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1 Introduction and Motivation

The subject of vector variational inequalities has been studied intensively by optimization
researchers in the recent past. In fact a whole monograph [5] has been devoted to vector
variational inequalities. Further a look into Mathscinet would immediately show the huge
number of papers that are being published in this area.

We begin by defining the weak Stampacchia type vector variational inequality which we
denote by (SV V I)w. This problem consists of finding a vector x̄ ∈ K such that

(〈F1(x̄), y − x̄〉, 〈F2(x̄), y − x̄〉, ..., 〈Fm(x̄), y − x̄〉) 6∈ −intRm
+ for all y ∈ K, (1.1)

where each Fi : Rn → Rn, i=1,2,...m is a vector-valued function and K is a nonempty closed
convex set in Rn. The set of solutions of (SV V I)w is denoted by sol(SV V I)w. Observe
that if we set for each i = 1, . . . , m, Fi = ∇fi where each fi is a differentiable convex
function then a solution x̄ of the (SV V I)w is a weak Pareto minimum for the convex vector
optimization problem,

min f(x) = (f1(x), . . . , fm(x)) subject to x ∈ K.

Conversely any weak Pareto minimum of the above mentioned convex vector optimization
problem is a also a solution of the problem (SV V I)w with Fi = ∇fi for each i = 1, . . . , m.
Thus the problem (SV V I)w arises in a natural way as a generalization of the optimality
condition for the existence of a weak Pareto minimum for a convex vector optimization
problem. Let us recall that a scalar Stampacchia variational inequality problem in finite
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dimensions can also be viewed as a generalization of the optimality condition for a single-
objective convex optimization problem. In the case of a scalar variational inequality there
is a rich theory of gap functions associated with it. See for example Fukushima [4], Wu,
Florian and Marcotte [12], Larsson and Patriksson [6], Yamashita, Taji and Fukushima [11]
and the references there in. In the scalar case the gap function allows us to reformulate
the variational inequality into a constrained or unconstrained optimization problem. Gap
functions for vector variational inequalities have received some attention in the recent past.
For example in Chen, Goh and Yang [1] and Li, Yan and Chen [8] the gap functions defined
for vector variational inequalities are set-valued maps. On the other hand Mastroeni [9]
introduces a scalar gap function for a Minty type vector variational inequality. Our aim
in this article is to develop scalar gap functions for the weak Stamphaccia type vector
variational inequality (SV V I)w. Scalar valued gap functions may become helpful from the
computational point of view. We also use the gap functions developed here to devise error
bounds which are important from the computational point of view.

We proceed as follows. First we introduce a gap function for (SV V I)w and then develop a
regularized version of the gap function which is directionally differentiable. Our approach to
devise regularized version of the gap function is motivated by the approach due to Fukushima
[4] for the scalar case. The gap function and its regularized version introduced here provides
a constrained optimization reformulation of (SV V I)w. Further we also introduce the notion
of a difference gap function or D-gap function for (SV V I)w which leads to an unconstrained
optimization reformulation of (SV V I)w.

The paper is planned as follows. In Section 2 we introduce the scalar gap function for
(SV V I)w and its regularization in the sense of Fukushima [4]. We study in detail the various
properties of the regularized gap function. We then present an error bound for (SV V I)w

in terms of the regularized gap function when each of the component function are strongly
monotone. In section 3 we introduce the notion of a D-gap function for (SV V I)w. We
study in detail its main properties and also present an error bound in terms of the D-gap
functions at the end of that section.

2 A Gap Function and its Regularization

We will now introduce a scalar gap function for the vector variational inequality problem.
Our gap function here will depend on the scalarization scheme of Lee, et al [7]. We will first
state the scalarization scheme of Lee et al [7].

For every ξ ∈ Rm
+ \ {0}, consider the following scalar variational inequality:

(SV I)ξ : Find x̄ ∈ K such that
〈 m∑

i=1

ξiFi(x̄), y − x̄
〉
≥ 0 for all y ∈ K. (2.1)

The solution set of the above problem is denoted as sol(SV I)ξ. Using the above varia-
tional inequality Lee et al [7] provided the following scalarization result for (SV V I)w.

Theorem 2.1. The following properties hold.

(i)
⋃

ξ∈intRm
+

sol(SV I)ξ ⊂ sol(SV V I)w =
⋃

ξ∈Rm
+ \{0} sol(SV I)ξ.

