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FURTHER RESULTS ON THE LOWER SEMICONTINUITY OF
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Abstract: Using the approach of Bednarczuk [1, 3] and introducing the new concepts of local containment
property, K-local domination property and uniformly local closedness of a multifunction around a given
point, we obtain further results on the lower semicontinuity of efficient point multifunctions taking values
in Hausdorff topological vector spaces. The new theorems sharpen the corresponding ones in [1, 3].
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1 Introduction

This paper is motivated by the stability theory of parametric vector optimization problems.
We first give some notations and definitions.

Let f : X × P1 → Y be a vector function, C : P2 ⇒ X a multifunction, where X, Y
are Hausdorff topological vector spaces, P1 and P2 are topological spaces. Given a pointed
(i.e., K ∩ (−K) = {0Y }) closed convex cone K ⊂ Y , we consider the following standard
parametric vector optimization problem

minK

{
f(x, p1) |x ∈ C(p2)

}
(1.1)

depending on the parameter pair (p1, p2) ∈ P1 × P2.

Definition 1.1. We write x ∈ S(p1, p2) to indicate that x an efficient solution of (1.1) if

(f(x, p1)−K) ∩ f(C(p2), p1) = {f(x, p1)},

where f(C(p2), p1) = {f(x, p1) |x ∈ C(p2)} is the image of the constraint set C(p2) via the
objective function f(·, p1). We call S : P1×P2 ⇒ X the efficient solution map (or the Pareto
solution map) of (1.1).
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Definition 1.2. We say that y ∈ A is an efficient point of a subset A ⊂ Y with respect to
K, and write y ∈ E(A|K), whenever (y−K)∩A = {y}. Given a multifunction F : P ⇒ Y ,
where P is a topological space, we put F(p) = E(F (p)|K) for all p ∈ P and call F : P ⇒ Y
the efficient point multifunction corresponding to the quadruplet {F, P, Y, K}.

In view of Defs. 1.1 and 1.2, setting P = P1 × P2 and F (p) = f(C(p2), p1) for every
p = (p1, p2) ∈ P , we have

S(p) = {x ∈ C(p2) | f(x, p1) ∈ F(p)} ∀p = (p1, p2) ∈ P. (1.2)

Formula (1.2) describes a way of computing the efficient solution set S(p) via the efficient
point set F(p). Note that the efficient point multifunction F(·) in Def. 1.2 is a special
case of the efficient solution map S(·) in Def. 1.1. To show this, for a given quadruplet
{F, P, Y, K}, it suffices to put P1 = {0Y }, P2 = P , X = Y , f(x, 0Y ) = x for every x ∈ X,
C(p) = F (p) for every p ∈ P , and observe that

F(p) = S(0Y , p) ∀p ∈ P. (1.3)

The identity in (1.3) allows us to interpret F(·) as S(0Y , ·) - the efficient solution map of a
parametric vector optimization problem with the identity objective function.

Stability analysis in vector optimization has a long history. The papers by Naccache
[14], Tanino and Sawaragi [21] are among the first results in this field. One of the main
problems here is to find sufficient conditions for S(·) and/or F(·) to have a certain continuity
properties. For instance, the lower (upper) semicontinuity of the efficient point multifunction
have been examined by Penot [15, 16]. Various stability results on the efficient solution map
and the efficient point multifunction can be found in the books by Tanino, Sawaragi and
Nakayama [20], Luc [13]. More recently, Xiang and Zhou [18], Xiang and Yin [19] have
characterized the lower and upper semicontinuity of S(·) in the case where P2 is a singleton
and f(·, p1), for every p1 ∈ P1, is an element of the space of continuous functions defined on
a nonempty compact set with the values in Rm. Using the so-called domination property and
containment property, Bednarczuk [1, 2, 3, 5] studied the Hausdorff upper semicontinuity,
the K-Hausdorff upper semicontinuity and the lower (upper) semicontinuity of S(·) and/or
F(·).

The purpose of this paper is to show that most of the principal results of Bednarczuk
in [1, 3] are valid under weaker assumptions. Namely, after presenting some preliminaries
in Sect. 2, in Sects. 3–5 we propose new concepts called local containment property, K-
local domination property and uniformly local closedness of a multifunction around a given
point. Then, in those three sections, we derive various sufficient conditions for the lower
semicontinuity of efficient point multifunctions taking values in Hausdorff topological vector
spaces. The new theorems sharpen the corresponding ones in [1, 3]. A series of examples
are provided for analyzing the obtained results and for comparing them with the preceding
results of Bednarczuk.

2 Preliminaries

Let F, P, Y, K be as in Def. 1.2. The effective domain of the multifunction F is given by
the formula domF = {p ∈ P | F (p) 6= ∅}. We denote by N (p) (resp., N (y)) the set of
all neighborhoods of p ∈ P (resp., y ∈ Y ). By NB(0Y ) we denote the set of all balanced
neighborhoods of 0Y . Thus, V ∈ NB(0Y ) iff V is a neighborhood of 0Y and λV ⊂ V for all
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λ ∈ [−1, 1]. It is well known (see W. Rudin, Functional Analysis, 1973, p. 12) that for any
W ∈ N (0Y ) there exists V ∈ NB(0Y ) satisfying V + V ⊂ W.

Given a subset Ω ⊂ Y , we denote the interior and the closure of Ω respectively by intΩ
and clΩ.

We shall encounter very frequently with the notions described in the next definition.

