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THE MEASURE OF DIFFUSION SKEWNESS AND KURTOSIS
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Intr yOn

The diffusion tensor imaging (DTI) model is an important magnetic resonance imaging
(MRI) model in biomedical engineering. It has wide biological and clinical applications [3].
For example, it may be used to study the properties of water molecule diffusion in the brain,
particularly for white matter fibers. Such properties may be used to detect abnormalities
and diseases in such tissues [1, 2]. In the DTT model, one needs assume a perfect Gaussian
distribution for the water molecule movement [3], but water in biological structures often
shows non-Gaussian diffusion behavior, which affects the use of the DTI model.
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In order to overcome the drawback of the DTI model, described above, Liu et al. [§]
proposed a so-called generalized diffusion tensors imaging (GDTI) model as follows
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to characterize the non-Gaussian diffusion of the water molecules in tissues, where S(0) and
S(b) are the transverse magnetization measured at the echo {(TE) in the absence and presence
of diffusion gradlent respectlvely Here, j is the square r of —1, and D™ (n > 2) are
ing some common statistical
methods such as the least square estimate method 3ad rlo simulations.

It is not difficult to see that the tensors b (n > 2% are functions of the direction,
gradients. More precisely, if the
sidered time, by [8], the element

magnetic field gradient is a constant ve@or o
b(")

iy ig-i, Of tensor b can be written as

bl(‘:li)z - Z.171.2a"' 7in = 172737 (12)
where © = (21,29, 73)T € 13 1sidered direction, A is the separation time of the two
diffusion gradients, J is t ) tion Qf each gradient lobe, and ¢ is an appropriate positive

number. From (1.1), it i
of orders higher tha

This shows that if we consider the diffusion behavior of the non-Gaussian signal with the
asymmetry, the DTI model may fail to identify the underlying structure [9]. This point is
even clearer for the one modeled by Phantom 4 in [8]. We refer readers to [5, 6, 13, 14] and
references therein for non-Gaussian diffusion with the symmetry.

In this paper, we consider the approximation of (1.1) as follows

3
(b) Z (2) Z @ @ B @) ()
In ( 0 ) D2112 b1112 D21221314b11121314 —J D111213b2122237 (13)

i1,12=1 1,12,13,84=1 i1,%2,i3=1

which can be obtained by truncating (1.1) to the fourth order tensor and contains useful
information of the signal. Then the first two terms of (1.3) are related to the magnitude of the
signal and the last term of (1.3) is related to the phase of the signal. The second order tensor



DIFFUSION SKEWNESS AND KURTOSIS 393

D®) is the diffusion tensor. We call the third order D®) and the fourth order tensor D)
in (1.3) the diffusion skewness (DS) tensor and the diffusion kurtosis (DK) tensor

respectively. It is important to note that the values Dl(i)Q fo’;m and Dl(1 BMM (1.3) are not
independent of the co-ordinate system. When the co-ordinate system is rotated, these values
will be changed. To understand the biological and clinical meaning of the corresponding
tensors in (1.3), we have to measure and calculate some quantities and parameters which
are independent from co-ordinate system choices. The main invariants of the diffusion tensor
D®) are its eigenvalues, which have already been widely used in the DTT technique [3]. In
[16], Qi et al. introduced D-eigenvalues for a DK tensor D@ . Some important invariants
related to D*) were identified there. Moreover, a method for calculatlng D-eigenvalues was
presented in [16]. Here we study the quantities and parameters associated with the DS tensor
D®) in (1.3), which include the largest and the smallest apparent skewness coefficients
(ASC) values, their computation formulas and relationships, and some further properties of
the invariants of D(®)

In Section 2, we discuss some further properties of the invariants of D). In Section
3, based on the concept of Z-eigenvalues of tensors [11], we introduce the ASC values, and
show that they are invariant under co-ordinate rotations argl may have important biological
and clinical meanings.

In Section 4, we describe numerical methods M ca lat e ASC values and the ap-
parent kurtosis coefficients (AKC) values. In 5Qe provide some numerical
examples for calculating ASC Values Some final ¢ i are made in Section 6.

