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Abstract: Using the approach of Bednarczuk [1, 3] and introducing the new concepts of local containment
property, K-local domination property and uniformly local closednggss of a multifunction around a given
point, we obtain further results on the lower semicontinuity of effici point multifunctions taking values
in Hausdorff topological vector spaces. The new theorems sharpen t rresponding ones in [1, 3].
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Introduction

& St v theory of parametric vector optimization problems.
N defifitions.

This paper is motivated by
We first give some notatig

ectd® function, C' : P, = X a multifunction, where X,Y

ming {f(z,p1) |z € C(p2)} (1.1)

depending on the parameter pair (p1,p2) € P X Ps.

Definition 1.1. We write € S(p1,p2) to indicate that x an efficient solution of (1.1) if

(f (@, p1) = K) N f(C(p2), pr) = {f (2, p1)},

where f(C(p2),p1) = {f(x,p1) |z € C(p2)} is the image of the constraint set C(p2) via the
objective function f(-,p1). We call S : Py x P, = X the efficient solution map (or the Pareto
solution map) of (1.1).
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Definition 1.2. We say that y € A is an efficient point of a subset A C Y with respect to
K, and write y € E(A|K), whenever (y — K) N A = {y}. Given a multifunction F': P 3Y,
where P is a topological space, we put F(p) = E(F(p)|K) forallp € Pand call F: P =Y
the efficient point multifunction corresponding to the quadruplet {F, P,Y, K}.

In view of Defs. 1.1 and 1.2, setting P = P; X P, and F(p) = f(C(p2),p1) for every
p = (p1,p2) € P, we have

S(p) ={x € C(p2) | f(z,p1) € F(p)} Vp= (p1,p2) € P. (1.2)

Formula (1.2) describes a way of computing the efficient solution set S(p) via the efficient
point set F(p). Note that the efficient point multifunction F(-) in Def. 1.2 is a special
case of the efficient solution map S(-) in Def. 1.1. To show this, for a given quadruplet
{F,P,Y, K}, it suffices to put P, = {0y}, P, =P, X =Y, f(x,0y) = « for every z € X,
C(p) = F(p) for every p € P, and observe that

F(p) =S(0y,p) VpeP. (1.3)

The identity in (1.3) allows us to interpret F(-) as S(Oy, - Jthe efficient solution map of a
parametric vector optimization problem with the #entify oPREctive function.

Stability analysis in vector optimization has a ” The papers by Naccache
[14], Tanino and Sawaragi [21] are among the fig this field. One of the main
problems here is to find sufficient conditiogs for, r F(-) to have a certain continuity
properties. For instance, the lower (uppe§ of the efficient point multifunction
have been examined by Penot [15, 16]. V. s stalgg esults on the efficient solution map
and the efficient point multifunction begopn e books by Tanino, Sawaragi and
Nakayama [20], Luc [13]. More rec , Xia¥®g and Zhou [18], Xiang and Yin [19] have
tinuity of S(-) in the case where P; is a singleton
em®nt of the space of continuous functions defined on
a nonempty compact set wijf s in R™. Using the so-called domination property and
containment property, B k [1)2, 3, 5] studied the Hausdorff upper semicontinuity,

=

=.

F().

per Y¥ to show that most of the principal results of Bednarczuk
weaker assumptions. Namely, after presenting some preliminaries
. 3-5 we propose new concepts called local containment property, K-
operty and uniformly local closedness of a multifunction around a given
point. Then, 1in those three sections, we derive various sufficient conditions for the lower
semicontinuity of efficient point multifunctions taking values in Hausdorff topological vector
spaces. The new theorems sharpen the corresponding ones in [1, 3]. A series of examples
are provided for analyzing the obtained results and for comparing them with the preceding
results of Bednarczuk.

The pflrpose of
in [1, 3]
in Sect.

Preliminaries

Let F,P,Y,K be as in Def. 1.2. The effective domain of the multifunction F' is given by
the formula domF = {p € P | F(p) # 0}. We denote by N (p) (resp., N(y)) the set of
all neighborhoods of p € P (resp., y € Y). By Np(0y) we denote the set of all balanced
neighborhoods of 0y . Thus, V € Ng(0y) iff V is a neighborhood of 0y and AV C V for all
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A € [-1,1]. Tt is well known (see W. Rudin, Functional Analysis, 1973, p. 12) that for any
W e N(0y) there exists V € N (0y) satisfying V +V C W.

