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1 Introduction

In this paper we deal with some quantitative openness results for set-valued maps. We
consider separately the non-parametric and the parametric case and then we get several as-
sertions on implicit multifunctions. To this end, we strongly exploit a wide-used coderivative
condition, i.e. there exist c > 0, r > 0, s > 0 such that for every (x, y) ∈ GrF ∩ [B(x, r)×
B(y, s)] and every y∗ ∈ Y ∗, x∗ ∈ D̂∗F (x, y)(y∗),

c ‖y∗‖ ≤ ‖x∗‖ , (1.1)

where D̂∗F stands for the Fréchet coderivative of the multifunction F acting between some
Asplund spaces X, Y. This condition was firstly developed in [7, Theorem 5.6] and we quote
here, without being exhaustive, the references [9], [2], [4]. However, most of the results hold
as well for other coderivatives on appropriate spaces (see Section 3).

First, we give an openness result which, in contrast to the existing similar theorems, has
the advantage to exactly point out the constants involved in the openness property. The
estimation of the radius of the neighborhood where the linear openness holds allows us to
pass to the study of the parametric case and to put it in dialog with the non-parametric
case. The link we establish here between these two cases is one of the main features of
the paper. Besides its own interest, these exact estimations provide the necessary basis to
obtain as well some results for implicit set-valued maps.

The study of openness with linear rate started with the Banach open principle and
continued with several famous results as Lyusternik-Graves Theorem and Robinson-Ursescu
Theorem. In these results the setting was extended from the case of linear bounded operators
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to the case of (strictly) differentiable functions and convex, closed-graph set-valued maps,
respectively. Until now, the Robinson-Ursescu Theorem was included in the framework of
the results obtained on the base of condition (1.1) only in the particular case of Asplund
spaces (see [6, Theorem 4.21]). At the end of the third section, we observe that our main
openness result holds on general Banach spaces if F is a convex-graph multifunction, and
on this basis we provide a new proof of the Robinson-Ursescu Theorem.

The fourth section concerns the case of parametric set-valued maps. We show an openness
result for this case and we give again exact estimations for the constants. Moreover, we
present a discussion on the equivalence between the main results of the previous section
and those of the current section. We emphasize the fact that when we want to obtain the
parametric result directly from the non-parametric result, we get a weaker estimation of the
constant.

The last section and maybe the most important one deals with implicit multifunctions,
showing how several properties of the initial parametric set-valued map transfer to them.
These results would not be possible without the estimations mentioned before. The prop-
erties we envisage are: the lower semicontinuity, several kinds of metric regularity and the
Lipschitz-like property. Moreover, on this basis we recover a formula for the coderivative of
the implicit multifunction.

2 Preliminaries

Let X and Y be topological spaces. Consider a set-valued mapping F from X into Y. As
usual, the domain and the graph of F are denoted respectively by

Dom F := {x ∈ X | F (x) 6= ∅}

and
GrF = {(x, y) ∈ X × Y | y ∈ F (x)}.

If A ⊂ X then F (A) :=
⋃

x∈A

F (x). The set F (X) is denoted by ImF and is called the image of

F . The inverse set-valued map of F is F−1 : Y ⇒ X given by F−1(y) = {x ∈ X | y ∈ F (x)}.
The following concepts are standard in the theory of set-valued maps.

One says that F is lower semicontinuous (lsc for short) at x ∈ X if for every open set
D ⊂ Y with F (x) ∩D 6= ∅, there exists U ∈ V(x) such that for every x′ ∈ U, F (x′) ∩D 6= ∅
(where V(x) stands for the system of the neighborhoods of x).

In what follows, we shall use some weaker continuity assumptions (see, e.g., [6, Definition
1.63]). One says that F is inner semicontinuous at (x, y) ∈ GrF if for every open set D ⊂ Y
with y ∈ D, there exists U ∈ V(x) such that for every x′ ∈ U, F (x′)∩D 6= ∅. It is easy to see
that this notion is strictly weaker that the lower semicontinuity at x (in fact F is lsc at x iff
it is inner semicontinuous at every (x, y) with y ∈ F (x)). For example, the set-valued map
F : R ⇒ R given by F (0) = [−1, 1], F (x) = {0} for every x ∈ R\{0} is inner semicontinuous
at (0, 0) but it fails to be lsc at 0.

Suppose now that X, Y are normed vector spaces. In this setting, B(x, r) and D(x, r)
denote the open and the closed ball with center x and radius r, respectively. Sometimes
we write BX , DX , SX for the open and closed unit balls of X and for the unit sphere of
X, respectively. If x ∈ X and A ⊂ X, one defines the distance from x to A as d(x,A) :=
inf{‖x− a‖ | a ∈ A}. As usual, we use the convention d(x, ∅) = ∞. For a non-empty set
A ⊂ X we put cl A, aintA for the topological closure and the algebraic interior, respectively.
When we work on the product space X × Y, we consider the sum norm.
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One says that F is open at (x, y) ∈ GrF if the image through F of every neighborhood
of x is a neighborhood of y. Let us observe that F is inner semicontinuous at (x, y) ∈ GrF
if and only if F−1 is open at (y, x).

A stronger openness property is the openness with linear rate. One says that F : X ⇒ Y
is open with linear rate c > 0 around (x, y) ∈ GrF if there exist two neighborhoods U ∈ V(x),
V ∈ V(y) and a positive number ε > 0 such that, for every (x, y) ∈ GrF ∩ (U × V ) and
every ρ ∈ (0, ε),

B(y, ρc) ⊂ F (B(x, ρ)).

It is well known that this property is equivalent to the metric regularity property of F
around (x, y) which requires to exist a > 0 and two neighborhoods U ∈ V(x), V ∈ V(y) such
that for every u ∈ U and every v ∈ V to have

d(u, F−1(v)) ≤ ad(v, F (u)).

Another property closely related with the previous two is the Lipschitz-like property:
one says that F is Lipschitz-like around (x, y) ∈ GrF with modulus l > 0 if there exist two
neighborhoods U ∈ V(x), V ∈ V(y) such that

F (x) ∩ V ⊂ F (u) + ld(x, u)DX for all x, u ∈ U.

It is well-known that F is Lipschitz-like around (x, y) iff F−1 is metrically regular around
(x, y) iff F−1 is open with linear rate around (x, y). For more details see [6, Sections 1.2.2,
1.2.3].

One of the main tools for the proofs of our main results is the well-known Ekeland
variational principle (see [1]).

