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1 Introduction

It is well-known that the scalar-valued FB function φ : R× R→ R is specified by

φ(a, b) := a + b−
√

a2 + b2, a, b ∈ R, (1.1)

which is attributed by Fischer to Burmeister (see [5, 6, 7]). It is a complementarity function
for nonlinear complementarity problem (NCP)(called C-function or NCP function), that is,

φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0. (1.2)

FB function has been much studied in the context of NCP, because it has nice properties,
such as strong semismoothness. Moreover, the squared norm of FB function has a Lipschitz
continuous gradient, which can be effectively employed in the algorithmic development, see,
e.g., [3, 8, 13].

Recently, FB function has been generalized to solve the semidefinite complementarity
problem (SDCP) and the second-order cone complementarity problem (SOCCP). For in-
stance, Tseng [21] (also see Borwein and Lewis [1]) proved that FB function is a C-function
for SDCP, and Fukushima, Luo and Tseng [9] showed that this is true in the setting of
SOCCP. It was proved by Sim, Sun and Ralph [17] and Chen, Sun and Sun [2] that the
squared norm of FB function has a Lipschitz continuous gradient in the settings of SDCP
and SOCCP, respectively.

∗The work was partly supported by a Discovery Grant from NSERC, and the National Natural Science
Foundation of China (10831006) and the National Basic Research Program of China (2010CB732501).
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Gowda, Sznajder and Tao [10] proposed the following (vector-valued) FB function on
Euclidean Jordan algebras as

ΦFB(x, y) := x + y − (x2 + y2)
1
2 , (1.3)

(detailed description is in the next section) and showed that it is a C-function for symmetric
cone complementarity problem (SCCP) which is to find a vector x ∈ J such that

x ∈ K, y ∈ K, 〈x, y〉 = 0, y = F (x), (1.4)

where J is a space of n-dimensional real column vectors, (J , 〈·, ·〉, ◦) is a Euclidean Jordan
algebra, K is the symmetric cone in V (see Section 2), and F : J → J is a given continuously
differentiable mapping. SCCP provides a simple, natural, and unified framework for various
complementarity problems, such as NCP, SOCCP and SDCP. Because of wide applications
in engineering, management science and other fields, it has attracted much attention, see,
e.g., [10, 11, 12, 15, 16, 20, 22]. Here, we say Φ : J ×J → J is a C-function (for SCCP) if
it satisfies

Φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0. (1.5)

Liu, Zhang and Wang [16] showed that the squared norm of FB function, ΨFB : J ×J → R,
defined by

ΨFB(x, y) :=
1
2
‖ΦFB(x, y)‖2 (1.6)

is differentiable. Motivated by all of the cited work above, a natural question arises:

Are the derivatives of the squared norm of FB function

ΨFB (given by (1.6)) Lipschitz continuous?

We answer the above question in the affirmative. To do so, we establish useful inequalities
on the Lyapunov operator, employing the norm induced by the underlying inner product.

In Section 2 we establish the preliminaries and present some useful results about Lya-
punov transformation. We show that FB function is Lipschitz continuous in Section 3.
Section 4 establishes that the derivatives of squared norm of FB function are Lipschitz
continuous. We conclude the paper in Section 5 and raise an open question.

2 Preliminaries

We review some results on Euclidean Jordan algebras (see for instance [4, 14]) and develop
some basic inequalities on Euclidean Jordan algebras.

A Euclidean Jordan algebra is a triple (J , 〈·, ·〉, ◦)(V for short), where (J , 〈·, ·〉) is a n-
dimensional inner product space over real field R and (x, y) 7→ x ◦ y : J × J → J is a
bilinear mapping which satisfies the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ J ,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J where x2 := x ◦ x and
(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ J .
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We call x◦y the Jordan product of x and y. In general, the Jordan product is not associative,
i.e., (x ◦ y) ◦ z 6= x ◦ (y ◦ z) for all x, y, z ∈ J . We assume that there exists an element e
(called the identity element) such that x ◦ e = e ◦ x = x for all x ∈ J . Define the set of
squares as K := {x2 : x ∈ J }. It is well-known that K is a symmetric cone in V, i.e., K
is a closed, convex, homogeneous and self-dual cone. For x ∈ J , the degree of x denoted
by deg(x) is the smallest positive integer m such that the set {e, x, x2, · · · , xm} is linearly
dependent. The rank of V is defined as max{deg(x) : x ∈ J }. In this paper, r will denote
the rank of the underlying Euclidean Jordan algebra. Let dim(J ) denote the dimension of
J . Obviously, r ≤ dim(J ).

Recall that an element c ∈ J is idempotent if c2 = c 6= 0. It is also primitive if it cannot
be written as a sum of two idempotents. A complete system of orthogonal idempotents is a
finite set {c1, c2, · · · , ck} of idempotents with ci ◦cj = 0 (i 6= j) and

∑k
i=1 ci = e. A complete

system of orthogonal primitive idempotents is called a Jordan frame of V. Thus, for any
element x ∈ J , we have the following important spectral decomposition theorem.

Theorem 2.1 (Theorem III.1.2, [4]). Let V be a Euclidean Jordan algebra of rank r.
Then for every vector x ∈ J there exist a Jordan frame {c1(x), c2(x), · · · , cr(x)} and real
numbers λ1(x), λ2(x), · · · , λr(x), the eigenvalues of x, such that

x = λ1(x)c1(x) + λ2(x)c2(x) + · · ·+ λr(x)cr(x). (2.1)

We call (2.1) the spectral decomposition of x.

Let x =
∑r

j=1 λj(x)cj(x) and ‖ · ‖ be the norm on J induced by the inner product, i.e.,

‖x‖ :=
√
〈x, x〉 =

√√√√
r∑

j=1

λ2
j (x).

