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Abstract: Recently, Gowda et al. [10] established the Fischer-Burmeister (FB) complementarity function
(C-function) on Euclidean Jordan algebras. In this paper, we proge that FB C-function as well as the
derivatives of the squared norm of FB C-function are Lipschitz contijbus.
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Introduction
It is well-known that the scalar-valudd function ¢ : R x R — R is specified by

b— a2+ b2, a,b€eR, (1.1)

=0< a>0,b>0, ab=0. (1.2)

FB functiN@ has bgen much studied in the context of NCP, because it has nice properties,
such as stro ismoothness. Moreover, the squared norm of FB function has a Lipschitz
continuous gradient, which can be effectively employed in the algorithmic development, see,
e.g., [3, 8, 13].

Recently, FB function has been generalized to solve the semidefinite complementarity
problem (SDCP) and the second-order cone complementarity problem (SOCCP). For in-
stance, Tseng [21] (also see Borwein and Lewis [1]) proved that FB function is a C-function
for SDCP, and Fukushima, Luo and Tseng [9] showed that this is true in the setting of
SOCCP. It was proved by Sim, Sun and Ralph [17] and Chen, Sun and Sun [2] that the
squared norm of FB function has a Lipschitz continuous gradient in the settings of SDCP
and SOCCP, respectively.

*The work was partly supported by a Discovery Grant from NSERC, and the National Natural Science
Foundation of China (10831006) and the National Basic Research Program of China (2010CB732501).

Copyright © 2010 Yokohama Publishers  http://www.ybook.co.jp



424 L. KONG, L. TUNCEL AND N. XIU

Gowda, Sznajder and Tao [10] proposed the following (vector-valued) FB function on
Euclidean Jordan algebras as

Cpp(oy) =a+y— (2% +y7)%, (1.3)

(detailed description is in the next section) and showed that it is a C-function for symmetric
cone complementarity problem (SCCP) which is to find a vector € J such that

z€K, yeKkK, <a:,y>=0, y:F(x)’ (14)

where J is a space of n-dimensional real column vectors, (7, (-,-),0) is a Euclidean Jordan
algebra, K is the symmetric cone in V (see Section 2), and F' : J — J is a given continuously
differentiable mapping. SCCP provides a simple, natural, and unified framework for various
complementarity problems, such as NCP, SOCCP and SDCP. Because of wide applications
in engineering, management science and other fields, it has attracted much attention, see,
e.g., [10, 11, 12, 15, 16, 20, 22]|. Here, we say ® : 7 x J — J is a C-function (for SCCP) if
it satisfies

O(z,y) =0 <= 2z €K, ye K, (z, (1.5)

Liu, Zhang and Wang [16] showed that the squared
defined by

nction, Vpp : I xJ — R,

\I/FB l‘ y *H ' (16)
is differentiable. Motivated by all of th % s@' a natural question arises:
Are the derivatives @ tIsquared norm of FB function
1.6)) Lipschitz continuous?
We answer the abgyge affirmative. To do so, we establish useful inequalities
on the Lyap oying the norm induced by the underlying inner product
In Se preliminaries and present some useful results about Lya-
punov tr, . e show that FB function is Lipschitz continuous in Section 3.
Section s that the derivatives of squared norm of FB function are Lipschitz

clude the paper in Section 5 and raise an open question.

Preliminaries

We review some results on Euclidean Jordan algebras (see for instance [4, 14]) and develop
some basic inequalities on Euclidean Jordan algebras.