Theorem 2.1 (Ekeland variational principle). Let (X, d) be a complete metric space
and f : X → R ∪ {∞} be a proper function (i.e. dom f := {x ∈ X | f(x) ∈ R} 6= ∅) which
is lsc and lower bounded on X. Then for every x ∈ Dom f and every ε > 0 there exists
xε ∈ X such that

f(xε) ≤ f(x)− εd(x, xε)

and, for every x ∈ X \ {xε},

f(xε) < f(x) + εd(x, xε).

Most of the results of this paper work for several types of generalized differentiation
objects as we shall made precise later. But, for the clarity of our discussion we mainly use
the constructions developed by Mordukhovich and his collaborators (see [6]). We briefly
remind these concepts and results. First, recall that X∗ denotes the topological dual of
the normed vector space X, while the symbols w, w∗ are used for the weak and weak-star
topologies of the dual system (X, X∗). The symbol 〈·, ·〉 denotes the duality pairing between
X and its topological dual. Given a nonempty set S and a function f : X → R, we use the
following notations:

x
S→ x, if x → x and x ∈ S,

x
f→ x, if x → x and f(x) → f(x).
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Definition 2.2. Let X be a normed vector space, S be a non-empty subset of X and let
x ∈ S, ε ≥ 0. The set of ε−normals to S at x is

N̂ε(S, x) :=

{
x∗ ∈ X∗ | lim sup

u
S→x

x∗(u− x)
‖u− x‖ ≤ ε

}
. (2.1)

If ε = 0, the elements in the right-hand side of (2.1) are called Fréchet normals and their
collection, denoted by N̂(S, x), is the Fréchet normal cone to S at x.

Let x ∈ S. The basic (or limiting, or Mordukhovich) normal cone to S at x is

N(S, x) := {x∗ ∈ X∗ | ∃εn ↓ 0, xn
S→ x, x∗n

w∗→ x∗, x∗n ∈ N̂εn
(S, xn), ∀n ∈ N}.

If X is an Asplund space (i.e. a Banach space where every convex continuous function
is generically Fréchet differentiable), the formula for the basic normal cone takes a simpler
form, namely:

N(S, x) = {x∗ ∈ X∗ | ∃xn
S→ x, x∗n

w∗→ x∗, x∗n ∈ N̂(S, xn), ∀n ∈ N}.
Let f : X → R be finite at x ∈ X; the Fréchet subdifferential of f at x is the set

∂̂f(x) := {x∗ ∈ X∗ | (x∗,−1) ∈ N̂(epi f, (x, f(x)))}
and the basic (or limiting, or Mordukhovich) subdifferential of f at x is

∂f(x) := {x∗ ∈ X∗ | (x∗,−1) ∈ N(epi f, (x, f(x)))},
where epi f denotes the epigraph of f. On Asplund spaces one has

∂f(x) = lim sup
x

f→x

∂̂f(x),

and, in particular, ∂̂f(x) ⊂ ∂f(x). If f is convex, then both these subdifferential do coincide
with the classical Fenchel subdifferential. If δΩ denotes the indicator function associated
with a nonempty set Ω ⊂ X (i.e. δΩ(x) = 0 if x ∈ Ω, δΩ(x) = ∞ if x /∈ Ω ), then for any
x ∈ Ω, ∂̂δΩ(x) = N̂(Ω, x) and ∂δΩ(x) = N(Ω, x). Let Ω ⊂ X be a nonempty set and take
x ∈ Ω; then one has:

∂̂d(·,Ω)(x) = N̂(Ω, x) ∩DX∗ , N̂(Ω, x) =
⋃

λ>0

λ∂̂d(·,Ω)(x).

If, in addition, Ω is closed, then N(Ω, x) =
⋃

λ>0

λ∂d(·,Ω)(x).

An element x∗ ∈ ∂̂f(x) is called Fréchet subgradient of f at x and admits a smooth
variational description which will be useful in the sequel (see [6, Theorem 1.88(i)]):

Proposition 2.3 (Smooth variational description of Fréchet subgradients). Let
f : X → R be finite at x. Given x∗ ∈ X∗, if there are a neighborhood U of x and a function
s : U → R which is Fréchet differentiable at x with the derivative ∇s(x) = x∗ such that f−s

achieves a local minimum at x, then x∗ ∈ ∂̂f(x). Conversely, if x∗ ∈ ∂̂f(x) then there are a
neighborhood U of x and a function s : U → R which is Fréchet differentiable at x such that

s(x) = f(x), ∇s(x) = x∗ and s(x) ≤ f(x) for every x ∈ U.
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The next fuzzy sum rule for the Fréchet subdifferential is another main tool for obtaining
the desired openness results (see [6, Theorem 2.33]):

Theorem 2.4 (Fuzzy sum rule). Let X be an Asplund space and ϕ1, ϕ2 : X → R ∪ {∞}
be such that ϕ1 is Lipschitz continuous around x ∈ dom ϕ1 ∩ dom ϕ2 and ϕ2 is lower semi-
continuous around x. Then for any γ > 0 one has

∂̂(ϕ1+ϕ2)(x) ⊂
⋃
{∂̂ϕ1(x1)+∂̂ϕ2(x2) | xi ∈ x+γDX , |ϕi(xi)− ϕi(x)| ≤ γ, i = 1, 2}+γDX∗ .

The basic subdifferential satisfies a robust sum rule (see [6, Theorem 3.36]): if X is
Asplund, f1, f2, ..., fn−1 : X → R are Lipschitz around x and fn : X → R is lsc around this
point, then

∂(
n∑

i=1

fi)(x) ⊂
n∑

i=1

∂fi(x).

Definition 2.5. Let F : X ⇒ Y be a set-valued map and (x, y) ∈ GrF. Then the Fréchet
coderivative at (x, y) is the set-valued map D̂∗F (x, y) : Y ∗ ⇒ X∗ given by

D̂∗F (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂(GrF, (x, y))}.

Similarly, the normal coderivative of F at (x, y) is the set-valued map D∗
NF (x, y) : Y ∗ ⇒

X∗ given by

D∗
NF (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N(GrF, (x, y))}.

Note that, in fact, the concept of normal coderivative, independently of the normal cone
used in its definition, was introduced in [5]. If we consider convex-graph multifunctions, we
obtain a special form for these two coderivatives, which will be useful to derive a new proof
of the Robinson-Ursescu theorem from our openness results (see [6, Proposition 1.37]).

