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Abstract: In this paper a new algorithm to minimize convex functions is developed. This algorithm is
based on the concept of codifferential. Since the computation of whole codifferential is not always possible we
propose an algorithm for computation of descent directions using only a few elements from the codifferential.
The convergence of the proposed minimization algorithm is proved and results of numerical experiments using
a set of test problems with nonsmooth convex objective function are reported. We also compare the proposed
algorithm with three different versions of bundle methods. This comparison shows that the proposed method
is more robust than bundle methods.
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1 Introduction

Consider the following unconstrained minimization problem:

minimize f(x) subject to x ∈ IRn (1.1)

where the objective function f is assumed to be proper convex.
Numerical methods for solving Problem (1.1) have been studied extensively. Subgradient

methods [23], different versions of bundle methods [3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18,
19, 20, 24] are among them. In this paper, we propose a method, namely the truncated
codifferential method, for solving Problem (1.1).

The notion of codifferential was introduced in [2]. The codifferential mapping is Haus-
dorff continuous for most of important classes of nonsmooth functions. Despite its good
differential properties, only a few algorithms were developed based on the codifferential (see
[1, 2, 26]). In these algorithms it is assumed that either the whole codifferential or its subsets
can be computed at any point. However, this assumption is too restrictive for many classes
of nonsmooth optimization problems.

In this paper, a new codifferential method is proposed for solving Problem (1.1). At
each iteration of this method, a few elements from the codifferential are used to find descent
directions. Therefore we call this method a truncated codifferential method. It is proved
that a sequence generated by the truncated codifferential method converges to solutions of
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Problem (1.1). Results of numerical experiments using a set of well-known nonsmooth opti-
mization academic test problems are reported and used to compare the proposed algorithm
with the bundle method.

The paper is structured as follows: In Section 2, we recall the definition of the codiffer-
ential and describe it for convex functions. An algorithm for finding descent directions is
presented in Section 3. A truncated codifferential method is introduced and its convergence
is studied in Section 4. Results of numerical experiments are reported in Section 5. Section
6 concludes the paper.

We use the following notation in this paper. IRn is an n-dimensional Euclidean space,
〈u, v〉 =

∑n
i=1 uivi is an inner product in IRn and ‖ · ‖ is the associated Euclidean norm,

∂f(x) is the subdifferential of the convex function f at a point x, co denotes the convex
hull of a set, S1 = {x ∈ IRn : ‖x‖ = 1} is the unit sphere, Bε(x) = {y ∈ IRn : ‖y − x‖ < ε}
is the open and B̄ε(x) = cl Bε(x) is the closed ball centered at x with the radius ε > 0.

2 Codifferentials for Convex Functions

A function f : IRn → IR is called codifferentiable at x ∈ IRn if there exists a pair of convex
compact sets df(x) and df(x) of IRn+1 such that

f(x + ∆) = f(x) + max
(a,v)∈df(x)

[a + 〈v, ∆〉] + min
(b,u)∈df(x)

[b + 〈u, ∆〉] + ox(∆), (2.1)

for all ∆ ∈ IRn and ox(α∆)
α → 0 as α → +0.

The pair Df(x) = [df(x), df(x)] is called a codifferential of f at x, the set df(x) is
called hypodifferential and the set df(x) is called hyperdifferential of f at x. Elements of
the hypodifferential are called hypogradients and elements of the hyperdifferential are called
hypergradients. It is important to note that the codifferential is not uniquely defined [2].

A function f is called hypodifferentiable if df(x) = {0n+1}. It is called hyperdifferen-
tiable if df(x) = {0n+1}.

Now consider a convex function f : IRn → IR, a closed bounded set U ⊂ IRn, a point
x ∈ int U and for any z ∈ U take one subgradient vz ∈ ∂f(z). At the point x, the subgradient
inequality implies that

f(x) ≥ f(z) + 〈vz, x− z〉, ∀z ∈ U

and
f(x) = max

z∈U
{f(z) + 〈vz, x− z〉}.