We have ‖cj(x)‖ = 1 for j ∈ {1, 2, · · · , r}.
Let g : R→ R be a real-valued function. We define the vector-valued function G : J → J

as

G(x) :=
r∑

j=1

g(λj(x))cj(x) = g(λ1(x))c1(x) + g(λ2(x))c2(x) + · · ·+ g(λr(x))cr(x),

which is a Löwner operator. In particular, taking t+ := max{0, t}, we can define the projec-
tion of x onto K as

x+ :=
r∑

j=1

(λj(x))+cj(x).

Note that x ∈ K if and only if λi(x) ≥ 0,∀i ∈ {1, 2, · · · , r}. Letting g(t) :=
√

t for t ∈ R+,
we define

x
1
2 :=

r∑

j=1

√
λj(x)cj(x) for x ∈ K.

Therefore, FB function (1.3) and its squared norm (1.6) are well-defined.

We next recall the Peirce decomposition theorem on the space J , where the Jordan
frame {c1, c2, · · · , cr} can be fixed beforehand.
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Theorem 2.2 (Theorem IV.2.1, [4]). Let {c1, c2, · · · , cr} be a given Jordan frame in
a Euclidean Jordan algebra V of rank r. Then J is the orthogonal direct sum of spaces
Jij (i ≤ j), where the subspaces Jij for i, j ∈ {1, 2, · · · , r} are defined by

Jii := {x ∈ J : x ◦ ci = x} and Jij :=
{

x ∈ J : x ◦ ci =
1
2
x = x ◦ cj

}
, i 6= j.

Furthermore,

(i) Jij ◦ Jij ⊆ Jii + Jjj;

(ii) Jij ◦ Jjk ⊆ Jik, if i 6= k;

(iii) Jij ◦ Jkl = {0}, if {i, j}⋂{k, l} = Ø.

Based on the result above and Lemma IV.2.2 in [4], we have the following connection
between ‖x ◦ y‖ and ‖x‖‖y‖, which is useful in the subsequent analysis.

Lemma 2.3. Let x ∈ Jij , y ∈ Jkl with i < j and k < l. Then ‖x◦y‖ ≤ ‖x‖‖y‖. Furthermore,

‖x ◦ y‖2





= 0 if {i, j} ∩ {k, l} = Ø,

≤ 1
2‖x‖2‖y‖2 if i = k, j = l,

= 1
8‖x‖2‖y‖2 if i < j = k < l or k < l = i < j.

Proof. Note that if {i, j}⋂{k, l} = Ø, then x◦y = 0. If x ∈ Jij , y ∈ Jjl with i, j, l all distinct,
by Lemma IV.2.2 in [4], ‖x ◦ y‖2 = 1

8‖x‖2‖y‖2. We only need to prove the conclusion in
the case of x, y ∈ Jij . By Theorem 2.2, x ◦ y = δ1ci + δ2cj , for some δ1, δ2 ∈ R. Thus,
‖x ◦ y‖2 = δ2

1 + δ2
2 . Meanwhile, by direct computation, we have

‖x ◦ y‖2 = 〈x ◦ y, x ◦ y〉
= 〈δ1ci + δ2cj , x ◦ y〉
= 〈(δ1ci + δ2cj) ◦ x, y〉

=
〈

1
2
(δ1 + δ2)x, y

〉
(by Theorem 2.2)

≤
√

δ2
1 + δ2

2√
2

‖x‖‖y‖.

Therefore, we conclude in this case that ‖x ◦ y‖2 ≤ 1
2‖x‖2‖y‖2.

Below we consider a very fundamental linear operator, Lyapunov transformation, and
derive some inequalities on it that will be useful to us.

For each x ∈ J , we define the Lyapunov transformation (operator) L(x) : J → J by

L(x)y = x ◦ y, for all y ∈ J ,

which is a symmetric operator in the sense that 〈L(x)y, z〉 = 〈y,L(x)z〉 for all y, z ∈ J .
Given 0 6= a =

∑r
i=1 λi(a)ci(a) with λ1(a) ≥ · · · ≥ λ|℘(a)| > 0 = λ|℘(a)|+1 = · · · = λr(a),

where ℘(a) := {i : λi(a) > 0}, we define a subspace

Ja := J(e℘(a), 1) := {x ∈ J : x ◦ e℘(a) = x} with e℘(a) :=
|℘(a)|∑

i=1

ci(a). (2.2)
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It is well-known that La := L(a) is a one-to-one mapping from Ja to Ja and therefore it has
an inverse L−1

a on Ja, i.e., for any x ∈ Ja, L−1
a (x) is the unique d ∈ Ja such that a ◦ d = x.

Using Lemma 20 in [10], any x ∈ Ja can be expressed as

x =
|℘(a)|∑

i=1

xici(a) +
∑

1≤i<j≤|℘(a)|
xij , (2.3)

where xi ∈ R and xij ∈ Jij with the given Jordan frame {c1(a), c2(a), · · · , cr(a)}. The
following proposition gives a formula for L−1

a (x).

Proposition 2.4. Let 0 6= a =
∑r

i=1 λi(a)ci(a) with λ1(a) ≥ · · · ≥ λ|℘(a)| > 0 = λ|℘(a)|+1 =
· · · = λr(a). Let Ja and e℘(a) be given by (2.2). Then every x ∈ Ja can be written as in
(2.3) and

L−1
a (x) =

|℘(a)|∑

i=1

xi

λi(a)
ci(a) +

∑

1≤j<l≤|℘(a)|

2
λj(a) + λl(a)

xjl. (2.4)

In particular, L−1
a (a) = e℘(a) is the identity element in Ja, and L−1

a (ak) = ak−1 for k > 1.