Proposition 2.6. Let F : X ⇒ Y be convex-graph and (x, y) ∈ GrF . Then one has the
following coderivative representation:

D̂∗F (x, y)(y∗) = D∗
NF (x, y)(y∗)

=
{

x∗ ∈ X∗ | 〈x∗, x〉 − 〈y∗, y〉 = max
(x,y)∈Gr F

[〈x∗, x〉 − 〈y∗, y〉]
}

.

In this case, we denote by D∗F (x, y)(y∗) any of the preceding two coderivatives.

3 Openness Results

We start with an openness result for set-valued mappings. The conclusion and the technique
of proof displayed in the next (main) result are fundamental in the sense that it can be used
as well (as we shall see later) for deriving openness results for parametric set-valued maps
and implicit multifunctions theorems. This technique as well as the following result can be
found in [9, Theorem 2.3] but we obtain here a more precise estimate for the neighborhoods
of (x, y) involved in the openness property. This will be essential in the sequel. For these
reasons we completely establish and prove here the result.
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Theorem 3.1. Let X, Y be Asplund spaces, F : X ⇒ Y be a set-valued map and (x, y) ∈
GrF. Suppose that the following assumptions are satisfied:

(i) GrF is closed;
(ii) there exist c > 0, r > 0, s > 0 such that for every (x, y) ∈ GrF ∩ [B(x, r)×B(y, s)]

and every y∗ ∈ Y ∗, x∗ ∈ D̂∗F (x, y)(y∗),

c ‖y∗‖ ≤ ‖x∗‖ .

Then for every a ∈ (0, c) and for every ρ ∈ (0, ε), where ε := min
(

1
2

(
c

c+1 − a
a+1

)
, r

a+1 , s
2a

)
,

it holds
B(y, ρa) ⊂ F (B(x, ρ)).

Proof. Take a ∈ (0, c), b ∈
(

a
a+1 , 1

2

(
c

c+1 + a
a+1

))
and ρ ∈ (0, ε). We have

b + ρ < c
c+1 , (3.1)

b−1aρ < b−1a r
a+1 < r. (3.2)

Choose v ∈ B(y, ρa) and define f : Gr F → R, f(x, y) := ‖v − y‖ . Since GrF is closed we
can apply the Ekeland variational principle for f for obtaining (ub, vb) ∈ GrF such that

‖vb − v‖ ≤ ‖y − v‖ − b(‖x− ub‖+ ‖y − vb‖) (3.3)

and
‖vb − v‖ ≤ ‖y − v‖+ b(‖x− ub‖+ ‖y − vb‖), for every (x, y) ∈ GrF.

From (3.3) and (3.2) we have

‖x− ub‖ ≤ b−1 ‖y − v‖ < b−1aρ < r,

‖y − vb‖ ≤ ‖y − v‖+ ‖v − vb‖ ≤ 2 ‖y − v‖ < 2ρa < s.

Hence, (ub, vb) ∈ GrF ∩ [B(x, r)×B(y, s)]. If vb = v, then

b ‖x− ub‖ ≤ (1− b) ‖y − v‖ < (1− b)aρ < bρ,

hence ub ∈ B(x, ρ) and v ∈ F (B(x, ρ)), which is exactly the conclusion.
We want to prove that vb = v is the sole possible situation. For this, suppose that v 6= vb

and consider the function

h : X × Y → R, h(x, y) := ‖y − v‖+ b(‖x− ub‖+ ‖y − vb‖).

From the second relation of the Ekeland variational principle, we have that the pair (ub, vb)
is a minimum point for h on the set Gr F , or, equivalently, (ub, vb) is a global minimum
point for the function h + δGr F . Applying the generalized Fermat rule, we have

(0, 0) ∈ ∂̂(h(·, ·) + δGr F (·, ·))(ub, vb).

Using the fact that h is Lipschitz and δGr F is lsc, we can apply the fuzzy calculus rule
for the Fréchet subdifferential. Choose γ ∈ (0, ρ) such that

D(ub, γ) ⊂ B(x, r),
v /∈ D(vb, γ) ⊂ B(y, s)
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and obtain that there exist

(u1
γ , v1

γ) ∈ D(ub, γ)×D(vb, γ) ⊂ B(x, r)×B(y, s),

(u2
γ , v2

γ) ∈ [D(ub, γ)×D(vb, γ)] ∩GrF ⊂ [B(x, r)×B(y, s)] ∩GrF

such that
(0, 0) ∈ ∂̂h(u1

γ , v1
γ) + ∂̂δGr F (u2

γ , v2
γ) + ρ(DX∗ ×DY ∗).

Observing that h is the sum of three convex functions, Lipschitz on X × Y, ∂̂h coincides
with the sum of the convex subdifferentials. Remarking also that v 6= v1

γ ∈ D(vb, γ), we
obtain

(0, 0) ∈ {0} × SY ∗ + b(DX∗ × {0}+ {0} ×DY ∗) + N̂(GrF, (u2
γ , v2

γ)) + ρ(DX∗ ×DY ∗).

We find then y∗1 ∈ SY ∗ , y∗2 , y∗3 ∈ DY ∗ , x∗1, x
∗
2 ∈ DX∗ such that

(−bx∗1 − ρx∗2,−y∗1 − by∗2 − ρy∗3) ∈ N̂(GrF, (u2
γ , v2

γ))

−bx∗1 − ρx∗2 ∈ D̂∗F (u2
γ , v2

γ)(y∗1 + by∗2 + ρy∗3).

Using that (u2
γ , v2

γ) ∈ GrF ∩ [B(x, r)×B(y, s)], we obtain

b + ρ ≥ ‖−bx∗1 − ρx∗2‖ ≥ c ‖y∗1 + by∗2 + ρy∗3‖ ≥ c(1− b− ρ),

which is a contradiction with the inequality (1− b− ρ)−1(b + ρ) < c.

Of course, the conclusion of the above theorem can be stated for a neighborhood of
(x, y) making some changes of the constants. We are mainly interested by the situation
described in the above result for the reasons which can be seen in the next section. Another
remark concerns the fact that Theorem 3.1 can be obtained (as well for a neighborhood of
the reference point) under the assumption that GrF is only locally closed at that point:
it should define the multifunction on an appropriate neighborhood of (x, y) and then make
some technical manipulations on the involved constants. We write down such a result; see
[6, Theorem 4.1].

