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Abstract: In this paper, we introduce four types of (generalized) Levitin-Polyak well-posedness for gen-
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these types of well-posedness are given. Under suitable conditions, we show that any type of well-posedness
of generalized equilibrium problems is equivalent to the nonemptiness and compactness of its solution set.

Key words: generalized equilibrium problems, well-posedness, set-valued map, approximating solution
sequence

Mathematics Subject Classification: 90C48; 46N16, 49K40, 90C31

1 Introduction and Preliminaries

Well-posedness of unconstrained and constrained scalar optimization problem was first in-
troduced and studied in Tykhonov [14] and Levitin and Polyak [11], respectively. Presently,
the concept of well-posedness has also been generalized to variational inequality problems [7],
generalized variational inequality problems [8], equilibrium problems [4, 12, 13]. However,
to the best of our knowledge, the study of Levitin-Polyak (LP in short) well-posedness of
generalized equilibrium problems with functional constraints is still very limited.

In this paper, we investigate LP well-posedness of generalized equilibrium problems with
functional constraints. We establish some characterizations of LP well-posedness. Under
suitable conditions, we also show that any type of LP well-posedness of generalized equilib-
rium problems is equivalent to the nonemptiness and compactness of its solution set.

Let X, U be a normed space, (Y, d) be a metric space. Let X1 ⊆ X, K ⊆ Y be two
nonempty and closed sets. Let T : X1 → 2U be a nonempty-compact-valued map (i.e., for
each x ∈ X1, T (x) is a nonempty compact subset of U). Let h(u, x, y) : U × X1 × X1 →
R1

⋃{+∞} and g : X1 → Y be two functions.
Let

X0 = {x ∈ X1 : g(x) ∈ K}.
Consider the following generalized equilibrium problems with functional constraints:

(GEP)
Find x̄ ∈ X0 such that there exists ū ∈ T (x̄) satisfying

h(ū, x̄, y) ≥ 0, ∀y ∈ X0.
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Definition 1.1. (i) A trifunction h(u, x, y) : U × X1 × X1 → R1
⋃{+∞} is said to be

monotone if for any x, y ∈ X1 and u ∈ T (x), v ∈ T (y), the following relation holds:

h(u, x, y) + h(v, y, x) ≤ 0.

(ii) Let Z1, Z2 be two topological spaces. A set-valued map F from Z1 to 2Z2 is said
to be upper semicontinuous at x ∈ Z1 if for any neighborhood V of F (x), there exists a
neighborhood U of x such that F (x′) ⊆ V , ∀x′ ∈ U . If F is upper semicontinuous at every
point of Z1, we say that F is u.s.c on Z1.
(iii) h(., ., y) is is said to be T-upper semicontinuous if for xn → x and un ∈ T (xn), there
exists u ∈ T (x) such that

h(u, x, y) ≥ lim sup
n→+∞

h(un, xn, y),∀y ∈ X0.

Let (P, d1) be a metric space, P1 ⊆ P and p ∈ P . In the sequel, we denote by dP1(p) =
inf{d(p, p′) : p′ ∈ P1} the distance function from point p to set P1.

Throughout this paper, we always assume that X0 6= ∅ and h(., ., y) is T -upper semi
continuous on U × X1 and h(u, x, .) is lower semicontinuous on X1, g(x) is continuous on
X1. The nonempty-compact-valued map T is upper semicontinuous on X1 and h(u, x, x) =
0,∀x ∈ X1, u ∈ T (x).

Denote by X̄ the solution set of (GEP).

