
 

OPTIMAL CONTROL FOR FINAL APPROACH OF
RENDEZVOUS WITH NON-COOPERATIVE TARGET
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Abstract: This paper considers the final approach of rendezvous problem for servicing satellite to capture a
tumbling satellite with external forces/torques as control inputs. The main purpose is to design an optimal
control law to ensure a servicing satellite with the least fuel consumption. It is formulated as a constrained
optimal control problem, where specific requirements of this final approach problem are all incorporated
in the problem formulation. Then, by utilizing the specific features of the problem, this final approach of
rendezvous problem is transformed into an equivalent standard optimal control problem subject to continuous
state inequality constraints. A computational method is developed, based on the control parametrization
in conjunction with a time scaling transform and the constraint transcription method, to design an optimal
controller for this new constrained optimal control problem. Numerical results are presented for illustration.
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1 Introduction

Satellite on-orbit autonomous servicing is a challenging problem. It has attracted signifi-
cant interests from many scientists and engineers in the past and current. To date there
have been on-orbit demonstrations such as Robot Technology Experiment (ROTEX) [5],
a German experiment, is the first autonomous space robotic system flown by NASA and
Engineering Test Satellite VII (ETS-VII) [17] from JAXA demonstrated the space manipu-
lator to capture a cooperative satellite whose attitude is stabilized during the demonstration
via tele-operation from the ground control station. NASA did an autonomous rendezvous
mission through the DART mission, where the mission failed due to more than expected
fuel usage during rendezvous maneuvering [2]. DARPA is currently developing a more ad-
vanced technology demonstration mission Orbital Express Program [24, 29, 28] and it has
completed first autonomous free flight and capture.

In order to perform on-orbit autonomous servicing, the chaser should firstly rendezvous
and capture the satellite to be serviced in orbit. In a general satellite capture problem,
we suppose that there is a target satellite and a chaser satellite flying in space. The target
satellite (target) is non-cooperative satellite which moves with spinning or tumbling motions
in an orbit (see Figure 1), while the task of the chaser satellite (chaser) is to rendezvous
with the target in space in a desired way and finally capture it. In Fig. 1, the trajectory 1
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is safe and feasible, and the trajectory 2 shows the chaser will knock into target, hence it is
infeasible.

1

2

docking port

target

chaser

Figure 1: Rendezvous with non-cooperative target

Most of the current and past on-orbit servicing missions focus only on the capture of a
cooperative satellite which is supposed to move smoothly in its orbit without rapid attitude
changing. In reality, a malfunctioning satellite may spin or tumble in orbit. Such a satellite
is considered as a non-cooperative satellite. Capture of a non-cooperative satellite is a
tremendous challenge. Very few research work on the problem of capturing a tumbling
satellite have been done. Most of the proposed methods require a manipulator onboard the
chaser satellite (e.g. [14, 30]). Even with a very capable manipulator, the chaser still has
to align with the tumbling satellite before any subsequent robotic operations can proceed.
Sakawa studied the problem of controlling a single freely flying object to fly from one position
and orientation to another in an optimal manner [21]. Matsumoto, et al. studied fly-by and
optimal orbits for maneuvering to a rotating satellite [15]. Nakasuka and Fujiwara proposed
a method for matching angular velocities between the chaser and target by changing the
target’s moments of inertia [18]. Fitz-Coy and Liu proposed a two phase navigation solution
for rendezvous with a tumbling satellite in 2D space [3]. Artificial intelligence method was
applied to autonomous rendezvous and docking [1, 9, 12, 19].

This paper focuses on the final approach of rendezvous problem for servicing satellite
to capture a tumbling satellite with external forces/torques as control inputs. The main
purpose is to design the optimal control law to ensure the final approach problem with the
least possible fuel consumption. The final approach of rendezvous problem is formulated
as a constrained optimal control problem, where specific requirements of the problem are
all incorporated in problem formulation. Then, by taking into consideration of the specific
features of the problem, this optimal final approach problem is transformed into an equiva-
lent standard optimal control problem involving terminal state constraint. There are some
methods available in the literature which can be used to solve this constrained optimal con-
trol problem. Example of these methods are [4, 16, 20, 25] and the references cited therein.
Relevant software packages are MISER3.2 [6], SCOS [7, 8, 10], RIOTS 95 [22, 23]. In
this paper, the constraint transcription method [25] is used to transform the constraints into
canonical form. In this way, we obtain a sequence of optimal control problems with canon-
ical constraints. We then develop an efficient computational method based on the control
parametrization technique [26, 27] in conjunction with a time scaling transform [11]. This
computational method can make use of the optimal control software package, MISER 3.2.
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2 Problem Formulation