Definition 2.1. (i) F is upper semicontinuous (usc for brevity) at p0 ∈ P if for every open
set V containing F (p0) there exists U0 ∈ N (p0) such that F (p) ⊂ V for all p ∈ U0.
(ii) F is said to be lower semicontinuous (lsc) at p0 ∈ dom F if for any open set V ⊂ Y
satisfying V ∩ F (p0) 6= ∅ there exists U0 ∈ N (p0) such that V ∩ F (p) 6= ∅ for all p ∈ U0.
(iii) F is said to be continuous at p0 if it is both usc and lsc at p0.
(iv) F is Hausdorff upper semicontinuous (H-usc) at p0 if for every W ∈ N (0Y ) there exists
U0 ∈ N (p0) such that F (p) ⊂ F (p0) + W for all p ∈ U0.
(v) (This notion was called inf-lower continuity in [16].) F is said to be K-lower semicon-
tinuous (K-lsc) at p0 ∈ dom F if for any open set V ⊂ Y satisfying V ∩ F (p0) 6= ∅ there
exists U0 ∈ N (p0) such that (V + K) ∩ F (p) 6= ∅ for all p ∈ U0.

Consider the following pairs of closely-related assumptions on the upper/lower semicon-
tinuity of F :
(A1) F is H-usc and lsc at p0;
(A2) F is H-usc and (−K)-lsc at p0.

It is easy to show that (A1) implies (A2).

Definition 2.2. (i) The domination property, denoted by (DP), is said to hold for A ⊂ Y if

A ⊂ E(A|K) + K.

(ii) The containment property, denoted by (CP), is said to hold for A ⊂ Y if for each
W ∈ N (0Y ) there exists V ∈ N (0Y ) such that

[A\(E(A|K) + W )] + V ⊂ E(A|K) + K.

The domination property has been used by many authors (see e.g. [1]–[5], [11],[13]).

The containment property was proposed by Bednarczuk in [1]. Later on, the property
was used by Bednarczuk [2, 3, 4, 5], Dolecki and El Ghali in [9].

Relationships between (CP) and (DP) were established in [5]. An equivalent form of (CP)
for cones with nonempty interiors was given in [4]. For the convenience of the reference of
the reader, we recall this result with a proof.

Proposition 2.3 (see [4, Prop. 2.2]). Let A be a subset of Y . If intK 6= ∅, then the
following two properties are equivalent:
(i) (CP) holds for A;
(ii) For each W ∈ N (0Y ) there is W0 ∈ N (0Y ) such that for all

y ∈ A\(E(A|K) + W )

there exist ηy ∈ E(A|K) and ky ∈ K satisfying

y = ηy + ky, ky + W0 ⊂ K.
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Proof. (i) implies (ii): For each W ∈ N (0Y ), we put KW = {k ∈ K|k +W ⊂ K}. Note that
intK =

⋃
W∈N (0Y ) KW . We shall show that for any V ∈ N (0Y ) there exists WV ∈ N (0Y )

such that

{y ∈ Y | y + V ⊂ E(A|K) + K} ⊂ E(A|K) + KWV
. (2.1)

Indeed, since 0Y ∈ (−K) = cl(−K) = cl(−intK), it follows that there exists WV ∈ N (0Y )
satisfying V ∩ (−KWV

) 6= ∅. Choose yV ∈ V ∩ (−KWV
). Take any z ∈ {y ∈ Y | y + V ⊂

E(A|K) + K}, i.e., z + V ⊂ E(A|K) + K. We have z + yV ∈ E(A|K) + K, therefore

z ∈ E(A|K) + K + KWV
⊂ E(A|K) + KWV

.

Next, take any W ∈ N (0Y ). Since (CP) holds for A there exists V ∈ N (0Y ) such that

[A\(E(A|K) + W )] + V ⊂ E(A|K) + K. (2.2)

By virtue of (2.1) we can find WV ∈ N (0Y ) satisfying

{y ∈ Y | y + V ⊂ E(A|K) + K} ⊂ E(A|K) + KWV
. (2.3)

For each y ∈ A\(E(A|K) + W ), it follows from (2.2) and (2.3) that

y + V ⊂ E(A|K) + K ⊂ E(A|K) + KWV
.

Hence, there exist ηy ∈ E(A|K) and ky ∈ K such that

y = ηy + ky, ky + W0 ⊂ K

where W0 := WV .
(ii) implies (i): This implication is obvious.

Both properties (DP) and (CP) can serve well as qualification conditions for having the
usc and lsc properties of F(·) (see [1]–[3],[5],[9]). Further, an related notion to (CP), called
the containment rate function, was used in [4] for studying the upper Hölder semicontinuity
of the efficient point multifunction.

In relation to the multifunction F around a point p0 ∈ P , the (DP) and (CP) properties
can be formulated as follows.

Definition 2.4. We say the domination property, again denoted by (DP), holds for F
uniformly around p0 if there exists U0 ∈ N (p0) such that

F (p) ⊂ F(p) + K ∀p ∈ U0.

Definition 2.5 (see [1]). The containment property, again denoted by (CP), holds for F
uniformly around p0 if ∀W ∈ N (0Y ), ∃V ∈ N (0Y ), ∃U0 ∈ N (p0) such that

[F (p)\(F(p) + W )] + V ⊂ F(p) + K ∀p ∈ U0.

In the sequel, we will relax the above notions by introducing the concepts called the local
containment property, the K-local domination property of a multifunction around a given
point. With the help of these concepts, we will extend the main results of [1, 3].
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3 Local Containment Property and the Lower Semicontinuity

The following definition gives a weaker form of the notion uniform containment property of
a multifunction around a point in Def. 2.5.

Definition 3.1. We say the local containment property, denoted by (locCP), holds for F
uniformly around p0 if for each y0 ∈ F(p0) there exists V0 ∈ N (0Y ) such that ∀W ∈ N (0Y ),
∃V ∈ N (0Y ), ∃U0 ∈ N (p0) satisfying

[((y0 + V0) ∩ F (p))\(F(p) + W )] + V ⊂ F(p) + K ∀p ∈ U0.

