
THE MEASURE OF DIFFUSION SKEWNESS AND KURTOSIS
IN MAGNETIC RESONANCE IMAGING

Xinzhen Zhang, Chen Ling∗, Liqun Qi† and Ed Xuekui Wu‡

This paper is dedicated to the memory of Professor Alex Rubinov.

Abstract: The diffusion tensor imaging (DTI) model is an important magnetic resonance imaging (MRI)
model in biomedical engineering. It assumes that the water molecule displacement distribution is a Gaussian
function. However, water movement in biological tissue is often non-Gaussian and this non-Gaussian behavior
may contain useful biological and clinical information. In order to overcome this drawback, a new MRI
model, the generalized diffusion tensor imaging (GDTI) model, was presented in [8]. In the GDTI model,
even order tensors reflect the magnitude of the signal, while odd order tensors reflect the phase of the signal.
In this paper, we propose to use the apparent skewness coefficient (ASC) value to measure the phase of
non-Gaussian signals. We prove that the ASC values are invariant under rotations of co-ordinate systems.
We discuss some further properties of the diffusion kurtosis tensor and present some preliminary numerical
experiments for calculating the ASC values.
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1 Introduction

The diffusion tensor imaging (DTI) model is an important magnetic resonance imaging
(MRI) model in biomedical engineering. It has wide biological and clinical applications [3].
For example, it may be used to study the properties of water molecule diffusion in the brain,
particularly for white matter fibers. Such properties may be used to detect abnormalities
and diseases in such tissues [1, 2]. In the DTI model, one needs assume a perfect Gaussian
distribution for the water molecule movement [3], but water in biological structures often
shows non-Gaussian diffusion behavior, which affects the use of the DTI model.
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In order to overcome the drawback of the DTI model, described above, Liu et al. [8]
proposed a so-called generalized diffusion tensors imaging (GDTI) model as follows
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to characterize the non-Gaussian diffusion of the water molecules in tissues, where S(0) and
S(b) are the transverse magnetization measured at the echo (TE) in the absence and presence
of diffusion gradient, respectively. Here, j is the square root of −1, and D(n) (n ≥ 2) are
n-th order coefficient tensors which can be determined by using some common statistical
methods such as the least square estimate method and Monte-Carlo simulations.

It is not difficult to see that the tensors b(n) (n ≥ 2) in (1.1) are functions of the direction,
the magnitude, and the timing of the diffusion-encoding gradients. More precisely, if the
magnetic field gradient is a constant vector over the considered time, by [8], the element
b
(n)
i1i2···in

of tensor b(n) can be written as

b
(n)
i1i2···in

= (γgδ)n

(
∆− n− 1

n + 1
δ

)
xi1xi2 · · ·xin , i1, i2, · · · , in = 1, 2, 3, (1.2)

where x = (x1, x2, x3)T ∈ <3 is the considered direction, ∆ is the separation time of the two
diffusion gradients, δ is the duration of each gradient lobe, and g is an appropriate positive
number. From (1.1), it is obvious that in the case of Gaussian diffusion, all the tensors D(n)

of orders higher than two are zero. For non-Gaussian diffusion, however, those higher order
tensors become significant, and it is important to recognize that the higher order terms in
(1.1) have to be considered in such situations.

From (1.1), we can also see that the real part of the logarithmic signal is solely determined
by the even order tensors and only affects the magnitude of the signal, while the imaginary
part is completely governed by odd order tensors and only affects the phase of the signal.
This shows that if we consider the diffusion behavior of the non-Gaussian signal with the
asymmetry, the DTI model may fail to identify the underlying structure [9]. This point is
even clearer for the one modeled by Phantom 4 in [8]. We refer readers to [5, 6, 13, 14] and
references therein for non-Gaussian diffusion with the symmetry.