The optimal control law was designed based on the relative motion equation which was
described in the target’s body fixed frame. Assuming that the target’s motion (position,
orientation, and velocities) in space are known and except for the control thrusts of the
chaser, no other external forces are considered.
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Figure 2: Chaser and target’s motion in a plane

We consider the planar motion of the final approach as shown in Fig.2, the mass center
of the target O1 is assumed to be moving along a straight line at a constant speed. A
translating reference frame XY is fixed to point O1. Consider also a body-fixed frame X1Y1,
attached to the target also at O1. The two frames are assumed to be initially coincident.
The target with its body fixed frame X1Y1 is rotating at a constant angular velocity Ω about
the axis through O1 perpendicular to the plane. A body fixed frame X2Y2 is attached to the
chaser at its mass center O2, whose coordinates in the XY frame are (x, y). The orientation
of the chaser is denoted by θ, which is defined as the angle between the X2 and X axes.
There are two external forces u1 and u2, respectively in X2 and Y2 directions, and one
external torque u3, in the direction perpendicular to the plane, working as control inputs to
the chaser. The motion of the chaser with respect to the XY frame can then be described
as 




ẋ = vx

ẏ = vy

θ̇ = ω
v̇x = (u1 cos θ − u2 sin θ) /m
v̇y = (u1 sin θ + u2 cos θ) /m
ω̇ = u3/Iz

(2.1)

where m is the mass of the chaser, Iz is the polar moment of inertia of the chaser about the
point O2, (x, y) are the coordinates of O2 in the XY frame, dot means time derivative and
vx , vy and ω represent the translational and rotating velocities of the chaser observed in
the XY frame.

The position vector with respect to the XY frame, [x y]T , can be expressed in the X1Y1

frame as [xr yr]
T by using the orthogonal transformation [xr yr]

T = A [x y]T where

A =
[

cosΩt sinΩt
− sinΩt cosΩt

]

in which t represents time. System (2.1) can then be rewritten as the relative motion
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equation in the target’s body-fixed frame X1Y1





ẋr = vxr

ẏr = vyr

θ̇r = ωr

v̇xr = Ω2xr + 2Ωvyr + u1 cos θr − u2 sin θr

v̇yr = Ω2yr − 2Ωvxr + u1 sin θr + u2 cos θr

ω̇r = u3

(2.2)

with initial and terminal conditions

xr(0) = xr0, yr(0) = yr0, θr(0) = θ,
vxr(0) = vxr0, vyr(0) = vyr0, ωr(0) = ωr0.

(2.3)

xr(tf ) = xrf , yr(tf ) = yrf , θr(tf ) = θf ,
vxr(tf ) = 0, vyr(tf ) = 0, ωr(tf ) = 0.

(2.4)

where subscript r indicates the relative motion of the chaser with respect to the target,
observed from the target’s body-fixed frame X1Y1. For the final approach of the rendezvous
problem, here, tf > 0 is a given rendezvous time, vxr(tf ), vyr(tf ) and ωr(tf ), which are the
relative velocities of the chaser with respect to the target, must be equal to zero. Note that
θr = θ − Ωt and ωr = ω − Ω and the normalized control input u1, u2 and u3, satisfying
ui min ≤ ui(t) ≤ ui max, i = 1, 2, 3, is defined as

u1 = û1/m, u2 = û2/m, u3 = û3/Iz

where û1, û2 and û3 are physical control inputs.
In practice, the propeller only produces continuous forces. Thus, u1, u2 and u3 are to

be generated by their respective virtual input signals, which are

u̇1(t) = w1(t), u̇2(t) = w2(t), u̇3(t) = w3(t) (2.5)

where w1, w2 and w3 are the respective rates of change of u1, u2 and u3. The initial
conditions for (2.5) are

u1(0) = ζ1, u2(0) = ζ2, u3(0) = ζ3 (2.6)

where ζ1, ζ2 and ζ3 are parameters to be determined.
Different optimal controls can be designed for different optimality criteria, such as time

optimal, fuel-consumption optimal, etc. Here, we discuss the least possible fuel consumption
optimal control problem with specified initial and final conditions in a fixed time interval.
For System (2.2), in time interval [0, tf ], the terminal constraints specified in (2.4) can be
appended into the cost function, the optimal control law should minimize the cost function
by using the penalty function idea as shown below

