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LEVITIN-POLYAK WELL-POSEDNESS IN GENERALIZED
EQUILIBRIUM PROBLEMS WITH FUNCTIONAL
CONSTRAINTS

G. WaANG, X.X. HUANG AND J. ZHANG

Abstract: In this paper, we introduce four types of (generalized) LYkighn-Polyak well-posedness for gen-
eralized equilibrium problems with abstract and functional constrainfS@riteria and characterizations for
these types of well-posedness are given. Under suitable congati aj any type of well-posedness
of generalized equilibrium problems is equivalent to the n j
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. We establish some characterizations of LP well-posedness. Under
suitable con ns, we also show that any type of LP well-posedness of generalized equilib-
rium problems is equivalent to the nonemptiness and compactness of its solution set.

Let X,U be a normed space, (Y,d) be a metric space. Let X3 C X, K C Y be two
nonempty and closed sets. Let T': X; — 2V be a nonempty-compact-valued map (i.e., for
each z € X;, T'(z) is a nonempty compact subset of U). Let h(u,z,y) : U x X3 x X1 —
R*U{+o0} and g : X; — Y be two functions.

Let

Xo = {I‘ € X, g(JU) S K}

Consider the following generalized equilibrium problems with functional constraints:

Find Z € X, such that there exists 4 € T(Z) satisfying

(GEP) W, z.y) >0, Vy e Xo.
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Definition 1.1. (i) A trifunction h(u,z,y) : U x X1 x X; — R'[J{+o0} is said to be
monotone if for any x,y € X1 and u € T'(z),v € T(y), the following relation holds:

h(u,x,y) + h(v,y,x) < 0.

(ii) Let Z1, Zy be two topological spaces. A set-valued map F from Z; to 272 is said
to be upper semicontinuous at x € Z if for any neighborhood V of F(z), there exists a
neighborhood U of x such that F(z') CV, Va’ € U. If F is upper semicontinuous at every
point of Z;, we say that F' is u.s.c on Zj.

(iii) A(.,.,y) is is said to be T-upper semicontinuous if for z, — x and w, € T(z,), there
exists u € T'(x) such that

h(u, z,y) > limsup h(u,, ., y), Yy € Xo.

n—-+o0o

Let (P, d1) be a metric space, P, C P and p € P. In the sequel, we denote by dp, (p) =
inf{d(p,p’) : p’ € P,} the distance function from point p tq set P;.

Throughout this paper, we always assume that Xy # nd h(.,.,y) is T-upper semi
continuous on U x X; and h(u,z,.) is lower semigontinuous , g(z) is continuous on
X1. The nonempty-compact-valued map 7' is upp T i on X7 and h(u,z,z) =
0,Vz € Xy,u € T(x).

Denote by X the solution set of (GEP).

Definition 1.2. (i) A sequence {z,} Q.X
sequence for (GEP) if there exist {e,} C

Myoe I LP approximating solution
nd u, € T(x,) such that

(1.1)

y Tns > —€n, Vy € X()~ (12)

alle type II LP approximating solution sequence for
Fith €, — 0 and u,, € T(x,), {yn} C X satistying (1.1),

(ii) A sequence {z,}
(GEP) if there exist
(1.2)and

h(tn, Tns yn) < €n. (1.3)

(iii) uencgf{z,} C X; is called a generalized type I LP approximating solution

sequence fo ) if there exist {e,} € R} with ¢, — 0 and u,, € T'(z,,) satisfying (1.2)
and

di (9(zn)) < €n. (1.4)

(iv) A sequence {z,} C X; is called a generalized type II LP approximating solution
sequence for (GEP) if there exist {e,} C R} with ¢, — 0 and w,, € T(z,), {yn} C Xo
satisfying (1.2), (1.3) and (1.4).