A Euclidean Jordan algebra is a triple (7, (-, -),0)(V for short), where (7, (-,-)) is a n-
dimensional inner product space over real field R and (z,y) — zoy : J xJ — J is a
bilinear mapping which satisfies the following conditions:

(i) zoy=yox for all z,yeJ,
(i) xo(2?20y)=a220c(zoy) for all z,y € J where 2?2:=xo0x and

(i) (zoy,2) =(x,yoz) for all z,y,z€J.
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We call zoy the Jordan product of x and y. In general, the Jordan product is not associative,
ie, (xoy)oz £ xo(yoz) forall z,y,z € J. We assume that there exists an element e
(called the identity element) such that x oe = eox = x for all x € J. Define the set of
squares as K := {22 : x € J}. It is well-known that K is a symmetric cone in V, i.e., K
is a closed, convex, homogeneous and self-dual cone. For x € 7, the degree of x denoted
by deg(x) is the smallest positive integer m such that the set {e,x,z?,--- 2™} is linearly
dependent. The rank of V is defined as max{deg(x) : x € J}. In this paper, r will denote
the rank of the underlying Euclidean Jordan algebra. Let dim(J) denote the dimension of
J. Obviously, r < dim(J).

Recall that an element ¢ € J is idempotent if ¢ = ¢ # 0. It is also primitive if it cannot
be written as a sum of two idempotents. A complete system of orthogonal idempotents is a
finite set {c1, o, -+ , ¢} of idempotents with ¢;oc; =0 (¢ # j) and Zle ¢; = e. A complete
system of orthogonal primitive idempotents is called a Jordan frame of V. Thus, for any
element x € J, we have the following important spectral decomposition theorem.

Theorem 2.1 (Theorem III.1.2, [4]). Let V be a Fuclidean Jordan algebra of rank r.

Then for every vector x € J there exist a Jordan frame {¢1(x), ca(x), - ,cr(x)} and real
numbers A1(x), Aa(x), -+, An(x), the eigenvalues of x, suclfihat
z = A(z)er(x) + Ao ()ea(x) R + (R (). (2.1)

We call (2.1) the spectral decomposition of x.

[ J
Let # =Y " Aj(x)c;(z) and || - || be ¢

j=1

3

induced by the inner product, i.e.,

as

which is a operator. In particular, taking t; := max{0, ¢}, we can define the projec-

tion of x onto K as .

wyi= Y (M) yei(@).

j=1

Note that € K if and only if A\;(z) > 0,Vi € {1,2,--- ,7}. Letting g(t) := v/t for t € Ry,

we define
s

27 = Z Aj(z)ej(z) for z e K.
j=1
Therefore, FB function (1.3) and its squared norm (1.6) are well-defined.

We next recall the Peirce decomposition theorem on the space J, where the Jordan
frame {c1,co, -, ¢} can be fixed beforehand.
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Theorem 2.2 (Theorem IV.2.1, [4]). Let {c1,c2,-+- ¢} be a given Jordan frame in
a Euclidean Jordan algebra V of rank r. Then J is the orthogonal direct sum of spaces
Jij (1 < j), where the subspaces J;; fori,j € {1,2,--- ,r} are defined by

1
Ju={reJ:xoc =2z} and J;;:= {xej:xociZQx:xocj}, )

Furthermore,
(i) Jij o Jij C Jiui + Jjj;
(i) Jijo ik C Ju, if i #£k;
(iil)  Jij o Ju = {0}, if {i,5}N{k,1} = 0.

Based on the result above and Lemma IV.2.2 in [4], we have the following connection
between ||z o y|| and ||z||||y||, which is useful in the subsequent analysis.

Lemma 2.3. Letx € J;;,y € Jy withi < j and k < 1. Then ||xoy|| < ||z||||ly||. Furthermore,

=0 if {1, 73 N K 1} O,
lzoyl® ¢ < sllzlPlyl®  ifi = g =

= gll=[ Iy

by Lemma IV.2.2 in [4], [z o y|? = &
the case of z,y € J;;. By Theorem 2.2
|z o y||> = 67 + 62. Meanwhile, by dir

(04c; Poacs, z oY)

C; + 620‘7‘) ox, y>
<1 (61 + 62):z:,y> (by Theorem 2.2)
VOl

V2 ui

Thereforefge congjlide in this case that ||z o y||> < 3 ||z|?[ly[|* O

Below we consider a very fundamental linear operator, Lyapunov transformation, and
derive some inequalities on it that will be useful to us.