The AKC Values
In this section, we first summarize t X& perties of AKC values, then further

discuss some properties of the D-¢g lues and Kelvin eigenvalues of D®). To this end,
let us write
A - 75 D@, (2.1)
35\ D@
= (vg9)* 5 D (2.2)
Then thefapparent lon coefficient (ADC) [ ]

3
_ 2 — e
Dopp = Dx* = E Djjziz;.

ij=1

In practice, D is positive definite. Let the eigenvalues of D be a; > as > a3 > 0. Then the
mean diffusivity [3] can be calculated by

0[1+012+Cl{3

Mp = 3

As [11, 16], we denote Dz and Wz as two vectors in % with their ith component as

3
= E Djjx;
j=1
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and X
(Wa?); = > Wijnajzea,
ok =1
respectively, for ¢ = 1,2,3. In [16], Qi et. al introduced the following concept of D-

eigenvalues and D-eigenvectors of W, which is a generalization of Z-eigenvalues and Z-
eigenvectors presented in [11].

Definition 2.1. A real number ) is said to be a D-eigenvalue of W, if there exists a real
vector x such that

3 _
{ Wax® = ADx, (2.3)

Dz? =1.
The real vector z is called the D-eigenvector of W associated with the D-eigenvalue A.
Based on this definition, a key formula for the tensor W is as follows:
_ Mp
= 3

app

Kapp() Wzt (2.4)

where Kgpp(2) is the AKC value at the direction

ijkl=1

Denote the largest and the smallest AK&
have the following theorems which were

ax and Ky, respectively. Then we

rs and always exist. If © is a D-

igenvalues of W as A2 and \P

hax min Tespectively. Then

the largest AKC value is

max — M%Aga)u (25)

and the syfallest A
Koin = MAAE, . (2.6)
Theore .3. The D-eigenvalues of W are invariant under rotations of co-ordinate sys-

tems.

By these two theorems, we know that K .x and K, are also invariants of W. In the
rest of this section, we discuss some further properties of eigenvalues of W.

In [4], a 6 x 6 symmetric matrix is associated with a fourth order three dimensional
symmetric tensor. The eigenvalues of that matrix are also invariants of that tensor. This
theory can be traced back to Kelvin 150 years ago [17]. For tensor W, we call the six
eigenvalues of the 6 matrix associated with it Kelvin eigenvalues of W. Are there any
relations between D-eigenvalues and Kelvin eigenvalues? By the definitions of D-eigenvalues
and Kelvin eigenvalues [4], the following proposition holds.

Proposition 2.4. Let W be a fourth order three dimensional fully symmetric tensor, and
let o be a Kelvin eigenvalue of W, associated with a Kelvin eigentensor X . If there exists a
vector x € R3 such that X = xx”, then o is a D-eigenvalue of W.



DIFFUSION SKEWNESS AND KURTOSIS 395

Proposition 2.5. Let o1, 09, -+, 0¢ be 6 Kelvin eigenvalues of W. Suppose D = I. Then
we have
6 6
- Z(_Um)Jr < )‘gin < )‘gax < Z(Um)+,
m=1 m=1

where (a)4+ = max{a,0}.
Proof. Is is easy to verify that we have the spectral decomposition of W as follows

6
W=> onE"®E™, (2.7)

m=1

where ® denotes the outer tensor product,

m 1 -m 1 m
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and ™ = (7%, el eft ey e em) T is the mth
is clear that for each m, E™ is a symmetric matrix
that ,U’gnl + :ugn2 + :ugn?) = 17 where Hm1 < Hm2 < g3
we have that for any @ = (z1, 22, 23)7,

aljized Qelvin eigenvector of W [4]. Tt
i g Nde(E™)? = 1, which implies
eigenvalues of E™. By (2.7),

(2.8)
It is well known that pu, ; < fmg for any m = 1,---,6. This implies that
0 < (2T E™z)? < max{ } < 1] Therefore, by (2.8), we obtain the desired result and
complete the proof. O

Now wyff discuss & epe
We first @lve the fol Smafe de

ence of eigenvalues of fourth order three dimensional tensor.
nition.