Definition 1.3. (GEP) is said to be type I (resp. type II, generalized type I, generalized
type II) LP well-posed if the solution set X of (GEP) is nonempty, and for any type I (resp.
type II, generalized type I, generalized type II) LP approximating solution sequence {x,},
there exist a subsequence{y,} of {z,,} and z € X such that z,, — z.
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Remark 1.4. (i) It is clear that any (generalized) type II LP approximating solution se-
quence is a (generalized) type I LP approximating solution sequence. Thus, (generalized)
type I LP well-posedness implies (generalized) type II LP well-posedness.
(ii) Each type of LP well-posedness of (GEP) implies that the solution set X is compact.
(iii) Suppose that g is uniformly continuous on a set

X1(50)={Z‘€X1 :dxo(x) S(SO} (15)
for some dg > 0. Then, generalized type I (type II) LP well-posedness of (GEP) implies its
type I (type II) LP well-posedness.

Consider the following statement:

[X # () and for any type I (resp. type II, generalized type I, generalized type II) LP
approximating solution sequence {z, }, we have dx(z,) — 0.] (STA)
The next proposition can be trivially established.

Proposition 1.5. If (GEP) is type I (resp. type II, generalized type I, generalized type
II) LP well-posed, then (STA) is true. Conversely, if (STA) holds and X is compact, then
(GEP) is type I (resp. type II, generalized type I, generaliz pe II) LP well-posed.

To see that the various LP well-posednesses of (GEP) tations of the correspond-
ing LP well-posednesses in minimization problems/ ) cam@ifinction, we consider the
following general constrained optimization problem:

» el

where f: X; — R'(J{+oo} is proper er inuous. The feasible set of (P)
is Xo, where Xo = {z € X; : g(z) € g4} T t et and optimal value of (P) are
denoted by X’ and 7, respectively. J5t8QQat if Dom(f) () Xo # 0, where

{z '

1- f(l’) < +OO}7

then v < 400. In this papey y\ssume that v > —oo.
LP well-posedness forall i when f is finite-valued has been studied in [6].

Definition . (@ 2} C X is called a type I LP minimizing sequence for

(P) if
limsup f(x,) <, (1.6)
n—-+oo
dx,(xn) — 0. (1.7)
(if) A sequence {z,} C X; is called a type IT LP minimizing sequence for (P) if
liIJIrl flzn) =17 (1.8)

and (1.7) holds.
(iii) A sequence {z,} C X is called a generalized type I LP minimizing sequence for (P)
if

dr (9(xn)) — 0. (1.9)

and (1.6) holds.
(iv) A sequence {z,} C X; is called a generalized type II LP minimizing sequence for
(P) if (1.8) and (1.9) hold.
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Definition 1.7. (P) is said to be type I (resp. type II, generalized type I, generalized type
I1 ) LP well-posed if the solution set X’ of (P) is nonempty, and for any type I (resp. type
I1, generalized type I, generalized type II ) LP minimizing sequence {z,}, there exist a
subsequence {z,,} of {z,} and Z € X’ such that z,, — Z.

Similar to the Auslender gap function, we can define a gap function for (GEP)

f(z) = inf sup —h(u,x,y), Ve € X;. (1.10)
ueT(r) ye X,

First, we have the following lemma concerning some properties of f defined by (1.10).

Lemma 1.8. The function f defined by (1.10) has the following properties.
() f(x) > 0 if z € Xo.

(ii) Let & € Xo. Then f(z) =0 if and only if T € X.

(iii) f: X1 — R*U+oo. Further, if X # 0, then dom(f) () Xo # 0.

(iv) f(z) is lower semicontinuous on X;.

Proof. (i) As h(u,z,z) =0,Vz € X1,u € T(z), we have
sup —h(u,z,y) > —h(u,x,x) \&’ 05 (z).
y€Xo

Thus,
inf s —h >0
u€eT (x) y%‘o ( P
That is, f(x) > 0 if z € X,.
(ii) If z € X C X, there exists @ € a
h( »Vy S X07
—h(t,Z,y) <0
yeXo
Further,
~— inf sup —h(u,z,y) <O0.
uweT (z) yEXo ( y)
This co

ined with 0,VaPe X, yields f(z) = 0.
r)'= 0. Since sup,cx, —h(u,z,y)
u € T(z) satisfying

is lower semicontinuous and T'(Z) is

sup —h(u,z,y) = 0.
yeXo

Thus, h(4,z,y) > 0,Vy € Xo. That is, 7 € X.