Theorem 3.2. Let X, Y be Asplund spaces, F : X ⇒ Y be a set-valued map and (x, y) ∈
GrF such that GrF is locally closed at (x, y). Then the following assertions are equivalent:

(i) There exist r > 0, s > 0 and c > 0 such that for every (x, y) ∈ GrF∩[B(x, r)×B(y, s)]
and every y∗ ∈ Y ∗, x∗ ∈ D̂∗F (x, y)(y∗),

c ‖y∗‖ ≤ ‖x∗‖ .

(ii) There exist α > 0, β > 0, c > 0 and ε > 0 such that for every (x, y) ∈ GrF ∩
[B(x, α)×B(y, β)], every a ∈ (0, c) and every ρ ∈ (0, ε],

B(y, ρa) ⊂ F (B(x, ρ)).

The key condition (ii) is fully discussed in [9, Section 3] for the general case where instead
of D̂∗ one has a positively homogeneous map. We just point out that in the particular case
when GrF is convex then one can speak about a convex duality between the derivative of
F at a point (x, y) ∈ GrF (denoted by DF (x, y) : X ⇒ Y and defined as the set-valued
map whose graph is the tangent cone to GrF at (x, y)) and the coderivative of F at (x, y).
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In this case DF (x, y) is a convex process (i.e. its graph is a convex cone) and, taking into
account Theorem 1.3.16 in [11], the condition (ii) becomes:

(ii)′ There exist r > 0, s > 0 and a > 0 such that for every (x, y) ∈ [B(x, r)×B(y, s)] ∩
GrF

B(0, a) ⊂ cl DF (x, y)(B(0, 1)). (3.4)

This condition (ii)′ describes a property of uniform ”almost” openness of the derivative. The
word ”almost” is due to the presence of the closure in the right hand side of (3.4). So, in this
particular situation, Theorem 3.1 deduces a genuine openness property of a multifunction
from the ”almost” openness property of its normal derivative (see also [10]). Further, for the
case when F = T is a linear bounded operator, denoting by T ∗ the adjoint of T, condition
(ii) becomes ‖T ∗y∗‖ ≥ γ ‖y∗‖ for every y∗ ∈ Y ∗ and for some γ > 0. This relation is in turn
equivalent with the surjectivity of T.

Remark 3.3. We can see from the proof of Theorem 3.1 that the assumption that X and Y
are Asplund spaces is used only to apply the fuzzy calculus rule for the Fréchet subdifferential
of the sum. So, the results hold as well if one considers other types of subdifferentials which
satisfy similar calculus on the appropriate classes of Banach spaces. For, example, this is
the case of the following objects:

• the proximal subdifferential on the class of Hilbert spaces;

• the Fréchet subdifferential of viscosity on the class of Banach spaces which admit a C1

Lipschitz bump function;

• the β-subdifferential of viscosity on the class of Banach spaces which admit a β-
differentiable bump function.

Of course, in the case when the subdifferential satisfies exact calculus rules the results
holds as well. We illustrate by another well-known examples (for details, see Subsection
3.2.3 and the commentaries to it from [6], as well as [8]):

• the limiting (or Mordukhovich) subdifferential on the class of Asplund spaces;

• the approximate (or Ioffe) subdifferential on the class of Banach spaces;

• the Clarke subdifferential on Banach spaces.

Remark 3.4. Observe that if we add the assumption that GrF is convex, we do not need
X and Y to be Asplund spaces, because in this case δGr F is a convex function and we can
use the classical sum rule for the convex subdifferential instead of the fuzzy sum rule for
the Fréchet subdifferential on Asplund spaces, so Theorem 3.1 holds in this case on general
Banach spaces. In this way, we obtain another proof of the well-known Robinson-Ursescu
theorem, as follows.

Theorem 3.5 (Robinson-Ursescu). Let X and Y be Banach spaces and F : X ⇒ Y be a
set-valued map whose graph is convex and closed. Let (x, y) ∈ GrF such that y ∈ aint(ImF ).
Then for every V ∈ V(x) we have F (V ) ∈ V(y).
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Proof. The first part of the proof is classical, showing that there exists γ > 0 such that
D(y, γ) ⊂ cl F (D(x, 1)) (see, for example, [11, Theorem 1.3.5]) and it is based on the obser-
vation that F (D(x, 1))− y is absorbing and convex and on the Baire’s Theorem.

Take now (x, y) ∈ [D(x, 1)×D(y, 2−1γ)] ∩GrF. We have then

D(y, 2−1γ) ⊂ D(y, γ) ⊂ cl F (D(x, 1)) ⊂ cl F (D(x, 2)). (3.5)

Choose v∗ ∈ Y ∗ arbitrary, u∗ ∈ D∗F (x, y)(v∗) and using the representation of the
coderivatives from Proposition 2.6 we have

〈v∗, y − v〉 ≤ 〈u∗, x− u〉 , for every (u, v) ∈ GrF.

By (3.5), for every v ∈ D(y, 2−1γ) we find (vn) ⊂ F (D(x, 2)) such that vn → v and
consequently (un) ⊂ D(x, 2) such that vn ∈ F (un) for every n ∈ N. Hence

〈v∗, y − vn〉 ≤ 〈u∗, x− un〉 ≤ ‖u∗‖ ‖x− un‖ ≤ 2 ‖u∗‖ . (3.6)

Passing to the limit in (3.6) we obtain

〈v∗, y − v〉 ≤ 2 ‖u∗‖ , for every v ∈ D(y, 2−1γ),

showing that 2−1γ ‖v∗‖ ≤ 2 ‖u∗‖ .
We have shown that (ii) from Theorem 3.1 holds with r := 1, s := 2−1γ and c := 4−1γ.
Let V ∈ V(x) and a ∈ (0, c). Then we can find ρ > 0 sufficiently small such that

B(x, ρ) ⊂ V. In view of the Remark 3.4, we can use Theorem 3.1 to obtain that B(y, ρa) ⊂
F (B(x, ρ)) ⊂ F (V ), whence the conclusion.

If one fully exploits the conclusion of Theorem 3.1 then one obtains another known thing
(see, e.g., [11, Theorem 1.3.11]), namely the fact that under the assumptions of Robinson-
Ursescu Theorem one has openness with linear rate. We would like to mention that the
proof presented here is not (necessarily) simpler than other proofs in literature, but it has
the advantage that it is included in the framework of the results obtained on the base
of condition (1.1). Note that the derivation of the Robinson-Ursescu Theorem from the
coderivative condition in Asplund spaces was given in [6, Theorem 4.21].