(ii) sol(SV V I)wis a closed set, provided Fi is continuous for every i = 1, . . . , m

The gap function for (SV V I)w is given as follows

θ(x) = min
ξ∈Sm

max
y∈K

〈 m∑

i=1

ξiFi(x), x− y
〉
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The symbol Sm in the above expression denotes the unit simplex in Rm
+ i.e. it is given as

Sm =

{
x ∈ Rm

+ :
m∑

i=1

xi = 1

}

The use of Sm in the above expression in the above definition is to stress the fact that the
vector ξ 6= 0 and we just express the normalized version. Further use of Sm has an advantage
since if additionally we take K to be compact then the function θ is finite. It is not difficult
to see that θ(x) ≥ 0 for all x ∈ K and θ(x) = 0 if and only if x is a solution of (SV V I)w.
Though the proof of this fact is simple we provide it here for the sake of completeness in
form of the following theorem

Theorem 2.2. The function θ satisfies the following properties

i) θ(x) ≥ 0 for all x ∈ K.

ii) θ(x∗) = 0, x∗ ∈ K, if and only if x∗ solves (SV V I)w.

Proof. The fact that θ(x) ≥ 0 for all x ∈ K follows simply by setting y = x in the right
hand side of the expression for θ(x). Let us now consider a x∗ ∈ K such that θ(x∗) = 0.
Let us set

β(x∗, ξ) = max
y∈K

〈 m∑

i=1

ξiFi(x∗), x∗ − y
〉
.

It is simple to observe that since x∗ is fixed β(x, ξ) is a lower-semicontinuous convex function
of ξ. Further since θ(x∗) = 0 we see that β(x∗, ξ) is a proper convex function. This shows
that there exists ξ∗ ∈ Sm such that

β(x∗, ξ∗) = θ(x∗) = 0

This shows that for all y ∈ K

〈 m∑

i=1

ξ∗i Fi(x∗), y − x∗
〉
≥ 0.

This shows that x∗ solve (SV I)ξ∗ . Thus using Theorem 2.1 we conclude that x∗ is a solution
of (SV V I)w. Conversely let x∗ solves (SV V I)w. Then again using Theorem 2.1 we conclude
that there exists ξ′ ∈ Sm such that x∗ solves (SV I)ξ′ . This shows that β(x, ξ′) ≤ 0. This
shows that θ(x∗) ≤ 0. However we know that θ(x∗) ≥ 0 and thus proving that θ(x∗) = 0.

Thus if we minimize the function θ over the set K and the minimum is attained at x̄
and the minimum value is zero then x̄ is the solution (SV V I)w.

As we have mentioned above that if we assume that K is compact then we can guarantee
that the gap function θ is finite-valued. A natural question is whether we can develop a gap
function for (SV V I)w which is finite-valued irrespective of whether K is compact or not.
This is our primary motivation to regularize the gap function θ along the lines of Fukushima
[4].

Though the very evaluation of θ(x) for a given x may look formidable since one has to
carry out two optimization procedures to do that. However we would like to point out that
θ(x) is actually evaluated through two convex optimization problems. First of all let us set

β(x, ξ) = max
y∈K

〈 m∑

i=1

ξiFi(x), x− y
〉
.



500 C. CHARITHA AND J. DUTTA

Now observe that for each (x, ξ) ∈ Rn × Sm the function value β(x, ξ) is evaluated by
maximizing an affine function in y which is the instance of a concave maximization problem.
Also observe that for each fixed x ∈ Rn the function ξ 7→ β(x, ξ) is a convex function in ξ
and hence for each x ∈ Rn the function θ(x) is evaluated through a convex minimization
problem. However the function θ(x) is not in general a convex function in x and hence it is
not possible to say whether the directional derivative of θ exists or not. However directional
differentiability or some generalized differentiability of θ is useful for minimizing the function
θ. Further it is not possible even to guarantee whether θ is locally Lipschitz.

This is another major motivation for us to consider the regularization of θ using the
regularization approach of Fukushima [4]. In fact for the regularized gap function we will
show that the directional derivative exists and we will estimate it. We are now in a position
to define the regularized gap function for (SV V I)w. However let us mention here that in
the rest of the paper we will consider each Fi to be a continuously differentiable function
and in all the results that follow this will be assumed and we will not explicitly mention it.