Proof. As we noted before, the fact that every x ∈ Ja can be written in the form (2.3) is
given by Lemma 20 in [10]. Let d := L−1

a (x). Then

d =
|℘(a)|∑

i=1

dici(a) +
∑

1≤j<l≤|℘(a)|
djl,

for some di ∈ R and djl ∈ Jjl. By Theorem 2.2, direct calculation yields that

a ◦ d =
|℘(a)|∑

i=1

λi(a)dici(a) +



|℘(a)|∑

i=1

λi(a)ci(a)


 ◦


 ∑

1≤j<l≤|℘(a)|
djl




=
|℘(a)|∑

i=1

λi(a)dici(a) +
∑

1≤j<l≤|℘(a)|



|℘(a)|∑

i=1

λi(a)ci(a)


 ◦ djl

=
|℘(a)|∑

i=1

λi(a)dici(a) +
∑

1≤j<l≤|℘(a)|

λj(a) + λl(a)
2

djl.

This together with a ◦ d = x establishes (2.4).

Likewise, for the above a and ℘(a), we define subspaces

J0
a := J(e℘(a), 0) := {x ∈ J : x ◦ e℘(a) = 0},

J
1
2
a := J(e℘(a),

1
2
) := {x ∈ J : x ◦ e℘(a) =

1
2
x}.

It is easy to see that J0
a = J(e− e℘(a), 1). Similarly, applying Lemma 20 in [10], any x ∈ J0

a

can be expressed as

x =
r∑

i=|℘(a)|+1

xici(a) +
∑

|℘(a)|+1≤i<j≤r

xij ,
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where xi ∈ R and xij ∈ Jij . It is known that J is the orthogonal direct sum of spaces Ja, J
1
2
a

and J0
a (see Page 62 of [4]). From Theorem 2.2, we obtain

Ja =
⊕

1≤j≤l≤|℘(a)|
Jjl, J

1
2
a =

⊕

1≤j≤|℘(a)|,|℘(a)|+1≤l≤r

Jjl, J0
a =

⊕

|℘(a)|+1≤j≤l≤r

Jjl. (2.5)

Thus any x ∈ J can be expressed as x = x(1) + x( 1
2 ) + x(0) where x(1) ∈ Ja, x( 1

2 ) ∈ J
1
2
a and

x(0) ∈ J0
a . Observe that a ◦ x( 1

2 ) ∈ J
1
2
a . Moreover, La is a one-to-one mapping from J

1
2
a to

J
1
2
a , which is shown by the following.

Proposition 2.5. Let 0 6= a =
∑r

i=1 λi(a)ci(a) with λ1(a) ≥ · · · ≥ λ|℘(a)| > 0 = λ|℘(a)|+1 =

· · · = λr(a). Then every y ∈ J
1
2
a can be written as

y =
∑

1≤j≤|℘(a)|,|℘(a)|+1≤l≤r

yjl (2.6)

and

L−1
a (y) =

∑

1≤j≤|℘(a)|,|℘(a)|+1≤l≤r

2
λj(a)

yjl, (2.7)

where yjl ∈ Jjl.

Proof. By Theorem 2.2 and (2.5), every y ∈ J
1
2
a can be written in the form (2.6). Let

d := L−1
a (y). Then

d =
∑

1≤j≤|℘(a)|,|℘(a)|+1≤l≤r

djl,

for djl ∈ Jjl. As in the proof of Proposition 2.4, we have

L−1
a (y) =

∑

1≤j≤|℘(a)|,|℘(a)|+1≤l≤r

2
λj(a) + λl(a)

yjl.

The desired conclusion follows from λl(a) = 0 for |℘(a)|+ 1 ≤ l ≤ r.

Next, we consider some continuity property of L−1
aε

where aε := (a2 + ε2e)
1
2 .

Proposition 2.6. Let 0 6= a =
∑r

i=1 λi(a)ci(a) with λ1(a) ≥ · · · ≥ λ|℘(a)| > 0 = λ|℘(a)|+1 =

· · · = λr(a). Then for any x ∈ Ja and y ∈ J
1
2
a , L−1

a (x + y) is well-defined and

L−1
a (x + y) = L−1

a (x) + L−1
a (y).

Let aε := (a2 + ε2e)
1
2 . Then

lim
ε→0

L−1
aε

(x + y) = L−1
a (x + y). (2.8)

Furthermore, we have
lim
ε→0

L−1
aε

(x + y) ◦ x = L−1
a (x + y) ◦ x.
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Proof. The first part of the theorem is obvious by Propositions 2.4 and 2.5. For the second
part, since x ∈ Ja and y ∈ J

1
2
a , we can take x and y as in the forms (2.3) and (2.6),

respectively. Noting that aε =
∑r

i=1 λi(aε)ci(a) with λi(aε) =
√

λ2
i (a) + ε2, and employing

an argument similar to the one in the proof of Proposition 2.4, we have

L−1
aε

(x + y) =
|℘(a)|∑

i=1

xi

λi(aε)
ci(a) +

∑

1≤j<l≤|℘(a)|

2
λj(aε) + λl(aε)

xjl

+
∑

1≤j≤|℘(a)|,|℘(a)|+1≤l≤r

2
λj(aε) + λl(aε)

yjl.

This together with the facts λl(aε) = |ε| for |℘(a)|+ 1 ≤ l ≤ r, (2.4) and (2.7) yields (2.8).