J = k1 (xr(tf )− xrf )2 + k2 (yr(tf )− yrf )2

+ k3 (θr(tf )− θf )2 + k4v
2
xr(tf ) + k5v

2
yr(tf ) (2.7)

+ k6ω
2
r(tf ) +

∫ tf

0

√
u2

1 (t) + u2
2 (t) + u2

3 (t)dt

where k1, k2, k3, k4, k5 and k6 are penalty parameters. We can adjust these parameters
to achieve the required accuracy of satisfying the terminal constraints. The second term
represents the fuel consumption during the time interval.
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We write the continuous state inequality constraints as

gi(t) = ui(t)− ui max ≤ 0, i = 1, 2, 3
gj(t) = uj−3 min − uj−3(t) ≤ 0, j = 4, 5, 6 (2.8)

We may now state the corresponding optimal final approach control problem as:
Problem (P ): Subject to the system described by (2.2) and (2.5) with initial and ter-

minal conditions (2.3) and (2.4), find control functions w1, w2, w3 and decision variables
ζ1, ζ2 ζ3 such that the cost function (2.7) is minimized subject to the continuous state in-
equality constraints (2.8), where the penalty parameters k1, k2, k3, k4, k5 and k6 are to be
appropriately adjusted.

3 A Computational Method

We now develop an efficient computational method for solving Problem (P ) as follows.
Let the time interval [0, tf ] be partitioned into np subintervals with np + 1 partition

points denoted by τp
0 , τp

1 , ..., τp
np

such that

τp
0 = 0, τp

np
= tf and τp

k−1 < τp
k , for k = 1, ..., np (3.1)

where np satisfies np+1 > np. We now approximate the control functions in the form of
piecewise constant functions as

wp
1(t) =

∑np

k=1
σp

1,kχ[τp
k−1,τp

k )(t)

wp
2(t) =

∑np

k=1
σp

2,kχ[τp
k−1,τp

k )(t) (3.2)

wp
3(t) =

∑np

k=1
σp

3,kχ[τp
k−1,τp

k )(t)

where χ[τp
k−1,τp

k )(t) denotes the indicator function of [τp
k−1, τp

k ) defined by

χ[τp
k−1,τp

k )(t) =
{

1, t ∈ [
τp
k−1, τ

p
k

)
0, elsewhere

σp
1,k, σp

2,k, σp
3,k, k = 1, 2, . . ., np are control parameters, and τp

k , k = 0, 1, . . ., np are
switching time points such that (3.1) are satisfied.

Let Γp be the set of all vectors τp satisfying (3.1). σp
1=(σp

1,1, ..., σp
1,np

), σp
2=(σp

2,1, ...,
σp

2,np
), σp

3=(σp
3,1, ..., σp

3,np
) and τp=(τp

1 , ..., τp
np

). We consider Problem (P ) with its control
functions wp

1 , wp
2 and wp

3 expressed, respectively, by (3.2) to be referred to as Problem (Pp).
For each p > 1, Problem (Pp) is an optimal parameter selection problem. The gradient
formulae of the cost function (2.7) with respect to the control parameter vectors σp

1 , σp
2

and σp
3 as well as the initial condition parameters ζ1, ζ2 and ζ3 can be easily obtained.

See Theorem 5.2.1 of [25]. In fact, the gradient formulae of the cost function with respect
to the switching vector τp can also be derived by using an argument similar to that given
for Theorem 5.3.1 of [25]. However, these gradient formulae are not effective for numerical
calculation. For details, see comments given in [11, 13]. In this paper, we will employ
the idea of a time scaling transform [11] to map the variable switching time points into
pre-assigned fixed knots.