In this paper, we consider the approximation of (1.1) as follows
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which can be obtained by truncating (1.1) to the fourth order tensor and contains useful
information of the signal. Then the first two terms of (1.3) are related to the magnitude of the
signal and the last term of (1.3) is related to the phase of the signal. The second order tensor
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D(2) is the diffusion tensor. We call the third order D(3) and the fourth order tensor D(4)

in (1.3) the diffusion skewness (DS) tensor and the diffusion kurtosis (DK) tensor
respectively. It is important to note that the values D

(2)
i1i2

, D
(3)
i1i2i3

and D
(4)
i1i2i3i4

in (1.3) are not
independent of the co-ordinate system. When the co-ordinate system is rotated, these values
will be changed. To understand the biological and clinical meaning of the corresponding
tensors in (1.3), we have to measure and calculate some quantities and parameters which
are independent from co-ordinate system choices. The main invariants of the diffusion tensor
D(2) are its eigenvalues, which have already been widely used in the DTI technique [3]. In
[16], Qi et al. introduced D-eigenvalues for a DK tensor D(4). Some important invariants
related to D(4) were identified there. Moreover, a method for calculating D-eigenvalues was
presented in [16]. Here we study the quantities and parameters associated with the DS tensor
D(3) in (1.3), which include the largest and the smallest apparent skewness coefficients
(ASC) values, their computation formulas and relationships, and some further properties of
the invariants of D(4).

In Section 2, we discuss some further properties of the invariants of D(4). In Section
3, based on the concept of Z-eigenvalues of tensors [11], we introduce the ASC values, and
show that they are invariant under co-ordinate rotations and may have important biological
and clinical meanings.

In Section 4, we describe numerical methods to calculate the ASC values and the ap-
parent kurtosis coefficients (AKC) values. In Section 5, we provide some numerical
examples for calculating ASC values. Some final conclusions are made in Section 6.

2 The AKC Values

In this section, we first summarize the concept and properties of AKC values, then further
discuss some properties of the D-eigenvalues and Kelvin eigenvalues of D(4). To this end,
let us write

D = (γgδ)2
(

∆− 1
3
δ

)
D(2), (2.1)

and

W = (γgδ)4
(

∆− 3
5
δ

)
D(4). (2.2)

Then the apparent diffusion coefficient (ADC) [3]

Dapp = Dx2 ≡
3∑

i,j=1

Dijxixj .

In practice, D is positive definite. Let the eigenvalues of D be α1 ≥ α2 ≥ α3 > 0. Then the
mean diffusivity [3] can be calculated by

MD =
α1 + α2 + α3

3
.

As [11, 16], we denote Dx and Wx3 as two vectors in <3 with their ith component as

(Dx)i =
3∑

j=1

Dijxj
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and

(Wx3)i =
3∑

j,k,l=1

Wijklxjxkxl,

respectively, for i = 1, 2, 3. In [16], Qi et. al introduced the following concept of D-
eigenvalues and D-eigenvectors of W , which is a generalization of Z-eigenvalues and Z-
eigenvectors presented in [11].

Definition 2.1. A real number λ is said to be a D-eigenvalue of W , if there exists a real
vector x such that {

Wx3 = λDx,
Dx2 = 1.

(2.3)

The real vector x is called the D-eigenvector of W associated with the D-eigenvalue λ.

Based on this definition, a key formula for the tensor W is as follows:

Kapp(x) =
M2

D

D2
app

Wx4, (2.4)

where Kapp(x) is the AKC value at the direction x, and

Wx4 ≡
3∑

i,j,k,l=1

Wijklxixjxkxl.

Denote the largest and the smallest AKC values as Kmax and Kmin respectively. Then we
have the following theorems which were proved in [16].

Theorem 2.2. D-eigenvalues of W are real numbers and always exist. If x is a D-
eigenvector associated with a D-eigenvalue λ, then

λ = Wx4.

Denote the largest and the smallest D-eigenvalues of W as λD
max and λD

min respectively. Then
the largest AKC value is

Kmax = M2
DλD

max, (2.5)

and the smallest AKC value is
Kmin = M2

DλD
min. (2.6)

Theorem 2.3. The D-eigenvalues of W are invariant under rotations of co-ordinate sys-
tems.

By these two theorems, we know that Kmax and Kmin are also invariants of W . In the
rest of this section, we discuss some further properties of eigenvalues of W .

In [4], a 6 × 6 symmetric matrix is associated with a fourth order three dimensional
symmetric tensor. The eigenvalues of that matrix are also invariants of that tensor. This
theory can be traced back to Kelvin 150 years ago [17]. For tensor W , we call the six
eigenvalues of the 6 matrix associated with it Kelvin eigenvalues of W . Are there any
relations between D-eigenvalues and Kelvin eigenvalues? By the definitions of D-eigenvalues
and Kelvin eigenvalues [4], the following proposition holds.