Definition 2.3. The regularized gap function for (SV V I)w is defined as

φα(x) = min
ξ∈Sm

max
y∈K

{〈 m∑

i=1

ξiFi(x), x− y
〉
− α

2
‖y − x‖2

}
, α > 0. (2.2)

For fixed x ∈ Rn and ξ ∈ Rm
+ \ {0} consider the following problem,

fα(x, ξ) = max
y∈K

{〈 m∑

i=1

ξiFi(x), x− y
〉
− α

2
‖y − x‖2

}
, α > 0. (2.3)

which is equivalently written as

fα(x, ξ) = −min
y∈K

{〈 m∑

i=1

ξiFi(x), y − x
〉

+
α

2
‖y − x‖2

}
, α > 0.

Let us consider the following convex minimization problem

min
y∈K

〈 m∑

i=1

ξiFi(x), y − x
〉

+
α

2
‖y − x‖2 (2.4)

It is important to observe that the objective function in the above convex optimization
problem is strongly convex and therefore coercive. Thus the above minimization problem has
a solution and the solution is unique. There is no requirement of a compactness assumption
on K. It is well known that the necessary and sufficient condition for vector y ∈ K to solve
(2.4) is given as follows

−
m∑

i=1

ξiFi(x)− α(y − x) ∈ NK(y), (2.5)

where NK(y) denotes the normal cone to the convex set K at y. This shows that

(
x− α−1

m∑

i=1

ξiFi(x)
)
− y ∈ NK(y)

which implies that y is the projection of the vector x − α−1
∑m

i=1 ξiFi(x) onto the set K.
Hence for each x ∈ Rn, ξ ∈ Rm

+ \{0} and α > 0, the optimal solution of (2.4) can be uniquely
determined. Let us denote it by Hα(x, ξ). i.e.,
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Hα(x, ξ) = ProjK
(
x− α−1

m∑

i=1

ξiFi(x)
)

(2.6)

Therefore fα(x, ξ) can be written as

fα(x, ξ) = −
〈 m∑

i=1

ξiFi(x),Hα(x, ξ)− x
〉
− α

2
‖Hα(x, ξ)− x‖2 (2.7)

Lemma 2.4. For any x ∈ Rn α > 0 and any ξ ∈ Rm
+ \ {0}, let Hα(x, ξ) be given by (2.6).

Then the map Hα : Rn × Sm → K is continuous on Rn × Sm. Hence fα(x, ξ) is continuous
on Rm

+ × Sm and φα is well-defined.

Proof. Let (xn, ξn) be a sequence in Rn × Sm and let (xn, ξn) → (x̄, ξ̄). It is clear that
(x̄, ξ̄) ∈ Rn × Sm.

Let zn = xn − α−1
∑m

i=1 ξn
i Fi(xn) where ξn = (ξn

1 , ξn
2 , ..., ξn

m). Then the sequence zn of
vectors converges to x̄− α−1

∑m
i=1 ξ̄iFi(x̄).

From (2.6),

lim
n→∞

Hα(xn, ξn) = lim
n→∞

ProjK(zn)

Since the projection mapping on a closed convex set is a continuous function we have

lim
n→∞

ProjK(zn) = ProjK(x̄− α−1
m∑

i=1

ξ̄iFi(x̄)) = Hα(x̄, ξ̄)

This shows that

lim
n→∞

Hα(xn, ξn) = Hα(x̄, ξ̄).

Thus Hα is continuous on Rn×Sm. Further from (2.7) it is clear that fα(x, ξ) is continuous
on Rn × Sm. Since Sm is a compact set it is clear that φα is finite. Hence φα is well-
defined.

Remark 2.5. It is important to note that the regularized gap function φα is finite without
the assumption that K is compact while the compactness of K is an important criteria to
have the finiteness of the gap function θ.

Theorem 2.6. For each x ∈ Rn , α > 0 and ξ ∈ Rm
+ \ {0}, let Hα(x, ξ) be defined by (2.6).

Then x solves the variational inequality problem (SV I)ξ if and only if Hα(x, ξ) = x.

Proof. Let x solve the problem (SV I)ξ. It implies

〈 m∑

i=1

ξiFi(x), y − x
〉
≥ 0 for all y ∈ K.

Since Hα(x, ξ) solves the problem (2.4), we have

〈 m∑

i=1

ξiFi(x),Hα(x, ξ)−x
〉

+
α

2
‖Hα(x, ξ)−x‖2 ≤

〈 m∑

i=1

ξiFi(x), y−x
〉

+
α

2
‖y−x‖2,∀y ∈ K.
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This holds in particular for y = x. Hence we have

α

2
‖Hα(x, ξ)− x‖2 ≤

〈 m∑

i=1

ξiFi(x), x−Hα(x, ξ)
〉
. (2.8)

Since x is a solution of (SV I)ξ we have

〈 m∑

i=1

ξiFi(x), x−Hα(x, ξ)
〉
≤ 0.