For each z € J, we define the Lyapunov transformation (operator) L(z) : J — J by
L(z)y=zoy, forallye J,

which is a symmetric operator in the sense that (L(z)y,z) = (y, L(z)z) for all y,z € J.
Given 0 # a = Y7, Ai(a)ci(a) with Ai(a) > -+ > Ny > 0 = N1 = -+ = Av(a),
where p(a) := {i : A\;(a) > 0}, we define a subspace

lo(a)]
Jo = J(ep), 1) ={r €T 1 w0eyq) =2} with ey = Z ci(a). (2.2)

i=1
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It is well-known that £, := L(a) is a one-to-one mapping from J, to J, and therefore it has
an inverse £, ! on J,, i.e., for any x € J,, £L;1(x) is the unique d € J, such that aod = x.
Using Lemma 20 in [10], any = € J, can be expressed as

lo(a)l
T = Z xici(a) + Z Tij, (2.3)
i=1 1<i<j<|p(a)l
where z; € R and z;; € J;; with the given Jordan frame {ci(a),cz2(a), -+ ,¢r(a)}. The

following proposition gives a formula for £;1(x).

PI‘OpOSitiOl’l 2.4. Let 0 7é a = Z::1 )\i(a)q(a) with )\1(&) > > )‘\go(a)\ >0= >\|KJ(“)|+1 =
= Ap(a). Let J, and eyq) be given by (2.2). Then every x € J, can be written as in
(2.3) and

lp(a)l
i 2
ﬁ;l(.ﬁ) = E i ci(a) + E ~—~Tji- (2.4)
— Xi(a) 1<i i< p(a)] Aj(a) + Ai(a)

In particular, £;1(a) = p(a) 15 the identity element in J, Mnd L71(a*) = a1t for k > 1.

Proof. As we noted before, the fact that every iy _ il ritten in the form (2.3) is
given by Lemma 20 in [10]. Let d := £ (). Then

Ip(a)]
d= Y d;®a) dji,
i=1 2

)l

for some d; € R and d;; € J;;. By T em 2¥Qd di calculation yields that

lp(a)l
aod = Z Ai(a)ci(a) | o Z dji
i=1 1<5<i<|p(a)|

le(a)l

> > Xila)eila) | o djy

1<j<i<lp(a)| \ =1

Z Aj(a) + Ni(a) d;.

1<j<i<]p(a)

This together with a o d = = establishes (2.4). O

Likewise, for the above a and p(a), we define subspaces

J? = J(epa),0) :=={z €T 1z 0eyn) =0},
1 1 1
Ji = J(eg(a)s 5) ={reJ xoey, = 5:5}

It is easy to see that J? = J(e — €p(a), 1). Similarly, applying Lemma 20 in [10], any = € JO

can be expressed as
T

T = Z xici(a) + Z Tij,

i=|p(a)|+1 lp(a)|+1<i<i<r
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1
where z; € R and z;; € J;;. It is known that J is the orthogonal direct sum of spaces Jg, J&
and J? (see Page 62 of [4]). From Theorem 2.2, we obtain

R A D T = @ Ju (29

1<j<i<l|p(a)l 1<j<|p(a)l;lp(a)[+1<I<r lp(a)|+1<j<i<r

1
Thus any = € J can be expressed as z = z(1) + 23 + 2 where 2V € Ja,x(%) € Ji and
1 1
0 ¢ JO. Observe that a o 2(2) e JZ. Moreover, L, is a one-to-one mapping from J7 to
1
J& , which is shown by the following.
Proposition 2.5. Let 0 # a = >_;_; Xi(a)ci(a) with Ay(a) > - = Npa)) > 0= Npa)|+1 =
1
-+ =MA-(a). Then every y € JZ can be written as

Y= Z Yji (2.6)