Definiti set S consisted of the functions

yi:fi(xlax%"' ,l'n), 2:1727 , 1, (29)

which are defined on the region 2 in R"™, is said to be functionally dependent on €, if there
exist an index iy and a function ¢ defined on an appropriate region in ®™~!, such that

Yip = (P(fl(ml,xQ,"' 7x77«)7f2(x1a$2a"' axn)v"' )
Jio—1(x1, 22, -+, 2n), figr1(@1, @2, -+ ),y f (@1, 02, 20))
holds for any (x1,22, - ,2,) € Q. If for any sub-region Q' of , there are no iy and such

function ¢ that
Yip = @(yhyQa oy Yig—15 Yig+1, " 00 7ym)

holds on €', then the function set S is said to be functionally independent on 2.
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For the functional independence, we have the following theorem.

Theorem 2.7. Suppose that m < n and there exists an mth order determinant |A| in the
Jacobian matriz of the functions set (2.9) such that |A| # 0 holds on 2. Then the functions
set S is functionally independent on €.

It is important to note that the trace Il of W in the sense of Kelvin is an important
invariant, which characterizes the average AKC value on a spherical surface and has physics
significance. In addition, the largest D-eigenvalue A2, and the smallest D-eigenvalue A2, = of
W play an important role in the diffusion analysis of the water molecule in biological tissue.
From Proposition 2.5, we see that the largest D-eigenvalue and the smallest D-eigenvalue of
W can be estimated with an interval determined by the Kelvin eigenvalues of W. However,
this result does not mean that there must be some functional dependence between the largest
(smallest) D- eigenvalues and Kelvin eigenvalues of W. In fact, the following example shows
that both {\P AP TIx} and {\D, AL, 0.y, Omin} are functionally independent on a
considered region, where oy, and o, denote the largest and smallest Kelvin eigenvalue
of W, respectively.

Example 2.1 Let W be a fourth order three dimensio fully symmetric tensor with
Wii111 = t1, Wagog = to, Wiszs = t3, Wiioo = t4 gnd its er elements are zero, and let
D = I. Consider the case where 0 < t1 < t3 < 34/ d t1t3 < t3. By Definition
2.1, it is easy to obtain that the D-eigenvalues of

_ tats
to +t3

gest and smallest D-eigenvalues of

AL =11, Ay =ta, A3 =3,
o

Under the given conditions, it is easy to

W are
t1t3

t1 +t3’
respectively. On the other hangmit i cle®r that the trace Il in sense of Kelvin

AI?]&.X = Fi(t1,ta, t3,ta) oin — Fo(t1,ta,t3,t4) 1=

3(01s t3, ta) := t1 +to + t3 + 2¢4.

Moreover, by direct comp , webtain that the set consisted of all Kelvin eigenvalues
of W is
B 2
)

which im thajfthe largest and smallest Kelvin eigenvalues of W are

tr+ta ++/( t1—t2 + 412

ity —+/(t1 — )2 + 4t2
’ 1+ : (21 2) i 4?t3a2t470a0}7

Omax = Fu(t1,t2,t3,t1) :=

and
t1+te — /(t1 — t2)% + 413
D) )
respectively. Based on these above, it is easy to verify that the Jacobian matrices of F.=
(Fl, FQ, Fg) and F := (Fl, Fz, F4, F5) are

Omin = FS(t17t27t37t4) =

0 1 0 0
7 - t i
(t1,t2,t3,t4) = 4 13)? (4 65)2

1 1 1 2
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and

VF(t17t27t37t4)

0 1 0 0
2 2
(tljr?;fs)2 0 (hiilts)? 0
% 1— ti—ty % 14 ——tazte 0 _ 2ty

\ (F1—t2)2+4t2 V(1 —t2)2 442 £V (t1—t2)2 442
respectively. It is easy to see that for F and F, the conditions required in Theorem 2.7
are satisfied. Hence, we know that both {\2_ AP TIx} and {AD, AP, | 0max, Omin} are

functionally independent on Q := {(t1,a,t5,t4) | 0 < t1 < t3 < 3ty < to, t1 < t4 and t1ts <
2.