Hence from (2.8) we conclude that

‖Hα(x, ξ)− x‖2 ≤ 0

Hence we conclude that Hα(x, ξ) = x.
Conversely, assume that Hα(x, ξ) = x. Since Hα(x, ξ) is a solution to the convex program

(2.4) we have

〈 m∑

i=1

ξiFi(x) + α(Hα(x, ξ)− x), y −Hα(x, ξ)
〉
≥ 0, ∀y ∈ K.

Hence 〈 m∑

i=1

ξiFi(x), y − x
〉
≥ 0, ∀y ∈ K.

Therefore x solves (SV I)ξ.

Theorem 2.7. Let φα be the function defined by (2.2). Then φα(x) ≥ 0 for all x ∈ K.
Furthermore, φα(x∗) = 0, x∗ ∈ K if and only if x∗ solves (SV V I)w.

Proof. Consider any x ∈ K. Then it follows from (2.3) that for any given ξ ∈ Sm,

fα(x, ξ) ≥
〈 m∑

i=1

ξiFi(x), x− y
〉
− α

2
‖y − x‖2, for all y ∈ K.

This is true in particular when y = x. Hence we conclude that for any ξ ∈ Sm we have

fα(x, ξ) ≥ 0

This clearly shows that,
φα(x) = min

ξ∈Sm
fα(x, ξ) ≥ 0.

Since x ∈ K was arbitrarily chosen we have φα(x) ≥ 0 for all x ∈ K.
For the second part let us begin by assuming that x∗ is a solution of (SV V I)w. Hence

using using Theorem 2.1 we conclude that there exists ξ′ ∈ Sm such that x∗ is also a
solution of (SV I)ξ′ . Further it follows from Theorem 2.6 that Hα(x∗, ξ′) = x∗. Hence we
can conclude from (2.7) that fα(x∗, ξ′) = 0. This clearly shows that φα(x∗) ≤ 0. However
from the first part of the proof we know that φα(x∗) ≥ 0 and this allows us to conclude that
φα(x∗) = 0.

Conversely, assume that φα(x∗) = 0 and x∗ ∈ K. Since Sm is compact there exists
ξ ∈ Sm such that fα(x∗, ξ) = 0. Hence using (2.7)we conclude that

〈 m∑

i=1

ξiFi(x∗), x∗ −Hα(x∗, ξ)
〉

=
α

2
‖Hα(x∗, ξ)− x∗‖2 (2.9)
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Moreover since Hα(x∗, ξ) solves the convex minimization problem (2.4), we have

〈
−

m∑

i=1

ξiFi(x∗)− α(Hα(x∗, ξ)− x∗), z −Hα(x∗, ξ)
〉
≤ 0, ∀z ∈ K.

Now setting z = x∗ in the above inequality we have

〈
−

m∑

i=1

ξiFi(x∗), x∗ −Hα(x∗, ξ)
〉
− α〈Hα(x∗, ξ)− x∗, x∗ −Hα(x∗, ξ)〉 ≤ 0.

Now using (2.9) the above inequality reduces to

−α

2
‖Hα(x∗, ξ)− x∗‖2 − α

〈
Hα(x∗, ξ)− x∗, x∗ −Hα(x∗, ξ)

〉
≤ 0.

This shows that
(α− α

2
)‖Hα(x∗, ξ)− x∗‖2 ≤ 0.

Therefore Hα(x∗, ξ) = x∗. Hence from Theorem 2.6, it follows that x∗ is a solution for
(SV I)ξ. Therefore we conclude from Theorem 2.1 that the vector x∗ solves (SV V I)w.
Hence the proof.

The above theorem shows that (SV V I)w is equivalent to the constrained minimization
problem

min
x∈K

φα(x) (2.10)

in the sense that if x∗ is a minimum of the above problem and φα(x∗) = 0, then x∗ is
solution of (SV V I)w and vice versa.