Definition 1.2. (i) A sequence {xn} ⊆ X1 is called a type I LP approximating solution
sequence for (GEP) if there exist {εn} ⊆ R1

+ with εn → 0 and un ∈ T (xn) such that

dX0(xn) ≤ εn, (1.1)

h(un, xn, y) ≥ −εn, ∀y ∈ X0. (1.2)

(ii) A sequence {xn} ⊆ X1 is called a type II LP approximating solution sequence for
(GEP) if there exist {εn} ⊆ R1

+ with εn → 0 and un ∈ T (xn), {yn} ⊂ X0 satisfying (1.1),
(1.2)and

h(un, xn, yn) ≤ εn. (1.3)

(iii) A sequence {xn} ⊆ X1 is called a generalized type I LP approximating solution
sequence for (GEP) if there exist {εn} ⊆ R1

+ with εn → 0 and un ∈ T (xn) satisfying (1.2)
and

dK(g(xn)) ≤ εn. (1.4)

(iv) A sequence {xn} ⊆ X1 is called a generalized type II LP approximating solution
sequence for (GEP) if there exist {εn} ⊆ R1

+ with εn → 0 and un ∈ T (xn), {yn} ⊂ X0

satisfying (1.2), (1.3) and (1.4).

Definition 1.3. (GEP) is said to be type I (resp. type II, generalized type I, generalized
type II) LP well-posed if the solution set X̄ of (GEP) is nonempty, and for any type I (resp.
type II, generalized type I, generalized type II) LP approximating solution sequence {xn},
there exist a subsequence{xnj} of {xn} and x̄ ∈ X̄ such that xnj → x̄.
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Remark 1.4. (i) It is clear that any (generalized) type II LP approximating solution se-
quence is a (generalized) type I LP approximating solution sequence. Thus, (generalized)
type I LP well-posedness implies (generalized) type II LP well-posedness.

(ii) Each type of LP well-posedness of (GEP) implies that the solution set X̄ is compact.
(iii) Suppose that g is uniformly continuous on a set

X1(δ0) = {x ∈ X1 : dX0(x) ≤ δ0} (1.5)

for some δ0 ≥ 0. Then, generalized type I (type II) LP well-posedness of (GEP) implies its
type I (type II) LP well-posedness.

Consider the following statement:
[X̄ 6= ∅ and for any type I (resp. type II, generalized type I, generalized type II) LP

approximating solution sequence {xn}, we have dX̄(xn) → 0.] (STA)
The next proposition can be trivially established.

Proposition 1.5. If (GEP) is type I (resp. type II, generalized type I, generalized type
II) LP well-posed, then (STA) is true. Conversely, if (STA) holds and X̄ is compact, then
(GEP) is type I (resp. type II, generalized type I, generalized type II) LP well-posed.

To see that the various LP well-posednesses of (GEP) are adaptations of the correspond-
ing LP well-posednesses in minimization problems by using a gap function, we consider the
following general constrained optimization problem:

(P)
min f(x)
s.t. x ∈ X1, g(x) ∈ K,

where f : X1 → R1
⋃{+∞} is proper and lower semicontinuous. The feasible set of (P)

is X0, where X0 = {x ∈ X1 : g(x) ∈ K}. The optimal set and optimal value of (P) are
denoted by X̄ ′ and v̄, respectively. Note that if Dom(f)

⋂
X0 6= ∅, where

Dom(f) = {x ∈ X1 : f(x) < +∞},
then v̄ < +∞. In this paper, we always assume that v̄ > −∞.

LP well-posedness for the special case when f is finite-valued has been studied in [6].
We note here that all the results in [6] are valid when f : X1 → R1

⋃{+∞} is proper.

Definition 1.6. (i) A sequence {xn} ⊆ X1 is called a type I LP minimizing sequence for
(P) if

lim sup
n→+∞

f(xn) ≤ v̄, (1.6)

dX0(xn) → 0. (1.7)

(ii) A sequence {xn} ⊆ X1 is called a type II LP minimizing sequence for (P) if

lim
n→+∞

f(xn) = v̄ (1.8)

and (1.7) holds.
(iii) A sequence {xn} ⊆ X1 is called a generalized type I LP minimizing sequence for (P)

if

dK(g(xn)) → 0. (1.9)

and (1.6) holds.
(iv) A sequence {xn} ⊆ X1 is called a generalized type II LP minimizing sequence for

(P) if (1.8) and (1.9) hold.
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Definition 1.7. (P) is said to be type I (resp. type II, generalized type I, generalized type
II ) LP well-posed if the solution set X̄ ′ of (P) is nonempty, and for any type I (resp. type
II, generalized type I, generalized type II ) LP minimizing sequence {xn}, there exist a
subsequence {xnj} of {xn} and x̄ ∈ X̄ ′ such that xnj → x̄.