Furthermore, note that

L−1
aε

(x + y) ◦ x =



|℘(a)|∑

i=1

xi

λi(aε)
ci(a)


 ◦ x +


 ∑

1≤j<l≤|℘(a)|

2
λj(aε) + λl(aε)

xjl


 ◦ x

+


 ∑

1≤j≤|℘(a)|,|℘(a)|+1≤l≤r

2
λj(aε) + λl(aε)

yjl


 ◦ x,

and

lim
ε→0



|℘(a)|∑

i=1

xi

λi(aε)
ci(a)


 ◦ x =



|℘(a)|∑

i=1

xi

λi(a)
ci(a)


 ◦ x,

lim
ε→0


 ∑

1≤j<l≤|℘(a)|

2
λj(aε) + λl(aε)

xjl


 ◦ x =


 ∑

1≤j<l≤|℘(a)|

2
λj(a) + λl(a)

xjl


 ◦ x,

lim
ε→0


 ∑

1≤j≤|℘(a)|,|℘(a)|+1≤l≤r

2
λj(aε) + λl(aε)

yjl


 ◦ x =


 ∑

1≤j≤|℘(a)|,|℘(a)|+1≤l≤r

2
λj(a)

yjl


 ◦ x.

It follows that limε→0 L−1
aε

(x + y) ◦ x = L−1
a (x + y) ◦ x, as desired.

We end this section by presenting various useful inequalities on L−1.

Lemma 2.7. For x, y ∈ J , let aε(x, y) := (x2 + y2 + ε2e)
1
2 with ε 6= 0. Then for every

u, v ∈ J , we have
∥∥∥L−1

aε(x,y)(x + y) ◦ u
∥∥∥ ≤ 2β‖u‖,

∥∥∥L−1
aε(x,y)(v) ◦ x

∥∥∥ ≤ β‖v‖ and
∥∥∥L−1

aε(x,y)(x ◦ u)
∥∥∥ ≤ γ‖u‖,

where β and γ are positive constants only dependent on the rank of J , which can be taken
as β = r4 and γ = 5r2.
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For x, y ∈ J , define a := (x2 +y2)
1
2 and let a =

∑r
i=1 λi(a)ci. For u, v ∈ J , by Theorem

2.2, we have

x =
r∑

i=1

xici +
∑

1≤j<l≤r

xjl, y =
r∑

i=1

yici +
∑

1≤j<l≤r

yjl,

u =
r∑

i=1

uici +
∑

1≤j<l≤r

ujl, v =
r∑

i=1

vici +
∑

1≤j<l≤r

vjl,

where xi, yi, ui, vi ∈ R and xjl, yjl, ujl, vjl ∈ Jjl. Note that aε(x, y) = (x2 + y2 + ε2e)
1
2 =∑r

i=1

√
λ2

i (a) + ε2ci and a2
ε(x, y) = x2 + y2 + ε2e. Thus,

λ2
i (a) + ε2 = 〈ci, a

2
ε(x, y)〉

= 〈ci, x
2 + y2)〉+ ε2

= 〈x ◦ ci, x〉+ 〈y ◦ ci, y〉+ ε2

= x2
i + y2

i +
1
2

∑

1≤j<l≤r,i∈{j,l}
(‖xjl‖2 + ‖yjl‖2) + ε2,

where the second equality holds by 〈ci, e〉 = 1, the fourth follows from the facts that x◦ ci =
xici + 1

2

∑
1≤j<l≤r,i∈{j,l} xjl by Theorem 2.2 and

〈
xici +

1
2

∑

1≤j<l≤r,i∈{j,l}
xjl, x

〉
= x2

i +
1
2

∑

1≤j<l≤r,i∈{j,l}
‖xjl‖2.

This implies that

√
λ2

i (a) + ε2 ≥ max
{
|xi|, |yi|, 1√

2
‖xjl‖, 1√

2
‖yjl‖, i ∈ {j, l}

}
, (2.9)

and for j 6= l, j, l ∈ {1, 2, · · · , r} we obtain

√
λ2

j (a) + ε2 +
√

λ2
l (a) + ε2 ≥ max

{√
2‖xjl‖,

√
2‖yjl‖

}
. (2.10)

From Proposition 2.4, we have

L−1
aε(x,y)(x) =

r∑

i=1

xi√
λ2

i (a) + ε2
ci +

∑

1≤j<l≤r

2√
λ2

j (a) + ε2 +
√

λ2
l (a) + ε2

xjl.
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Thus, by Theorem 2.2, direct calculation yields

L−1
aε(x,y)(x) ◦ u =

r∑

i=1

xiui√
λ2

i (a) + ε2
ci +

(
r∑

i=1

xi√
λ2

i (a) + ε2
ci

)
◦


 ∑

1≤j<l≤r

ujl




+

(
r∑

i=1

uici

)
◦


 ∑

1≤j<l≤r

2√
λ2

j (a) + ε2 +
√

λ2
l (a) + ε2

xjl




+


 ∑

1≤j<l≤r

2√
λ2

j (a) + ε2 +
√

λ2
l (a) + ε2

xjl


 ◦


 ∑

1≤j<l≤r

ujl




=
r∑

i=1

xiui√
λ2

i (a) + ε2
ci +

r∑

i=1

∑

1≤j<l≤r,i∈{j,l}

xi

2
√

λ2
i (a) + ε2

ujl

+
r∑

i=1

∑

1≤j<l≤r,i∈{j,l}

ui√
λ2

j (a) + ε2 +
√

λ2
l (a) + ε2

xjl

+
∑

1≤j<l≤r

∑

1≤i<k≤r

2√
λ2

j (a) + ε2 +
√

λ2
l (a) + ε2

xjl ◦ uik,

where the second equality follows from ci ◦ ujl = 1
2ujl with i ∈ {j, l}. Therefore, we have