At a point x + d ∈ U we have

f(x + d)− f(x) = max
z∈U

{f(z)− f(x) + 〈vz, x + d− z〉}

which implies that
f(x + d)− f(x) = max

(a,v)∈df(x)
{a + 〈v, d〉}, (2.2)

where the set df(x) is the hypodifferential of f at x given by (see [26]):

df(x) = cl co {(a, v) ∈ IR× IRn : a = f(z)− f(x) + 〈v, x− z〉, v ∈ ∂f(z), z ∈ U} .

Thus, convex functions are hypodifferentiable. The condition 0n+1 ∈ df(x∗) is both neces-
sary and sufficient for the point x∗ to be a solution to Problem 1.1. The hypodifferential can
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be applied to find descent directions of convex functions at non-stationary points. Indeed,
if 0n+1 6∈ df(x) then one can compute

‖w‖2 = min
{‖v‖2 : v ∈ df(x)

}
, w = (a, u) ∈ IR× IRn.

It is proved in [2] that in this case u 6= 0n. Then we define a direction g = −‖u‖−1u. For
this direction

f ′(x, g) ≤ −‖u‖,
that is g is a descent direction. Unfortunately, computation of the whole hypodifferential
df(x) is not always an easy task. Therefore, our first aim in this paper is to develop an
algorithm for finding descent directions using only a few elements from hypodifferentials.

3 Computation of a Descent Direction

In order to compute descent directions, we will define a subset of the hypodifferential and
will show that this subset is sufficient to find such directions. We take any λ ∈ (0, 1) and
define the following set:

H(x, λ) = cl co









∃y ∈ Bλ(x),
w = (a, v) ∈ IR× IRn : v ∈ ∂f(y),

a = f(y)− f(x)− 〈v, y − x〉





. (3.1)

It is clear that a ≤ 0 for all w = (a, v) ∈ H(x, λ). Since a = 0 when y = x

max
w=(a,v)∈H(x,λ)

a = 0. (3.2)

Let U ⊂ IRn be a closed convex set such that B̄λ(x) ⊂ intU for all λ ∈ (0, 1). In this case it
follows from the definition of both the hypodifferential and the set H(x, λ) that

H(x, λ) ⊂ df(x) ∀ λ ∈ (0, 1).

We call the sets H(x, λ) truncated codifferentials of the function f at the point x.

Proposition 3.1. Assume that 0n+1 6∈ H(x, λ) for a given λ ∈ (0, 1) and

‖w0‖ = min {‖w‖ : w ∈ H(x, λ)} > 0, with w0 = (a0, v
0).

Then v0 6= 0n and
f(x + λg0)− f(x) ≤ −λ‖w0‖, (3.3)

where g0 = −‖w0‖−1v0.

Proof. The necessary condition for a minimum implies that

〈w0, w − w0〉 ≥ 0 ∀w = (a, v) ∈ H(x, λ)

or
a0a + 〈v0, v〉 ≥ ‖w0‖2. (3.4)

First we will show that v0 6= 0n. Assume the contrary, that is v0 = 0n. Since w0 6= 0n+1

we get that a0 < 0. Then it follows from (3.4) that a0(a− a0) ≥ 0 or a ≤ a0 < 0. In other
words a < 0 for all w = (a, v) ∈ H(x, λ) which contradicts (3.2).
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Now we will prove (3.3). Dividing both sides of (3.4) by −‖w0‖ we get

− a0a

‖w0‖ + 〈v, g0〉 ≤ −‖w0‖. (3.5)

It is clear that ‖w0‖−1a0 ∈ (−1, 0) and since λ ∈ (0, 1)

µ = − λa0

‖w0‖ ∈ (0, 1).