(iii) It is obvious that f(x) > —oo, Vo € X;. Moreover, if X # ¢, then there exists
7€ X and f(z) = 0. So, z € dom(f) (N Xo # ¢-

(v) Let t € RY. Suppose that sequence x,, C X; satisfies

flxn) <t (1.11)

and z, — z* € X;. We show that f(z*) < t. From (11), we have that for any € > 0 and
each n, there exists u,, € T'(z,) such that

—h(tn, Tn,y) <t+¢€Vy € Xo. (1.12)
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By the upper semicontinuity of T at * and compactness of T(x*), we obtain a subse-
quence {un; } of {u,} and some u* € T(z*) such that u,; — u*. Since h(.,.,y) is T-upper
semicontinuous, taking the limit in (12) (with n replaced by n;), we have

—h(u*,z*,y) < 1_iminf—h(un7.,xnj,y) <t+e¢Vy € Xgp. (1.13)

J—+o0 :
By the definition of f(z*), we have f(x*) <t + e. By the arbitrariness of € > 0, we obtain
f(z*) < t. Hence, f is lower semicontinuous on Xj. O

The next proposition establishes relationships between the various LP well-posednesses
of (GEP) and those of (P) with f(x) defined by (1.10).

Proposition 1.9. Assume that X # (). Then, (GEP) is type I (resp. type II, generalized
type I, generalized type II) LP well-posed if and only if (P) is type I (resp. type I, generalized
type I, generalized type II) LP well-posed with f(x) defined by (1.10).

Proof. Since X # (), by Lemma 1.8, x € X is a solution of (GEP) if and only if Z is an
optimal solution of (P) with o = f(z) = 0. It is also routin! check that a sequence {z,}
is a type I (resp. type II, generalized type I, generalized typ LP approximating solution
sequence if and only if it is a type I (resp. type II, crald ty generalized type II) LP
minimizing sequence of (P). It follows that (GEP) is . type II, generalized type
I, generalized type II) LP well-posed if and only if| (resp. type II, generalized
type I, generalized type II) LP well—poseg with y (1.10). O

ell-Posedness of (GEP)

In this section, we present necessar cient conditions for the various types of
(generalized) LP well-posednesseg de ection 1.

Consider a real-valued fun
that

(2.1)

(2.2)

exists a func ¢ satisfying (14) and (15) such that

|f(2)] = cldx (2), dx, (x)) Vze X (2.3)

Conversely, suppose that X is nonempty and compact, and (16) holds for some ¢ satisfying
(14) and (15). Then, (GEP) is type II LP well-posed.

Theorem 2.2. Let f(x) be defined by (1.10). If (GEP) is a generalized type II LP well-
posed, then there exists a function ¢ satisfying (14) and (15) such that

|f(@)| = e(dx (x), di (9(x))) Vo e Xi. (2.4)

Conversely, suppose that X is nonempty and compact, and (17) holds for some c satisfying
(14) and (15). Then, (GEP) is generalized type II LP well-posed.
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Let (X, ||-]|]) be a Banach space. Recall that the Kuratowski measure of noncompactness
for a subset H of X is defined as

p(H) =inf{e > 0: H C | | H;,diam(H;) < e,i=1,...,n},
i=1
where diam(H;) is the diameter of H; defined by
diam(H;) = sup{||z1 — x2|| : x1,22 € H;}.

The Hausdorff distance between two nonempty bounded subsets A and B of a Banach space
(X (11D s
I'(A, B) = max{e(A, B),e(B, A)},

where e(A, B) = sup d(u, B).
u€A

For any € > 0, define

Q') ={r € Xy :dx,(z) < ¢, Fu € T(x),h(u,2,y) >0,Vy € Xo}, (2.5)

Q%(e) = {r € Xy : d(g9(z)) < e,Fu € T(x),h > 0,Vy € Xo}. (2.6)

Theorem 2.3. Let (X,]||-]|) be a Banach space Let Q1(€) and Qa(€) be defined
by (18) and (19), respectively. Then (GEP) is (Rgcillig type I LP well-posed if and only
if

(2.7)
Proof. We first show that Q1 (e) d fopany € > 0. Let z,, € Q'(¢) with z,, — Z. Then

By the upper semicf y at T and compactness of T(Z), there exist a subsequence
{tn, } of d W ¥ich that u,, — @. Since h(.,.,y) is T-upper semicontin-
uous on g x X1, ta € uppér limit (with n replaced by n;), we have