By means of the same arguments as in the proof of Proposition 2.3 one can show that
under the condition intK 6= ∅, (locCP) holds for F uniformly around p0 if and only if for each
y0 ∈ F(p0) there exists V0 ∈ N (0Y ) such that ∀W ∈ N (0Y ), ∃W0 ∈ N (0Y ), ∃U0 ∈ N (p0)
satisfying ∀p ∈ U0,∀y ∈ [(y0 + V0) ∩ F (p)]\(F(p) + W ), ∃ηy ∈ F(p) ∃ky ∈ K,

y = ηy + ky, ky + W0 ⊂ K.

It is clear that if (CP) holds for F uniformly around p0 then (locCP) holds for F uniformly
around p0. The converse is not true in general (see Example 3.5 below). This means that
(locCP) is really weaker than (CP).

Theorem 3.2. Suppose that intK 6= ∅ and (locCP) holds for F uniformly around p0. If
(A1) is satisfied, then F is lsc at p0.

Proof. Let y0 ∈ F(p0) and W ∈ N (0Y ). The proof will be compeleted if we can show that
there exists UW ∈ N (p0) such that

(y0 + W ) ∩ F(p) 6= ∅ ∀p ∈ UW . (3.1)

Take any W1 ∈ NB(0Y ) satisfying W1 + W1 ⊂ W. By our assumptions there exist V0 ∈
N (0Y ), W0 ∈ N (0Y ) and U0 ∈ N (p0) such that for all p ∈ U0 and y ∈ [(y0 + V0) ∩
F (p)]\(F(p) + W1) we can find ηy ∈ F(p) and ky ∈ K satisfying

y = ηy + ky, ky + W0 ⊂ K. (3.2)

Choose W2 ∈ NB(0Y ),W2 + W2 ⊂ W0. Since F is lsc at p0, there exists U1 ∈ N (p0),
U1 ⊂ U0, such that

[y0 + (V0 ∩W1 ∩W2)] ∩ F (p) 6= ∅ ∀p ∈ U1.

For each p ∈ U1, we take a point

yp ∈ [y0 + (V0 ∩W1 ∩W2)] ∩ F (p). (3.3)

As F is H-usc at p0, there exists U2 ∈ N (p0), U2 ⊂ U1, such that

F (p) ⊂ F (p0) + (V0 ∩W1 ∩W2) ∀p ∈ U2. (3.4)

Suppose first that there exists Ū ∈ N (p0), Ū ⊂ U0, such that

yp ∈ F(p) + W1 ∀p ∈ Ū . (3.5)

For each p ∈ U1 ∩ Ū , from (3.3) and (3.5) it follows that there exist wp ∈ V0 ∩W1 ∩W2, ηp ∈
F(p) and w̄p ∈ W1 satisfying yp = y0 + wp = ηp + w̄p. Thus,

ηp = y0 + wp − w̄p ∈ y0 + W1 + W1 ⊂ y0 + W.
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Then we have
(y0 + W ) ∩ F(p) 6= ∅ ∀p ∈ U1 ∩ Ū

which establishes (3.1) with UW := U1 ∩ Ū .
Next, suppose that for all U ∈ N (p0), U ⊂ U2, there exists p ∈ U such that

yp /∈ F(p) + W1. (3.6)

Combining (3.6) with (3.3) we get yp ∈ [(y0 +V0)∩F (p)]\(F(p)+W1). By (3.2) we can find
ηp ∈ F(p) and kp ∈ K with the properties that

yp = ηp + kp, kp + W0 ⊂ K. (3.7)

From (3.4) and the relation ηp ∈ F(p) ⊂ F (p) it follows that there exist z0 ∈ F (p0) and
w0 ∈ V0 ∩W1 ∩W2 satisfying

ηp = z0 + w0. (3.8)

By (3.3) there exists wp ∈ V0 ∩W1 ∩W2 such that

yp = y0 + wp. (3.9)

Using (3.9), (3.7) and (3.8) we obtain y0 + wp = ηp + kp = z0 + w0 + kp. This implies
y0 = z0 + kp + w0 − wp. Besides,

kp + w0 − wp ∈ kp + (V0 ∩W1 ∩W2)− (V0 ∩W1 ∩W2)
⊂ kp + W2 + W2 ⊂ kp + W0 ⊂ K.

Hence y0 = z0 + k0, where k0 := kp + w0 − wp ∈ kp + W0 ⊂ K. Since there is no loss of
generality in assuming that W0 is an open neighborhood, we can assert that y0 ∈ z0 + intK.
This contradicts the minimality of y0 and completes the proof.

In Theorem 3.2, the assumption that (locCP) holds for F uniformly around p0 of is
essential.

Example 3.3. Let P = [0, 1], Y = R2,K = R2
+. Let F : P ⇒ R2 be defined by setting

F (0) = {(y1, y2) | − y1 ≤ y2 ≤ −y1 + 2} and

F (p) = {(y1, y2) | f1(y1) ≤ y2 ≤ −y1 + 2}\
{

(y1, y2) | y2 = −y1 + p, y1 ≤ 1
p

}

for every p ∈ P\{0}, where

f1(t) =





−t + p if t ≤ 1
p

p− 1
p if 1

p < t ≤ 1
p + 2− p

−t + 2 if t > 1
p + 2− p

for all t ∈ R. We have
F(0) = {(y1, y2) | y2 = −y1},

F(p) = {(y1, y2) | y2 = −y1 + 2, y1 >
1
p

+ 2− p}.

Note that F is H-usc and lsc at p0 = 0. It is not hard to see that (locCP) does not hold for
F uniformly around p0 = 0. Observe that F is not lsc at p0 = 0.
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The following result is due to Bednarczuk.

Theorem 3.4 (see [1, Theorem 4]). Suppose that intK 6= ∅ and (CP) holds for F
uniformly around p0. If (A1) is satisfied, then F is lsc at p0.

The next example shows that Theorem 3.2 is a proper extension of Theorem 3.4.