Similar to the Auslender gap function, we can define a gap function for (GEP)

f(x) = inf
u∈T (x)

sup
y∈X0

−h(u, x, y),∀x ∈ X1. (1.10)

First, we have the following lemma concerning some properties of f defined by (1.10).

Lemma 1.8. The function f defined by (1.10) has the following properties.
(i) f(x) ≥ 0 if x ∈ X0.
(ii) Let x̄ ∈ X0. Then f(x̄) = 0 if and only if x̄ ∈ X̄.
(iii) f : X1 → R1

⋃
+∞. Further, if X̄ 6= ∅, then dom(f)

⋂
X0 6= ∅.

(iv) f(x) is lower semicontinuous on X1.

Proof. (i) As h(u, x, x) = 0,∀x ∈ X1, u ∈ T (x), we have

sup
y∈X0

−h(u, x, y) ≥ −h(u, x, x) = 0,∀x ∈ X0, u ∈ T (x).

Thus,
inf

u∈T (x)
sup

y∈X0

−h(u, x, y) ≥ 0.

That is, f(x) ≥ 0 if x ∈ X0.
(ii) If x̄ ∈ X̄ ⊆ X0, there exists ū ∈ T (x̄) such that

h(ū, x̄, y) ≥ 0,∀y ∈ X0,

sup
y∈X0

−h(ū, x̄, y) ≤ 0.

Further,
f(x̄) = inf

u∈T (x)
sup

y∈X0

−h(u, x̄, y) ≤ 0.

This combined with f(x) ≥ 0,∀x ∈ X0 yields f(x̄) = 0.
Conversely, let f(x̄) = 0. Since supy∈X0

−h(u, x, y) is lower semicontinuous and T (x̄) is
compact, there exists ū ∈ T (x̄) satisfying

sup
y∈X0

−h(ū, x̄, y) = 0.

Thus, h(ū, x̄, y) ≥ 0,∀y ∈ X0. That is, x̄ ∈ X̄.
(iii) It is obvious that f(x) > −∞, ∀x ∈ X1. Moreover, if X̄ 6= φ, then there exists

x̄ ∈ X̄ and f(x̄) = 0. So, x̄ ∈ dom(f)
⋂

X0 6= φ.
(v) Let t ∈ R1. Suppose that sequence xn ⊂ X1 satisfies

f(xn) ≤ t, (1.11)

and xn → x∗ ∈ X1. We show that f(x∗) ≤ t. From (11), we have that for any ε > 0 and
each n, there exists un ∈ T (xn) such that

−h(un, xn, y) ≤ t + ε,∀y ∈ X0. (1.12)
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By the upper semicontinuity of T at x∗ and compactness of T (x∗), we obtain a subse-
quence {unj

} of {un} and some u∗ ∈ T (x∗) such that unj
→ u∗. Since h(., ., y) is T -upper

semicontinuous, taking the limit in (12) (with n replaced by nj), we have

−h(u∗, x∗, y) ≤ lim inf
j→+∞

−h(unj
, xnj

, y) ≤ t + ε,∀y ∈ X0. (1.13)

By the definition of f(x∗), we have f(x∗) ≤ t + ε. By the arbitrariness of ε > 0, we obtain
f(x∗) ≤ t. Hence, f is lower semicontinuous on X1.

The next proposition establishes relationships between the various LP well-posednesses
of (GEP) and those of (P) with f(x) defined by (1.10).

Proposition 1.9. Assume that X̄ 6= ∅. Then, (GEP) is type I (resp. type II, generalized
type I, generalized type II) LP well-posed if and only if (P) is type I (resp. type II, generalized
type I, generalized type II) LP well-posed with f(x) defined by (1.10).