Given a subset Q) C Y, we denote the interior and the closure of € respectively by int{)
and clf2.

We shall encounter very frequently with the notions described in the next definition.

Definition 2.1. (i) F is upper semicontinuous (usc for brevity) at py € P if for every open
set V containing F(pg) there exists Uy € N (pg) such that F(p) C V for all p € Up.

(ii) F is said to be lower semicontinuous (1sc) at pg € dom F' if for any open set V C Y
satisfying V' N F(pg) # 0 there exists Uy € N (pg) such that V N F(p) # 0 for all p € U,.
(iii) F is said to be continuous at pp if it is both usc and Isc at pg.

(iv) F is Hausdorff upper semicontinuous (H-usc) at py if for every W € N'(0y ) there exists
Up € N(po) such that F(p) C F(po) + W for all p € U.

(v) (This notion was called inf-lower continuity in [16].) F is said to be K-lower semicon-
tinuous (K-Isc) at pg € dom F if for any open set V C Y satisfying V N F(pg) # 0 there
exists Uy € N (pg) such that (V + K) N F(p) # 0 for all p € Uy.

Consider the following pairs of closely-related agsumpti on the upper/lower semicon-
tinuity of F':
(A1) F is H-usc and lIsc at po;
(A2) F is H-usc and (—K)-Isc at py.

It is easy to show that (A1) implies (g2).

Definition 2.2. (i) The domination pro , de (DP), is said to hold for A C Y if

for cones with nonempty interiors was given in [4]. For the convenience of the reference of
the reader, we recall this result with a proof.

Proposition 2.3 (see [4, Prop. 2.2]). Let A be a subset of Y. If intK # (), then the
following two properties are equivalent:
(i) (CP) holds for A;
(i) For each W € N (Oy) there is Wy € N'(0y) such that for all
y € A\(E(AK) + V)
there exist n, € E(A|K) and ky, € K satisfying

y=ny+ky, ky+WyCK.
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Proof. (i) implies (ii): For each W € N (0y), we put Ky = {k € K|k+ W C K}. Note that
int K = Uy ar(oy) Kw- We shall show that for any V' € N(0y) there exists Wy € N(0y)
such that

{lyeY |y+V CEAIK)+ K} C E(AIK) + Kw, . (2.1)
Indeed, since Oy € (—K) = cl(—K) = cl(—intK), it follows that there exists Wy € N (0y)
satisfying V N (—=Kw,, ) # 0. Choose yy € VN (—Kw, ). Take any z € {y € Y |y+V C
E(AK)+ K}, ie., 2+ V C E(A|K) + K. We have z 4+ yy € E(A|K) + K, therefore

z€ E(AIK)+ K + Ky, C E(A|K) + Kw,, .
Next, take any W € N(0y). Since (CP) holds for A there exists V € A (0y) such that
[A\(E(AIK)+W)|+V C E(AIK) + K. (2.2)

By virtue of (2.1) we can find Wy € N (0y) satisfying

{lyeY |y+V CEAIK)+ K} C E(4) + K, . (2.3)
For each y € A\(E(A|K) + W), it follows from (2.

y+V CE(AK)+ K

Hence, there exist n, € E(A|K) and k, g s

where Wy := Wy .
(ii) smplies (i): This implicatiofgg olvioW. O

n serve well as qualification conditions for having the
[3],[5],[9]). Further, an related notion to (CP), called
as u¥ed in [4] for studying the upper Holder semicontinuity

Definition e say the domination property, again denoted by (DP), holds for F
uniformly around pg if there exists Uy € N (pp) such that

F(p) Cc F(p)+ K Vp e U,.

Definition 2.5 (see [1]). The containment property, again denoted by (CP), holds for F'
uniformly around po if VW € N'(0y), 3V € N (0y), Uy € N(po) such that

[F()\(F(p) + W)+ V C F(p) + K Vp e .

In the sequel, we will relax the above notions by introducing the concepts called the local
containment property, the K-local domination property of a multifunction around a given
point. With the help of these concepts, we will extend the main results of [1, 3].
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Local Containment Property and the Lower Semicontinuity

The following definition gives a weaker form of the notion uniform containment property of
a multifunction around a point in Def. 2.5.

Definition 3.1. We say the local containment property, denoted by (locCP), holds for F
uniformly around pq if for each yg € F(pg) there exists Vo € N (0y) such that VIW € N (0y),
AV e N(0y), Uy € N (po) satistying

[((yo + Vo) N F(p)\(F(p) + W)+ V C F(p) + K Vp € U,.