Example 3.5. Let P = [0, 1], Y = R2,K = R2
+. Let F : P ⇒ R2 be defined by setting

F (0) = {(y1, y2) | − y1 ≤ y2 ≤ −y1 + 2} and

F (p) = {(y1, y2) | f1(y1) ≤ y2 ≤ −y1 + 2}

for every p ∈ P\{0}, where

f1(t) =





−t + p if t ≤ 1
p

p− 1
p if 1

p < t ≤ 1
p + 2− p

−t + 2 if t > 1
p + 2− p.

for all t ∈ R. We have
F(0) = {(y1, y2) | y2 = −y1},

F(p) =
{

(y1, y2) | y2 = −y1 + p, y1 ≤ 1
p

}

∪
{

(y1, y2) | y2 = −y1 + 2, y1 >
1
p

+ 2− p

}
.

It is easy to show that F is continuous at p0 = 0, and (CP) holds for F (0). But (CP) does not
hold for F (p) with any p ∈ P\{0}. It is not hard to see that (locCP) holds for F uniformly
around p0 = 0. Thus, Theorem 3.4 is not applicable to F at p0 = 0. Meanwhile, Theorem
3.2 works well for the multifunction at p0.

4 K-local Domination Property and the Lower Semicontinuity

In this section, we shall need the notion of normality of an ordering cone in a Hausdorff
topological vector space.

Definition 4.1 (see [17]). The convex cone K is called normal if there is a base of neigh-
borhoods of 0Y consisting of sets S with the property that S = (S + K) ∩ (S −K).

It was shown by Borwein [6] that if Y is a locally convex space and K has a bounded
base, then K is normal. Recall [12, p. 9] that a nonempty convex subset Θ ⊂ K is said
to be a base of K if each v ∈ K\{0} can be represented uniquely in the form v = λθ
(λ > 0, θ ∈ Θ).

We now introduce a weaker form of the property (DP) described by Def. 2.4.

Definition 4.2. We say the K-local domination property, denoted (K-locDP), holds for F
uniformly around p0 if for each y0 ∈ F(p0), there exist V0 ∈ N (0Y ) and U0 ∈ N (p0) such
that

(y0 + V0 −K) ∩ F (p) ⊂ F(p) + K ∀p ∈ U0.



412 T.D. CHUONG, J.-C. YAO AND N.D. YEN

Clearly, (DP) implies (K-locDP). Example 4.5 given below will show that the reverse
implication is not valid in general.

Our first result in this section is stated as follows.

Theorem 4.3. Let K be a normal cone in Y . Suppose that F (p0) is closed, clF(p0) is
compact, (DP) holds for the set F (p0), and (K-locDP) holds for F uniformly around p0. If
(A2) is satisfied, then F is lsc at p0.

Proof. Let y0 ∈ F(p0). Fist, we observe that
{
∀W ∈ N (0Y ) ∃V ∈ N (0Y ) such that
[((F(p0) + K)\(y0 + W )) + V ] ∩ (y0 −K) = ∅. (4.1)

Indeed, suppose on the contrary that there exists some W ∈ N (0Y ) such that for any
V ∈ N (0Y ), ∃kV ∈ K, ∃k1

V ∈ K, ∃ηV ∈ F(p0), ∃sV ∈ V satisfying

y0 − kV = ηV + k1
V + sV and ηV + k1

V /∈ y0 + W. (4.2)

There is no loss of generality in assuming that the net {sV }V ∈N (0Y ) tends to 0Y . Here the
direction of net is defined by the natural set-inclusion in the family N (0Y ) :

sV1 4 sV2 ⇔ V2 ⊂ V1

for any V1, V2 ∈ N (0Y ). Since clF(p0) is compact, there exists a subnet of {ηV } converging
to an element η ∈ clF(p0) ⊂ F (p0) (recall that F (p0) is closed by our assumption). Without
loss of generality, we may assume that ηV → η. By (4.2), kV + k1

V = y0 − ηV − sV . Hence

kV + k1
V → y0 − η, (4.3)

and it follows from the closedness of K that y0 − η ∈ K. The minimality of y0 and the
last inclusion implies that y0 = η. Thus from (4.3) it follows that kV + k1

V → 0Y . Since
K is normal, using [17, Proposition 1.3] we obtain kV → 0Y and k1

V → 0Y . Given any
W1 ∈ N (0Y ) with W1 + W1 ⊂ W, we find Ũ ∈ N (0Y ) such that

ηV + k1
V ⊂ (η + W1) + W1 ⊂ y0 + W

for every U ⊂ Ũ . This contradicts the property ηV + k1
V /∈ y0 + W. We have thus obtained

the relation (4.1).
Now, take any W ∈ N (0Y ). To obtain the lower semicontinuity of F at p0, we need to

show that there exists UW ∈ N (p0) such that

(y0 + W ) ∩ F(p) 6= ∅ ∀p ∈ UW . (4.4)

Let W1 + W1 ⊂ W. Due to (4.1), there exists V ∈ N (0Y ) such that

[((F(p0) + K)\(y0 + W1)) + V ] ∩ [(y0 −K] = ∅
Hence, for any V1 ∈ NB(0Y ) satisfying V1 + V1 ⊂ V, it holds

[((F(p0) + K)\(y0 + W1)) + V1] ∩ [(y0 + V1)−K] = ∅ (4.5)

As (DP) holds for the set F (p0), it follows that

F (p0) ⊂ [(F(p0) + K)\(y0 + W1)] ∪ (y0 + W1).
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Hence,

F (p0) + (V1 ∩W1) ⊂ [((F(p0) + K)\(y0 + W1)) + (V1 ∩W1)] ∪ [(y0 + W1) + (V1 ∩W1)].