The ASC Values

As mentioned in Section 1, we may use ASC value o char

resonance signal in biological tissues. Let us writ

ize the phase of the magnetic

P = (795)° (A
[ ]

which is a third order three dimensional ful sy
elements because of symmetry. For thof§ e
use the element P;;, withi < j <k prese
automatically implies that Pso =
Pr11; Pogo; P333; Pr12; Pris; Pao
elements of P. We denote
follows

(3.1)

" That is, if we say that Pjoo = 4, this
4. Then, the ten independent elements of P are
13 P233; P123. We call P111; PQQQ; P333 the diagonal
e apparent skewness coefficient at the direction x as

Pz3
aPP(I) = Hx||37 (32)
where
3
P23 = Z PijrxixTs.
i\j k=1
We denote as a vector in R3 with its ith component as

3
(P{L‘2)l = Z Pijka:jxk,
Jk=1

for i = 1,2, 3. Denote the largest and the smallest ASC values as Syax and Spi, respectively.
Then

Smax = max Pa3
st |z|* =1, (3.3)

and ;
Smin = min Px (3.4)

st |z)*=1.
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The critical points of (3.3) and (3.4) satisfy the following system for some A € # and z € R3:

{ Pz? = \z,

] = 1. (3:5)

A real number A satisfying (3.5) with a real vector x is called a Z-eigenvalue of P, and
the real vector z is called the Z-eigenvector of P associated with the Z-eigenvalue A [11].
We have the following two theorems which can be proved by a similar way to that in [16].

Theorem 3.1. Z-eigenvalues always exist. If x is a Z-eigenvector associated with a Z-
eigenvalue X\, then
A = Pa?.

and A2, respectively. Then

max min

Denote the largest and the smallest Z-eigenvalues of P as Az
the largest ASC value is

Smax = M (3.6)
and the smallest ASC value is

Smin - AIZmn (37)
Theorem 3.2 ([12]). The Z-eigenvalues of P are invarioMunder rotations of co-ordinate

systems.

Remark 3.3. By these two theorems, Sy.x and S o 1nvariants of P, and can be
calculated by a similar method to that given i ill be presented in Section 4.
On the other hand, from the definition ofg/-eig ' .‘ d Z-eigenvectors, we know that A

is a Z-eigenvalue of P with its an eigenve v if —X is a Z-eigenvalue of P with
the associated eigenvector —z. Hence, &

Denote the unit sphere as

]

cx? fad =1},
Then the average ASC v = is defied as

_ app (T)dA = 3.8
wiid =g [ [ fosas 3%
where th¢f denomin is the area of the surface =. Here, we slightly abuse the

or both §he urface and its area.

he factghat P is an odd order full symmetric tensor, it is obvious that for any
th symmetry about the origin, the average ASC value over A is equal to
zero. Specially, it holds that Mz = 0.

Computation of the ASC and AKC Values

In this section, we describe direct methods to find all Z-eigenvalues of P and D-eigenvalues
of W, respectively. Then Syax, Smin, Kmax and K, can be calculated.

The first method is used to find all the Z-eigenvalues of P. The key idea here is to
reduce the three variable system (3.5) to a system of two variables. Here, we regard A as a
parameter instead of a variable. Then, we may use the Sylvester formula of the resultant of
a two variable system [7] to solve this system.

Based on the consideration above, we state the following theorem which generalizes
Theorem 3 in [15] and can be proved in a similar way to that used in [16] .
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Theorem 4.1. (a) If Py;1 = P31 = 0, then = (£1,0,0)7 are two Z-eigenvector of P
associated with the Z-eigenvalue A = +Py11, respectively.
(b) For any real root t of the following equations:

P11t + (2P212 — P111)t? + (Paga — 2P112)t — Piog =0, (4.1)
P311t* 4+ 2P319t + P3gy = 0, '
1
r=4+—-—(t,1,0) 4.2
NGRS R (4.2)
is a Z-eigenvector of P with the Z-eigenvalue A = Px>.
(c) N = Pz? and
+ nT
= O (4.3)
u? +v2+1

constitute a Z-eigenpairs of P, where u and v are a real solution of the following polynomial
equations:

—P311u® — 2P310uv — Pygouv? + (Pr11 — 2Ps13)u® + 2(Pi12 — Psos)uv

+ Pi2ov? 4+ (2P113 — PsJu + 2P1o30 + Pig3 = 0,
Py11u? — P3j1u®v — 2Pg10uv? + 2(Paya — Py + 2P ~ Ps00?

+ (Pag2 — 2Ps23) 20Xy P333)v 4 Pasgs = 0.