∥∥∥L−1
aε(x,y)(x) ◦ u

∥∥∥ ≤
r∑

i=1

∥∥∥∥∥
xiui√

λ2
i (a) + ε2

ci

∥∥∥∥∥ +
r∑

i=1

∑

1≤j<l≤r,i∈{j,l}

∥∥∥∥∥
xi

2
√

λ2
i (a) + ε2

ujl

∥∥∥∥∥

+
r∑

i=1

∑

1≤j<l≤r,i∈{j,l}

∥∥∥∥∥∥
ui√

λ2
j (a) + ε2 +

√
λ2

l (a) + ε2
xjl

∥∥∥∥∥∥

+
∑

1≤j<l≤r

∑

1≤i<k≤r

∥∥∥∥∥∥
2√

λ2
j (a) + ε2 +

√
λ2

l (a) + ε2
xjl ◦ uik

∥∥∥∥∥∥

≤
r∑

i=1

|ui|+
r∑

i=1

∑

1≤j<l≤r,i∈{j,l}

1
2
‖ujl‖+

r∑

i=1

∑

1≤j<l≤r,i∈{j,l}

|ui|√
2

+
∑

1≤j<l≤r

∑

1≤i<k≤r

∥∥∥∥∥∥
2√

λ2
j (a) + ε2 +

√
λ2

l (a) + ε2
xjl

∥∥∥∥∥∥
‖uik‖

≤ r‖u‖+
1
2
r(r − 1)‖u‖+

√
2

2
r(r − 1)‖u‖+

√
2

4
[r(r − 1)]2 ‖u‖,

where the second inequality holds by Lemma 2.3, the third by the fact ‖u‖ ≥ max{|ui|, ‖ujl‖},
(2.9) and (2.10). Let β ≥ r + 1+

√
2

2 r(r − 1) +
√

2
4 [r(r − 1)]2. Then

∥∥∥L−1
aε(x,y)(x) ◦ u

∥∥∥ ≤ β‖u‖.

Likewise, we have
∥∥∥L−1

aε(x,y)(y) ◦ u
∥∥∥ ≤ β‖u‖. Hence,

∥∥∥L−1
aε(x,y)(x + y) ◦ u

∥∥∥ ≤
∥∥∥L−1

aε(x,y)(x) ◦ u
∥∥∥ +

∥∥∥L−1
aε(x,y)(y) ◦ u

∥∥∥ ≤ 2β‖u‖.
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Similarly, noting that

L−1
aε(x,y)(v) =

r∑

i=1

vi√
λ2

i (a) + ε2
ci +

∑

1≤j<l≤r

2√
λ2

j (a) + ε2 +
√

λ2
l (a) + ε2

vjl,

we obtain

∥∥∥L−1
aε(x,y)(v) ◦ x

∥∥∥ ≤ β‖v‖.

We next show
∥∥∥L−1

aε(x,y)(x ◦ u)
∥∥∥ ≤ γ‖u‖ with γ only dependent on r. Note that

x ◦ u =
r∑

i=1

xiuici +

(
r∑

i=1

xici

)
◦


 ∑

1≤j<l≤r

ujl


 +

(
r∑

i=1

uici

)
◦


 ∑

1≤j<l≤r

xjl




+


 ∑

1≤j<l≤r

xjl


 ◦


 ∑

1≤j<l≤r

ujl




=
r∑

i=1

xiuici +
∑

1≤j<l≤r

xj + xl

2
ujl +

∑

1≤j<l≤r

uj + ul

2
xjl

+


 ∑

1≤i<j≤r

∑

1≤k<l≤r,{i,j}6={k,l}
xij ◦ ukl +

∑

1≤j<l≤r

xjl ◦ ujl




=
r∑

i=1

xiuici +
∑

1≤j<l≤r

(
xj + xl

2
ujl +

uj + ul

2
xjl

)

+
∑

1≤i<j<k≤r

(xij ◦ ujk + xjk ◦ uij) +
∑

1≤j<l≤r

xjl ◦ ujl.

By Theorem 2.2, we can write xjl◦ujl = f jl
1 cj +f jl

2 cl with f jl
1 , f jl

2 ∈ R. Thus, by Proposition
2.4,

L−1
aε(x,y)


 ∑

1≤j<l≤r

xjl ◦ ujl


 = L−1

aε(x,y)


 ∑

1≤j<l≤r

(f jl
1 cj + f jl

2 cl)




=
∑

1≤j<l≤r


 f jl

1√
λ2

j (a) + ε2
cj +

f jl
2√

λ2
l (a) + ε2

cl


 .
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Observe that since 〈cj , cl〉 = 0, with θjl := min
{√

λ2
j (a) + ε2,

√
λ2

l (a) + ε2
}

, we deduce

∥∥∥∥∥∥
f jl
1√

λ2
j (a) + ε2

cj +
f jl
2√

λ2
l (a) + ε2

cl

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
f jl
1√

λ2
j (a) + ε2

cj

∥∥∥∥∥∥

2

+

∥∥∥∥∥
f jl
2√

λ2
l (a) + ε2

cl

∥∥∥∥∥

2

≤
∥∥∥∥∥

f jl
1

θjl
cj

∥∥∥∥∥

2

+

∥∥∥∥∥
f jl
2

θjl
cl

∥∥∥∥∥

2

=
1
θ2

jl

(
‖f jl

1 cj‖2 + ‖f jl
2 cl‖2

)

=
1
θ2

jl

‖f jl
1 cj + f jl

2 cl‖2 (by 〈cj , cl〉 = 0)

=
1
θ2

jl

‖xjl ◦ ujl‖2

=
∥∥∥∥

1
θjl

xjl ◦ ujl

∥∥∥∥
2

≤
∥∥∥∥

1
θjl

xjl

∥∥∥∥
2

‖ujl‖2 (by Lemma 2.3)

≤ 2‖ujl‖2
(

θjl ≥ 1√
2
‖xjl‖ by (2.9)

)

≤ 2‖u‖2.

That is,
∥∥∥∥∥∥

f jl
1√

λ2
j (a) + ε2

cj +
f jl
2√

λ2
l (a) + ε2

cl

∥∥∥∥∥∥
≤
√

2‖u‖.