Proof. Since X̄ 6= ∅, by Lemma 1.8, x ∈ X̄ is a solution of (GEP) if and only if x̄ is an
optimal solution of (P) with v̄ = f(x̄) = 0. It is also routine to check that a sequence {xn}
is a type I (resp. type II, generalized type I, generalized type II) LP approximating solution
sequence if and only if it is a type I (resp. type II, generalized type I, generalized type II) LP
minimizing sequence of (P). It follows that (GEP) is type I (resp. type II, generalized type
I, generalized type II) LP well-posed if and only if (P) is type I (resp. type II, generalized
type I, generalized type II) LP well-posed with f(x) defined by (1.10).

2 Criteria and Characterizations for LP Well-Posedness of (GEP)

In this section, we present necessary and /or sufficient conditions for the various types of
(generalized) LP well-posednesses defined in Section 1.

Consider a real-valued function c = c(t, s) defined for t, s ≥ 0 sufficiently small, such
that

c(t, s) ≥ 0, ∀t, s ≥ 0 c(0, 0) = 0, (2.1)

sn → 0, tn ≥ 0, c(tn, sn) → 0 imply that tn → 0. (2.2)

Analogously to ( [8], Theorems 2.1 and 2.2), we can prove following two theorems.

Theorem 2.1. Let f(x) be defined by (1.10). If (GEP) is type II LP well-posed, then there
exists a function c satisfying (14) and (15) such that

|f(x)| ≥ c(dX̄(x), dX0(x)) ∀x ∈ X1. (2.3)

Conversely, suppose that X̄ is nonempty and compact, and (16) holds for some c satisfying
(14) and (15). Then, (GEP) is type II LP well-posed.

Theorem 2.2. Let f(x) be defined by (1.10). If (GEP) is a generalized type II LP well-
posed, then there exists a function c satisfying (14) and (15) such that

|f(x)| ≥ c(dX̄(x), dK(g(x))) ∀x ∈ X1. (2.4)

Conversely, suppose that X̄ is nonempty and compact, and (17) holds for some c satisfying
(14) and (15). Then, (GEP) is generalized type II LP well-posed.
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Let (X, || · ||) be a Banach space. Recall that the Kuratowski measure of noncompactness
for a subset H of X is defined as

µ(H) = inf{ε > 0 : H ⊆
n⋃

i=1

Hi, diam(Hi) < ε, i = 1, . . . , n},

where diam(Hi) is the diameter of Hi defined by

diam(Hi) = sup{||x1 − x2|| : x1, x2 ∈ Hi}.

The Hausdorff distance between two nonempty bounded subsets A and B of a Banach space
(X, || · ||) is

Γ(A,B) = max{e(A,B), e(B,A)},
where e(A,B) = sup

u∈A
d(u,B).

For any ε ≥ 0, define

Ω1(ε) = {x ∈ X1 : dX0(x) ≤ ε,∃u ∈ T (x), h(u, x, y) + ε ≥ 0,∀y ∈ X0}, (2.5)

Ω2(ε) = {x ∈ X1 : dK(g(x)) ≤ ε,∃u ∈ T (x), h(u, x, y) + ε ≥ 0,∀y ∈ X0}. (2.6)

Theorem 2.3. Let (X, || · ||) be a Banach space and X̄ 6= ∅. Let Ω1(ε) and Ω2(ε) be defined
by (18) and (19), respectively. Then (GEP) is (generalized) type I LP well-posed if and only
if

(µ(Ω2(ε))) → 0) µ(Ω1(ε)) → 0; as ε → 0. (2.7)

Proof. We first show that Ω1(ε) is closed for any ε > 0. Let xn ∈ Ω1(ε) with xn → x̄. Then
there exists un ∈ T (xn)(∀n ≥ 1) such that

dX0(xn) ≤ ε, h(un, xn, y) + ε ≥ 0,∀y ∈ X0.