Proposition 2.4. Let W be a fourth order three dimensional fully symmetric tensor, and
let σ be a Kelvin eigenvalue of W , associated with a Kelvin eigentensor X. If there exists a
vector x ∈ <3 such that X = xxT , then σ is a D-eigenvalue of W .
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Proposition 2.5. Let σ1, σ2, · · · , σ6 be 6 Kelvin eigenvalues of W . Suppose D = I. Then
we have

−
6∑

m=1

(−σm)+ ≤ λD
min ≤ λD

max ≤
6∑

m=1

(σm)+,

where (a)+ = max{a, 0}.
Proof. Is is easy to verify that we have the spectral decomposition of W as follows

W =
6∑

m=1

σmEm ⊗ Em, (2.7)

where ⊗ denotes the outer tensor product,
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11, ε

m
22, ε
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33, ε

m
12, ε

m
13, ε
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23)

T is the mth normalized Kelvin eigenvector of W [4]. It
is clear that for each m, Em is a symmetric matrix satisfying trace(Em)2 = 1, which implies
that µ2

m1 + µ2
m2 + µ2

m3 = 1, where µm1 ≤ µm2 ≤ µm3 are three eigenvalues of Em. By (2.7),
we have that for any x = (x1, x2, x3)T ,

Wx4 =
3∑

i,j,l,k

Wijklxixjxkxl

=
6∑

m=1

σm(xT Emx)2.

(2.8)

It is well known that µm1 ≤ xT Emx ≤ µm3 for any m = 1, · · · , 6. This implies that
0 ≤ (xT Emx)2 ≤ max{µ2

m1, µ
2
m3} ≤ 1. Therefore, by (2.8), we obtain the desired result and

complete the proof.

Now we discuss the independence of eigenvalues of fourth order three dimensional tensor.
We first give the following definition.

Definition 2.6. A set S consisted of the functions

yi = fi(x1, x2, · · · , xn), i = 1, 2, · · · ,m, (2.9)

which are defined on the region Ω in <n, is said to be functionally dependent on Ω, if there
exist an index i0 and a function ϕ defined on an appropriate region in <m−1, such that

yi0 ≡ ϕ(f1(x1, x2, · · · , xn), f2(x1, x2, · · · , xn), · · · ,
fi0−1(x1, x2, · · · , xn), fi0+1(x1, x2, · · · , xn), · · · , fm(x1, x2, · · · , xn))

holds for any (x1, x2, · · · , xn) ∈ Ω. If for any sub-region Ω′ of Ω, there are no i0 and such
function ϕ that

yi0 ≡ ϕ(y1, y2, · · · , yi0−1, yi0+1, · · · , ym)

holds on Ω′, then the function set S is said to be functionally independent on Ω.
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For the functional independence, we have the following theorem.

Theorem 2.7. Suppose that m ≤ n and there exists an mth order determinant |A| in the
Jacobian matrix of the functions set (2.9) such that |A| 6= 0 holds on Ω. Then the functions
set S is functionally independent on Ω.

It is important to note that the trace ΠK of W in the sense of Kelvin is an important
invariant, which characterizes the average AKC value on a spherical surface and has physics
significance. In addition, the largest D-eigenvalue λD

max and the smallest D-eigenvalue λD
min of

W play an important role in the diffusion analysis of the water molecule in biological tissue.
From Proposition 2.5, we see that the largest D-eigenvalue and the smallest D-eigenvalue of
W can be estimated with an interval determined by the Kelvin eigenvalues of W . However,
this result does not mean that there must be some functional dependence between the largest
(smallest) D-eigenvalues and Kelvin eigenvalues of W . In fact, the following example shows
that both {λD

max, λ
D
min,ΠK} and {λD

max, λ
D
min, σmax, σmin} are functionally independent on a

considered region, where σmax and σmin denote the largest and smallest Kelvin eigenvalue
of W , respectively.

Example 2.1 Let W be a fourth order three dimensional fully symmetric tensor with
W1111 = t1, W2222 = t2, W3333 = t3, W1122 = t4 and its other elements are zero, and let
D = I. Consider the case where 0 < t1 < t3 < 3t4 < t2, t1 < t4 and t1t2 < t24. By Definition
2.1, it is easy to obtain that the D-eigenvalues of W are as follows

λ1 = t1, λ2 = t2, λ3 = t3, λ4 =
t1t3

t1 + t3
, λ5 =

t2t3
t2 + t3

.