Since (y0 + W1) + (V1 ∩W1) ⊂ y0 + W1 + W1 ⊂ y0 + W, it follows that

F (p0) + (V1 ∩W1) ⊂ [((F(p0) + K)\(y0 + W1)) + (V1 ∩W1)] ∪ (y0 + W ). (4.6)

Since F is H-usc at p0, there is U1 ∈ N (p0) such that

F (p) ⊂ F (p0) + (V1 ∩W1) ∀p ∈ U1. (4.7)

Combining (4.6) with (4.7) we get

F (p) ⊂ [((F(p0) + K)\(y0 + W1)) + (V1 ∩W1)] ∪ (y0 + W ), (4.8)

for all p ∈ U1. Since (K-locDP) holds for F uniformly around p0, there exist V0 ∈ N (0Y )
and U0 ∈ N (p0) such that

(y0 + V0 −K) ∩ F (p) ⊂ F(p) + K ∀p ∈ U0. (4.9)

Since F is (−K)-lsc at p0, there must exist U2 ∈ N (p0) with the property that

[y0 + (V0 ∩ V1 ∩W1)−K] ∩ F (p) 6= ∅ ∀p ∈ U2.

For each p ∈ U2 we can choose

yp ∈ [y0 + (V0 ∩ V1 ∩W1)−K] ∩ F (p). (4.10)

Observe that

yp −K ⊂ [y0 + (V0 ∩ V1 ∩W1)−K]−K ⊂ y0 + (V0 ∩ V1 ∩W1)−K. (4.11)

Using (4.11), (4.5) and the obvious inclusion V0 ∩ V1 ∩W1 ⊂ V1, we obtain

(yp −K) ∩ [((F(p0) + K)\(y0 + W1)) + (V1 ∩W1)] = ∅. (4.12)

Hence

[(yp −K) ∩ F (p)] ∩ [((F(p0) + K)\(y0 + W1)) + (V1 ∩W1)] = ∅. (4.13)

From (4.8) it follows that

[(yp −K) ∩ F (p)] ⊂ [((F(p0) + K)\(y0 + W1)) + (V1 ∩W1)] ∪ (y0 + W ) (4.14)

for each p ∈ U1 ∩ U2. By (4.13) and (4.14), for each p ∈ U1 ∩ U2 we have

(yp −K) ∩ F (p) ⊂ y0 + W. (4.15)

According to (4.10) and (4.9), for each p ∈ U0 ∩ U1 ∩ U2 there exist ηp ∈ F(p) and kp ∈ K
such that yp = ηp + kp. Therefore, for each p ∈ U0 ∩ U1 ∩ U2, by (4.15) and the fact that
F(p) ⊂ F (p) we get

ηp ∈ (yp −K) ∩ F (p) ⊂ y0 + W.

Hence
(y0 + W ) ∩ F(p) 6= ∅ ∀p ∈ U0 ∩ U1 ∩ U2.

This shows that (4.4) holds for UW := U0 ∩ U1 ∩ U2 and completes the proof.
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Let us compare Theorem 4.3 with the following result of Bednarczuk.

Theorem 4.4 (see [3, Theorem 4.3]). Let K be a normal cone in Y . Assume that F (p0)
is closed, clF(p0) is compact, and (DP) holds for F uniformly around p0. If (A2) is satisfied,
then F is lsc at p0.

As it is clear from the next example, Theorem 4.3 has a wider range of applicability than
that of Theorem 4.4.

Example 4.5. Let P = [0, 1], Y = R2,K = R2
+. Let F : P ⇒ R2 be given by setting

F (0) = {(y1, y2) | 1− y1 ≤ y2 ≤ 1, 0 ≤ y1 ≤ 1} ∪ {(y1, y2) | 0 ≤ y2 ≤ 1, y1 > 1} and

F (p) = {(y1, y2) | f1(y1) ≤ y2 ≤ 1}
for every p ∈ P\{0}, where

f1(t) =





−t + p + 1 if p ≤ t ≤ p + 1
0 if p + 1 < t ≤ p + 1 + 1

p

−p if t > p + 1 + 1
p .

for all t ∈ R. We have

F(0) = {(y1, y2) | y2 = 1− y1, 0 ≤ y1 ≤ 1},
F(p) = {(y1, y2) | y2 = −y1 + p + 1, p ≤ y1 ≤ p + 1}.

Note that F (0) is closed, clF(0) is compact, (DP) holds for F (0), and (K-locDP) holds for
F uniformly around p0 = 0. Besides, it is easy to see that K = R2

+ is normal cone, F is
(−K)-lsc and H-usc at p0 = 0. By Theorem 4.3, F is lsc at p0 = 0. Meanwhile, since (DP)
does not hold for any F (p) with p ∈ P\{0}, Theorem 4.4 does not work for the problem
under consideration.

The assumption that (K-locDP) holds for F uniformly around p0 cannot be dropped
from the formulation of Theorem 4.3.

Example 4.6. Let P = [0, 1], Y = R2,K = R2
+. Let F : P ⇒ R2 be defined by setting

F (0) = {(y1, y2) | 1− y1 ≤ y2 ≤ 1, 0 ≤ y1 ≤ 1} ∪ {(y1, y2) | 0 ≤ y2 ≤ 1, y1 > 1} and

F (p) = {(y1, y2) | f1(y1) ≤ y2 ≤ 1}\{(y1, y2) | y2 = −y1 + p + 1, p < y1 ≤ p + 1}
for every p ∈ P\{0}, where

f1(t) =





−t + p + 1 if p ≤ t ≤ p + 1
0 if p + 1 < t ≤ p + 1 + 1

p

−p if t > p + 1 + 1
p .

for all t ∈ R. We have

F(0) = {(y1, y2) | y2 = 1− y1, 0 ≤ y1 ≤ 1}
and

F(p) = {(p, 1)}.
One can verify that all assumptions of Theorem 4.3, except for (K-locDP), are satisfied.
Note that F is not lsc at p0 = 0.
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To proceed further, we need to consider some notions of proper efficiency. As shown by
Bednarczuk [1], properly efficient points are very useful for studying the lower semicontinuity
of the efficient point multifunction.