Theorem 2.8. The function φα is directionally differentiable in any direction d ∈ Rn and
its directional derivative is given by

φ′α(x; d) = min
ξ∈Λ(x)

{〈 ∑
ξiFi(x)−

m∑

i=1

ξi∇Fi(x)T (Hα(x, ξ)− x), d
〉

+ α〈Hα(x, ξ)− x, d〉
}

where
Λ(x) = {ξ ∈ Sm : φα(x) = fα(x, ξ)}

If Λ(x) is a singleton set,say Λ(x) = {ξ(x)} the φα is Gateaux differentiable at x and

∇φα(x) =
m∑

i=1

ξ(x)iFi(x)−
m∑

i=1

ξ(x)i∇Fi(x)T [Hα(x, ξ(x))− x] + α[Hα(x, ξ(x))− x] (2.11)

Proof. To begin with let us observe from Lemma 2.4 that fα(x, ξ) is a continuous function
over Rn × Sm. This implies that for each fixed x ∈ Rn the functions ξ 7→ fα(x, ξ) is
continuous over Sm. Using this fact it is simple to show that for each x ∈ Rn the set Λ(x)
is a non-empty closed set. Further Λ(x) is a subset of Sm, and hence it is also a compact
set.

Now for any ξ ∈ Sm,
∑m

i=1 ξiFi is continuously differentiable. Hence it follows from
Theorem 3.2, [4] that fα(x, ξ) is also continuously differentiable and the gradient of fα(x, ξ)
is given by

∇xfα(x, ξ) =
m∑

i=1

ξiFi(x)−
m∑

i=1

ξi∇Fi(x)T [Hα(x, ξ)− x] + α[Hα(x, ξ)− x] (2.12)
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From (2.2) and (2.7), we have

φα(x) = − max
ξ∈Sm

{−fα(x, ξ)}

Set
φ̂α(x) = max

ξ∈Sm
{−fα(x, ξ)}

Since Hα is continuous on Rn×Sm by Lemma 2.4, the map fα : Rn×Sm → R is continuous
on Rn × Sm. We also conclude from the continuity of Hα and ∇Fi, i = 1, . . . , m, that
∇xfα(x, ξ) is continuous on Rn × Sm.

Hence using Theorem 10.2.1, [3], φ̂α is directionally differentiable at x and

φ̂′α(x; d) = max
ξ∈Λ(x)

−〈∇xfα(x, ξ), d〉

Thus the regularized gap function φα is directionally differentiable at x and the directional
derivative is given by

φ′α(x; d) = − max
ξ∈Λ(x)

−〈∇xfα(x, ξ), d〉

Therefore
φ′α(x; d) = min

ξ∈Λ(x)
〈∇xfα(x, ξ), d〉. (2.13)

Substituting (2.12) for ∇xfα(x, ξ), we have

φ′α(x; d) = min
ξ∈Λ(x)

{〈 ∑
ξiFi(x)−

m∑

i=1

ξi∇Fi(x)T [Hα(x, ξ)− x] + α[Hα(x, ξ)− x], d
〉}

.

Hence the proof.
If Λ(x) = {ξ(x)}, a singleton set, then (2.13) reduces to the following

φ′α(x; d) = 〈∇xfα(x, ξ(x)), d〉.
Hence φα is Gateaux differentiable at x and the gradient ∇φα(x) is given by (2.11).

We shall now present an error bound for (SV V I)w when each of the functions Fi are strongly
monotone. In the study of scalar-valued variational inequalities the gap function and its reg-
ularization play a very important role in devising error bounds for the variational inequality
problem. Error bounds are fundamental since they allow us to estimate how far a feasi-
ble element is from the solution set without even having computed a single solution of the
associated variational inequality. The gap function plays a pivotal role in allowing us to
devise the error bound. We will now show that this pivotal role of the gap function can be
transferred in a very natural way from the scalar to the vector case. In our setting we will
devise an error bound in terms of the regularized gap function φα(x).

It is important to note that for a scalar variational inequality problem if the operator is
strongly monotone then there exists a unique solution for the problem. For details see for
example [2], Theorem 2.3.3. However for the vector variational inequality problem (SV V I)w

such a thing need not be true in general even if all functions Fi, i = 1, . . . , m are strongly
monotone. This fact can be gauged from Theorem 2.1. In fact if each Fi is strongly monotone
then so is

∑m
i=1 ξiFi for each ξ ∈ Rm

+ \{0}. Hence for each ξ ∈ Rm
+ \{0} the problem (SV I)ξ

has a unique solution. However as we change the vector ξ the solution vector changes as
well and all these solutions are in fact a solution of (SV V I)w. Thus sol(SV V I)w need not
be a singleton set in general. In what follows by the notation d(x,C) we mean the distance
between the point x and the set C.