By means of the same arguments as in the proof of Proposition 2.3 one can show that
under the condition int K # (), (locCP) holds for F' uniformly around py if and only if for each
yo € F(po) there exists Vo € N (0y) such that VW € N (0y), IWy € N (0y), Uy € N(po)
satisfying Vp € Uo,Vy € [(yo + Vo) N F(p)\(F(p) + W), Iny € F(p) Tky € K,

y=mny+ky, ky+WyCK.

It is clear that if (CP) holds for F' uniformly around pg they (locCP) holds for F' uniformly
around pg. The converse is not true in general (see ExampR 3.5 below). This means that
(locCP) is really weaker than (CP).

Theorem 3.2. Suppose that intK # (§ and (locC 0 or F' uniformly around py. If
(Aq) is satisfied, then F is lsc at po.

Proof. Let yo € F(po) and W € N (0y) Q‘he l
there exists Uy € N (po) such that

ill be compeleted if we can show that

e Uw. (3.1)
Take any Wi € Np(0y) satisfying Wy € W. By our assumptions there exist Vj €
N(0y), WO € N(0y) and U, ) such that for all p € Uy and y € [(yo + Vo) N
) and k, € K satisfying
ky + Wy C K. (3.2)

F(p)]\(F(p) + W1) we can
Choose W- 2 C Wpy. Since F is Isc at pg, there exists Uy € N(po),
U, C Uy, fuch that

+ (VonWinWa)|NF(p)#£0 YpelU,.
For each take a point
[yo + (Vo N Wi NWa)| N F(p). (3.3)
As F is H-usc at pg, there exists Uy € N (pg), Ua C Uy, such that
F(p) C F(po) + Vo nW1NWs) Vp e Us. (3.4)
Suppose first that there exists U € N(pg),U C Uy, such that
yp € F(p)+ Wy Vpel. (3.5)

For each p € Uy NU, from (3.3) and (3.5) it follows that there exist w, € VoNn Wi NWa,n, €
F(p) and w, € W, satisfying y, = yo + wp = np + W0p. Thus,

Np = Yo + Wp — Wy €Yo+ W1 + Wi Cyo+ W.
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Then we have .
(Yo +W)NF(p)#0 VYpeUnU

which establishes (3.1) with Uy := U; N U.
Next, suppose that for all U € N (pg),U C Us, there exists p € U such that

yp & F(p) + Wi (3.6)

Combining (3.6) with (3.3) we get y, € [(yo+ Vo) N F(p)]\(F(p) + W1). By (3.2) we can find
np € F(p) and k, € K with the properties that

Yp =1p + kp, kp+Wo CK. (3.7)

From (3.4) and the relation n, € F(p) C F(p) it follows that there exist zp € F(po) and
wog € Vo N Wi N Wy Satisfying

Np = 20 + Wo. (3.8)
By (3.3) there exists w, € Vo N W7 N W such that

Yp = Yo + Wp. (3.9)

Using (3.9), (3.7) and (3.8) we obtain yo + w, =
Yo = 20 + kp + wo — wyp. Besides,

o + wo + kp. This implies

k‘p—Fwo—wak}p-i-(‘ﬁ 2) (VoﬂWlﬂWQ)
C k/’p + W- Wy C K.
Hence yo = 20 + ko, where ko := k), 0 — a Wy C K. Since there is no loss of

generality in assuming that Wy is g o neighborhood, we can assert that yg € 2o + intK.
This contradicts the minimalitypof y\ arN§ completes the proof. O

In Theorem 3.2, the as 1 hat (locCP) holds for F uniformly around py of is
essential.

Example 3.3. Let

F(0) ={(

2K = Rf_. Let F : P = R? be defined by setting
—y; + 2} and

FR) = {(yiqu2) | fi(y1) <y2 < —y1 +2}\ {(yl,yz) ly2 = —y1+p, 11 < ;}

for every p }, where
—t+0p iftg%
— _1 T 1 _
fit)=<p 5 if S <t< +2-p
—t+2 ift>14+2-p

for all t € R. We have
F0) ={(y1,92) | y2 = =91},

1
Fp) ={(y1,v2) ly2 =~y + 2,51 > 5+2—p}.

Note that F' is H-usc and lsc at po = 0. It is not hard to see that (locCP) does not hold for
F uniformly around pg = 0. Observe that F is not Isc at pg = 0.
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The following result is due to Bednarczuk.