Definition 4.7. Let A be a subset of Y.
(i) (see [10]) An element y0 ∈ E(A|K) is said to be a properly efficient point of A, in the
sense of Henig, if there exists a closed convex cone K0 with K\{0} ⊂ intK0 such that
y0 ∈ E(A|K0).
(ii) (see [1]) An element y0 ∈ E(A|K) is a strongly properly efficient point of A if there
exists a closed convex cone K0 with K\{0} ⊂ intK0 such that y0 ∈ E(A|K0) and, for each
W ∈ N (0Y ), one can find V ∈ N (0Y ) such that

(K\W ) + V ⊂ K0.

(iii) (see [3]) An element y0 ∈ A is a strictly efficient point of A if for each W ∈ N (0Y ) there
exists V ∈ N (0Y ) such that

[(A\(y0 + W )) + V ] ∩ (y0 −K) = ∅.

The set of the properly efficient points (resp., strongly properly efficient points, strictly
efficient points) of A is denoted by EHe(A|K) (resp., EsHe(A|K), E1(A|K)).

It can be proved that E1(A|K) ⊂ E(A|K). The reverse inclusion may fail to hold (see
[3, Example 3.1]). According to [3, Proposition 3.1],

EsHe(A|K) ⊂ E1(A|K). (4.16)

Obviously, EsHe(A|K) ⊂ EHe(A|K). We now give a sufficient condition for the last
inclusion to become an equality.

Proposition 4.8. Let Y be a normed space and A ⊂ Y. If K ⊂ Y is a closed convex cone
having a compact base Θ, then

EsHe(A|K) = EHe(A|K).

Proof. We need only to prove EHe(A|K) ⊂ EsHe(A|K). For any y0 ∈ EHe(A|K), there
exists a closed convex cone K0 with K\{0} ⊂ intK0 such that y0 ∈ E(A|K0). To verify
the inclusion y0 ∈ EsHe(A|K), it suffices to show that for each W ∈ N (0Y ) there exists
V ∈ N (0Y ) such that

K\W + V ⊂ K0. (4.17)

For each θ ∈ Θ, we have θ ∈ K\{0}, hence there exists Wθ ∈ N (0Y ) satisfying θ+Wθ ⊂ K0.
Choose Vθ ∈ NB(0Y ), Vθ + Vθ ⊂ Wθ. The family {θ + Vθ}θ∈Θ is a cover of Θ. By the
compactness of Θ, there exists a finite subcover {θi + Vθi}m

i=1. Clearly, there exists λ0 > 0
such that λΘ ⊂ W for all 0 ≤ λ ≤ λ0. Put V0 =

⋂m
i=1 Vθi

. We choose some V ∈ N (0Y )
satisfying V ⊂ λ0V0. For any y ∈ K\W , there exist θy ∈ Θ and λy > λ0 such that y = λyθy.
Therefore,

y + V ⊂ λyθy + λ0V0 = λy

(
θy +

λ0

λy
V0

)
⊂ λy(θy + V0) ⊂ K0.

Hence K\W + V ⊂ K0, i.e., (4.17) is satisfied and the proof is complete.
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If the K-local domination property (see Def. 4.2) holds and the strictly efficient point
set is “good” in the sense that its closure contains the efficient point set, then we may hope
that F is lsc at p0. Namely, we have following theorem.

Theorem 4.9. Suppose that (K-locDP) holds for F uniformly around p0 and

F(p0) ⊂ clE1(F (p0)|K). (4.18)

If (A2) is satisfied, then F is lsc at p0.

Proof. Let y0 ∈ F(p0) and W ∈ N (0Y ). The proof will be completed if we can show that
there exists UW ∈ N (p0) such that

(y0 + W ) ∩ F(p) 6= ∅ ∀p ∈ UW . (4.19)

Choose W1,W2 ∈ N (0Y ) such that W1 + W1 ⊂ W and W2 + W2 ⊂ W1. By (4.18), we
have y0 ∈ clE1(F (p0)|K). Therefore, we can pick an y1 ∈ E1(F (p0)|K) ∩ (y0 + W2). Since
y1 ∈ E1(F (p0)|K) ⊂ F(p0) and (K-locDP) holds for F uniformly around p0, there exist
V0 ∈ N (0Y ) and U0 ∈ N (p0) such that

(y1 + V0 −K) ∩ F (p) ⊂ F(p) + K ∀p ∈ U0. (4.20)

By the strict minimality of y1, there is V ∈ N (0Y ) such that

[(F (p0)\(y1 + W2)) + V ] ∩ (y1 −K) = ∅.
Therefore, for any V1 ∈ NB(0Y ) satisfying V1 + V1 ⊂ V, it holds

[((F (p0)\(y1 + W2)) + V1] ∩ [(y1 + V1)−K] = ∅. (4.21)

It is obvious that
F (p0) ⊂ [(F (p0)\(y1 + W2)] ∪ (y1 + W2).

Hence

F (p0) + (V1 ∩W2) ⊂ [(F (p0)\(y1 + W2)) + (V1 ∩W2)] ∪ [(y1 + W2) + (V1 ∩W2)].