1<j<]p(a)l;|p(a)|+1<I<r

and
Lo (y) = > ) (2.7)
1<j<lp(a)l;|p(a)[+1
where y;; € Jji.
[ ]
Proof. By Theorem 2.2 and (2.5), every M€ e written in the form (2.6). Let
d:= L;'(y). Then
djl7
a)llp(a)|+1<i<r
for dj; € Jj. As in the proo sition 2.4, we have
2
o DR S,
<i<@ip@isier M@ TA@)
The desitfld conclus lowsMrom A\;(a) = 0 for |p(a)|+1 <1 <r. O

r some continuity property of Eggl where a. = (a® + 626)%.

Proposition 2.6. Let0#a =Y _, )\i(a)ciga) with A1(a) > -+ > Ny > 0= ANp@)+1 =
-+ =M.(a). Then for any x € J, andy € JZ, L (x +y) is well-defined and

LM w+y) = L7 (@) + L7 ().
Let a. := (a2 +e2¢)2. Then

lim £, (@ +9) = £, (@ +) (28)

Furthermore, we have
lir%ﬁgj(a: +y)ox =L (x+y)ox.
E—
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Proof. The first part of the theorem is obvious by Propositions 2.4 and 2.5. For the second

1
part, since x € J, and y € JZ, we can take x and y as in the forms (2.3) and (2.6),
respectively. Noting that a. = Y., \i(ac)ci(a) with A;(ac) = \/A?(a) + €2, and employing
an argument similar to the one in the proof of Proposition 2.4, we have

ol )
Ll +y) = —ci(a) + T o il
= Ailae) 155 ilotay (%) TAila)
2
+ Yjt-

Aj(ae) + Ni(ae)

1<j<lp(a)l|p(a)|+1<I<r

This together with the facts \;(ac) = |¢| for |p(a)] +1 <1 <r, (2.4) and (2.7) yields (2.8).
Furthermore, note that

ﬁ;sl(x—ky)ox = ,- ) o | o

[e] 1'7
and
[p(a)]
lim
e—0 ‘ )\
=1
m Y 5 AETE B DI P
T \igi<iipa)] 1<) N9 (@) M)
lim ox =
e—0
J<lp(a)l;lp
> e
4 (@) '
1<i<|p(a)|,lp(a)[+1<I<r
It follows that lim._.o L' (z 4+ y) o @ = L7 (x + y) o x, as desired. O

We end this section by presenting various useful inequalities on £~ 1.

Lemma 2.7. For z,y € J, let ac(z,y) = (22 + y2 + €2€)2 with ¢ # 0. Then for every
u,v € J, we have

ac(z,y ac(z,y) . x,y)(x °© “)H < Allull,

|z e+ wou] <28lul. |7, @0z <Blwl and [

where B and v are positive constants only dependent on the rank of J, which can be taken
as f=r* and v = 5r2.
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T

For z,y € J, define a := (z2 +42)? and let a = >y Ai(a)e;. For u,v € J, by Theorem
2.2, we have

r = chz—k Z Zji, y—ZyzCH— Z Yit,

1<j<i<r 1<j<i<r
u = E uic; + § Ujr, V= E ;¢ + § V5t
1<j<i<r 1<j<i<r

where z;,y;, u;,v; € R and xj;,y;1,uji, v € Jj. Note that ac(z,y) = (22 + y* + 626)% =

S V/A(a) + e2%¢; and a?(z,y) = 2? + y? + e%e. Thus,

A(a) +e* = (ci,aZ(z,y))
= (cpa® +y?) +¢?
= <Z‘OCi,$>+<yOCi,y +€2

1
= +y7+f 1| [|yill?) + €2,

1<j <l<r,
where the second equality holds by (c;, e follows from the facts that zoc; =
Tici + 3 Zl<]<l<r ieqjiy Tt by Theore %