By the upper semicontinuity of T at x̄ and compactness of T (x̄), there exist a subsequence
{unj} of {un} and some ū ∈ T (x̄) such that unj → ū. Since h(., ., y) is T -upper semicontin-
uous on Z ×X1, taking the upper limit (with n replaced by nj), we have

h(ū, x̄, y) + ε ≥ lim sup
j→+∞

h(unj , xnj , y) + ε ≥ 0, dX0(x̄) ≤ ε,∀y ∈ X0.

So Ω1(ε) is closed.
Second, we show that

X̄ =
⋂
ε>0

Ω1(ε).

It is obvious that X̄ ⊂ ⋂
ε>0 Ω1(ε). Now suppose that εk → 0 and x̄ ∈ ⋂∞

k=1 Ω1(εk). Then,

dX0(x̄) ≤ εk,∀k (2.8)

∃ū ∈ T (x̄), h(ū, x̄, y) + εk ≥ 0,∀k. (2.9)

From (21), we have x̄ ∈ X0. By (22) and the fact that x̄ ∈ X0, we have x̄ ∈ X̄.
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Now we assume that (20) holds. By [9] (pp. 318), we have

Γ(Ω1(ε), X̄) → 0, as ε → 0,

where X̄ is is nonempty and compact.
Let {xn} be a type I LP approximating sequence for (GEP). Then, there exist a subse-

quence {xk} of {xn} and εk > 0 with εk → 0, uk ∈ T (xk) such that

dX0(xk) ≤ εk, h(uk, xk, y) + εk ≥ 0,∀y ∈ X0.

That is, xk ∈ Ω1(εk). It follows from Γ(Ω1(ε), X̄) → 0 that dX̄(xk) → 0. By Proposition
1.5, (GEP) is type I LP well-posed.

Conversely, let (GEP) be type I LP well-posed. Taking into account the compactness of
X̄, we get

Γ(Ω1(ε)) ≤ h(Ω1(ε), X̄) + µ(X̄) = 2e(Ω1(ε), X̄).

We show that e(Ω1(ε), X̄) → 0 as ε → 0. If not, there exist η > 0, εn → 0, xn ∈ Ω1(εn) such
that

dX̄(xn) ≥ η, ∀n,

contradicting the type I LP well-posedness of (GEP). So e(Ω1(ε), X̄) → 0 as ε → 0. Hence,
(20) holds.

For Ω2(ε), the conclusion can be analogously established.

Definition 2.4. (i) Let Z be a topological space and Z1 ⊆ Z be nonempty. Suppose that
q : Z → R1

⋃{+∞} is an extended real-valued function. q is said to be level-compact on
Z1 if, for any s ∈ R1, the subset {z ∈ Z1 : q(z) ≤ s} is compact.

(ii) Let Z be a finite dimensional normed space and Z1 ⊆ Z be nonempty. A function
q : Z → R1

⋃{+∞} is said to be level-bounded on Z1 if Z1 is bounded or

lim
z∈Z1,||z||→+∞

q(z) = +∞.

(iii) Let φ 6= S ⊂ X1. A vector -valued function u(x) from S to U is called a selection of
the set-valued map T on S if u(x) ∈ T (x),∀x ∈ S.

The following proposition presents some sufficient conditions for type I LP well-posedness
of (GEP).

Proposition 2.5. Assume that one of the following conditions holds:
(i) There exists 0 < δ1 < δ0 such that X1(δ1) is compact, where

X1(δ1) = {x ∈ X1 : dX0(x) ≤ δ1}; (2.10)

(ii) the function f(x) defined by (1.10) is level-compact on X1;
(iii) X is finite dimensional and

lim
x∈X1||x||→+∞

max{f(x), dX0(x)} = +∞; (2.11)

(iv) there exists 0 < δ1 < δ0 such that f is level-compact on X1(δ1) defined by (23).
Then, (GEP) is type I LP well-posed.
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Proof. First, we show that each one of (i), (ii) and (iii) implies (iv). Clearly, either of (i)
and (ii) implies (iv). Now we show that (iii) implies (iv). we need only to show that for any
t ∈ R1, the set

A = {x ∈ X1(δ1) : f(x) ≤ t},
where A is bounded and closed since the function f defined by (1.10) is lower semicontinuous
on X1. Suppose to the contrary that there exist t ∈ R1 and {x′n} ⊆ X1(δ1) such that
||x′n|| → +∞ and f(x′n) ≤ t. From {x′n} ⊆ X1(δ1), we have

dX0(x
′
n) ≤ δ1.