Since (y1 + W2) + (V1 ∩W2) ⊂ y1 + W2 + W2 ⊂ y1 + W1, it follows that

F (p0) + (V1 ∩W2) ⊂ [(F (p0)\(y1 + W2)) + (V1 ∩W2)] ∪ (y1 + W1). (4.22)

As F is H-usc at p0, there exists U1 ∈ N (p0) such that

F (p) ⊂ F (p0) + (V1 ∩W2) ∀p ∈ U1. (4.23)

Combining (4.22) with (4.23) gives

F (p) ⊂ [((F (p0)\(y1 + W2)) + (V1 ∩W2)] ∪ (y1 + W1) ∀p ∈ U1. (4.24)

Since F is (−K)-lsc at p0, there exists U2 ∈ N (p0) satisfying

[y1 + (V0 ∩ V1 ∩W2)−K] ∩ F (p) 6= ∅ ∀p ∈ U2.

For each p ∈ U2 we choose some

yp ∈ [y1 + (V0 ∩ V1 ∩W2)−K] ∩ F (p) (4.25)
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and observe that

yp −K ⊂ [y1 + (V0 ∩ V1 ∩W2)−K]−K ⊂ y1 + (V0 ∩ V1 ∩W2)−K. (4.26)

Using (4.26), (4.21) and the obvious inclusion V0 ∩ V1 ∩W2 ⊂ V1, we get

(yp −K) ∩ [(F (p0)\(y1 + W2)) + (V1 ∩W2)] = ∅. (4.27)

Hence

[(yp −K) ∩ F (p)] ∩ [(F (p0)\(y1 + W2)) + (V1 ∩W2)] = ∅. (4.28)

For each p ∈ U1 ∩ U2, by (4.24) we have

[(yp −K) ∩ F (p)] ⊂ [(F (p0)\(y1 + W2)) + (V1 ∩W2)] ∪ (y1 + W1). (4.29)

According to (4.28) and (4.29),

(yp −K) ∩ F (p) ⊂ y1 + W1 ∀y ∈ U1 ∩ U2. (4.30)

Thus

(yp −K) ∩ F (p) ⊂ y1 + W1 ⊂ (y0 + W2) + W1 ⊂ y0 + W1 + W1

⊂ y0 + W. (4.31)

From (4.25) and (4.20), it follows that for each p ∈ U0 ∩ U1 ∩ U2 there exist ηp ∈ F(p) and
kp ∈ K such that yp = ηp + kp. Therefore, for each p ∈ U0 ∩ U1 ∩ U2, by (4.31) and the
inclusion F(p) ⊂ F (p) we may conclude that

ηp ∈ (yp −K) ∩ F (p) ⊂ y0 + W.

Hence
(y0 + W ) ∩ F(p) 6= ∅ ∀p ∈ U0 ∩ U1 ∩ U2

and (4.19) holds for UW := U0 ∩ U1 ∩ U2.

The following result can be found in [3, Theorem 4.1].

Theorem 4.10. Suppose that (DP) holds for F uniformly around p0 and

F(p0) ⊂ clE1(F (p0)|K).

If (A2) is satisfied, then F is lsc at p0.

It is easy to verify that Theorem 4.9 is applicable to Example 4.5 (note that F(0) =
E1(F (0)|K)), but Theorem 4.10 does not work for the example.

The forthcoming corollary, which extends [3, Theorem 4.2] and [1, Theorem 7], follows
directly from Theorem 4.9 and (4.16).

Corollary 4.11. Suppose that (K-locDP) holds for F uniformly around p0 and

F(p0) ⊂ clEsHe(F (p0)|K).

If (A2) is satisfied, then F is lsc at p0.
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We remark that Corollary 4.11 can be applied to Example 4.5 (here it holds F(0) =
EsHe(F (0)|K)), but [3, Theorem 4.2] and [1, Theorem 7] are not applicable to this example.

We need to recall a notion of efficiency due to Borwein and Zhuang [7].

Definition 4.12 (see [7]). Let Y is a normed space and A ⊂ Y. A element y0 ∈ A is a
super efficient point of A with respect to the ordering cone K if there exists γ > 0 such that

cl[cone(A− y0)] ∩ (B −K) ⊂ γB

where B denotes the closed unit ball of Y. We abbreviate the super efficient point set of A
w.r.t. K by EBoZh(A|K).

As shown in [3, Prop. 5.2] and [3, Theorem 5.1],

EBoZh(A|K) ⊂ E1(A|K). (4.32)

Moreover, if K has a bounded base,

EBoZh(A|K) = EsHe(A|K). (4.33)

By Theorem 4.9 and (4.32) we can obtain the following generalization of [3, Theorem
5.2].

Corollary 4.13. Let Y be a normed space. Assume that (K-locDP) holds for F uniformly
around p0 and

F(p0) ⊂ clEBoZh(F (p0)|K).

If (A2) is satisfied, then F is lsc at p0.

Since F(0) = EBoZh(F (0)|K), we see that Corollary 4.13 is applicable to Example 4.5.
Meanwhile, since (DP) does not hold for any F (p) with p ∈ P\{0}, [3, Theorem 5.2] does
not work for the example.

We want to stress that the assumption that (K-locDP) holds for F uniformly around p0

is essential for Theorem 4.9, Corollary 4.11 and Corollary 4.13. To see this, it suffices to
consider Example 4.6 again.

5 Uniformly Local Closedness and the Lower semicontinuity

We now introduce a notion on uniformly local closeness of multifunctions.

Definition 5.1. We say the F is uniformly local closed around p0 if for each y0 ∈ F(p0) there
exists V0 ∈ N (0) and U0 ∈ N (p0) such that cl(y0 + V0) ∩ F (p) is closed for all p ∈ U0\{p0}.