2 2
mcz 5 a;h —xz+f > el
1<j<i<rie{j,l}
This implies tgat

+e2>max |:cz| . sl sl ze{m} (2.9)

and for j #1,5,1 € {1,2,--- ,r} we obtain

\/)\f(a) +e2+ \/)\ZQ(a) + €2 > max {\/§||x]z|\, \/§||yjz||} . (2.10)

From Proposition 2.4, we have

2
as x, Z Z Ljt-
( y) ,//\2 +52 \<jei<r /)\?(a)—i—gQ—i— )\12((1)-1-82
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Thus, by Theorem 2.2, direct calculation yields

r 2
+ u;C; | o Zjl
2
+ > wifo| D un

1< <i<r )\2'(@) +e2 +/Af(a) + €2 1< <i<r

iU Xg )
- Z\/)\Q +£2 Z , Z 2 )\Z(a)—|—52uﬂ

i=1 1<j<i<rie{j,l} v

+ Z > = il

2
i=1 1<j<i<rie{jly \/A; (@) + €2

P>

1<j<i<r 1<i<k<r

where the second equality follows from ci 0 Uj;

|een@en] < 3

i=1

xzuz

; g J
[ <A<r, ®{j,l} /\ ( ) +e2 + /\lz(a) + €2
2
Tj1 O Uk
I<r L<k<l >‘2( ) + g2 + >‘l2(a) + g2
- |us]
DS T ES DS 7

Z
i= 1 i=11<j<I<rie{jl} i=11<j<I<rie{jl}

DD : 1 |

1< <i<r 1<i<k<r || A/ AF(a) + €2+ /A (a) + €2

< rllul + ol = Dl + Lo = Dl + 22 e = D .

where the second inequality holds by Lemma 2.3, the third by the fact ||u|| > max{|u;], [|u;] },

(2.9) and (2.10). Let 8 > r+ HT‘ET(T -1+ %[r(r —1)]%. Then

Hcfl (:I:)ouH < Blul.

ae (‘T’y)

Likewise, we have ’ (y) o uH < Bl|u||. Hence,

ac(z,y)

Eleatnon] < [elep@on]+ ez

)o UH < 20|l

ae(, y)
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Similarly, noting that

2
Lol (v Z + Y o,
y ,/A2 #*52 1<j<l<r /A?(a)4-g2-+ A?(a)4—52
we obtain

|eem@oal| < Bl

L= 1

ac(z,y)

We next show ‘ (zo ’U)H < v|lu|| with v only dependent on r. Note that

>,

1<j<I<r

T

rou = E xiuici—i-(
i=1 =
+ E Zj1 | ©

1<j<I<r

1<j<i<r

L5 O Ukl + E Zj1 O Ujy
1<j<I<r

Uj + Uy
Ui + 5 ;]

E Zjl © Ujl-

1<j<I<r

By Theorem 2.2, we can write z;ou; = fflcj—l—fglcl with ffl, gl € R. Thus, by Proposition
2.4,

Llow | 2 @wiowi] = Loyl X (Hle+fila

1<5<I<r 1<5<I<r
jl 4l
1 2
Cj C]
J 2 2
1<j<i<r \ \/Aj(a) + €2 Atla) +e
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Observe that since (c;, ¢;) = 0, with j; := min {, [N3(a) + €2, /A (a) + 52}, we deduce

Jjl 5l
1 2
¢+ cy
l|,/A§(a)+sZ VA (a) + €

That is,
Therefore, ve
L, T O Uy
Ej<l<r

Set&:=>_, xi“ici+21gj<l9 (:c it wj + &

IA

IA

2

433

2
B )\2( 1 e2 “ H\/AQ e
gl
< Lol + 2 —~c
> ejl J 6]1 l
1 il i1
= g (IRl +1al?)
il
- 92 £ e; + £'ell* (by (cj,a) =0)
1
= ojlleloujl||2
(by Lemma 2.3)
Tl by 29))
— ||
\/5 7l Y
< V2Ju
gl gl
Z - ¢+ P = e
1<j<I<r \/)\?(a)—i-EQ VA (a) +¢
Y. |y
1<j<i<r \//\,?(a)+52 V)‘2 Er
> V2l
1<j<I<r
V2
(e = Dl (2.11)

ijl) 2 1<icjcher (Tij © Uik + Tjk © Uij).