Thus,
max{f(x′n), dX0(x

′
n)} ≤ max{t, δ1},

which contradicts condition (24).
Now we show that if (iv) holds, then (GEP) is type I LP well-posed. Let {xn} be a

type I LP approximating solution sequence. Then, there exist {εn} > 0 with εn → 0 and
un ∈ T (xn) such that

h(un, xn, y) + εn ≥ 0,∀y ∈ X0, (2.12)

dX0(xn) ≤ εn. (2.13)

From (26), we can assume without loss of generality that {xn} ⊆ X1(δ1). Furthermore, from
(25), we can assume without loss of generality that

{xn} ⊆ {x ∈ X1(δ1) : f(x) ≤ 1},

where f(x) is defined by (1.10). By the level-compactness of f(x) on X1(δ1), there exist a
subsequence of {xnj

} of {xn} and x̄ ∈ X1(δ1) such that xnj
→ x̄. From this fact and (26),

we have x̄ ∈ X0. Furthermore, by the upper semicontinuity of T at x̄ and the compactness
of T (x̄), there exist a subsequence {unj

} of {un} and some ū ∈ T (x̄) such that unj
→ ū.

This fact combined with (25) yields

f(x̄) ≤ lim inf
j→+∞

f(xnj
) ≤ lim sup

j→+∞
f(xnj

) = lim sup
j→+∞

−h(unj
, xnj

, y) ≤ 0,∀y ∈ X0.

We know that f(x̄) ≥ 0, so f(x̄) = 0 and x̄ ∈ X0. Thus, x̄ ∈ X̄.

Similarly, we can prove the next proposition.

Proposition 2.6. Assume that one of the following conditions holds:
(i) There exists 0 < δ1 < δ0 such that X1(δ1) is compact, where

X2(δ1) = {x ∈ X1 : dK(g(x)) ≤ δ1}; (2.14)

(ii) the function f(x) defined by (1.10) is level-compact on X1;
(iii) X is finite dimensional and

lim
x∈X1||x||→+∞

max{f(x), dK(g(x))} = +∞; (2.15)

(iv) there exists 0 < δ1 < δ0 such that f is level-compact on X2(δ1) defined by (27).
Then, (GEP) is generalized type I LP well-posed.
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Proposition 2.7. Let X be finite dimensional. Let h(., ., y) be T -continuous on Z × X1

and the solution set X̄ be nonempty. Assume that there exist δ1 > 0 and y0 ∈ X0 such that
the function −h(u(x), x, y0) is level-bounded for any selection u(x) of T on X1(δ1) defined
by (23). Then, (GEP ) is type I LP well-posed.

Proof. Let {xn} be a type I LP approximating solution sequence. Then, there exist εn ≥ 0
with εn → 0 and un ∈ T (xn) such that

h(un, xn, y) + εn ≥ 0, dX0(xn) ≤ εn,∀y ∈ X0.

From dX0(xn) ≤ εn, we can assume {xn} ⊂ X1(δ1). Let us show by contradiction that {xn}
is bounded. Otherwise, we assume without loss of generality that ||xn|| → +∞. By the
level-boundedness condition, we have

lim
n→+∞

h(un, xn, y0) = −∞

contradicting the fact that h(un, xn, y)+εn ≥ 0 when n is sufficiently large. Consequently, we
can assume without loss of generality that xn → x̄ ∈ X1. This together with dX0(xn) ≤ εn

yields x̄ ∈ X0. By the upper semicontinuity of T at x̄ and compactness of T (x̄), there exist
a subsequence {unj} of {un} and some ū ∈ T (x̄) such that unj → ū. This shows x ∈ X̄.