Theorem 3.4 (see [1, Theorem 4]). Suppose that intK # () and (CP) holds for F
uniformly around po. If (A1) is satisfied, then F is lsc at pg.

The next example shows that Theorem 3.2 is a proper extension of Theorem 3.4.

Example 3.5. Let P = [0,1], Y = R*, K = R3. Let F' : P = R? be defined by setting
F(0) ={(y1,92) | —y1 <92 < —y1+2} and

F(p) ={(y1,v2) | ily1) < y2 < —y1 +2}

for every p € P\{0}, where

—t+0p 1ft§%
—J,_1 1 1,9_
fit)=<»p 5 if S <t< +2-p
—t+2 ift>S+2-p

for all t € R. We have
7'-(0) = {(ylva) |

Flp) = {<y1,y2> g

SRR
+
[\
[
i}
—

U {(91,3/2) —11

It is easy to show that F'is continu
hold for F(p) with any p € P\{@}. Iis

o = 0, and (CP) holds for F'(0). But (CP) does not
t hard to see that (locCP) holds for F' uniformly

borhoods of 0y consisting of sets S with the property that S = (S + K) N (S — K).

It was shown by Borwein [6] that if Y is a locally convex space and K has a bounded
base, then K is normal. Recall [12, p. 9] that a nonempty convex subset © C K is said
to be a base of K if each v € K\{0} can be represented uniquely in the form v = A0
(A>0,0€0).

We now introduce a weaker form of the property (DP) described by Def. 2.4.

Definition 4.2. We say the K-local domination property, denoted (K-locDP), holds for F
uniformly around py if for each yg € F(po), there exist Vy € N(0y) and Uy € N(pg) such
that

(yo+Vo—K)NF(p) C F(p)+ K VpeUp.
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Clearly, (DP) implies (K-locDP). Example 4.5 given below will show that the reverse
implication is not valid in general.

Our first result in this section is stated as follows.

Theorem 4.3. Let K be a normal cone in Y. Suppose that F(po) is closed, clF(po) is
compact, (DP) holds for the set F(pg), and (K-locDP) holds for F uniformly around po. If
(A2) is satisfied, then F is lsc at po.

Proof. Let yo € F(po). Fist, we observe that

{vw € N(0y) 3V € N(0y) such that 1)

[(F(po) + K)\(wo +W)) +V]N(yo — K) = 0.

Indeed, suppose on the contrary that there exists some W € N(0Oy) such that for any
V e N(0y), 3ky € K, Fk{, € K, Inv € F(po), Isy € V satisfying

yo—kvznv+k‘1/+sv and nv—&—k"l,géyo—i—W (4.2)

There is no loss of generality in assuming that the net {s eN(0y) tends to Oy . Here the
direction of net is defined by the natural set-inclugon in t mily V' (0y) :

sy, X sy, & Vo

for any V1, Vo € N (0y). Since clF(po) is compg xists a subnet of {ny} converging
to an element 1 € clF(py) C F(po) (recal®hat (& is closed by our assumption). Without
loss of generality, we may assume that 7y, O kv + ki, = yo — nv — sy. Hence

that yo — n € K. The minimality of yy and the
hus' from (4.3) it follows that kv + ki, — Oy. Since
itioMyl.3] we obtain ky — Oy and ki, — Oy. Given any
nd U € N(0y) such that

and it follows from the closedness
last inclusion implies that yq
K is normal, using [17, P

Wy € N(0y) with Wy + , we

ki, C(n+Wi) +Wi Cyo+ W

for every tradlcts the property ny + ki, ¢ yo + W. We have thus obtained
the relati

Now, € N(0y). To obtain the lower semicontinuity of F at pg, we need to
show that ists Uy € N(pg) such that

(o +W)NF(p)#0 VpeUw. (4.4)
Let W7 + W7 C W. Due to (4.1), there exists V € A (0y) such that
[(F(po) + K)\(yo + W1)) + V] N [(yo — K] =0
Hence, for any Vi € Ng(0y) satisfying Vi + V1 C V, it holds
[((F(po) + E)\(yo + W1)) + Vil N [(yo + V1) — K]
As (DP) holds for the set F(pp), it follows that

0 (4.5)