Therefore taking into account that a ≤ 0 and (3.5) we get

a + λ〈v, g0〉 ≤ µa + λ〈v, g0〉 = − λa0

‖w0‖a + λ〈v, g0〉 ≤ −λ‖w0‖. (3.6)

It is obvious that x + λg0 ∈ Bλ(x). Then it follows from the definition of the set H(x, λ)
that

f(x + λg0)− f(x) = a + λ〈v, g0〉
where w = (a, v) ∈ H(x, λ) and a = f(x + λg0) − f(x) − λ〈v, g0〉, with v ∈ ∂f(x + λg0).
Then the proof follows from (3.6).

Proposition 3.1 implies that the set H(x, λ) can be used to find descent directions of a
function f . Furthermore, this can be done for any λ ∈ (0, 1). Unfortunately, it is not always
possible to apply Proposition 3.1 since it assumes the entire set H(x, λ) to be known. In
fact, computation of the entire set H(x, λ) is not always possible. However, Proposition 3.1
shows how an algorithm for finding descent directions can be designed. Such an algorithm
will use only a few elements from H(x, λ) to compute descent directions.

Let the numbers λ, c ∈ (0, 1) and a small enough number δ > 0 be given.

Algoritheorem 3.2. Computation of descent directions at x.

Step 1. Select any g1 ∈ S1, and compute v1 ∈ ∂f(x + λg1) and a1 = f(x + λg1) − f(x) −
λ〈v1, g1〉. Set H̄1(x) = {w1 = (a1, v

1)} and k = 1.

Step 2. Compute w̄k = (āk, v̄k) ∈ IR× IRn as a solution to the following problem:

min ‖w‖2 s.t. w ∈ H̄k(x). (3.7)

Step 3. If
‖w̄k‖ ≤ δ, (3.8)

then stop. Otherwise, compute ḡk = −‖w̄k‖−1v̄k and go to Step 4.

Step 4. If
f(x + λḡk)− f(x) ≤ −cλ‖w̄k‖, (3.9)

then stop. Otherwise, set gk+1 = ḡk and go to Step 5.

Step 5. Compute vk+1 ∈ ∂f(x + λgk+1) and ak+1 = f(x + λgk+1) − f(x) − λ〈vk+1, gk+1〉.
Construct the set H̄k+1(x) = co {H̄k(x)

⋃{wk+1 = (ak+1, v
k+1)}}, set k := k + 1 and go to

Step 2.
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Some explanations on Algorithm 3.2 follow. In Step 1 we select any direction g1 ∈ S1

and compute the element of the truncated codifferential in this direction. The least distance
between the convex hull of all computed elements of the truncated codifferential and the
origin is found in Step 2. This is a quadratic programming problem and algorithms from
[4, 11, 21, 22, 25] can be applied to solve it. In numerical experiments, we use the algorithm
from [25]. If the least distance is less than a given tolerance δ > 0, then the point x is an
approximate stationary point; otherwise, we compute a new search direction in Step 3. If
it is the descent direction satisfying (3.9) then the algorithm stops (Step 4). Otherwise, we
compute a new element of the truncated codifferential in the direction gk+1 in Step 5.

There are some similarities between the ways descent directions are computed in the
bundle-type algorithms and in Algorithm 3.2. The latter algorithm is close to the version
of the bundle method proposed in [24]. However, in the new algorithm elements of the
truncated codifferential are used instead of subgradients.

In the next proposition we show that Algorithm 3.2 terminates in a finite numbers of
iterations. A standard technique is used to prove it.

Proposition 3.3. Assume that f is proper convex function, λ ∈ (0, 1) and there exists
K ∈ (0,∞) such that

max {‖w‖ : w ∈ df(x)} ≤ K.

If c ∈ (0, 1) and δ ∈ (0,K), then Algorithm 3.2 terminates after at most m steps, where

m ≤ 2 log2(δ/K)/ log2 K1 + 2, K1 = 1− [(1− c)(2K)−1δ]2.