Therefore, we have

∥∥∥∥∥∥
L−1

aε(x,y)


 ∑

1≤j<l≤r

xjl ◦ ujl




∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

1≤j<l≤r


 f jl

1√
λ2

j (a) + ε2
cj +

f jl
2√

λ2
l (a) + ε2

cl




∥∥∥∥∥∥

≤
∑

1≤j<l≤r

∥∥∥∥∥∥
f jl
1√

λ2
j (a) + ε2

cj +
f jl
2√

λ2
l (a) + ε2

cl

∥∥∥∥∥∥

≤
∑

1≤j<l≤r

√
2‖u‖

=
√

2
2

r(r − 1)‖u‖. (2.11)

Set ξ :=
∑r

i=1 xiuici+
∑

1≤j<l≤r

(
xj+xl

2 ujl + uj+ul

2 xjl

)
+

∑
1≤i<j<k≤r (xij ◦ ujk + xjk ◦ uij).

Note that by Theorem 2.2, (xij ◦ ujk + xjk ◦ uij) ∈ Jik. Similarly, by Proposition 2.4, we
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have

L−1
aε(x,y)(ξ) =

r∑

i=1

xiui√
λ2

i (a) + ε2
ci

+
∑

1≤j<l≤r

2√
λ2

j (a) + ε2 +
√

λ2
l (a) + ε2

(
xj + xl

2
ujl +

uj + ul

2
xjl

)

+
∑

1≤i<j<k≤r

2√
λ2

i (a) + ε2 +
√

λ2
k(a) + ε2

(xij ◦ ujk + xjk ◦ uij) .

Thus, we obtain from Lemma 2.3 and inequalities (2.9) and (2.10) that

‖L−1
aε(x,y)(ξ)‖ ≤

r∑

i=1

|ui|+
∑

1≤j<l≤r

(‖ujl‖+ |uj |+ |ul|) +
∑

1≤i<j<k≤r

(‖ujk‖+ ‖uij‖)

≤ r‖u‖+
1 + 2

√
2

2
r(r − 1)‖u‖+

√
2r(r − 1)‖u‖. (2.12)

So, combining the above inequalities (2.11) and (2.12), we have

∥∥∥L−1
aε(x,y)(x ◦ u)

∥∥∥ =

∥∥∥∥∥∥
L−1

aε(x,y)


ξ +

∑

1≤j<l≤r

xjl ◦ ujl




∥∥∥∥∥∥

≤
[
r‖u‖+

1 + 2
√

2
2

r(r − 1)‖u‖+
√

2r(r − 1)‖u‖
]

+
√

2
2

r(r − 1)‖u‖

=

(
1 + 5

√
2

2
r2 − 5

√
2− 1
2

r

)
‖u‖.

Letting γ ≥ 1+5
√

2
2 r2 − 5

√
2−1
2 r, we obtain the desired inequality.

3 Lipschitz Continuity of FB Function

In this section, we establish the Lipschitz continuity of FB C-function. For this purpose, we
need the following result about the derivative of x

1
2 in int(K), the interior of K.

Lemma 3.1. The function x
1
2 is smooth at every x ∈ int(K). Moreover, it holds

∇(x
1
2 ) =

(L(x
1
2 ))−1

2
for every x ∈ int(K). (3.1)

Proof. Clearly, x
1
2 is smooth at x ∈ int(K). For the second part of the lemma, suppose that

(x + h)
1
2 − x

1
2 = Sh + o(‖h‖) for some linear operator S. Multiplying both sides of this

equation by (x + h)
1
2 + x

1
2 , we have

((x + h)
1
2 + x

1
2 ) ◦ ((x + h)

1
2 − x

1
2 ) = ((x + h)

1
2 + x

1
2 ) ◦ (Sh + o(‖h‖)).

Direct computation yields h = ((x + h)
1
2 + x

1
2 ) ◦ Sh + o(‖h‖) or h = 2x

1
2 ◦ (Sh) + o(‖h‖),

using (x + h)
1
2 = x

1
2 +Sh+o(‖h‖) and Sh◦Sh = o(‖h‖). That is, h = L(2x

1
2 )(Sh)+o(‖h‖).

Hence, S = (L(2x
1
2 ))−1 = (L(x

1
2 ))−1

2 by the linearity of Lyapunov transformation.
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We now prove the Lipschitz property of (x2 + y2)
1
2 .

Lemma 3.2. The function (x2 +y2)
1
2 is globally Lipschitz continuous everywhere in J ×J .

Proof. Fix x, y ∈ J , let a(x, y) := (x2 + y2)
1
2 and aε(x, y) := (x2 + y2 + ε2e)

1
2 for ε 6= 0.

Note that for any u, v ∈ J ,

‖aε(x + u, y + v)− aε(x, y)‖
= ‖aε(x + u, y + v)− aε(x, y + v) + aε(x, y + v)− aε(x, y)‖

=
∥∥∥∥
∫ 1

0

L−1
aε(x+tu,y+v)L(x + tu)udt +

∫ 1

0

L−1
aε(x,y+tv)L(y + tv)vdt

∥∥∥∥

=
∥∥∥∥
∫ 1

0

L−1
aε(x+tu,y+v)((x + tu) ◦ u)dt +

∫ 1

0

L−1
aε(x,y+tv)((y + tv) ◦ v)dt

∥∥∥∥

≤
∫ 1

0

∥∥∥L−1
aε(x+tu,y+v)((x + tu) ◦ u)

∥∥∥ dt +
∫ 1

0

∥∥∥L−1
aε(x,y+tv)((y + tv) ◦ v)

∥∥∥ dt

≤
∫ 1

0

γ‖u‖dt +
∫ 1

0

γ ‖v‖ dt

= γ(‖u‖+ ‖v‖)
≤

√
2γ‖(u, v)‖,

where the second equality holds by the Mean Value Theorem and Lemma 3.1, the first
inequality holds by Lemma 2.7 and γ is only dependent on r, and the last inequality follows
from the fact ‖u‖+ ‖v‖ ≤ √

2
√
‖u‖2 + ‖v‖2 =

√
2‖(u, v)‖. Thus, we deduce

‖aε(x + u, y + v)− aε(x, y)‖ ≤
√

2γ‖(u, v)‖.
The desired conclusion follows by taking ε → 0 in the inequality above.