F(po) C [(F(po) + K)\(yo + W1)] U (yo + W1).
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Hence,
F(po) + (Vi n W) € [((F(po) + K)\(yo + W1)) + (Vi N W) U [(yo + W1) + (Vi N W)l
Since (yo + W1) + (Vi NW1) C yo + Wi + W1 C yo + W, it follows that
F(po) + (Vi n W1) C [((F(po) + K)\(yo + W) + (Vi N W) U (yo + W). (4.6)
Since F' is H-usc at pg, there is U; € N(pg) such that
F(p) C F(po) + (VinWy) VpeU. (4.7)
Combining (4.6) with (4.7) we get
F(p) C [((F(po) + K)\(yo + W1)) + (Vi N W1)] U (yo + W), (4.8)

for all p € U;. Since (K-locDP) holds for F' uniformly around pg, there exist Vo € N (0y)
and Uy € N (po) such that

(yo+Vo— K)NF(p) C F(p) + K \p € Up. (4.9)
Since F'is (—K)-lsc at po, there must exist Us € Jfpo) witlRhe property that
[y0+(V0ﬂV1ﬂW1)—K]ﬂF € Us.

For each p € Uy we can choose

[yo + ( Vo N F(p). (4.10)
Observe that
—KCly+WVon¥in

— K Cyo+VonVinwy) — K. (4.11)
Using (4.11), (4.5) and the glfio lusion Vo NV N W, C Vi, we obtain
\(yo +W1)) + (VinWy)] = 0. (4.12)
Hence
F(po) + K)\(yo + W1)) + (Vi nW)] = 0. (4.13)
From (4 that
[(yp F(p)] € [(F(po) + K)\(yo + W1)) + (Vi N W1)] U (yo + W) (4.14)

for each p € U; N Us. By (4.13) and (4.14), for each p € U; N Us we have
(yp = K) N F(p) Cyo+ W. (4.15)

According to (4.10) and (4.9), for each p € Uy N Uy N Uy there exist n, € F(p) and k, € K
such that y, = 1, + k,. Therefore, for each p € Uy N Uy N Us, by (4.15) and the fact that
F(p) C F(p) we get

My € (Yp — K)NF(p) Cyo+ W.

Hence
(yo+W)ﬂ]-"(p) #@ Vp e UyNU; NU,.

This shows that (4.4) holds for Uy := Uy N U; N Uz and completes the proof. O
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Let us compare Theorem 4.3 with the following result of Bednarczuk.

Theorem 4.4 (see [3, Theorem 4.3]). Let K be a normal cone in'Y. Assume that F(po)
is closed, clF(po) is compact, and (DP) holds for F uniformly around po. If (As) is satisfied,
then F 1is lsc at pg.

As it is clear from the next example, Theorem 4.3 has a wider range of applicability than
that of Theorem 4.4.

Example 4.5. Let P = [0,1], Y = R?, K = R%. Let F : P =% R? be given by setting
FO) ={(y1,92) [ 1 =51 <2 < 1,0 <y <1} U{(y1,92) [0 <2 < 1,51 > 1} and

F(p) ={(y1,v2) | fily1) <y2 <1}

for every p € P\{0}, where

—t+p+1 ifp<t<p+1
fit) =40 ifp+l<t<p+l+1
—p ift>p+ 14+

for all t € R. We have

Fp)={,12) ly2 g1
Note that F(0) is closed, clF(0) is compa
F' uniformly around pg = 0. Besides, itg
(—K)-Isc and H-usc at pg =0. By T
does not hold for any F'(p) with
under consideration.

<y <p+1}.

for F(0), and (K-locDP) holds for
g at K = R% is normal cone, F is
Alsc at pg = 0. Meanwhile, since (DP)
heorem 4.4 does not work for the problem

The assumption that ( olds for F uniformly around py cannot be dropped

2K =R3. Let F : P = R? be defined by setting
LO0<y <1}U{(y1,92) |0 <y2 < 1,51 > 1} and

Example 4.
F(0) = {(yr

F(il = {(y1, 11 (1)< 2o < 1P\ {(w1,92) |2 = =1 +p+Lp <y <p+1}
for every , where
—t+p+1 ifp<t<p+1
i) =<0 ﬁp+l<t§p+l+%

—p ift>p+1+3.
for all t € R. We have

FO)={(y1,92) | y2=1—131,0 <y <1}

and

F(p) =L 1}
One can verify that all assumptions of Theorem 4.3, except for (K-locDP), are satisfied.
Note that F is not Isc at pg = 0.
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To proceed further, we need to consider some notions of proper efficiency. As shown by
Bednarczuk [1], properly efficient points are very useful for studying the lower semicontinuity
of the efficient point multifunction.