Proof. Since at a point x for a given λ ∈ (0, 1)

H̄k(x) ⊂ H(x, λ) ⊂ df(x)

for any k = 1, 2, . . ., it follows that

max
{‖w‖ : w ∈ H̄k(x)

} ≤ K, k = 1, 2, . . . (3.10)

First, we will show that if neither stopping criteria (3.8) and (3.9) are satisfied, then a
new hypogradient wk+1 computed in Step 5 does not belong to the set H̄k(x). Assume the
contrary, that is wk+1 ∈ H̄k(x). In this case ‖w̄k‖ > δ and

f(x + λgk+1)− f(x) > −cλ‖w̄k‖.

The definition of the hypogradient wk+1 = (ak+1, v
k+1) implies that

f(x + λgk+1)− f(x) = ak+1 + λ〈vk+1, gk+1〉,

and we have
−cλ‖w̄k‖ < ak+1 + λ〈vk+1, gk+1〉.

Putting gk+1 = −‖w̄k‖−1v̄k we get

〈vk+1, v̄k〉 − ‖w̄k‖
λ

ak+1 < c‖w̄k‖2. (3.11)
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Since w̄k = argmin {‖w‖2 : w ∈ H̄k(x)}, the necessary condition for a minimum implies that

〈w̄k, w〉 ≥ ‖w̄k‖2

for all w ∈ H̄k(x). Since by assumption wk+1 ∈ H̄k(x) we get

ākak+1 + 〈v̄k, vk+1〉 ≥ ‖w̄k‖2. (3.12)

Notice that ak+1 ≤ 0 and āk ≥ −‖w̄k‖. Then we have ākak+1 ≤ −‖w̄k‖ak+1. Combining
this with (3.12), we obtain

〈vk+1, v̄k〉 − ‖w̄k‖ak+1 ≥ ‖w̄k‖2.
Finally, taking into account that λ ∈ (0, 1) we have

〈vk+1, v̄k〉 − ‖w̄k‖
λ

ak+1 ≥ ‖w̄k‖2

which contradicts (3.11). Thus, if both (3.8) and (3.9) do not hold then the new hypogradient
wk+1 allows one to improve the approximation of the set H(x, λ).

It is clear that ‖w̄k+1‖2 ≤ ‖twk+1 + (1− t)w̄k‖2 for all t ∈ [0, 1], which means

‖w̄k+1‖2 ≤ ‖w̄k‖2 + 2t〈w̄k, wk+1 − w̄k〉+ t2‖wk+1 − w̄k‖2.
(3.10) implies that

‖wk+1 − w̄k‖ ≤ 2K.

It follows from (3.11) that

〈w̄k, wk+1〉 = ākak+1 + 〈v̄k, vk+1〉

≤ −‖w̄
k‖

λ
ak+1 + 〈v̄k, vk+1〉

< c‖w̄k‖2.
Then we have

‖w̄k+1‖2 < ‖w̄k‖2 − 2t(1− c)‖w̄k‖2 + 4t2K2.

Let t0 = (1− c)(2K)−2‖w̄k‖2. It is clear that t0 ∈ (0, 1) and therefore

‖w̄k+1‖2 <
{
1− [(1− c)(2K)−1‖w̄k‖]2} ‖w̄k‖2. (3.13)

Since ‖w̄k‖ > δ for all k = 1, . . . , m− 1, it follows from (3.13) that

‖w̄k+1‖2 < {1− [(1− c)(2K)−1δ]2}‖w̄k‖2.
Let K1 = 1− [(1− c)(2K)−1δ]2. Then K1 ∈ (0, 1) and we have

‖w̄m‖2 < K1‖w̄m−1‖2 < . . . < Km−1
1 ‖w̄1‖2 < Km−1

1 K2.

Thus, the inequality ‖w‖ ≤ δ is satisfied if Km−1
1 K2 ≤ δ2. This inequality must happen

after at most m steps where

m ≤ 2 log2(δ/K)/ log2 K1 + 2.
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Definition 3.4. A point x ∈ IRn is called a (λ, δ)-stationary point of the function f if

min
w∈H(x,λ)

‖w‖ ≤ δ

One can see that Algorithm 3.2 at a given point x after finite many steps either finds a
direction of sufficient decrease or determines that the point x is a (λ, δ)-stationary point of
the convex function f .