REGULARIZED GAP FUNCTIONS AND ERROR BOUNDS FOR VVI 505

Theorem 2.9. Let us consider that each function Fi : Rn → Rn, i = 1, . . . , m are strongly
monotone with the modulus of strong monotonicity µi > 0. Let µ = min1≤i≤m µi and let
α > 0 be chosen so that α < 2µ. Then for any x ∈ K we have

d(x, sol(SV V I)w) ≤ 1√
µ− α

2

√
φα(x).

Proof. From our notations we can write the function φα(x) in the following way

φα(x) = min
ξ∈Sm

fα(x, ξ)

From Lemma 2.4 we know that fα is a continuous function on Rn × Sm it is clear that
function fα(x, .) is a continuous function on Sm. Hence there exists ξ∗ ∈ Sm ( ξ∗ will
depend on the chosen x ) such that

φα(x) = fα(x, ξ∗). (2.14)

Now as each Fi is strongly monotone with modulus of monotonicity µi > 0 then it is simple
to observe that

∑m
i=1 ξ∗i Fi is also strongly monotone with µ > 0. Thus (SV I)ξ∗ has a unique

solution and let us denote this as x∗. Further from Theorem 2.1 we know that x∗ also solves
(SV V I)w. Now using the definition of fα(x, ξ∗) and (2.14) we have for all y ∈ K,

φα(x) ≥
〈 m∑

i=1

ξ∗i Fi(x), x− y
〉
− α

2
||y − x||2.

Now setting y = x∗ we have

φα(x) ≥
〈 m∑

i=1

ξ∗i Fi(x), x− x∗
〉
− α

2
||x− x∗||2.

Now using strong monotonicity of
∑m

i=1 ξ∗i Fi we have

φα(x) ≥
〈 m∑

i=1

ξ∗i Fi(x∗), x− x∗
〉

+ (µ− α

2
)||x− x∗||2. (2.15)

Since x∗ solves (SV I)ξ∗ we have

〈 m∑

i=1

ξ∗i Fi(x∗), x− x∗
〉
≥ 0.

Hence from (2.15) we have noting that 2µ > α

||x− x∗|| ≤ 1√
µ− α

2

√
φα(x).

Hence we have

d(x, sol(SV V I)w) ≤ 1√
µ− α

2

√
φα(x).

Hence the result.
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3 D-gap Functions

We define the D-gap function for (SV V I)w which provides an unconstrained minimization
formulation of the (SV V I)w.

Definition 3.1. Consider the problem (SV V I)w. For any x ∈ Rn, α > 0 and any ξ ∈
Rm

+ \ {0}, let fα(x, ξ) be defined by (2.3). Then The D-gap function for (SV V I)w is defined
by,

φαβ(x) = min
ξ∈Sm

{fα(x, ξ))− fβ(x, ξ)} , 0 < α < β. (3.1)

If we set gαβ(x, ξ) = fα(x, ξ)− fβ(x, ξ) , then

φαβ(x) = min
ξ∈Sm

gαβ(x, ξ), 0 < α < β. (3.2)

Theorem 3.2. φαβ is non-negative on Rn.i.e., φαβ(x) ≥ 0 for all x ∈ Rn. Further, x∗

solves (SV V I)w if and only if φαβ(x∗) = 0

Proof. Let us take any x ∈ Rn and let us consider the function

gαβ(x, ξ) = fα(x, ξ)− fβ(x, ξ), 0 < α < β.

It follows from Proposition 3.1, [11] that for any fixed but arbitrary ξ ∈ Sm,

1
2
(β − α)‖x−Hβ(x, ξ)‖2 ≤ gαβ(x, ξ) ≤ 1

2
(β − α)‖x−Hα(x, ξ)‖2 (3.3)

This shows that for every ξ ∈ Sm

gαβ(x, ξ) ≥ 0

Hence we conclude that φαβ(x) ≥ 0. Since x ∈ Rn was chosen arbitrarily we have φαβ(x) ≥ 0
for all x ∈ Rn

To prove the second part we begin by assuming that x∗ is a solution of (SV V I)w. Then
we conclude from Theorem 2.1, there exists a ξ′ ∈ Sm such that x∗ solves (SV I)ξ′ . Further
it follows from Theorem 2.6 that Hα(x∗, ξ′) = x∗, which combined with (3.3) shows that
gαβ(x∗, ξ′) ≤ 0. Hence

φαβ(x∗) = min
ξ∈Sm

gαβ(x∗, ξ′) ≤ 0

Moreover from the first part of the theorem we know that φαβ(x∗) ≥ 0 this leads to the fact
that φαβ(x∗) = 0.