Under the given conditions, it is easy to see that the largest and smallest D-eigenvalues of
W are

λD
max = F1(t1, t2, t3, t4) := t2 and λD

min = F2(t1, t2, t3, t4) :=
t1t3

t1 + t3
,

respectively. On the other hand, it is clear that the trace ΠK in sense of Kelvin

ΠK = F3(t1, t2, t3, t4) := t1 + t2 + t3 + 2t4.

Moreover, by direct computation, we obtain that the set consisted of all Kelvin eigenvalues
of W is {

t1 + t2 +
√

(t1 − t2)2 + 4t24
2

,
t1 + t2 −

√
(t1 − t2)2 + 4t24
2

, t3, 2t4, 0, 0

}
,

which implies that the largest and smallest Kelvin eigenvalues of W are

σmax = F4(t1, t2, t3, t4) :=
t1 + t2 +

√
(t1 − t2)2 + 4t24
2

and

σmin = F5(t1, t2, t3, t4) :=
t1 + t2 −

√
(t1 − t2)2 + 4t24
2

,

respectively. Based on these above, it is easy to verify that the Jacobian matrices of F̂ :=
(F1, F2, F3) and F̃ := (F1, F2, F4, F5) are

∇F̂ (t1, t2, t3, t4) =




0 1 0 0
t23

(t1 + t3)2
0

t21
(t1 + t3)2

0

1 1 1 2



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and

∇F̃ (t1, t2, t3, t4)

=



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t23
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0 t21

(t1+t3)2
0

1
2

(
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(t1−t2)2+4t24

)
1
2

(
1− t1−t2√

(t1−t2)2+4t24

)
0 2t4√

(t1−t2)2+4t24

1
2

(
1− t1−t2√

(t1−t2)2+4t24

)
1
2

(
1 + t1−t2√

(t1−t2)2+4t24

)
0 − 2t4√

(t1−t2)2+4t24




,

respectively. It is easy to see that for F̂ and F̃ , the conditions required in Theorem 2.7
are satisfied. Hence, we know that both {λD

max, λ
D
min,ΠK} and {λD

max, λ
D
min, σmax, σmin} are

functionally independent on Ω := {(t1, t2, t3, t4) | 0 < t1 < t3 < 3t4 < t2, t1 < t4 and t1t2 <
t24}.

3 The ASC Values

As mentioned in Section 1, we may use ASC value to characterize the phase of the magnetic
resonance signal in biological tissues. Let us write

P = (γgδ)3
(

∆− 2
4
δ

)
D(3), (3.1)

which is a third order three dimensional fully symmetric tensor. Here, P has ten independent
elements because of symmetry. For those elements of P which are equal to each other, we
use the element Pijk with i ≤ j ≤ k to represent them. That is, if we say that P122 = 4, this
automatically implies that P212 = P221 = 4. Then, the ten independent elements of P are
P111;P222;P333;P112;P113;P223;P122;P133;P233;P123. We call P111;P222;P333 the diagonal
elements of P . We denote Sapp(x) the apparent skewness coefficient at the direction x as
follows

Sapp(x) =
Px3

‖x‖3 , (3.2)

where

Px3 ≡
3∑

i,j,k=1

Pijkxixjxk.

We denote Px2 as a vector in <3 with its ith component as

(Px2)i =
3∑

j,k=1

Pijkxjxk,

for i = 1, 2, 3. Denote the largest and the smallest ASC values as Smax and Smin respectively.
Then

Smax = max Px3

s.t ‖x‖2 = 1,
(3.3)

and
Smin = min Px3

s.t ‖x‖2 = 1.
(3.4)
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The critical points of (3.3) and (3.4) satisfy the following system for some λ ∈ < and x ∈ <3:
{

Px2 = λx,
‖x‖2 = 1.

(3.5)

A real number λ satisfying (3.5) with a real vector x is called a Z-eigenvalue of P , and
the real vector x is called the Z-eigenvector of P associated with the Z-eigenvalue λ [11].
We have the following two theorems which can be proved by a similar way to that in [16].

Theorem 3.1. Z-eigenvalues always exist. If x is a Z-eigenvector associated with a Z-
eigenvalue λ, then

λ = Px3.

Denote the largest and the smallest Z-eigenvalues of P as λZ
max and λZ

min respectively. Then
the largest ASC value is

Smax = λZ
max, (3.6)

and the smallest ASC value is
Smin = λZ

min. (3.7)

Theorem 3.2 ([12]). The Z-eigenvalues of P are invariant under rotations of co-ordinate
systems.