4 A Truncated Codifferential Method

In this section we describe the truncated codifferential method for solving problem (1.1).
Let λ ∈ (0, 1), δ > 0, c1 ∈ (0, 1), c2 ∈ (0, c1] be given numbers.

Algoritheorem 4.1. The truncated codifferential method for finding (λ, δ)-stationary points.

Step 1. Choose any starting point x0 ∈ IRn and set k = 0.

Step 2. Apply Algorithm 3.2 for the computation of the descent direction at x = xk for
given δ > 0 and c = c1 ∈ (0, 1). This algorithm terminates after finite many steps m > 0.
As a result, we get the set H̄m(xk) ⊂ H(x, λ) ⊂ df(x) and an element w̄k = (āk, v̄k) such
that

‖w̄k‖2 = min
{‖w‖2 : w ∈ H̄m(xk)

}
.

Furthermore, either ‖w̄k‖ ≤ δ or for the search direction gk = −‖w̄k‖−1v̄k

f(xk + λgk)− f(xk) ≤ −c1λ‖w̄k‖. (4.1)

Step 3. If
‖w̄k‖ ≤ δ (4.2)

then stop. Otherwise, go to Step 4.

Step 4. Compute xk+1 = xk + αkgk, where αk is defined as follows

αk = argmax
{
α ≥ 0 : f(xk + αgk)− f(xk) ≤ −c2α‖w̄k‖} .

Set k := k + 1 and go to Step 2.

Theorem 4.2. Assume that the function f is bounded below, i.e.

f∗ = inf {f(x) : x ∈ IRn} > −∞. (4.3)

Then Algorithm 4.1 terminates after finite many iterations M > 0 and generates a (λ, δ)-
stationary point xM where

M ≤ M0 ≡
⌊

f(x0)− f∗
c2λδ

⌋
+ 1.
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Proof. Assume the contrary. Then the sequence {xk} is infinite and points xk are not
(λ, δ)-stationary points. This means that

min
{‖w‖ : w ∈ H(xk, λ)

}
> δ, k = 1, 2, . . . .

Therefore, Algorithm 3.2 will find descent directions and the inequality (4.1) will be satisfied
at each iteration k. Since c2 ∈ (0, c1], it follows from (4.1) that αk ≥ λ. Therefore, we have

f(xk+1)− f(xk) < −c2αk‖w̄k‖
≤ −c2λ‖w̄k‖.

Since ‖w̄k‖ > δ for all k ≥ 0, we get

f(xk+1)− f(xk) ≤ −c2λδ,

which implies
f(xk+1) ≤ f(x0)− (k + 1)c2λδ

and therefore f(xk) → −∞ as k → +∞, which contradicts (4.3). It is obvious that the
upper bound for the number of iterations M necessary to find the (λ, δ)-stationary point is
M0.

Remark 4.3. Since c2 ≤ c1, always αk ≥ λ, and therefore λ > 0 is a lower bound for αk.
This leads to the following rule for the estimation of αk. We define a sequence:

θl = 2lλ, l = 1, 2, . . . ,

and αk is defined as the largest θl satisfying the inequality in Step 4 of Algorithm 4.1.

Next we will describe an algorithm for solving Problem (1.1). Let {λk}, {δk} be sequences
such that λk → +0, δk → +0 as k →∞ and εopt > 0, δopt > 0 be tolerances.

Algoritheorem 4.4. The truncated codifferential method.

Step 1. Choose any starting point x0 ∈ IRn, and set k = 0.

Step 2. If λk ≤ εopt and δk ≤ δopt, then stop.
Step 3. Apply Algorithm 4.1 starting from the point xk for λ = λk and δ = δk. This
algorithm terminates after a finite number of iterations Mk > 0, and as a result, it computes
a (λk, δk)-stationary point xk+1.