Note that by Theorem 2.2, (x;; o uji + xjx © u”) € Jik. Similarly, by Proposition 2.4, we



434 L. KONG, L. TUNCEL AND N. XIU

have

£71

" T;U;
Dep® = X2

2 T +x u; +u
> (g s+

1<j<i<r \/A3(a) + €2 + /A (a) + €2 2 2
2
+ Z (mijoujk+xjkOUij).
1<i<j<k<r VA2 (a) + €2 + \/)\2 ) +e2

Thus, we obtain from Lemma 2.3 and inequalities (2.9) and (2.10) that

12w @1 < D tuil+ Y Cluall+ sl +lal) + D2 (gl + flusg )
i=1 1<j<i<r 1<i<j<k<r
1422
< rllul+ —=r(r = Dllull + V2r(r = Dful. (2.12)

So, combining the above inequalities (2.11) and (2,12), we/@ve

H'c;:(w,y) (:E o ’LL) H = E(;El(w,y) E + Z L1

1<j<I<r

+ 20— Dl

IN

rllull + ———— 4 = 2r(r = 1)||uf

for every x € int(K). (3.1)

Proof. Clearly7 22 is smooth at x € int(K). For the second part of the lemma, suppose that
(x+h)z —z2 = Sh +o Hh||) for some linear operator S. Multiplying both sides of this
equation by (z + h) + x2 we have
(@ +h)2 +a)o((@+h)?F —a2) = ((@+h)* +2)o (Sh+o([h])).
Direct computation yields b = ((z 4+ h)2 + 22) o Sh+ o(||h||) or h = 2z o (Sh) + o(||h]]),
using (z + h)2 = 22 +Sh+o(||h||) and ShoSh = o(||h]|). That is, h = £(2z2)(Sh)+o(||h|)).
1. _
Hence, S = (L(Qx%))_1 = % by the linearity of Lyapunov transformation. O
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We now prove the Lipschitz property of (22 + y2)2.
Lemma 3.2. The function (z2 —|—y2)% 18 globally Lipschitz continuous everywhere in J X J .

Proof. Fix z,y € J, let a(x,y) == (2® + yQ)% and a.(z,y) = (22 + 9% + 626)% for € # 0.
Note that for any u,v € 7,

lac(@ +u,y +v) — ac(z, y)||
= |lac(@z +u,y +v) — ac(x,y +v) + ac(z,y + v) — ac(z,y)||

1 1
—1 —1
H/o Las(z+tu7y+v)£(:ﬂ + tu)udt + /0 ﬁas(m?yﬂv)ﬁ(y + tv)vdtH

1 1
/0 £;51(1+tu,y+v) ((x + tu) ou)dt + /0 ﬁ;gl(z’yﬂv) ((y+tv)o v)dtH

1 1

< /0Hﬁz;l(zﬂu,y+v)((x+tu)OU)Hdt+/O Hﬁt;l(x,yﬂv)((y+tv)ov)Hdt
1 1

< / ylulde + / ¥ lo]] dt
0 0

=l + [lo])

< V2o,

where the second equality holds by the Mean Vgiu
inequality holds by Lemma 2.7 and +y is only de
from the fact [[u]] + [[o]l < v2+/]ul + ]2

em and Lemma 3.1, the first
r, and the last inequality follows
|. Thus, we deduce

V27 ]|(, ).

llac(z + u,y + v) e

)
The desired conclusion follows by ta € — Win

€ inequality above. O
As a consequence of the leggma AboWy, we immediately obtain the Lipschitz continuity

of FB function.
Theorem 3.3. The F n Okp (given by (1.8)) is globally Lipschitz continuous

everywhere in J X J,
ul

@\ ifyof the Derivatives of Vyp

ith Lipschitz continuity of the derivatives of the squared norm of FB
in result is stated below.