) + € > limsup h(un,, Tn,;,y) + € > 0,dx,(Z) <€, Vy € Xo.
j—+o00

So Q!(e) is closed.
Second, we show that

It is obvious that X C (0,., Q' (¢). Now suppose that ¢, — 0 and Z € (;—, Q' (ex). Then,
dx, (%) < e, Vk (2.8)

Ja € T(z), h(a, T, y) + e > 0, VE. (2.9)

From (21), we have # € X. By (22) and the fact that # € X, we have 7 € X.
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Now we assume that (20) holds. By [9] (pp. 318), we have
L(Q'(e),X) — 0, as e — 0,

where X is is nonempty and compact.
Let {x,} be a type I LP approximating sequence for (GEP). Then, there exist a subse-
quence {zy} of {x,} and e > 0 with €, — 0, uy € T'(zx) such that

dx,(zr) < €g, h(ug, o1, y) + €, > 0,Vy € Xo.

That is, 71, € Q'(ex). It follows from T'(Q!(e), X) — 0 that dg(zx) — 0. By Proposition
5, (GEP) is type I LP well-posed.
_ Conversely, let (GEP) be type I LP well-posed. Taking into account the compactness of
X, we get
P(21(e)) < h(Q(6), X) + p(X) = 26(01(e), X).
We show that e(Q'(¢), X) — 0 as € — 0. If not, there existy > 0,¢, — 0,2, € Q(e,) such
that
dX (x’ﬂ) Z m,
contradicting the type I LP well-posedness of (GEP). . X) — 0 as € — 0. Hence,

(20) holds.
For 2(e), the conclusion can be anajggousl % lish

a Z be nonempty. Suppose that

q is said to be level-compact on

O

Definition 2.4. (i) Let Z be a topologi
q: Z — R'\J{+o0} is an extended r
Zy if, for any s € R!, the subset {z

ve -valued function u(x) from S to U is called a selection of
if u(ppe T(x),Vx €S.

osition presents some sufficient conditions for type I LP well-posedness

Proposition 2.5. Assume that one of the following conditions holds:
(i) There exists 0 < §1 < 0 such that X1(01) is compact, where

X1(61) ={z € X1 : dx,(x) <1 }; (2.10)

(ii) the function f(x) defined by (1.10) is level-compact on X;
(iii) X is finite dimensional and

max{ f(x),dx,(x)} = +o0; (2.11)

lim
z€X1||z|[—+o0

(iv) there exists 0 < &1 < &g such that f is level-compact on X1(61) defined by (23).
Then, (GEP) is type I LP well-posed.
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Proof. First, we show that each one of (i), (ii) and (iii) implies (iv). Clearly, either of (i)
and (ii) implies (iv). Now we show that (iii) implies (iv). we need only to show that for any
t € R', the set

A={reXi(d): fa) <1},

where A is bounded and closed since the function f defined by (1.10) is lower semicontinuous
on X;. Suppose to the contrary that there exist t € R! and {2/} C X;(d;) such that
[|z]]| — +o0 and f(a}) <t. From {z,} C X;(d1), we have

dXO((L':l) § 51.

Thus,
max{f(x{n)vdxo (x{n)} < ma‘X{tv 61}a
which contradicts condition (24).
Now we show that if (iv) holds, then (GEP) is type I LP well-posed. Let {z,} be a

type I LP approximating solution sequence. Then, there exist {¢,} > 0 with ¢, — 0 and
un, € T(xy,) such that

h(tn, Tn,y) + €, > 0,Vy € X, (2.12)

dx, (2n) < €n. (2.13)

From (26), we can assume without loss of@ener n} C X1(61). Furthermore, from

(25), we can assume without loss of generaljis th
et < A X

where f(x) is defined by (1.10).
subsequence of {x,} of {z,}
we have T € Xy. Furthermg

ele ompactness of f(x) on X;(d1), there exist a
1(01) such that x,, — z. From this fact and (26),
per semicontinuity of 7" at T and the compactness
of {u,} and some u € T'(x) such that u,, — 4.

f('i‘ im i % < A 4 1p f mnj) = lim sup _h(uTLj7lej)y) <0,vy € Xo.

j—+o0

We knoWlthat f(7) § 0, so f(z) =0 and 7 € Xo. Thus, 7 € X. O

Simila prove the next proposition.