Similarly, we can prove the next result.

Proposition 2.8. Let X be finite dimensional. Let h(., ., y) be T -continuous on Z × X1

and the solution set X̄ be nonempty. Assume that there exist δ1 > 0 and y0 ∈ X0 such that
the function −h(u(x), x, y0) is level-bounded for any selection u(x) of T on X2(δ1) defined
by (27). Then, (GEP ) is generalized type I LP well-posed.

Now we consider the case when Y is a normed space, K is a closed and convex cone with
nonempty interior intK.

Let e ∈ intK and t ≥ 0. Denote

X3(t) = {x ∈ X1 : g(x) ∈ K − te}.

The next proposition can be established similarly to ( [8], Proposition 2.3).

Proposition 2.9. Let Y be a normed space, K be a closed and convex cone with nonempty
interior intK and e ∈ intK. The solution set X̄ is nonempty. Further assume that there
exists t1 > 0 such that the function f(x) defined by (1.10) is level-compact on X3(t1). Then,
(GEP) is generalized type I LP well-posed.

Under suitable conditions, we show that any type of well-posedness of generalized equi-
librium problems is equivalent to the nonemptiness and compactness of its solution set.

Let

φ(x) = sup
y∈X0

sup
v∈T (y)

h(v, y, x),∀x ∈ X1. (2.16)

Lemma 2.10. Assume that X1 ⊂ X and X0 are convex. Assume that for any x ∈ X1, u ∈
T (x), h(u, x, .) is convex and h(u, x, y) is monotone. Then, for x̄ ∈ X0, there exist ū ∈ T (x̄)
such that h(ū, x̄, y) ≥ 0,∀y ∈ X0 if and only if h(v, y, x̄) ≤ 0,∀y ∈ X0, v ∈ T (y).
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Proof. Suppose for x̄ ∈ X0, there exist ū ∈ T (x̄) such that

h(ū, x̄, y) ≥ 0,∀y ∈ X0.

Since h(u, x, y) is monotone, one has

h(ū, x̄, y) + h(v, y, x̄) ≤ 0,∀y ∈ X0, v ∈ T (y).

Consequently,
h(v, y, x̄) ≤ 0,∀y ∈ X0, v ∈ T (y).

Conversely, for all y ∈ X0, and x̄ ∈ X̄, we define yn = 1
ny + (1 − 1

n )x̄ ∈ X0, n ∈ N . From
h(u, x, x) = 0,∀x ∈ X0, u ∈ T (x), we have

h(vn, yn, yn) = 0,∀vn ∈ T (
1
n

y + (1− 1
n

)x̄).

Since h(u, x, .) is convex on X1 and h(vn, yn, x̄) ≤ 0, we can see that

0 = h(vn, yn, yn) = h(vn, yn, 1
ny + (1− 1

n )x̄) ≤ 1
nh(vn, yn, y) + (1− 1

n )h(vn, yn, x̄)
≤ 1

nh(vn, yn, y)

evn By the upper semicontinuity of T at x̄ and compactness of T (x̄), there exist yn → x̄
and a subsequence {vnj

} of {vn} and some ū ∈ T (x̄) such that vnj
→ ū. Since h(., ., y) is

T -upper semicontinuous on Z ×X1, one has

h(ū, x̄, y) ≥ lim sup
j→+∞

h(vnj
, ynj

, y) ≥ 0,∀y ∈ X0.

Lemma 2.11. Let φ(x) be defined by (29). Assume that X1 ⊂ X and X0 are convex.
Assume that for any x ∈ X1, u ∈ T (x), h(u, x, .) is convex and h(u, x, y) is monotone.
Then, the following assertions are true.

(i) The function φ(x) is convex and lower semicontinuous on X1;
(ii) φ(x) ≥ 0,∀x ∈ X0. Let x̄ ∈ X0. Then φ(x̄) = 0 if and only if x̄ ∈ X̄.