Theorem 4.1. The derivatives of the squared norm of the Fischer-Burmeister function
Upp (given by (1.6)) are Lipschitz continuous everywhere in J x J.

Our proof relies on four lemmas. First, we focus on £ *(z+y)ox where a = (22 +3?)? in
the subsequent analysis. Observe that a may have eigenvalues that are zero. For the sake of
simplicity, we look at a “smoothed” counterpart a.(x,y). Let S.(z,y) := ﬁ(;:(z,y) (x+y)ox,
we have the following. 4

Lemma 4.2. Let u,v € J be given. Then for every z,y € J and € # 0 we have

-1
ae(z,y)

[VaiSe(z,y)]u = c!

ae(z,y)

(@ +y)out L [u— 20,8, @ty oL

ae(x,y)(x © u)] e,

[VySe(z,y)]v = L.

ac(z,y)

(z+y)ov+ L), [o-2£00 @ +y) o £, (wou) 0w

ac(z,y)
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Proof. Fix u € J. Set 2 := a.(z + u,y) — ac(z,y) and w := 2x o u + u?. Noting that
ac(z+u,y) =[(z+u)* +y* +¢ e]%z[(x2—|—y2—|—626)+2mou+u]5,

we have z = [a2(x,y) + w]2 — a.(z,y). Note that Ja.(@y) = J from (2.5) and [p(a)| =
From Lemma 6.6(2) in [16], it follows that

= £}, @ outu?) +of[lul]) = 2L,

a(ay) (& 0 ) +o([|ul]).

Thus z — 0 as u — 0 and z = O(JJul|). Let

ni=L, 1 (x—l—y) and n+h:=L"

ac(z,y) +Z(.’£+U+y>

It is easy to see that aa(:v,y) on ==xz+y and [a(z,y)+z]o(n+h) =+ u+y. So,
ac(z,y)oh=u—zon—2zoh,or

h = E; (W —2z0m) = L;:(z’w(z oh).
Since z — 0 as u — 0 and z = O(||ul|), h — 0 as u — 0 and ho z = o(||z|) = o(|lu]|). We
deduce
Lo ey (zoh) = o(llull) and b= L7, (ulgz0n) +of[[ul).

Thus, direct calculation yields

SE($ + va) - SE(x7y)
= ‘C;al(eru,y) (@+uty)o(r+u)- ‘C;al(xvy) 7 &
— +R)o(etu) -nos o
= nou+ho(x+u)

— Ll @ y)out £t (us e ofllul) o (@ +u)

ae(z,y)

= L 1zy)(x+y)ou+£

‘C; (z,y)

ot (@t y)o £k, (@ou)] o @+ u)+ ol ull)

-2t (x4y)oL

as(2,y) ac(w,y)

= c!

<(z,y)

This establishes the forg
the symmetry of = apg

g@‘a

(@ +y)ou+ Lo (z0w)] 0w+ of Jull).

(x,y)]u. The formula for [V,S.(x,y)]v follows from
O

Lemma

ylull < pllull, [VySe(z, y)loll < pllo

where p 1. ndent on the rank of J, which can be taken as p = 20r'0 + 3r%.
Proof. Usin mas 2.7 and 4.2, we deduce
IV Se(, y)]ul

= ‘ Easl(l p@+y)ou+ Ly 1L ) [u — 25;1@ (@ +y)oLl 1@ (@0 u)} o xH

< |eten@rmou|+]eite, [p 222k @t o £ @ow)] oaf

< 28ljull + 8fu 2£;@wW+ywc;@yuowH

< 20Bull +ﬁ( C. () (T V) OL;EI(%y)(xou)H)

< 28llull+ 8 (lull +48 | 274, ) @ o w)])