Proposition 2.6. Assume that one of the following conditions holds:
(i) There exists 0 < 61 < g such that X1(81) is compact, where

(ii) the function f(x) defined by (1.10) is level-compact on X1 ;
(i) X is finite dimensional and

ool max{f(@). dic(g(a))} = +ocs (2.15)

(iv) there exists 0 < &1 < &g such that f is level-compact on X3(61) defined by (27).
Then, (GEP) is generalized type I LP well-posed.
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Proposition 2.7. Let X be finite dimensional. Let h(.,.,y) be T-continuous on Z x X
and the solution set X be nonempty. Assume that there exist 61 > 0 and yo € Xo such that
the function —h(u(z),z,yo) is level-bounded for any selection u(x) of T on X1(01) defined
by (23). Then, (GEP ) is type I LP well-posed.

Proof. Let {x,} be a type I LP approximating solution sequence. Then, there exist €, > 0
with €, — 0 and w,, € T(x,) such that

h(unaxnay) +en 2 Ovdxo(xn) < €, Vy € Xo.

From dx,(z,) < €,, we can assume {x,,} C X1(d1). Let us show by contradiction that {z,,}
is bounded. Otherwise, we assume without loss of generality that ||x,|| — +o00. By the
level-boundedness condition, we have

lim  A(up, Tn,yo) = —00
n—-+oo

contradicting the fact that h(u,, Zn,y)+€, > 0 when n is suf§cjpntly large. Consequently, we

can assume without loss of generality that x, — = € X;. together with dx,(z,) < €,
yields T € Xy. By the upper semicontinuity of T' ofr a m ess of T'(Z), there exist
a subsequence {uy; } of {u,} and some @ € T'(Z) suclNdat — 1. This shows z € X. O

Similarly, we can prove the next result.

[
Proposition 2.8. Let X be finite dimensjanal. y) be T-continuous on Z x X
and the solution set X be nonempty. As at i10gre gffist 61 > 0 and yo € Xo such that

the function —h(u(z), z,yo) is level-bofded forgptiy Wection u(x) of T on X2(01) defined
by (27). Then, (GEP ) is generalizf ty LP ‘well-posed.

Now we consider the case we 1N a normed space, K is a closed and convex cone with

nonempty interior intK.

Let e € intK and t >
¥) = {z € X;: g(x) € K —te}.

The nexjffpropositio e estdblished similarly to ( [8], Proposition 2.3).

et Y be a normed space, K be a closed and convex cone with nonempty
€ wntK. The solution set X is nonempty. Further assume that there
exists t1 > 0 such that the function f(x) defined by (1.10) is level-compact on Xs(t1). Then,
(GEP) is generalized type I LP well-posed.

Under suitable conditions, we show that any type of well-posedness of generalized equi-
librium problems is equivalent to the nonemptiness and compactness of its solution set.

Let

¢(z) = sup sup h(v,y,),Vz € Xi. (2.16)
yeXo veT (y)

Lemma 2.10. Assume that X1 C X and Xo are convex. Assume that for any x € Xq,u €
T(x), h(u,x,.) is convex and h(u, z,y) is monotone. Then, for T € Xy, there exist u € T(Z)
such that h(u,z,y) > 0,Yy € X if and only if h(v,y,z) < 0,Vy € Xo,v € T(y).
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Proof. Suppose for T € Xy, there exist @ € T(Z) such that
h(u,z,y) > 0,Vy € Xo.
Since h(u,z,y) is monotone, one has
h(a,Z,y) + h(v,y,T) < 0,Vy € Xo,v € T(y).

Consequently,
h(v,y,z) < 0,Vy € Xo,v € T(y).