As a consequence of the lemma above, we immediately obtain the Lipschitz continuity
of FB function.

Theorem 3.3. The FB function ΦFB (given by (1.3)) is globally Lipschitz continuous
everywhere in J × J .

4 Lipschitz Continuity of the Derivatives of ΨFB

This section deals with Lipschitz continuity of the derivatives of the squared norm of FB
C-function. The main result is stated below.

Theorem 4.1. The derivatives of the squared norm of the Fischer-Burmeister function
ΨFB (given by (1.6)) are Lipschitz continuous everywhere in J × J .

Our proof relies on four lemmas. First, we focus on L−1
a (x+y)◦x where a = (x2+y2)

1
2 in

the subsequent analysis. Observe that a may have eigenvalues that are zero. For the sake of
simplicity, we look at a “smoothed” counterpart aε(x, y). Let Sε(x, y) := L−1

aε(x,y)(x+ y) ◦x,
we have the following.

Lemma 4.2. Let u, v ∈ J be given. Then for every x, y ∈ J and ε 6= 0 we have

[∇xSε(x, y)]u = L−1
aε(x,y)(x + y) ◦ u + L−1

aε(x,y)

[
u− 2L−1

aε(x,y)(x + y) ◦ L−1
aε(x,y)(x ◦ u)

]
◦ x,

[∇ySε(x, y)] v = L−1
aε(x,y)(x + y) ◦ v + L−1

aε(x,y)

[
v − 2L−1

aε(x,y)(x + y) ◦ L−1
aε(x,y)(y ◦ v)

]
◦ y.
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Proof. Fix u ∈ J . Set z := aε(x + u, y)− aε(x, y) and w := 2x ◦ u + u2. Noting that

aε(x + u, y) = [(x + u)2 + y2 + ε2e]
1
2 = [(x2 + y2 + ε2e) + 2x ◦ u + u2]

1
2 ,

we have z = [a2
ε(x, y) + w]

1
2 − aε(x, y). Note that Jaε(x,y) = J from (2.5) and |℘(a)| = r.

From Lemma 6.6(2) in [16], it follows that

z = L−1
aε(x,y)(2x ◦ u + u2) + o(‖u‖) = 2L−1

aε(x,y)(x ◦ u) + o(‖u‖).
Thus z → 0 as u → 0 and z = O(‖u‖). Let

η := L−1
aε(x,y)(x + y) and η + h := L−1

aε(x,y)+z(x + u + y).

It is easy to see that aε(x, y) ◦ η = x + y and [aε(x, y) + z] ◦ (η + h) = x + u + y. So,
aε(x, y) ◦ h = u− z ◦ η − z ◦ h, or

h = L−1
aε(x,y)(u− z ◦ η)− L−1

aε(x,y)(z ◦ h).

Since z → 0 as u → 0 and z = O(‖u‖), h → 0 as u → 0 and h ◦ z = o(‖z‖) = o(‖u‖). We
deduce

L−1
aε(x,y)(z ◦ h) = o(‖u‖) and h = L−1

aε(x,y)(u− z ◦ η) + o(‖u‖).
Thus, direct calculation yields

Sε(x + u, y)− Sε(x, y)
= L−1

aε(x+u,y)(x + u + y) ◦ (x + u)− L−1
aε(x,y)(x + y) ◦ x

= (η + h) ◦ (x + u)− η ◦ x

= η ◦ u + h ◦ (x + u)
= L−1

aε(x,y)(x + y) ◦ u + L−1
aε(x,y)(u− z ◦ η) ◦ (x + u) + o(‖u‖) ◦ (x + u)

= L−1
aε(x,y)(x + y) ◦ u + L−1

aε(x,y)

[
u− 2L−1

aε(x,y)(x + y) ◦ L−1
aε(x,y)(x ◦ u)

]
◦ (x + u) + o(‖u‖)

= L−1
aε(x,y)(x + y) ◦ u + L−1

aε(x,y)

[
u− 2L−1

aε(x,y)(x + y) ◦ L−1
aε(x,y)(x ◦ u)

]
◦ x + o(‖u‖).

This establishes the formula for [∇xSε(x, y)]u. The formula for [∇ySε(x, y)]v follows from
the symmetry of x and y.

Lemma 4.3. For every x, y, u and v ∈ J ,

‖[∇xSε(x, y)]u‖ ≤ ρ‖u‖, ‖[∇ySε(x, y)]v‖ ≤ ρ‖v‖
where ρ is only dependent on the rank of J , which can be taken as ρ = 20r10 + 3r4.