Step 4. Set k := k + 1 and go to Step 2.

For the point x0 ∈ IRn, we consider the set L(x0) =
{
x ∈ IRn : f(x) ≤ f(x0)

}
.

Theorem 4.5. Assume that f is a proper convex function and the set L(x0) is bounded.
Then every accumulation point of the sequence {xk} generated by Algorithm 4.4 belongs to
the set X0 = {x ∈ IRn : 0n ∈ ∂f(x)}.
Proof. Since the function f is proper convex and the set L(x0) is bounded, f∗ > −∞.
Therefore, conditions of Theorem 4.2 are satisfied, and Algorithm 4.1 generates a sequence
of (λk, δk)-stationary points for all k ≥ 0. More specifically, the point xk+1 is (λk, δk)-
stationary, k > 0. Then it follows from Definition 3.4 that

min
{‖w‖ : w ∈ H(xk+1, λk)

} ≤ δk. (4.4)



TRUNCATED CODIFFERENTIAL METHOD 491

It is obvious that xk ∈ L(x0) for all k ≥ 0. The boundedness of the set L(x0) implies that
the sequence {xk} has at least one accumulation point. Let x∗ be an accumulation point
and xki → x∗ as i → +∞. The inequality in (4.4) implies that

min
{‖w‖ : w ∈ H(xki , λki−1)

} ≤ δki−1.

Then there exists w̄ ∈ H(xki , λki−1) such that ‖w̄‖ ≤ δki−1. Considering w̄ = (ā, v̄) where
v̄ ∈ ∂f(y) for some y ∈ Bλki−1(x

ki), we have ‖v̄‖ ≤ ‖w̄‖ ≤ δki−1. Therefore,

min
{
‖v‖ : v ∈ ∂f(Bλki−1(x

ki))
}
≤ δki−1.

Here
∂f(Bλki−1(x

ki)) =
⋃ {

∂f(y) : y ∈ Bλki−1(x
ki)

}
.

The upper semicontinuity of the subdifferential mapping ∂f(x) implies that for any ε > 0
there exists η > 0 such that

∂f(y) ⊂ ∂f(x∗) + Bε(0n) (4.5)

for all y ∈ Bη(x∗). Since xki → x∗, δki
, λki

→ +0 as i → +∞ there exists i0 > 0 such that
δki

< ε and
Bλki−1(x

ki) ⊂ Bη(x∗)

for all i ≥ i0. Then it follows from (4.5) that

min{‖v‖ : v ∈ ∂f(x∗)} ≤ 2ε.

Since ε > 0 is arbitrary we have 0 ∈ ∂f(x∗).

5 Results of Numerical Experiments

The efficiency of the truncated codifferential method (TCM) was verified by applying it to
some academic test problems with nonsmooth objective functions. Test problems from [16]
have been used in numerical experiments. The brief description of test problems are given
in Table 1, where the following notation is used:

• n - number of variables;

• fopt - optimal value.

We do not include test problems Colville 1, HS78 and TR48. In problems Colville 1 and
HS78 the objective functions are unbounded below ([16] reports one of local minima of these
functions) and in the problem TR48 the input data is not fully available. The objective
functions in test problems Rosenbrock, Crescent, Mifflin 2, El-Attar, Gill, Steiner 2 and
Shell Dual are nonconvex.

