3 + 3(3x2+5x3)√
1+(3x2+5x3)2

− 6x4 − 7x5

− exp(x1 − x3) + 5(3x2+5x3)√
1+(3x2+5x3)2

− 3x4 + 5x5

4x1 + 6x2 + 3x3 − 1
−x1 + 7x2 − 5x3 + 2



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and K := K3 ×K2. The starting point x0 is chosen as (1, 1, 1, 1, 1)T . We record the number
of iterations for every case and map the results in Figure 2.

In our testings, all cases are solved by the above method without failure. From Figures
1 and 2, we see that the best numerical results do not appear when θ = 1 and p = 2, i.e.,
the case of the FB function. We see also that Ψθp with parameters p = 1.5 and p = 1.75
while θ = 0.5 work well for Example 5.1, and p = 1.5 and p = 1.75 while θ = 0.9 for
Example 5.2. However, these cases are not included in the cases given in [2, 22, 21, 24, 25].
Therefore, from the view of the numerical results obtained above, the SOC C-functions
φθp and the corresponding merit functions Ψθp proposed in this paper are valuable for the
tested problems that we considered. We have also tested some other problems, and the
computation effect is similar.

6 Conclusions

Based on the two generalized SOC C-functions proposed in [24, 25], we gave a generaliza-
tion of the two generalized SOC C-functions in this paper. In particular, we proved the
smoothness of the merit functions generated by the new SOC C-functions and their related
merit functions. Such a property is important in designing some algorithms for solving
the SOCCP, such as the merit function method for the SOCCP [24, 25]. The preliminary
numerical results indicate that the SOC C-functions proposed in this paper are valuable
for investigating the SOCCP. It is worthy to investigate the numerical behaviors of various
algorithms for solving the SOCCP when the new SOC C-functions are used. The second
further issue is to investigate other properties of the new SOC C-functions, such as, the
coercivity, the (strong) semismoothness, etc.. The third issue is to extend various results
related the new SOC C-functions to the framework of symmetric cones [19, 20].
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Figure 1: Performance profile for Example 5.1
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Figure 2: Performance profile for Example 5.2
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