(4.4)

All the Z-eigenpairs of tensor P are given by,
(b) and (c) otherwise.

an® (c) if Po1x = Ps11 =0, and by

We regard the polynomial equation s uations of u. We may write it as

ozou 2 3=0,
50 u + 52 =0,
where aq, -+, as, 8o, -+ , 02 afe omials of v, which can be calculated by (4.4). It has

complex solutions if and u
resultant is equal to thed

ultant vanishes [7]. By the Sylvester theorem [7], its
f the following 5 x 5 matrix:

a; ay ag 0
aQp Q1 Q2 Q3

ﬁo Bi B 0 0 |,
0 Bo B B2 O
0 0 Bo B P

which is a one-dimensional polynomial of v.
To find the approximate solutions of all the real roots of a one-dimensional polynomial,
we can use the following Sturm Theorem [10].

Theorem 4.2. Let v be a nonconstant polynomial of degree 1, with real coefficients and
let ¢1 and co be two real numbers such that ¢ < ca2 and ¥(c1)(ce) # 0. The sequence
1/}05 ?nbl) U ﬂﬁl deﬁned by

Yo=1, 1=, Y41 =—Yi—1 modey, i=1,2---,1-1

and Y141 = 0 is called a sequence of Sturm. Denote by v(x) the number of changes of signs
in the sequence Yo(x),¥1(x),- -, (x)). Then the number of distinct real roots of 1 on the
interval (c1,c2) s equal to v(cy) — v(ca).
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We may find the approximate solutions of all the real roots of this one-dimensional
polynomial such that their differences with the exact solutions are within a given error bound.
We then substitute them to (4.4) to find the corresponding approximate real solutions of
u. Correspondingly, approximate values of all the Z-eigenvalues and Z-eigenvectors can be
obtained. Based on this, we can obtain the largest and smallest ASC values.

The second method is used to find all the D-eigenvalues of W, which is similar as above
and is based on the following theorem given in [16].

Theorem 4.3. Let W be a fourth order three dimensional tensor such that its entries satisfy
3

Wijk = ZJthijkl fori,j,k,l = 1,2,3, where d;j, is the ith row hth column element in
h=1
the inverse D! of D. Then we have
(a) If Wai11 = Wa111 = 0, then A =

Wlll

is a D-eigenvalue of W with a D-eigenvector
11

1
= (+4,/—,0,0)T.
r (VDf’)

(b) For any real root t of the following equations:

~Warn1t* + (Wii11 — 3Wai12)

+(3Wi122 — Wazaa)t + Wiggo = (4.5)
Wa111t? + 3Ws110t? + 3Way90t 0,
1
r=4 L (t,1,0)" (4.6)
D11t?

is a D-eigenvector of W with the D-ej a
(c) \ =Wzt and

v+ 2D13’LL —+ D22U2 =+ 2D23'U + D33

constitute a D-eigenpairs v and v are a real solution of the following polynomial

equations:

(3Wi119y— ®Wa123)u?v + +(3Wii1s — 3Waisz)u®
Wigasy® — Wazoouv® 4+ 3Wi199uv? + (6Wi123 — 3Wsass)uv

i — Wisss)u + Wiggav® + 3Wig3v® 4 3Wiaszv + Wisss = 0,
—Wa111uv + Warniu® — 3Warou?v? + (3Wai1a — 3Wsiis)u?v
+3W2113U2 — 3W3122UU3 =+ (3W2122 — 6W3123)U’U2
+(6Wai23 — 3Waizs)uv + 3Wargsu + 3Wagazv® — Waggov?
+(Wagzo — 3Waz03)v® — 3Wsz330® 4 (3Wazss — Wasss)v + Wasss = 0.

(4.8)

All the D-eigenpairs of tensor W are given by (a), (b) and (c) if War11 = Wai11 = 0,
and by (b) and (c) otherwise.

Numerical Examples

In this section, we present preliminary numerical experiments for the DS tensor with the
method presented in Section 4. The computation was done on a personal computer (Pentium



DIFFUSION SKEWNESS AND KURTOSIS 401

1V, 2.8GHz) by running MatlabR2006a. A numerical example for DK tensor can be found
in [16]. That example is derived from data of MRI experiments on the white matter of rat
spinal cord specimen fixed in formalin. The MRI experiments were conducted on a 7 Tesla
MRI scanner at Laboratory of Biomedical Imaging and Signal Processing at The University
of Hong Kong.

For the test examples below, we choose the parameters in (1.2) as follows

Then the tensor P in (3.1) becomes P = %D(?’).