4 Parametric Multifunctions

In the sequel we show that the openness theorem and its proof from the previous section
can be used to derive openness of some parametric set-valued maps. Moreover, we show a
partial equivalence between the non-parametric and the parametric cases.

Theorem 4.1. Let X, Y be Asplund spaces, P be a topological space and F : X × P ⇒ Y
be a set-valued map. Denote Fp(·) := F (·, p) and take (x, y, p) ∈ X × Y × P such that
y ∈ F (x, p). Suppose that the following hypothesis are satisfied:

(i) there exists U1 ∈ V(p) such that, for every p ∈ U1, GrFp is closed;
(ii) F (x, ·) is inner semicontinuous at (p, y);
(iii) there exist r, s, c > 0 and U2 ∈ V(p) such that, for every p ∈ U2, every (x, y) ∈

GrFp ∩ [B(x, r)×B(y, s)] and every y∗ ∈ Y ∗, x∗ ∈ D̂∗Fp(x, y)(y∗),

c ‖y∗‖ ≤ ‖x∗‖ .

Then for every a ∈ (0, c) and ρ ∈ (0, ε) , where ε := min
(

1
2

(
c

c+1 − a
a+1

)
, r

a+1 , 2s
3a

)
,

there exists U ∈ V(p) such that for every p ∈ U,

B
(
y, aρ

2

) ⊂ Fp(B(x, ρ)).
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Proof. Take, as above a ∈ (0, c), b ∈
(

a
a+1 , 1

2

(
c

c+1 + a
a+1

))
, ρ ∈ (0, ε) and use the inner

semicontinuity of F (x, ·) at (p, y) to find U3 ∈ V(p) such that, for every p ∈ U3, F (x, p) ∩
B

(
y, aρ

2

) 6= ∅. Choose U := U1 ∩ U2 ∩ U3 and fix p ∈ U. Then there exists y′ ∈ Fp(x) such
that ‖y′ − y‖ < aρ

2 .
Take v ∈ B

(
y, aρ

2

) ⊂ B(y′, aρ) and apply the Ekeland variational principle for the
function

f : Gr Fp → R, f(x, y) := ‖v − y‖
for obtaining (ub, vb) ∈ GrFp such that

‖vb − v‖ ≤ ‖y′ − v‖ − b(‖x− ub‖+ ‖y′ − vb‖)

and
‖vb − v‖ ≤ ‖y − v‖+ b(‖x− ub‖+ ‖y − vb‖), for every (x, y) ∈ GrFp.

Observe that

‖x− ub‖ ≤ b−1 ‖y′ − v‖ < b−1aρ < (a + 1)ρ < r,

‖y − vb‖ ≤ ‖y − v‖+ ‖v − vb‖ ≤ 2−1aρ + ‖y′ − v‖
≤ 2−1aρ + ‖y′ − y‖+ ‖y − v‖ < 2−13aρ < s.

In the following, the proof is similar with that of Theorem 3.1.

Let us observe that we can use directly Theorem 3.1 to obtain under the same assump-
tions as above a slightly weaker estimation. Namely, in this case ε can be obtained as
min

(
1
2

(
c

c+1 − a
a+1

)
, r

a+1 , s
3a

)
. To see this, fix a ∈ (0, c) and ρ ∈ (0, ε) . Using the inner

semicontinuity of F (x, ·) at (p, y), we can find as above U3 ∈ V(p) such that, for every
p ∈ U3, F (x, p) ∩B

(
y, aρ

2

) 6= ∅. Choose again U := U1 ∩ U2 ∩ U3 and fix p ∈ U. Then there
exists y′ ∈ Fp(x) such that ‖y′ − y‖ < aρ

2 , hence B
(
y, aρ

2

) ⊂ B(y′, aρ).
Denote s′ := 2s

3 . Then

B(y′, s′) ⊂ B
(
y, 2s

3 + aρ
2

) ⊂ B(y, s)

and ρ ∈
(
0,min

(
1
2

(
c

c+1 − a
a+1

)
, r

a+1 , s′
2a

))
. We can apply now Theorem 3.1 for Fp, s

′ and
(x, y′) instead of F, s and (x, y), respectively, to prove that B(y′, aρ) ⊂ Fp(B(x, ρ)), which
completes the proof.

Another interesting fact is that Theorem 4.1 can be used to prove Theorem 3.1.
For this, suppose that all the assumptions of Theorem 3.1 are satisfied, take P := Y and

define the set-valued map F̃ : X × Y ⇒ Y, F̃ (x, y) := F (x)− y. Denote F̃y(·) := F̃ (·, y) and
notice that

Gr F̃y = GrF + (0,−y), for every y ∈ Y.

Because (x, y) ∈ GrF, we have (x, y, 0) ∈ Gr F̃ . Using the closedness of Gr F , we observe
that (i) of Theorem 4.1 is satisfied for U1 := Y.

Also, F̃ (x, ·) = F (x)− · is obviously inner semicontinuous at (y, 0).
To prove that (iii) of Theorem 4.1 is satisfied, take r, c, s > 0 such that for every (x, u) ∈

GrF ∩ [B(x, r)×B(y, s)] and every y∗ ∈ Y ∗, x∗ ∈ D̂∗F (x, u)(y∗), the relation c ‖y∗‖ ≤ ‖x∗‖
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holds. Define U2 := B(y, s
4 ) and take y ∈ U2. Then for every (x, z) ∈ Gr F̃y ∩ [B(x, r) ×

B(0, 3s
4 )] we have

(x, z + y) ∈ GrF ∩ [B(x, r)×B(y, 3s
4 )] ⊂ GrF ∩ [B(x, r)×B(y, s)].

Also, for every y∗ ∈ Y ∗, x∗ ∈ D̂∗F̃y(x, z)(y∗), we have

(x∗,−y∗) ∈ N̂(Gr F̃y, (x, z)) = N̂(GrF, (x, z + y)),

hence the relation c ‖y∗‖ ≤ ‖x∗‖ holds.
We can apply now Theorem 4.1 for F̃ , (x, y, 0) and s′ := 3s

4 to prove that for every

a ∈ (0, c) and every ρ ∈
(
0,min

(
1
2

(
c

c+1 − a
a+1

)
, r

a+1 , 2s′
3a

))
, there exists U ∈ V(y) such

that, for every y ∈ U,

B(0, aρ
2 ) ⊂ F̃y(B(x, ρ)) = F (B(x, ρ))− y,

or, equivalently, for every a ∈ (0, c) and every ρ ∈
(
0,min

(
1
2

(
c

c+1 − a
a+1

)
, r

a+1 , s
2a

))
, there

exists U ∈ V(y) such that ⋃

y∈U

B(y, aρ
2 ) ⊂ F (B(x, ρ)).