Conversely, assume that φαβ(x∗) = 0. Since Sm is compact there exists ξ ∈ Sm such
that

gαβ(x∗, ξ) = 0.

It follows from (3.3) that Hβ(x∗, ξ) = x∗. Hence we conclude from Theorem 2.6 that x∗

solves (SV I)ξ. Therefore from Theorem 2.1, x∗ is also a solution for (SV V I)w. Hence the
result.

We will now show that the D-gap function is also directionally differentiable and we will
provide an estimate for its directional derivative.
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Theorem 3.3. The D-gap function φαβ is directionally differentiable and its directional
derivative at a point x ∈ Rn and in the direction d ∈ Rn is given by

φ′αβ(x; d) =

min
ξ∈Λ(x)

{〈 m∑

i=1

ξi∇Fi(x)T [Hβ(x, ξ)−Hα(x, ξ)], d〉+ α〈Hα(x, ξ)− x, d〉 − β〈Hβ(x, ξ)− x, d
〉}

where
Λ(x) = {ξ ∈ Sm : φαβ(x) = gαβ(x, ξ)}

If Λ(x) is singleton, say Λ(x) = {ξ(x)} then φαβ is Gateaux differentiable at x and

∇φαβ(x) =
m∑

i=1

ξ(x)i∇Fi(x)T [Hβ(x, ξ(x))−Hα(x, ξ(x))]

+α[Hα(x, ξ(x))− x]− β[Hβ(x, ξ(x))− x] (3.4)

Proof. Since
∑m

i=1 ξiFi is continuously differentiable for every ξ ∈ Rm
+ \ {0}, it follows

from Theorem 3.2, [4] that fα and fβ are continuously differentiable in x. Hence gαβ is
continuously differentiable and and the gradient of the function gαβ is given by

∇xgαβ(x, ξ) =
m∑

i=1

ξi∇Fi(x)T [Hβ(x, ξ)−Hα(x, ξ)]+α[Hα(x, ξ)−x]−β[Hβ(x, ξ)−x] (3.5)

From Lemma 2.4, the maps fα, fβ : Rn × Sm → R are continuous on Rn × Sm. Hence the
map gαβ : Rn × Sm → R is continuous on Rn × Sm. Since Sm is compact it shows that
Λ(x) is a non-empty compact set. Further since ∇xgαβ = ∇xfα − ∇xfβ , the continuity of
the map ∇xgαβ : Rn × Sm → R on Rn × Sm follows form the continuity of the maps ∇xfα

and ∇xfβ . Now using Theorem 10.2.1, [3], we conclude that φαβ is differentiable at x and

φ′αβ(x; d) = min
ξ∈Λ(x)

〈∇xgαβ(x, ξ), d〉. (3.6)

Now substituting (3.5) for ∇xgαβ(x, ξ), we have

φ′αβ(x; d) =

min
ξ∈Λ(x)

{〈Σm
i=1ξi∇Fi(x)T [Hβ(x, ξ)−Hα(x, ξ)] + α[Hα(x, ξ)− x]− β[Hβ(x, ξ)− x], d〉} .

This proves the first part of the theorem.
If Λ(x) = {ξ(x)}, a singleton set, then (3.6) reduces to the following

φ′αβ(x; d) = 〈∇xgαβ(x, ξ), d〉.

Hence φαβ is Gateaux differentiable at x and the gradient ∇φαβ(x) is given by (3.4).

We will end this section by providing an error bound for (SV V I)w in terms of the D-gap
function. Before stating the result on error bound we would like to present the definition
a vector-valued Lipschitz function. A function F : Rn → Rn is said to be Lipschitz over
K ⊆ Rn with Lipschitz rank L > 0, if for any x, y ∈ K,

||F (y)− F (x)|| ≤ L||y − x||.
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Theorem 3.4. Let us consider that each of the functions Fi, i = 1, . . . , m are Lipschitz
on K with Lipschitz rank Li > 0, i = 1, . . . , m and also assume that each Fi is strongly
monotone on K with µi > 0, i = 1, . . . , m as the modulus of strong monotonicity. Let
L∗ = max{L1, . . . , Lm} and µ∗ = min{µ1, . . . , µm}. Then for any x ∈ K

d(x, sol(SV V I)w) ≤ L∗ + β

µ∗

√
2√

(β − α)

√
φαβ(x).