By Theorem 4.1, we can obtain all the Z-eigenvalues of P, and the associated eigenvectors.
As mentioned in Remark 3.3, —\ must be another Z-eigenvalue of it when A is a Z-eigenvalue
of P. Throughout this section, we present only the nonnegative Z-eigenvalues and the
corresponding Z-eigenvectors of P in the following tables.

Example 5.1 This example was taken from [8], conducted lgyy Monte-Carlo simulations using
computer-synthesized phantoms with a Y-shape tube. Thel-shape tube is asymmetric and
the DTI technique fails to identify this structure.

For this example, the ten independent elemen R e Dﬁ)l = —2.36, Dﬁ)Q =
179,03 = 0,0, = —0.773, D), = —0.573D\\ Wh.282, DY), = —28.7, D), =
0, D3 = 3.61, D) = 0.488 in unit of 10g*m

The numerical results for Example 5.1 gre

e Table 1.

A x 107
-1.0000 0 0.2691
1.0000 | -0.0002 | 0.2691
0.5244 | 0.0097 | 0.4922
0.5299 | -0.0108 | 0.4548
0.0557 | 0.9975 | 0.0044
-0.0684 | 0.9964 | 0.0049

number T

From \@ble 1, wg can see that there are 12 Z-eigenvalues and corresponding Z-eigenvectors
for P, and st and smallest Z-eigenvalues of P are 0.4922x 107 and —0.4922 x 1077,
which attained at (—0.8514,0.5244,0.0097)7 and (0.8514, —0.5244, —0.0097)7', respectively.
This implies that Smax = 0.4922 x 10~7 and Smin = —0.4922 x 1077,

In order to illustrate the efficiency of our method, we also calculate the Z-eigenvalues
and corresponding Z-eigenvectors of ten third order three dimensional full symmetric tensors
which are constructed randomly in the following example.

Example 5.2 The elements of P are drawn by a normal distribution with mean zero and
standard deviation one.

Using the method provided in Section 4, we compute all the Z-eigenvalues of P, and
the associated eigenvectors. In Table 2, the largest Z-eigenvalue and the corresponding Z-
eigenvectors are listed for ten tensors. Moreover, in Table 3, all the nonnegative Z-eigenvalues
with corresponding Z-eigenvectors are presented for Tensor 1 in ten tensors.
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Tensor T To T3 Al ax
1 -0.5784 | 0.7896 | 0.2050 | 2.1161
2 -0.8364 | -0.0495 | 0.5459 | 3.2879
3 -0.6272 | -0.2393 | -0.7411 | 2.6702
4 -0.0836 | -0.8832 | -0.5467 | 2.9957
5 0.7021 | -0.6410 | 0.3100 | 2.5146
6 -0.7327 | 0.6778 | 0.0612 | 4.1874
7 0.1531 | 0.5353 | 0.8307 | 3.5715
8 0.7981 | -0.5944 | 0.0991 | 4.2279
9 -0.6308 | -0.6893 | -0.3563 | 3.3815
10 -0.2657 | 0.7381 | -0.6201 | 3.4800

Table 2: The Largest Z-eigenvalues with Z-eigenvectors for ten tensors

number T
(1) -0.3518
2 -0.5784
-0.4346
0.9455

0.0836
0.8322
0.3823

(=)
N Nl N Naiod N Nl

EN|

|||
O | W

7

Table 3: Nonnegative Z-€j a

(6] Final Conclusion

In this paper, we introduc [ t of diffusion skewness in magnetic resonance imaging
and discussed the meas iffision skewness and kurtosis. The diffusion skewness
and kurtosis i peybionl®s values for characterizing the phase of the signal in
tissues and bn-Qaussian of the diffusion displacement probability distribution,
respectiv ecule with Gaussian distribution in biological structures,
the skew WSis are zero. But, for those non-Gaussian signal with asymmetry

ASC values and largest (smallest) AKC values were presented. These ASC and AKC values
are the principal invariants under rotations of co-ordinate systems and can be calculated in
any Cartesian co-ordinate system. For the fourth order three dimensional fully symmetric
tensor, we presented some properties of it and discussed the functionally independence for
the largest D-eigenvalue, the smallest D-eigenvalue and the trace in sense of Kelvin. We
hope that these quantities and properties can be useful for the diffusion analysis of the signal
in GDTTI practice.
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