Moreover, we can see from the proof of Theorem 4.1 that U = U1 ∩ U2 ∩ U3, where
U3 ∈ V(y) is chosen such that

F̃ (x, y) ∩B(0, aρ
2 ) 6= ∅ for every y ∈ U3. (4.1)

Take U3 := B(y, aρ
2 ) and see that y ∈ B(y, aρ

2 ) ∩ F (x) for every y ∈ U3, which shows
(4.1). Also, aρ

2 < s
4 , hence U = B(y, aρ

2 ) and

B(y, aρ) =
⋃

y∈U

B(y, aρ
2 ) ⊂ F (B(x, ρ)).

5 Implicit Multifunctions

In the following, we seek for results concerning implicit multifunctions, using the openness
theorem above stated for the parametric multifunctions. For a set-valued map F : X×P ⇒
Y, we can define the implicit multifunction H : P × Y ⇒ X by

x ∈ H(p, y) ⇔ y ∈ F (x, p).

Denoting Hp(·) := H(p, ·), we have Hp = F−1
p for every p ∈ P. Following the classical

theory, we can further define G : P ⇒ X as H(·, 0), so for every p ∈ P,

G(p) = {x ∈ X | 0 ∈ F (x, p)}.

The next result is an implicit multifunction theorem, showing that certain properties of
the multifunction F can be transferred to H and G.
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Theorem 5.1. Let X, Y be Asplund spaces, P be a topological space and F : X × P ⇒ Y
be a set-valued map such that y ∈ F (x, p). Suppose that all the assumptions of Theorem
4.1 are satisfied. Then there exist U ∈ V(p), δ > 0 and ρ > 0 such that, for every p ∈ U
and y ∈ B(y, δ), the multifunction (p, y) ⇒ H(p, y) ∩ B(x, ρ) takes nonempty values. In
particular, if y := 0, the multifunction p ⇒ G(p) ∩B(x, ρ) takes nonempty values for every
p ∈ U.

If, in addition, the next hypothesis is satisfied:
(iv) There exist U3 ∈ V(p) and α > 0 such that F (x, ·) is lsc on U3 for every x ∈ B(x, α),

then there exist U0 ∈ V(p), δ0 > 0 and ρ0 > 0 such that the multifunction (p, y) ⇒ H(p, y)∩
B(x, ρ0) is lsc on U0 × B(y, δ0). Again, if y = 0, the multifunction p ⇒ G(p) ∩ B(x, ρ0) is
lsc on U0.

Proof. Choose a ∈ (0, c) and ρ ∈ (0,min(ε, r)) that provide U from the conclusion of the
Theorem 4.1. Then for every p ∈ U, B(y, 2−1aρ) ⊂ Fp(B(x, ρ)). Take δ := 2−1aρ and
(p, y) ∈ U×B(y, δ). There exists x ∈ B(x, ρ) such that y ∈ Fp(x), hence x ∈ H(p, y)∩B(x, ρ).

For the second part, take again a ∈ (0, c) and ρ ∈ (0,min(ε, r, α)) to obtain U. Take
U0 := U ∩ U3, δ0 := 2−1aρ and ρ0 := ρ and choose (p, y) ∈ U0 × B(y, δ0). There exists
x ∈ H(p, y) ∩ B(x, ρ0), which is nonempty from the first part. We have to prove that
for every θ > 0 arbitrarily small, there exist U ′ ∈ V(p) and δ′ > 0 such that, for every
(p′, y′) ∈ U ′ ×B(y, δ′), H(p′, y′) ∩B(x, ρ0) ∩B(x, θ) 6= ∅.

For this, choose θ > 0 sufficiently small, β ∈ (0, θ) such that B(x, β) ⊂ B(x, θ) ⊂ B(x, ρ)
and γ > 0 such that B(y, γ) ⊂ B(y, s). With an analogous argument as in the proof of the
first part of the theorem, applied for (x, p, y) instead of (x, p, y), we can find U ′ ∈ V(p),
ρ′ ∈ (0, β) and δ′ > 0 such that, for every (p′, y′) ∈ U ′ × B(y, δ′), H(p′, y′) ∩ B(x, ρ′) 6= ∅.
Because H(p′, y′) ∩ B(x, ρ′) ⊂ H(p′, y′) ∩ B(x, β) ⊂ H(p′, y′) ∩ B(x, ρ) ∩ B(x, θ), we have
the conclusion.

Theorem 5.1 generalizes in several directions Theorem 3.1 from [3]. To be explicit, the
assumption (A2) is not needed, while (A3) can be meaningfully relaxed and, moreover, the
main result can be written to illustrate an openness property and to give some more details
about the neighborhoods of the reference point (x, p, y) where that property holds.

The next theorem shows a sort of metric regularity, as well as a graphical regularity for
the implicit multifunctions.

Theorem 5.2. Let X, Y be Asplund spaces, P be a topological space and F : X×P ⇒ Y be
a set-valued map such that y ∈ F (x, p). Suppose that the following assumptions are satisfied:

(i) there exists U1 ∈ V(p) such that, for every p ∈ U1, GrFp is closed;
(ii) F is inner semicontinuous at (x, p);
(iii) there exist r, s, c > 0 and U2 ∈ V(p) such that, for every p ∈ U2, every (x, y) ∈

GrFp ∩ [B(x, r)×B(y, s)] and every y∗ ∈ Y ∗, x∗ ∈ D̂∗Fp(x, y)(y∗),

c ‖y∗‖ ≤ ‖x∗‖ .