Proof. Using Lemmas 2.7 and 4.2, we deduce

‖[∇xSε(x, y)]u‖
=

∥∥∥L−1
aε(x,y)(x + y) ◦ u + L−1

aε(x,y)

[
u− 2L−1

aε(x,y)(x + y) ◦ L−1
aε(x,y)(x ◦ u)

]
◦ x

∥∥∥

≤
∥∥∥L−1

aε(x,y)(x + y) ◦ u
∥∥∥ +

∥∥∥L−1
aε(x,y)

[
u− 2L−1

aε(x,y)(x + y) ◦ L−1
aε(x,y)(x ◦ u)

]
◦ x

∥∥∥

≤ 2β‖u‖+ β
∥∥∥u− 2L−1

aε(x,y)(x + y) ◦ L−1
aε(x,y)(x ◦ u)

∥∥∥

≤ 2β‖u‖+ β
(
‖u‖+ 2

∥∥∥L−1
aε(x,y)(x + y) ◦ L−1

aε(x,y)(x ◦ u)
∥∥∥
)

≤ 2β‖u‖+ β
(
‖u‖+ 4β

∥∥∥L−1
aε(x,y)(x ◦ u)

∥∥∥
)

≤ 2β‖u‖+ β(‖u‖+ 4βγ‖u‖),
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where β, γ are given as in Lemma 2.7. Therefore, by taking ρ := 3β + 4β2γ, we obtain
that ‖[∇xSε(x, y)]u‖ ≤ ρ‖u‖ with ρ only dependent on r and ρ = 20r10 + 3r4 if β = r4

and γ = 5r2. As in the proof of the last lemma, ‖[∇ySε(x, y)]v‖ ≤ ρ‖v‖ follows from
symmetry.

Now we are in a position to prove the Lipschitz continuity of L−1
a (x + y) ◦ x.

Lemma 4.4. L−1
a (x + y) ◦ x is globally Lipschitz continuous for all x, y ∈ J .

Proof. We first show that Sε(x, y) = L−1
aε(x,y)(x + y) ◦ x is globally Lipschitz continuous for

all x, y ∈ J . For every u, v ∈ J ,

Sε(x + u, y + v)− Sε(x, y) = Sε(x + u, y + v)− Sε(x, y + v) + Sε(x, y + v)− Sε(x, y).

By Lemma 4.2, ∇xSε(x, y) is continuous in x. Thus, it follows by the Mean Value Theorem
that

Sε(x + u, y + v)− Sε(x, y + v) =
∫ 1

0

[∇xSε(x + tu, y + v)]udt.

By Lemma 4.3, it follows that ‖[∇xSε(x + tu, y + v)]u‖ ≤ ρ‖u‖. Hence,

‖Sε(x + u, y + v)− Sε(x, y + v)‖ =
∥∥∥∥
∫ 1

0

[∇xSε(x + tu, y + v)]udt

∥∥∥∥

≤
∫ 1

0

‖[∇xSε(x + tu, y + v)]u‖ dt

≤
∫ 1

0

ρ‖u‖dt = ρ‖u‖.

That is, ‖Sε(x + u, y + v)− Sε(x, y + v)‖ ≤ ρ‖u‖ with ρ only dependent on r.

Likewise, we have ‖Sε(x, y + v) − Sε(x, y)‖ ≤ ρ‖v‖. We therefore obtain that ‖Sε(x +
u, y + v)− Sε(x, y)‖ ≤ ρ(‖u‖+ ‖v‖), or

∥∥∥L−1
aε(x+u,y+v)(x + u + y + v) ◦ (x + u)− L−1

aε(x,y)(x + y) ◦ x
∥∥∥ ≤ ρ(‖u‖+ ‖v‖).

Note that L−1
aε(x,y)(x + y) ◦ x → L−1

a (x + y) ◦ x as ε → 0 by Proposition 2.6. Letting ε → 0
in the inequality above, we obtain the desired result.

Before proving Theorem 4.1, we need to recall a lemma by Liu, Zhang and Wang [16].

Lemma 4.5. (Lemma 6.7, [16]) ΨFB(x, y) is differentiable at every (x, y) ∈ J ×J , and if
(x, y) = (0, 0), then ∇xΨFB(0, 0) = ∇yΨFB(0, 0) = 0; if (x, y) 6= (0, 0), then

∇xΨFB(x, y) = L−1
a (a− x− y) ◦ (x− a),

∇yΨFB(x, y) = L−1
a (a− x− y) ◦ (y − a),

where a = (x2 + y2)
1
2 .

Proof of Theorem 4.1. It is easy to see that

ΨFB(x, y) =
1
2
〈x2 + y2, e〉+

1
2
〈(x + y)2, e〉 − 〈(x2 + y2)

1
2 , x + y〉.
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Let R(x, y) := 〈(x2 + y2)
1
2 , x + y〉. Then

R(x, y) =
1
2
〈x2 + y2, e〉+

1
2
〈(x + y)2, e〉 −ΨFB(x, y).

Set a := (x2 + y2)
1
2 . By Lemma 4.5, it is straightforward to derive that

∇xR(x, y) = x + (x + y)−∇xΨFB(x, y)
= 2x + y − L−1

a (a− x− y) ◦ x + L−1
a (a− x− y) ◦ a

= 2x + y − [L−1
a (a)− L−1

a (x + y)
] ◦ x + (a− x− y)

= L−1
a (x + y) ◦ x + (x2 + y2)

1
2 ,

where the third equality holds by L−1
a (a− x− y) ◦ a = a− x− y because Lemma 6.6(1) of

[16] implies that a − x − y lies in the space Ja where L−1
a makes sense, and the fourth by

L−1
a (a) ◦ x = x. Combining Lemmas 3.2 and 4.4, we conclude that ∇xR(x, y) is globally

Lipschitz.

By symmetry in x and y, ∇yR(x, y) is also globally Lipschitz continuous.

5 Final Remarks

In this article, we studied some properties of the Lyapunov operator, and using these prop-
erties we established Lipschitz continuity of FB function and the derivatives of squared norm
of FB function.

Sun and Sun [18] showed that the FB function is strongly semismooth everywhere in the
cases of SDCP and SOCCP. However, it is not clear whether FB function ΦFB (given by
(1.3)) is strongly semismooth? We leave this question as a future research topic.
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