We introduce a transformation which will map t ∈ [0, tf ] into s ∈ [0, 1]:

dt(s)/ds = ϑp(s) (3.3)
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with initial and terminal condition t(0) = 0 and t(1) = tf , where ϑp is given by

ϑp(s) =
∑np

i=1
δp
i χ[ςp

i−1,ςp
i )(s)

where δp
i ≥ 0, i = 0, 1, . . . , np, represent the duration between consecutive control switches

and ςp
i ≥ 0, i = 0, 1, . . . , np, are preassigned time points in a new time horizon [0, 1]. The

function ϑp(s), with possible discontinuity points at s = ςp
k = k/np, k = 0, 1, . . ., np, is

called a time scaling control. Let δp
k, k = 1, . . ., np, be referred to collectively as δp, and Ωp

be the set of all such δp. Define ω̃p
1(s) = wp

1(t(s)), ω̃p
2(s) = wp

2(t(s)) and ω̃p
3(s) = wp

3(t(s)).
Then, ω̃p

1(s), ω̃p
2(s)and ω̃p

3(s) are determined uniquely by σp
1 , σp

2 , σp
3 and δp.

Define ũ1(s) = u1(t(s)), ũ2(s) = u2(t(s)), ũ3(s) = u3(t(s)), x̃r(s) = xr(t(s)), ỹr(s) =
yr(t(s)), ṽxr(s) = vxr(t(s)), ṽyr(s) = vyr(t(s)), θ̃r = θr(t(s)) and ω̃r(s) = ωr(t(s)). Then,
Problem (Pp), after the time scaling transform (3.3) and the application of the constraint
transcription method to the constraints (2.8), becomes:

Problem (Pp,ε,λ): Given the dynamical system:




˙̃xr(s) = ϑp(s)ṽxr(s)
˙̃yr(s) = ϑp(s)ṽyr(s)
˙̃
θr(s) = ϑp(s)ω̃r(s)
˙̃vxr(s) = ϑp(s)(Ω2x̃r(s) + 2Ωṽyr(s) + ũ1(s) cos θ̃r(s)− ũ2(s) sin θ̃r(s))
˙̃vyr(s) = ϑp(s)(Ω2ỹr(s)− 2Ωṽxr(s) + ũ1(s) sin θ̃r(s) + ũ2(s) cos θ̃r(s))
˙̃ωr(s) = ϑp(s)ũ3(s)
˙̃u1(s) = ϑp(s)ω̃p

1(s)
˙̃u2(s) = ϑp(s)ω̃p

2(s)
˙̃u3(s) = ϑp(s)ω̃p

3(s)
ṫ(s) = ϑp(s)

(3.4)

with initial conditions:

x̃r(0) = xr0, ỹr(0) = yr0, θ̃r(0) = θ, ṽxr(0) = vxr0, ṽyr(0) = vyr0,
ω̃r(0) = ωr0, ũ1(0) = ζ1, ũ2(0) = ζ2, ũ3(0) = ζ3, t(0) = 0.

where ϑp is determined uniquely by δp, find control parameter vectors σp
1 , σp

2 and σp
3 , initial

condition parameter constants ζ1, ζ2 and ζ3, and time scaling parameter vector δp ∈ Ωp

such that the cost function:

J = k1 (x̃r(1)− xrf )2 + k2 (ỹr(1)− yrf )2

+ k3(θ̃r(1)− θf )2 + k4ṽ
2
xr(1) + k5ṽ

2
yr(1) + k6ω̃

2
r(1)

+
∫ 1

0

ϑp(s)
√

ũ2
1 (s) + ũ2

2 (s) + ũ2
3 (s)ds (3.5)

is minimized subject to the constraint:
∑np

k=1
δp
k/np = tf

and the canonical inequality constraints:

F p
i,ε,λ(σp

1 , σp
2 , σp

3 , ξ1, ξ2, ξ2, δ
p) = −λ

+
∫ 1

0
Lε (gi(s, σ

p
1 , σp

2 , σp
3 , ξ1, ξ2, ξ3, δ

p)) ds ≤ 0
(3.6)
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i = 1, 2, . . . , 6, where λ ≥ 0 is adjustable constant value, gi, i = 1, 2, . . . , 6, are defined by
(2.8), and

Lε(g(s)) =





0 if gi(s) < −ε

(gi(s) + ε)2 /4ε if −ε ≤ gi(s) < ε
gi(s) if gi(s) > ε

where ε > 0 is an adjustable constant. The following theorem shows the relationship between
the continuous state inequality constraints (2.8) and their approximate canonical inequality
constraints.