Definition 4.7. Let A be a subset of Y.

(i) (see [10]) An element yo € E(A|K) is said to be a properly efficient point of A, in the
sense of Henig, if there exists a closed convex cone K, with K\{0} C intKj such that
yo € E(A|Ky).

(i) (see [1]) An element yo € E(A|K) is a strongly properly efficient point of A if there
exists a closed convex cone Ky with K\{0} C intK, such that yo € E(A|K,) and, for each
W € N(0y), one can find V € N (0y) such that

(K\W)+V C K.

(i) (see [3]) An element yo € A is a strictly efficient point of A if for each W € M (0y) there
exists V € N (0y) such that

[(A\(yo + W) + V] N (yo — K )= 0.

The set of the properly efficient points (resp., garongly Pperly efficient points, strictly

efficient points) of A is denoted by E¢(A|K) (res (AN, E1(A|K)).
It can be proved that F4(A|K) C E(AK). T rsqynclusion may fail to hold (see
[3, Example 3.1]). According to [3, Propositio
EsHe( A|K (4.16)
Obviously, EsHe(A|K) c EH¢( e a sufficient condition for the last
inclusion to become an equality.

Proposition 4.8. Let Y be a ceand ACY. If K CY is a closed conver cone
having a compact base O, t
FSUA|K) = EH¢(A|K).

Efe(A|K) c E*H(A|K). For any yo € EH¢(A|K), there
. with K\{0} C intKy such that yo € E(A|Ky). To verify
A|K), it suffices to show that for each W € N(0y) there exists

K\W +V C K. (4.17)

For each 0 € ©, we have § € K\{0}, hence there exists Wy € N (0y) satisfying 0+ Wy C K.
Choose Vy € Np(0y),Vy + Vo C Wy. The family {6 + Vy}oco is a cover of ©. By the
compactness of O, there exists a finite subcover {6; + Vp,}™,. Clearly, there exists Ao > 0
such that A©@ C W for all 0 < XA < Xg. Put Vy = (N2, Vy,. We choose some V € N (0y)
satisfying V' C AgVp. For any y € K\W, there exist 6, € © and A, > Ag such that y = \,0,.
Therefore,

A
y+V C A0y, + Vo =)y <6y + /\OVO> C Ay(0y + Vi) C K.
Yy

Hence K\W +V C Ky, i.e., (4.17) is satisfied and the proof is complete. O
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If the K-local domination property (see Def. 4.2) holds and the strictly efficient point
set is “good” in the sense that its closure contains the efficient point set, then we may hope
that F is Isc at pg. Namely, we have following theorem.

Theorem 4.9. Suppose that (K-locDP) holds for F uniformly around py and
F(po) C clE1(F(po)|K). (4.18)
If (As) is satisfied, then F is lsc at po.

Proof. Let yo € F(pg) and W € N (0y). The proof will be completed if we can show that
there exists Uy € N (po) such that

(o +W)NF(p)#0 Vp e Uw. (4.19)

Choose Wy, Wy € N(OY) such that W7, + W7, € W and Wy + Wy C Wi By (418), we
have yo € clEy(F(po)|K). Therefore, we can pick an y; € E1(F(po)|K) N (yo + Wa). Since
y1 € E1(F(po)|K) C F(po) and (K-locDP) holds for F' uniformly around pg, there exist
Vo € N(0y) and Uy € N(po) such that

(yi+Vo—K)NF(p) C F(M + K € Up. (4.20)

By the strict minimality of y;, there is V € N (0y) sk 1

[(F'(po)\(y1 + Wz)) + (y\§ K) = 0.
Therefore, for any Vi € Np(0y) satlsfym it holds
\(y2 + W ) — K] =0. (4.21)

It is obvious that
(y1 + W) U (g1 + Wa).
Hence
+ (N +Wa)) + (Vi nWa)| U [(y1 + Wa) + (Vi N Wa)].
Since Y1 oM+ + Wy + Wy Cy1 + Wh, it follows that
p(] 10 W2 p() y1 + Wz)) + (Vl n Wg)] U (yl + Wl) (422)
As I'is b, there exists U; € M(pg) such that