In our experiments, we use three bundle algorithms for comparisons:

• Subroutine PBUN is based on the proximal bundle method [13, 18, 19];

• Subroutine PNEW is based on the bundle-Newton method [14];

• Subroutine PVAR is based on the variable metric method [15].
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Table 1: The brief description of test problems

Problem n fopt Problem n fopt

Rosenbrock 2 0 Shor 5 22.600162

Crescent 2 0 El-Attar 6 0.5598131

CB2 2 1.9522245 Maxquad 10 -0.8414083

CB3 2 2 Gill 10 9.7857721

DEM 2 -3 Steiner 2 12 16.703838

QL 2 7.2 Maxq 20 0

LQ 2 -1.4142136 Maxl 20 0

Mifflin 1 2 -1 Goffin 50 0

Mifflin 2 2 -1 MXHILB 50 0

Wolfe 2 -8 L1HILB 50 0

Rosen-Suzuki 4 -44 Shell Dual 15 32.348679

Brief description of these algorithms and subroutines can be found in [17].
In Algorithm 4.4 parameters were chosen as follows: c1 = 0.2, c2 = 0.05, δk ≡ δopt =

10−7, λk+1 = 0.2λk, k ≥ 1, λ1 = 1 and εopt = 10−10. We implemented all algorithms in
Fortran 95 and compiled it using the Lahey Fortran compiler on a 1.83GHz Intel Pentium
IV CPU with 1GB of RAM running Windows XP.

Table 2: Results of numerical experiments with given starting points

First we applied all algorithms using starting points from [16]. Results are presented in
Table 2, where we report the value f of the objective function at the final point, the number of
function and subgradient evaluations (nf and nsub, respectively) and the number of iterations
nit for bundle methods. Algorithm PNEW also computes a substitute for the Hessian
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matrix. Since the number of the Hessian matrix’s substitute evaluations nH = nit + 1, we
do not include them in this and other tables. The results presented in Table 2 demonstrate
that bundle methods perform better than the TCM on all problems, except the Shell Dual
problem. Bundle methods failed to solve the Shell Dual problem with high accuracy. These
methods use significantly less function and subgradient evaluations than the TCM. The
TCM requires significantly more function and subgradient evaluations as it approaches to a
solution.

Then we applied all algorithms starting from 20 randomly generated points for each
problem. Results are presented in Tables 3 and 4. In Table 3 we report nb - the number
of successful runs considering the best known solution. We say that an algorithm finds the
best solution with respect to a tolerance ε > 0 if

f̄ − fopt ≤ ε(1 + |fopt|),

where fopt is the best known objective function value and f̄ is the best value of the objective
function found by an algorithm. In our experiments ε = 10−4.

Results presented demonstrate that the truncated codifferential method is more accurate
than bundle methods. This method is not sensitive to the choice of starting points. More-
over, the success of bundle methods depends on the choice of starting points even for convex
problems. The truncated codifferential method is also more successful than bundle methods
on nonconvex problems (El-Attar, Shell Dual). These results confirm that the truncated
codifferential method is more robust and accurate than bundle methods.

It should be also noted that bundle methods contain some parameters and the adjustment
of these parameters, especially the penalty parameter, is a key point. For some problems
the choice of the values of these parameters is crucial to ensure convergence. On the other
hand the TCM does not depend on any parameter to be adjusted.

Table 3: Results of numerical experiments with 20 starting points
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Table 4 presents the average number of iterations (nit), the average number of objective
function (nf ) and subgradient (nsub) evaluations over 20 runs of algorithms. For bundle
methods nf = nsub. Results presented in this table demonstrate that the TCM uses more
function and subgradient evaluations than bundle algorithms.

Table 4: The average number of iterations, function and subgradient evaluations

6 Conclusions

In this paper we developed the truncated codifferential method for minimizing convex func-
tions. In this method, at each iteration only a few elements from the hypodifferential of the
objective function are used to compute descent directions. It is proved that the proposed
method converges to minimizers of a convex function.

We presented results of numerical experiments and compared the proposed method with
three versions of bundle methods. The computational results show that the proposed method
is not sensitive to the choice of starting points whereas performance of all three versions of
the bundle method depends on starting points. The truncated codifferential method may
locate the solution with higher accuracy than the bundle methods. Therefore the truncated
codifferential method is more robust and accurate than the bundle methods. However, the
proposed method uses more function and subgradient evaluations than the bundle methods.
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