Theorem 3.1. ∀ ε > 0, let (σp,ε,λ
1 , σp,ε,λ

2 , σp,ε,λ
3 ) be the control parameter vectors,

(ξp,ε,λ
1 , ξp,ε,λ

2 , ξp,ε,λ
2 ) the initial condition parameters, and δp,ε,λ the time scaling control pa-

rameter vector. Then, there exists a λ(ε), such that for all λ satisfying 0 < λ < λ(ε), if
Π = (σp,ε,λ

1 , σp,ε,λ
2 , σp,ε,λ

3 , ξp,ε,λ
1 , ξp,ε,λ

2 , ξp,ε,λ
2 , δp,ε,λ) satisfies the constraints

F p
i,ε,λ(Π) =

∫ 1

0

Lε(gi(s,Π))ds− λ ≤ 0

then it satisfies the continuous constraints (2.8).

Proof. The proof is similar to that given for Theorem 8.5.1 of [25].

During the computation, we assign initial values of ε and λ. Then, check whether the
continuous state inequality constraints (2.8) are satisfied or not. If they are not satisfied,
decrease the value of λ. By Theorem 3.1 we see that for each ε the reduction of λ needs
only be carried out a finite number of steps for the fulfillment of the continuous state
inequalities constraints (2.8). Once the continuous state inequalities constraints (2.8) are
satisfied, decrease the value of ε, and then reducing the values of λ until the continuous
state inequalities constraints (2.8) are satisfied. The process is repeated until ε is smaller
than or equal to a given tolerance.

4 Numerical Simulations

In this section, simulation results are given. The angular velocity of the target is assumed
to be Ω = 0.1rad/s. The initial condition is taken as

xr(0) = 10, yr(0) = 10, θr(0) = π/2,
vxr(0) = 1, vyr(0) = 1, ωr(0) = 1.

and the desired final state is

xr(tf ) = 1, yr(tf ) = 0, θr(tf ) = 0,
vxr(tf ) = 0, vyr(tf ) = 0, ωr(tf ) = 0.

The normalized control input are assumed to be

|ui(t)| ≤ 1, i = 1, 2, 3.

Let the terminal time, tf , be 10s, [0, tf ] is divided into 20 segments for numerical simulation.
The least fuel consumption of the final approach of rendezvous problem with the given

parameter values are solved using the computational method presented in Section III for
which the optimal control software MISER3.2 is used. The computer used is Pentium (R)
1.73GHz with 512M memory. The results obtained are
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Figure 3: Optimal trajectories I
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Figure 4: Optimal trajectories II
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Figure 5: Optimal trajectory of the chaser in X1-Y1 plane
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The corresponding value of the cost function J in equation (3.5) is 6.15. Fig. 3 and
Fig. 4 describe the state trajectories and Fig. 5 shows the chaser’s corresponding optimal
moving trajectory in the target’s body fixed frame X1Y1. Fig. 3 and Fig. 4 show the optimal
trajectory starting from the initial state and ending at the final state. Fig. 6 depicts the
normalized control signals. By using the thrust acceleration components show in the Fig.
6, the spacecraft of chaser can achieve no relative motion with the target, and at the same
time it rendezvous to desire terminal point showed in Fig. 5. The results indicate that the
control parametrization method is simple and efficient in the sense that convergence to the
final solution was obtained with a not large number of iteration.

5 Conclusion

This paper deals with the final approach of rendezvous problem for a servicing spacecraft
to approach a non-cooperative target with least fuel consumption. By utilizing specific
features associated with the least fuel final approach problem, we obtained an equivalent
standard optimal control problem. An efficient computational method was developed based
on the control parametrization method in conjunction with a time scaling transform, where
the constraint transcription method is used to approximate the continuous state inequality
constraints. Numerical simulation showed that the proposed computational method is highly
effective and efficient.
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