) C F(po) + (VinWs) Vp e Us. (4.23)
Combining (4.22) with (4.23) gives
F(p) C [(F(po)\(y1 + Wa)) + (Vi N Wa)] U (y1 + Wh) Vp € Us. (4.24)
Since F' is (—K)-lsc at pg, there exists Us € N (pg) satisfying
[y1 + VonVinWy) — KINF(p)#0 Vpe Us.
For each p € U; we choose some

yp € [y1 + (VoNViNWa) — K| N F(p) (4.25)



THE LOWER SEMICONTINUITY 417

and observe that
—KcClp+MonVinWs) —K|—K Cyi + (VonVinWs,) — K. (4.26)
Using (4.26), (4.21) and the obvious inclusion Vo N Vi N Wy C Vi, we get
(yp — K) N [(F(po)\(y1 + W2)) + (Vi N Wa)] = 0. (4.27)
Hence
[(yp — K) N F(p)] N [(F(po)\(y1 + W2)) + (Vi N W2)] = 0. (4.28)
For each p € U; N Uy, by (4.24) we have
[(yp = K) N F(p)] C [(F(po)\(y1 + W2)) + (Vi N W2)] U (g1 + Wh). (4.29)

According to (4.28) and (4.29),

(yp—K)mF(p) Cy1+Wi1 Wye NUs. (4.30)

Thus
(yp—K)ﬂF(p)Cy1+W1C(yo+Wz Yo+ W1+ Wy
Cyo+ W, (4.31)
From (4.25) and (4.20), it follows that fo g R U1 N Us there exist n, € F(p) and
k, € K such that y, = n, + k,. There eor @ Uy NU; NUy, by (4.31) and the
1nclu81on F(p) C F(p) we may concl hat
F(p) Cyo+W.

Hence

75(2) VpeUyNUiNU;

F(po) C clE1(F (po)|K).
If (Ag) is satisfied, then F is lsc at po.

It is easy to verify that Theorem 4.9 is applicable to Example 4.5 (note that F(0) =
E,(F(0)|K)), but Theorem 4.10 does not work for the example.

The forthcoming corollary, which extends [3, Theorem 4.2] and [1, Theorem 7], follows
directly from Theorem 4.9 and (4.16).

Corollary 4.11. Suppose that (K-locDP) holds for F uniformly around py and
F(po) C clE*(F (po) | K).

If (Ag) is satisfied, then F is lsc at po.
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We remark that Corollary 4.11 can be applied to Example 4.5 (here it holds F(0) =
EsHe(F(0)|K)), but [3, Theorem 4.2] and [1, Theorem 7] are not applicable to this example.

We need to recall a notion of efficiency due to Borwein and Zhuang [7].

Definition 4.12 (see [7]). Let Y is a normed space and A C Y. A element yo € A is a
super efficient point of A with respect to the ordering cone K if there exists v > 0 such that

cllcone(A — yo)]N(B— K) CyB

where B denotes the closed unit ball of Y. We abbreviate the super efficient point set of A
w.r.t. K by EBYZh(A|K).

As shown in [3, Prop. 5.2] and [3, Theorem 5.1],
EBMA|K) C Ei(AK). (4.32)
Moreover, if K has a bounded base,

EBZhA|K) = B (A|K). (4.33)

By Theorem 4.9 and (4.32) we can obtain the
5.2].

eralization of [3, Theorem

Corollary 4.13. Let Y be a normed spqge. 7 (K-1ocDP) holds for F uniformly

around py and
OZh

If (Ag) is satisfied, then F is lsc at

Since F(0) = EBoZh(F wd seqthat Corollary 4.13 is applicable to Example 4.5.
Meanwhile, since (DP) does nHt for any F'(p) with p € P\{0}, [3, Theorem 5.2] does

We now int e a notion on uniformly local closeness of multifunctions.

Definition 5.1. We say the F is uniformly local closed around py if for each yo € F(po) there
exists Vy € N(0) and Uy € N (pg) such that cl(yg + Vo) N F(p) is closed for all p € Up\{po}-

Clearly, if F(p) is closed for all p # py from a neighborhood of py then F is uniformly
locally closed around py. The converse is not true in general. In Example 4.5, we have
encountered with a multifunction F' where F(p) is not closed for any p € P\{po}.