Then the following are true:
(a) For every a ∈ (0, c), there exist U ∈ V(p), δ > 0 and τ > 0 such that, for every p ∈ U,

y ∈ B(y, δ) and x ∈ B(x, τ),

d(x,H(p, y)) ≤ 1
ad(y, F (x, p)), (5.1)

hence if y = 0, for every p ∈ U and x ∈ B(x, τ),

d(x,G(p)) ≤ 1
ad(0, F (x, p)). (5.2)
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(b) If P is a metric space, denoting Hy(·) := H(·, y), for every a ∈ (0, c), there exist
γ0 > 0, δ0 > 0, τ0 > 0 and l := 1 + 1

a such that, for every p ∈ B(p, γ0), y ∈ B(y, δ0) and
x ∈ B(x, τ0), one has

d((p, x),GrHy) ≤ ld((x, p, y),GrF ), (5.3)

hence if y = 0, for every p ∈ B(p, γ0) and x ∈ B(x, τ0),

d((p, x),GrG) ≤ ld((x, p, 0),GrF ). (5.4)

Proof. (a) Let a ∈ (0, c) and ρ ∈
(
0,min

(
1
2

(
c

c+1 − a
a+1

)
, r

2(a+1) ,
s
4a

))
. Using the inner

semicontinuity of F at (x, p), we can find U0 ∈ V(p) and ν > 0 such that for every (x, p) ∈
B(x, ν)× U0,

F (x, p) ∩B(y, aρ
2 ) 6= ∅. (5.5)

Denote U := U0 ∩U1 ∩U2, τ := min(ν, r
2 ), δ := aρ

2 and take (x, p, y) ∈ B(x, τ)×U ×B(y, δ).
If y ∈ F (x, p), then (5.1) trivially holds. Suppose that y 6∈ F (x, p) and then, for every

ε > 0, we can find yε ∈ F (x, p) such that

‖yε − y‖ < d(y, F (x, p)) + ε. (5.6)

Because from (5.5) and the choice of y we have d(y, F (x, p)) < aρ, we can take ε > 0
sufficiently small such that d(y, F (x, p)) + ε < aρ. Using (5.6), we have

y ∈ B(yε, d(y, F (x, p)) + ε) ⊂ B(yε, aρ).

Moreover,

B(x, 2−1r) ⊂ B(x, r),

B(yε, 2−1s) ⊂ B(y, 2−1s + aρ)

⊂ B(y, 2−1s + aρ + 2−1aρ)
⊂ B(y, s).

Hence we can apply Theorem 3.1 for (x, yε) ∈ GrFp, r0 := 2−1r, s0 := 2−1s and
ρ0 := 1

a (d(y, F (x, p)) + ε) < ρ, showing that

B(yε, aρ0) ⊂ Fp(B(x, ρ0)).

We can find then x̃ ∈ B(x, ρ0) such that y ∈ Fp(x̃), or x̃ ∈ H(p, y). Hence

d(x,H(p, y)) ≤ ‖x− x̃‖ < 1
a (d(y, F (x, p)) + ε).

Making ε → 0, we obtain (5.1) with k := 1
a .

(b) The proof is similar with the proof of (a), but has some important different points.
Take as above a ∈ (0, c) and ρ ∈

(
0,min

(
1
2

(
c

c+1 − a
a+1

)
, r

4(a+1) ,
s
4a

))
, use again the inner

semicontinuity of F at (x, p) and find the neighborhood U0 of p and ν > 0 such that for
every (x, p) ∈ B(x, ν) × U0, (5.5) holds. If P is a metric space, we can find γ > 0 such
that B(p, γ) ⊂ U0 ∩ U1 ∩ U2. Take δ0 := min(aρ

2 , γ
6 ), τ0 := min(γ

6 , ν, r
4 ), γ0 := γ

3 and choose
(x, p, y) ∈ B(x, τ0)×B(p, γ0)×B(y, δ0).

We have

d((x, p, y),GrF ) ≤ ‖x− x‖+ d(p, p) + ‖y − y‖ < γ
6 + γ

3 + γ
6 = 2γ

3 ,

d((x, p, y),GrF ) < d(y, F (x, p)) < aρ.
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Without loss of generality suppose that y 6∈ F (x, p), hence for every ε > 0 sufficiently
small such that d((x, p, y),GrF )+ ε < min(aρ, 2γ

3 ) we can find (xε, pε, yε) ∈ GrF satisfying

max(‖yε − y‖ , d(pε, p)) ≤ ‖yε − y‖+ ‖xε − x‖+ d(pε, p)
< d((x, p, y),GrF ) + ε. (5.7)

Hence,

pε ∈ B(p, 2γ
3 ) ⊂ B(p, γ),

y ∈ B(yε, d((x, p, y),GrF ) + ε) ⊂ B(yε, aρ) (5.8)

and

B(xε, 4−1r) ⊂ B(x, 4−1r + aρ) ⊂ B(x, 2−1r) ⊂ B(x, r),

B(yε, 2−1s) ⊂ B(y, s).

Then we can apply Theorem 3.1 for (xε, yε) ∈ GrFpε
, r′ := 4−1r, s′ := 2−1s and

ρ′ := 1
a (d((x, p, y),GrF ) + ε) < ρ and obtain

B(yε, aρ′) ⊂ Fpε
(B(xε, ρ

′)).

Using (5.8), we have that there exists x̃ ∈ B(xε, ρ
′) such that y ∈ Fpε(x̃), or (x̃, pε) ∈

GrHy. Hence, using (5.7),

d((p, x),GrHy) ≤ ‖x̃− x‖+ d(pε, p)
≤ ‖x̃− xε‖+ ‖xε − x‖+ d(pε, p)

< 1
a (d((x, p, y),GrF ) + ε) + d((x, p, y),GrF ) + ε.

Making again ε → 0, we obtain (5.3) with l = 1
a + 1.

Theorem 5.2 covers Theorem 3.2 in [3], again with the relaxation of some assumptions.

The next result presents a formula for the coderivative of G, following the similarity with
the classical implicit function theorem, where a formula for the derivative of the implicit
function is present. This formula was shown in [2, Proposition 3.8], but here is obtained as
a consequence of (5.4).

Theorem 5.3. Suppose that all the hypotheses of Theorem 5.2 are satisfied for y = 0
and that P is an Asplund space. Then there exist γ > 0 and τ > 0 such that, for every
(x, p) ∈ B(p, γ)×B(x, ρ) such that x ∈ G(p) and for every x∗ ∈ X∗, the following inclusion
for the Fréchet coderivative of G holds:

D̂∗G(p, x)(x∗) ⊃
⋃

y∗∈Y ∗
{p∗ ∈ P ∗ | (−x∗, p∗) ∈ D̂∗F (x, p, 0)(y∗)}. (5.9)

Moreover, if GrF is closed, for every ε > 0 and every x∗ ∈ X∗, p∗ ∈ D̂∗G(p, x)(x∗),
there exist (xε, pε, yε) ∈ GrF and (x∗ε, p

∗
ε, y

∗
ε ) ∈ X∗ × P ∗ × Y ∗ such that

‖xε − x‖ < ε, ‖pε − p‖ < ε, ‖yε‖ < ε,

(−x∗ε, p
∗
ε) ∈ D̂∗F (xε, pε, yε)(y∗ε ),

‖x∗ε − x∗‖ < ε, ‖p∗ε − p∗‖ < ε.