< 2Bull + B(l[ull + 487wl
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where 3,7 are given as in Lemma 2.7. Therefore, by taking p := 33 + 4%+, we obtain
that ||[V.S:(z,y)]ul| < pllul| with p only dependent on r and p = 20r'0 + 3¢ if g = r*
and v = 5r%. As in the proof of the last lemma, ||[V,S:(x,y)]v| < pllv|| follows from
symmetry. O

Now we are in a position to prove the Lipschitz continuity of £;1(x + y) o z.
Lemma 4.4. £, (x +y) o x is globally Lipschitz continuous for all x,y € J.

Proof. We first show that S.(z,y) = £

ae (2.1 (x + y) o x is globally Lipschitz continuous for
all z,y € J. For every u,v € J,

Se(x +u,y+v) = Se(x,y) = Se(x +u,y +v) = Se(x,y +v) + Sc(,y +v) = Se(z,y).

By Lemma 4.2, V5. (z,y) is continuous in x. Thus, it follows by the Mean Value Theorem
that

1
Se(e g+ ) — Sela,y +v) = / (VS (e + tu,y + v)]udt.
0

By Lemma 4.3, it follows that ||[V4Se(x + tu, y +

15 (@ + u,y +v) = Se(z,y + o)

x + tu,y + v)|udt

[ ]
X v Se(@ + tu,y + v)]ul| dt
Dllulldt = pllul-
0
That is, ||Se(z +u,y +v) — S, v)|®< pllu|| with p only dependent on r.
Likewise, we have ||S, v) QS (x,y)|| < pllv]]. We therefore obtain that ||S.(z +
U7y+v)_S€('xay)H < UH)7 T
|2 A\ £ 0)o (0 u) — L], (@ +y) eal| < pllull + ol):

ox — L;1(x +y) oz as e — 0 by Proposition 2.6. Letting e — 0
in the inc\@ality algove, we obtain the desired result. O

Before proving Theorem 4.1, we need to recall a lemma by Liu, Zhang and Wang [16].

Lemma 4.5. (Lemma 6.7, [16]) Y pp(x,y) is differentiable at every (z,y) € J x J, and if
(z,y) = (0,0), then V,¥rp(0,0) = V,¥rp(0,0) = 0; if (x,y) # (0,0), then

Ja—z—y)o(z—a),

Vo¥rp(r,y) = L,
L (a—z—y)o(y—a),

vy\I’FB(xay) =
where a = (z2 + y2)2.

Proof of Theorem 4.1. It is easy to see that

Wrn(e,) = 32+ e) + (w4 e — (@ +y?)E w4 ).
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Let R(z,y) := ((#*> + y?)2,x + y). Then

R(e,p) = 3% + 4,0+ 5 (e + )% €) — Wrn(e,p).

1
2
Set a := (22 4 y?)2. By Lemma 4.5, it is straightforward to derive that
VoR(z,y) = 2+ (x+y) - VaVrp(z,y)

= 2ot+y—L(a—z—y)ox+ L (a—x—y)oa

= 2o+y—[LiN(a) - L@+ y)] ot (a—z—y)

= LMety)oa+ (@ +y7)2,
where the third equality holds by £,1(a — 2 —y) ca = a — x — y because Lemma 6.6(1) of
[16] implies that a — x — y lies in the space J, where £;! makes sense, and the fourth by

L;1(a) oz = 2. Combining Lemmas 3.2 and 4.4, we conclude that V,R(x,y) is globally
Lipschitz.

By symmetry in z and y, V,R(z,y) is also globally Ligschitz continuous. O

Final Remarks

In this article, we studied some properties of the Lya o erator, and using these prop-
erties we established Lipschitz continuity of FB nd the derivatives of squared norm
of FB function. o

Sun and Sun [18] showed that the FB i rdely semismooth everywhere in the
cases of SDCP and SOCCP. However, f®is
(1.3)) is strongly semismooth? We 1 this
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