Theorem 5.2. Let Y be a locally compact topological vector space. Suppose that

F(po) C clE(F(po)|K)

and F is uniformly locally closed around po. If (Ag) is satisfied, then F is lsc at py.
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Proof. Let yo € F(po) and W € N (0y). We need to show that there exists Uy € N (po)
such that

(yo+ W)NF(p)£0 Vpe Up. (5.1)

Let W1 € N(0y) be such that Wy + Wy C W. By yo € clE1(F(po)|K), we can choose
y1 € E1(F(po)|K) N (yo + W1). Since y1 € E1(F(po)|K) C F(po) and F is uniformly locally
closed around pg, there exist Vo € M (0y) and Uy € N(pp) such that cl(y; + Vo) N F(p)
is closed for all p € Up\{po}. As Y is a locally compact topological vector space, there is
Wy € N(0y) such that clWs is compact and

cWsy Cc Wi N . (52)

Let W3 € N(0y) be such that W3 + W3 C Ws. By the strict minimality of y;, we can find
V € N(0y) with the property that

[(F(po)\(y1 + W3)) + V] N (g1 — K) = 0.
Therefore, for any Vi € N(0y) satisfying Vi + Vi C V, it Jlds
[(F(po)\(y1 + W3)) + Vil N [(y1 0. (5.3)

The inclusion
F(p po& (1 JUW + Ws)

yields

F(po) + (VinWs) C ﬂ 3)] U [(y1 + W) + (Vi n W3)].
Thus
\(y1 + W3)) + (Vi N W)U (y1 + Wa). (5.4)
Q ists Uy € N(po) such that

, F''is H-usc
V1 N W3 Vp € Ul-
Combini this wit ) gives

\(y1 + W3))+ (Vi nW3)| U (y1 + Wa) Vp e Uy. (5.5)

Since F' is (—K)-Isc at pg, there is Uy € N (pg) such that for each p € Uy we can find an
Yp € [y1 + (V1 ﬁ Wj) K] N F(p). Observe that

7KC[y1+(V10W3)*K]7KCy1+(V1mW3)7K. (56)
Using (5.6) and (5.3) we have

(yp — K) N [(F(po)\(y1 + W3)) + (Vi N W3)] = 0. (5.7)
Hence

[(yp — K) N F(p)] N [(F(po)\(y1 + W3)) + (Vi N W3)] = 0. (5.8)
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For each p € U; NUs, from (5.5) it follows that
[(yp — K) N F(p)] € [(F(po)\(y1 + W3)) + (Vi N W3)] U (y1 + Wa). (5.9)
For each p € Uy N Uy, by (5.8) and (5.9) we have
(yp — K) N F(p) Cy1 + Wa. (5.10)

Hence
(yp — K)NF(p) Cy1 + Wa Cyr + Wi C (yo+ Wi) + W1 Cyo+ W.

For each p € Uy N Uz using (5.10) and (5.2) we get
(yp — K)NF(p) Cy1 +clWe Cy1 + Vo C cl(yr + Vo). (5.11)
Therefore,
(yp = K) N F(p) = [(yp — K) N F(p)] N cl(yr + Vo). (5.12)

For each p € (UyNU;NU2)\{po}, by the closedness of K, tiRgelosedness of cl(y1 + Vo) N F(p)
and (5.12), the set (y, — K) N F(p) is closed. In view of tA&5.11) and the compactness of
y1 + clWs we see that (y, — K) N F(p) is a comfaRy s¢ It Rllpws from [12, Theorem 6.3
(c)] that the section (y, — K) N F(p) contains an ele (p). Hence

m

npe(yp_g)ﬁ w.

This yields
(0 + W) N F(p) N {0 U2\ (oo} (5.13)

Uy NnU; NUs. O

llows.

We can restate [1, T

Theorem 5.3. Let pact topological vector space. Suppose that

F(po) = B (F(po) | K)

and ther
satisfied,

neighbofhood Uy of po such that F(p) is closed for every p € Up\{po}. If (A1) is
F igllsc at pg.

From (4.16) we see that Theorem 5.2 is a refinement of Theorem 5.3. One can apply the
first theorem to Example 4.5, but one cannot do this with the second theorem.

In the finite-dimensional case, Theorem 5.2 gives us the following sufficient condition for
the lsc property of the efficient point multifunction, which complements [1, Theorem 9.

Corollary 5.4. Let Y =R™ and F : P = R™. Suppose that
F(po) C clE1(F(po)|K)
and F is uniformly locally closed around po. If (As) is satisfied, then F is lsc at py.

The assumption that F' is uniformly locally closed around pg is essential for the validity
of conclusions of Theorem 5.2 and Corollary 5.4; see Example 4.6.
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