Hence, if the multifunction F is N−regular at (x, p, 0) (i.e. D̂∗F (x, p, 0) = D∗
NF (x, p, 0)),

we have equality in (5.9).



OPENNESS AND IMPLICIT MULTIFUNCTIONS 547

Proof. Take γ > 0 and ρ > 0 such that for every p ∈ B(p, γ) and x ∈ B(x, τ), (5.4) holds.
Choose x ∈ G(p) ∩ B(x, ρ) and x∗ ∈ X∗, p∗ ∈ P ∗ such that there exists y∗ ∈ Y ∗ for which
(−x∗, p∗) ∈ D̂∗F (x, p, 0)(y∗). Then we have

(−x∗, p∗,−y∗) ∈ N̂(GrF, (x, p, 0)) = ∂̂δGr F (x, p, 0).

Using the smooth variational description of Fréchet subgradients, we can find α > 0,
β > 0, θ > 0 and a Fréchet differentiable function

s : B(x, α)×B(p, β)×B(0, θ) → R

such that

∇s(x, p, 0) = (−x∗, p∗,−y∗),
s(x, p, 0) = δGr F (x, p, 0) = 0, (5.10)
s(x̃, p̃, ỹ) ≤ δGr F (x̃, p̃, ỹ), for every (x̃, p̃, ỹ) ∈ B(x, α)×B(p, β)×B(0, θ).

Defining s̃ : B(p, β)×B(x, α) → R by s̃(p̃, x̃) := s(x̃, p̃, 0), we have from (5.10)

∇s̃(p, x) = ∇(ep,ex)s(x, p, 0) = (p∗,−x∗),
s̃(p, x) = s(x, p, 0) = 0 = δGr G(p, x),
s̃(p̃, x̃) = s(x̃, p̃, 0)

≤ δGr F (x̃, p̃, 0) = δGr G(p̃, x̃), for every (p̃, x̃) ∈ B(p, β)×B(x, α).

Hence, (p∗,−x∗) ∈ ∂̂δGr G(p, x) = N̂(GrG, (p, x)), or p∗ ∈ D̂∗G(p, x)(x∗), showing (5.9).
For the second part, take ε > 0 and x∗ ∈ X∗, p∗ ∈ D̂∗G(p, x)(x∗). Then there exists

λ > 0 such that (p∗,−x∗) ∈ ∂̂[λd((·, ·),GrG)](p, x). Using (5.4), we can find τ ′, γ′ > 0 such
that

λd((x̃, p̃),GrG) ≤ λl(d((x̃, p̃, ỹ),GrF ) + ‖ỹ‖) ≤ δGr F (x̃, p̃, ỹ) + λl ‖ỹ‖ ,

for every (x̃, p̃, ỹ) ∈ B(x, τ ′)×B(p, γ′)× Y ⊂ B(x, τ)×B(p, γ)× Y.
Now we define the functions f, g : B(x, τ ′)×B(p, γ′)× Y → R by

f(x̃, p̃, ỹ) := δGr F (x̃, p̃, ỹ) + λl ‖ỹ‖ ,

g(x̃, p̃, ỹ) := λd((x̃, p̃),GrG).

Using that f(x, p, 0) = g(x, p, 0) = 0 and f ≤ g, we obtain

(−x∗, p∗, 0) ∈ ∂̂g(x, p, 0) ⊂ ∂̂f(x, p, 0).

Because Gr F is closed, we can apply the fuzzy calculus rule for the Fréchet subdifferential
of f and ε chosen before to obtain that there exists (xε, pε, yε) ∈ X × P × Y such that

‖(xε, pε, yε)− (x, p, 0)‖ < ε,

‖δGr F (xε, pε, yε)− δGr F (x, p, 0)‖ < ε (5.11)

and

∂̂f(x, p, 0) ⊂ ∂̂δGr F (xε, pε, yε) + {0} × {0} × λlDY ∗ + ε(DX∗ ×DP∗ ×DY ∗).

Using (5.11) we have (xε, pε, yε) ∈ GrF and consequently there exist (−x∗ε, p
∗
ε, y

∗
ε ) ∈

N̂(GrF, (xε, pε, yε)) and z∗ ∈ DY ∗ such that

(−x∗ + x∗ε, p
∗ − p∗ε,−y∗ε − λlz∗) ∈ ε(DX∗ ×DP∗ ×DY ∗),

which completes the proof.
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Finally, we present a theorem that shows how the Lipschitz-like property transfers from
F to the implicit multifunctions H and G.

Theorem 5.4. Let all the assumptions of the Theorem 5.2 be satisfied. In addition, suppose
that F is Lipschitz-like with respect to p uniformly in x around (x, p, y), which means that
there exist δ3, τ3, L > 0 and U3 ∈ V(p) such that for every x ∈ B(x, τ3) and every p1, p2 ∈ U3

B(y, δ3) ∩ F (x, p2) ⊂ F (x, p1) + Ld(p1, p2)DY . (5.12)

Then for every a ∈ (0, c) there exist δ̄, τ̄ > 0 and Ū ∈ V(p) such that for every y ∈ B(y, δ̄)
and every p1, p2 ∈ Ū

B(x, τ̄) ∩H(p2, y) ⊂ H(p1, y) + L
a d(p1, p2)DX ,

which means that H is Lipschitz-like with respect to p uniformly for y ∈ B(y, δ̄) with modulus
L
a .

In particular, if y = 0, the implicit multifunction G is Lipschitz-like with the same
modulus.

Proof. Fix a ∈ (0, c) and take δ̄ := min(δ, δ3), τ̄ := min(τ, τ3), Ū := U ∩ U3, with δ, τ and U
provided by Theorem 5.2, (a). Choose now y ∈ B(y, δ̄), p1, p2 ∈ Ū and x ∈ B(x, τ̄)∩H(p2, y).
Then, using (5.12), we obtain that

y ∈ F (x, p2) ∩B(y, δ̄) ⊂ F (x, p1) + Ld(p1, p2)DY

and using (5.1), i.e. d(x,H(p1, y)) ≤ 1
ad(y, F (x, p1)), we have

d(x,H(p1, y)) ≤ 1
ad(y, F (x, p1)) ≤ L

a d(p1, p2).

The proof is complete.

We mention that the above result is again a generalization of the corresponding result
in [3].
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