Conversely, for all y € Xo, and Z € X, we define y,, = %y +(1- %)a’: € Xg,n € N. From
h(u,z,z) = 0,V € Xg,u € T(z), we have

1 1. _
h(’Unyynvyn) = O,an € T(Ey + (1 - E)x)

Since h(u,z,.) is convex on Xy and h(v,,yn,Z) < 0, we can see that
0= (v, Yn, Yn) = B(vns Y, py + (1= 1)Z) < Sh(v. PRY) + (1 = 5)h(vn, yn, T)
< %h(vnv Yn, y)
evn By the upper semicontinuity of T' at T and com¥gtne T(Z), there exist y,, — T

and a subsequence {v,,} of {v,} and some @ € that v,, — . Since h(.,.,y) is
T-upper semicontinuous on Z x X1, one&as

h(u, z,y)
O
Lemma 2.11. Let ¢(z) be d . Assume that X; C X and Xy are convez.
Assume that for any x € , h(u,x,.) is convex and h(u,z,y) is monotone.

Then, the following assen
(i) The function ¢(x
(i) ¢lx) > 0,¥z

t)z2) = Sup,cx, SUP,eT(y) h(v,y,tx; + (1 — t)x2)
yeXo SupveT(y)(th(Ua Y, 1’1) + (1 - t)h(v7 Y, .132))
< isupyex, SUPyeT(y) h(v,y,z1) 4+ (1 — 1) SUPye x, SUPyveT(y) h(v,y, )

=tp(x1) + (1 — t)p(x2).

So, ¢(x) is convex. Similar to the the proof of Lemma 1.2, we obtain ¢(z) is lower semicon-
tinuous on Xj.

(ii) It is obvious from the definition of ¢(z) that ¢(x) > 0,Vx € X,. Now assume 7 € X,
there exist @ € T(Z) such that

h(’l_l,7i',y) > 07Vy € X0~

Since h(u,x,.) is convex on X; and h(u,z,y) is monotone. By Lemma 2.10, we can show
that
h(v,y,%) < 0,Vy € Xo,v € T(y).
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Then ¢(Z) < 0. This combined with ¢(x) > 0 yleldb h(z) =
Conversely, suppose that Z € X and ¢(z) = 0. From the deﬁmtion of ¢(x), one has

h(v,y,z) <0,Vy € Xo,v € T(y).

By Lemma 2.10, there exists @ € T(Z) such that h(a,z,y) > 0,Vy € Xo. Thisis,z € X. O

Assumption 2.12. Assume that X is a finite dimensional, X; C X is a nonempty closed
and convex set and Y is a normed space, K C Y is a closed and convex cone with nonempty
interior int K. Assume that g(x) is K-concave on X; (i.e.for any 1,22 and any 6 € (0,1)
there holds that g(6z; + (1 — 6)x) — 0g(z1) — (1 — 0)g(x2) € K). Assume that for any
x € X1,u € T(x), h(u,x,.) is convex on X; and h(u,z,y) is monotone. Further assume that
the solution set X is nonempty.

It is obvious that under Assumption 2.12, the optimization problem (P) (with f replaced
by ¢) is a convex program.

Lemma 2.13. Let Assumption 2.12 hold. If{x,} is a (gene ed) type I LP approzimating
solution sequence of (GEP), then it is a (generalizeflyp @izing solution sequence

of (P) (with f(x) replaced by ¢(x)).

Proof. We prove only the type I case, the gene
Let {z,} be a type I LP approximati® solu
{en}QR with €, — 0 and z, € T(z,) sa i

ty case can be similarly proved.
ce of (GEP). Then, there exist
dX() xn ln7y -

Since h(u, z,y) is monotone

Y, Tn) N —h(Un, Tn,y) < €n
we can easily verify
(Tn) < €n, d(@n) < €n.

It followff that (1.7) with o = 0. O

The
and Remark

ult can be established by using Lemmas 2.11, 2.3, ( [6], Theorem 2.4)

Lemma 2.14. Let Assumption 2.12 hold. Then, (GEP) is (generalized) type I LP well-posed
if and only if its solution set X is nonempty and compact.

The following theorem is a direct consequence of Lemmas 2.13 and 2.14.

Theorem 2.15. Let Assumption 2.12 hold. Then, any type of LP well-posedness of (GEP)
is equivalent to the fact that the solution set X of (GEP) is nonempty and compact.

Remark 2.16. Necessary and sufficient conditions for the nonemptiness and compactness
of the solution set of a monotone (GEP) were established in [5]. By Theorem 2.15, these
conditions can be used to verify LP well-posedness of (GEP).
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