Clearly, if F (p) is closed for all p 6= p0 from a neighborhood of p0 then F is uniformly
locally closed around p0. The converse is not true in general. In Example 4.5, we have
encountered with a multifunction F where F (p) is not closed for any p ∈ P\{p0}.
Theorem 5.2. Let Y be a locally compact topological vector space. Suppose that

F(p0) ⊂ clE1(F (p0)|K)

and F is uniformly locally closed around p0. If (A2) is satisfied, then F is lsc at p0.
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Proof. Let y0 ∈ F(p0) and W ∈ N (0Y ). We need to show that there exists UW ∈ N (p0)
such that

(y0 + W ) ∩ F(p) 6= ∅ ∀p ∈ UW . (5.1)

Let W1 ∈ N (0Y ) be such that W1 + W1 ⊂ W. By y0 ∈ clE1(F (p0)|K), we can choose
y1 ∈ E1(F (p0)|K)∩ (y0 + W1). Since y1 ∈ E1(F (p0)|K) ⊂ F(p0) and F is uniformly locally
closed around p0, there exist V0 ∈ N (0Y ) and U0 ∈ N (p0) such that cl(y1 + V0) ∩ F (p)
is closed for all p ∈ U0\{p0}. As Y is a locally compact topological vector space, there is
W2 ∈ N (0Y ) such that clW2 is compact and

clW2 ⊂ W1 ∩ V0. (5.2)

Let W3 ∈ N (0Y ) be such that W3 + W3 ⊂ W2. By the strict minimality of y1, we can find
V ∈ N (0Y ) with the property that

[(F (p0)\(y1 + W3)) + V ] ∩ (y1 −K) = ∅.

Therefore, for any V1 ∈ NB(0Y ) satisfying V1 + V1 ⊂ V, it holds

[((F (p0)\(y1 + W3)) + V1] ∩ [(y1 + V1)−K] = ∅. (5.3)

The inclusion
F (p0) ⊂ [(F (p0)\(y1 + W3)] ∪ (y1 + W3)

yields

F (p0) + (V1 ∩W3) ⊂ [(F (p0)\(y1 + W3)) + (V1 ∩W3)] ∪ [(y1 + W3) + (V1 ∩W3)].

Thus

F (p0) + (V1 ∩W3) ⊂ [(F (p0)\(y1 + W3)) + (V1 ∩W3)] ∪ (y1 + W2). (5.4)

By (A2), F is H-usc at p0, so there exists U1 ∈ N (p0) such that

F (p) ⊂ F (p0) + (V1 ∩W3) ∀p ∈ U1.

Combining this with (5.4) gives

F (p) ⊂ [((F (p0)\(y1 + W3)) + (V1 ∩W3)] ∪ (y1 + W2) ∀p ∈ U1. (5.5)

Since F is (−K)-lsc at p0, there is U2 ∈ N (p0) such that for each p ∈ U2 we can find an
yp ∈ [y1 + (V1 ∩W3)−K] ∩ F (p). Observe that

yp −K ⊂ [y1 + (V1 ∩W3)−K]−K ⊂ y1 + (V1 ∩W3)−K. (5.6)

Using (5.6) and (5.3) we have

(yp −K) ∩ [(F (p0)\(y1 + W3)) + (V1 ∩W3)] = ∅. (5.7)

Hence

[(yp −K) ∩ F (p)] ∩ [(F (p0)\(y1 + W3)) + (V1 ∩W3)] = ∅. (5.8)
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For each p ∈ U1 ∩ U2, from (5.5) it follows that

[(yp −K) ∩ F (p)] ⊂ [(F (p0)\(y1 + W3)) + (V1 ∩W3)] ∪ (y1 + W2). (5.9)

For each p ∈ U1 ∩ U2, by (5.8) and (5.9) we have

(yp −K) ∩ F (p) ⊂ y1 + W2. (5.10)

Hence
(yp −K) ∩ F (p) ⊂ y1 + W2 ⊂ y1 + W1 ⊂ (y0 + W1) + W1 ⊂ y0 + W.

For each p ∈ U1 ∩ U2 using (5.10) and (5.2) we get

(yp −K) ∩ F (p) ⊂ y1 + clW2 ⊂ y1 + V0 ⊂ cl(y1 + V0). (5.11)

Therefore,

(yp −K) ∩ F (p) = [(yp −K) ∩ F (p)] ∩ cl(y1 + V0). (5.12)

For each p ∈ (U0∩U1∩U2)\{p0}, by the closedness of K, the closedness of cl(y1 +V0)∩F (p)
and (5.12), the set (yp −K) ∩ F (p) is closed. In view of the (5.11) and the compactness of
y1 + clW2 we see that (yp −K) ∩ F (p) is a compact set. It follows from [12, Theorem 6.3
(c)] that the section (yp −K) ∩ F (p) contains an element ηp ∈ F(p). Hence

ηp ∈ (yp −K) ∩ F (p) ⊂ y0 + W.

This yields

(y0 + W ) ∩ F(p) 6= ∅ ∀p ∈ (U0 ∩ U1 ∩ U2)\{p0}. (5.13)

Obviously, (y0 + W ) ∩ F(p0) 6= ∅. So, this and (5.13) imply that (5.1) holds for UW :=
U0 ∩ U1 ∩ U2.

We can restate [1, Theorem 8] as follows.

Theorem 5.3. Let Y be a locally compact topological vector space. Suppose that

F(p0) = EsHe(F (p0)|K)

and there a neighborhood U0 of p0 such that F (p) is closed for every p ∈ U0\{p0}. If (A1) is
satisfied, then F is lsc at p0.

From (4.16) we see that Theorem 5.2 is a refinement of Theorem 5.3. One can apply the
first theorem to Example 4.5, but one cannot do this with the second theorem.

In the finite-dimensional case, Theorem 5.2 gives us the following sufficient condition for
the lsc property of the efficient point multifunction, which complements [1, Theorem 9].

Corollary 5.4. Let Y = Rm and F : P ⇒ Rm. Suppose that

F(p0) ⊂ clE1(F (p0)|K)

and F is uniformly locally closed around p0. If (A2) is satisfied, then F is lsc at p0.

The assumption that F is uniformly locally closed around p0 is essential for the validity
of conclusions of Theorem 5.2 and Corollary 5.4; see Example 4.6.
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