Proof. (i) Let us show that φ(x) is convex. For any t ∈ (0, 1), since h(u, x, .) is convex, we
have

φ(tx1 + (1− t)x2) = supy∈X0
supv∈T (y) h(v, y, tx1 + (1− t)x2)

≤ supy∈X0
supv∈T (y)(th(v, y, x1) + (1− t)h(v, y, x2))

≤ t supy∈X0
supv∈T (y) h(v, y, x1) + (1− t) supy∈X0

supv∈T (y) h(v, y, x2)
= tφ(x1) + (1− t)φ(x2).

So, φ(x) is convex. Similar to the the proof of Lemma 1.2, we obtain φ(x) is lower semicon-
tinuous on X1.

(ii) It is obvious from the definition of φ(x) that φ(x) ≥ 0,∀x ∈ X0. Now assume x̄ ∈ X̄,
there exist ū ∈ T (x̄) such that

h(ū, x̄, y) ≥ 0,∀y ∈ X0.

Since h(u, x, .) is convex on X1 and h(u, x, y) is monotone. By Lemma 2.10, we can show
that

h(v, y, x̄) ≤ 0,∀y ∈ X0, v ∈ T (y).
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Then φ(x̄) ≤ 0. This combined with φ(x) ≥ 0 yields h(x̄) = 0.
Conversely, suppose that x̄ ∈ X0 and φ(x̄) = 0. From the definition of φ(x), one has

h(v, y, x) ≤ 0,∀y ∈ X0, v ∈ T (y).

By Lemma 2.10, there exists ū ∈ T (x̄) such that h(ū, x̄, y) ≥ 0,∀y ∈ X0. This is, x̄ ∈ X̄.

Assumption 2.12. Assume that X is a finite dimensional, X1 ⊂ X is a nonempty closed
and convex set and Y is a normed space, K ⊂ Y is a closed and convex cone with nonempty
interior int K. Assume that g(x) is K-concave on X1 (i.e.for any x1, x2 and any θ ∈ (0, 1)
there holds that g(θx1 + (1 − θ)x2) − θg(x1) − (1 − θ)g(x2) ∈ K). Assume that for any
x ∈ X1, u ∈ T (x), h(u, x, .) is convex on X1 and h(u, x, y) is monotone. Further assume that
the solution set X̄ is nonempty.

It is obvious that under Assumption 2.12, the optimization problem (P) (with f replaced
by φ) is a convex program.

Lemma 2.13. Let Assumption 2.12 hold. If {xn} is a (generalized) type I LP approximating
solution sequence of (GEP), then it is a (generalized) type I LP minimizing solution sequence
of (P) (with f(x) replaced by φ(x)).

Proof. We prove only the type I case, the generalized type I case can be similarly proved.
Let {xn} be a type I LP approximating solution sequence of (GEP). Then, there exist
{εn} ⊆ R1

+ with εn → 0 and zn ∈ T (xn) satisfying

dX0(xn) ≤ εn, h(un, xn, y) ≥ −εn, ∀y ∈ X0.

Since h(u, x, y) is monotone

h(v, y, xn) ≤ −h(un, xn, y) ≤ εn

we can easily verify that
dX0(xn) ≤ εn, φ(xn) ≤ εn.

It follows that (1.7) holds with v̄ = 0.

The following result can be established by using Lemmas 2.11, 2.3, ( [6], Theorem 2.4)
and Remark 1.4 (ii).

Lemma 2.14. Let Assumption 2.12 hold. Then, (GEP) is (generalized) type I LP well-posed
if and only if its solution set X̄ is nonempty and compact.

The following theorem is a direct consequence of Lemmas 2.13 and 2.14.

Theorem 2.15. Let Assumption 2.12 hold. Then, any type of LP well-posedness of (GEP)
is equivalent to the fact that the solution set X̄ of (GEP) is nonempty and compact.

Remark 2.16. Necessary and sufficient conditions for the nonemptiness and compactness
of the solution set of a monotone (GEP) were established in [5]. By Theorem 2.15, these
conditions can be used to verify LP well-posedness of (GEP).
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