Proof. Let us note first of all that the function gαβ(x, .) is a continuous function over Sm.
This fact essentially follows from Lemma 2.4 and noting that gαβ(x, ξ) = fα(x, ξ)− fβ(x, ξ)
with 0 < α < β. Further as Sm is compact there exists ξ∗ ∈ Sm such that

φαβ(x) = gαβ(x, ξ∗). (3.7)

Note that ξ∗ depends on the choice of x. It is natural that as we change x the vector ξ∗ ∈ Sm

will also change. However once we have fixed x the corresponding ξ∗ is also fixed. Now since
each Fi is Lipschitz on K with Lipschitz rank Li > 0, and ξ∗ ∈ Sm, the function

∑m
i=1 ξ∗i Fi

is also Lipschitz on K with Lipschitz rank L∗ Further since each Fi is strongly monotone
with µi > 0 as its modulus of strong monotonicity it is simple to observe that

∑m
i=1 ξ∗i Fi

is strongly monotone with µ∗ as the modulus of strong monotonicity. Hence (SV I)ξ∗ has a
unique solution which we shall denote as x∗. Given x ∈ K we know that Hβ(x, ξ∗) is the
unique solution of the strongly convex minimization problem

min
y∈K

{〈 m∑

i=1

ξ∗Fi(x), y − x
〉

+
β

2
||y − x||2

}
(3.8)

We will first show that there exist a constant c > 0 such that

||x− x∗|| ≤ c||Hβ(x, ξ∗)− x||

We will show that the constant c independent of x and ξ∗ and will be given by the data of
the problem. Now since Hβ(x, ξ∗) is a unique solution of (3.8) we have for all y ∈ K

〈 m∑

i=1

ξ∗Fi(x) + β(Hβ(x, ξ∗)− x), y −Hβ(x, ξ∗)
〉
≥ 0.

The above inequality is true in particular when y = x∗ and hence from the above inequality
we have 〈 m∑

i=1

ξ∗Fi(x) + β(Hβ(x, ξ∗)− x),Hβ(x, ξ∗)− x∗
〉
≤ 0. (3.9)

Further since x∗ is a solution of (SV I)ξ∗ we have

〈 m∑

i=1

ξ∗i Fi(x∗), x∗ −Hβ(x, ξ∗)
〉
≤ 0. (3.10)

Adding (3.9) with (3.10) we get

〈 m∑

i=1

ξ∗i F (x)−
m∑

i=1

ξ∗i Fi(x∗) + β(Hβ(x, ξ∗)− x),Hβ(x, ξ∗)− x∗
〉
≤ 0.
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This can be rearranged as

〈 m∑

i=1

ξ∗i F (x)−
m∑

i=1

ξ∗i Fi(x∗), x− x∗
〉

≤ −β||Hβ(x, ξ∗)− x||2

−
〈 m∑

i=1

ξ∗i F (x)−
m∑

i=1

ξ∗i Fi(x∗),Hβ(x, ξ∗)− x
〉

+β〈Hβ(x, ξ∗)− x, x∗ − x〉.
Noting that β > 0 and also applying Cauchy-Schwarz inequality we have

〈 m∑

i=1

ξ∗i F (x)−
m∑

i=1

ξ∗i Fi(x∗), x− x∗
〉

≤
∣∣∣
∣∣∣

m∑

i=1

ξ∗i F (x)−
m∑

i=1

ξ∗i Fi(x∗)
∣∣∣
∣∣∣||Hβ(x, ξ∗)− x||

+β||Hβ(x, ξ∗)− x||||x− x∗||.
Noting that

∑m
i=1 ξ∗i Fi is Lipschitz on K with Lipschitz rank L∗ and also strongly monotone

with µ∗ as the modulus of strong monotonicity we have from the above inequality

µ∗||x− x∗||2 ≤ L∗||x− x∗||||Hβ(x, ξ∗)− x||
+β||x− x∗||||Hβ(x, ξ∗)− x||.

This shows that
||x− x∗|| ≤ L∗ + β

µ∗
||Hβ(x, ξ∗)− x||. (3.11)

Thus the required c > 0 is given as

c =
L∗ + β

µ∗

which as we see is independent of x and ξ∗. Now using (3.3) we have

||Hβ(x, ξ∗)− x|| ≤
√

2√
(β − α)

√
gαβ(x, ξ∗). (3.12)

Now combining (3.12) and (3.11) and also noting that φαβ(x) = gαβ(x, ξ∗) we arrive at the
desired conclusion.
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