Remark 3.3. By these two theorems, Smax and Smin are also invariants of P , and can be
calculated by a similar method to that given in [16], which will be presented in Section 4.
On the other hand, from the definition of Z-eigenvalues and Z-eigenvectors, we know that λ
is a Z-eigenvalue of P with its an eigenvector x if and only if −λ is a Z-eigenvalue of P with
the associated eigenvector −x. Hence, λZ

min = −λZ
max.

Denote the unit sphere as

Ξ := {x ∈ <3 : x2
1 + x2

2 + x2
3 = 1}.

Then the average ASC value over the Ξ is defied as

MΞ =
1
Ξ

∫ ∫

Ξ

Sapp(x)dA =
1
4π

∫ ∫

Ξ

Px3

‖x‖3 dA, (3.8)

where the denominator Ξ = 4π is the area of the surface Ξ. Here, we slightly abuse the
symbol Ξ for both the surface and its area.

Noting the fact that P is an odd order full symmetric tensor, it is obvious that for any
closed surface Λ with symmetry about the origin, the average ASC value over Λ is equal to
zero. Specially, it holds that MΞ = 0.

4 Computation of the ASC and AKC Values

In this section, we describe direct methods to find all Z-eigenvalues of P and D-eigenvalues
of W , respectively. Then Smax, Smin, Kmax and Kmin can be calculated.

The first method is used to find all the Z-eigenvalues of P . The key idea here is to
reduce the three variable system (3.5) to a system of two variables. Here, we regard λ as a
parameter instead of a variable. Then, we may use the Sylvester formula of the resultant of
a two variable system [7] to solve this system.

Based on the consideration above, we state the following theorem which generalizes
Theorem 3 in [15] and can be proved in a similar way to that used in [16] .
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Theorem 4.1. (a) If P211 = P311 = 0, then x = (±1, 0, 0)T are two Z-eigenvector of P
associated with the Z-eigenvalue λ = ±P111, respectively.

(b) For any real root t of the following equations:
{

P211t
3 + (2P212 − P111)t2 + (P222 − 2P112)t− P122 = 0,

P311t
2 + 2P312t + P322 = 0,

(4.1)

x = ± 1√
t2 + 1

(t, 1, 0)T (4.2)

is a Z-eigenvector of P with the Z-eigenvalue λ = Px3.
(c) λ = Px3 and

x =
±(u, v, 1)T

√
u2 + v2 + 1

(4.3)

constitute a Z-eigenpairs of P , where u and v are a real solution of the following polynomial
equations:




−P311u
3 − 2P312u

2v − P322uv2 + (P111 − 2P313)u2 + 2(P112 − P323)uv
+ P122v

2 + (2P113 − P333)u + 2P123v + P133 = 0,
P211u

2 − P311u
2v − 2P312uv2 + 2(P212 − P313)uv + 2P213u− P322v

3

+ (P222 − 2P323)v2 + 2(P223 − P333)v + P233 = 0.

(4.4)

All the Z-eigenpairs of tensor P are given by (a), (b) and (c) if P211 = P311 = 0, and by
(b) and (c) otherwise.

We regard the polynomial equation system (4.4) as equations of u. We may write it as
{

α0u
3 + α1u

2 + α2u + α3 = 0,
β0u

2 + β1u + β2 = 0,

where α0, · · · , α3, β0, · · · , β2 are polynomials of v, which can be calculated by (4.4). It has
complex solutions if and only if its resultant vanishes [7]. By the Sylvester theorem [7], its
resultant is equal to the determinant of the following 5× 5 matrix:




α0 α1 α2 α3 0
0 α0 α1 α2 α3

β0 β1 β2 0 0
0 β0 β1 β2 0
0 0 β0 β1 β2




,

which is a one-dimensional polynomial of v.
To find the approximate solutions of all the real roots of a one-dimensional polynomial,

we can use the following Sturm Theorem [10].

Theorem 4.2. Let ψ be a nonconstant polynomial of degree l, with real coefficients and
let c1 and c2 be two real numbers such that c1 < c2 and ψ(c1)ψ(c2) 6= 0. The sequence
ψ0, ψ1, · · · , ψl defined by

ψ0 = ψ, ψ1 = ψ′, ψi+1 = −ψi−1 mod ψi, i = 1, 2, · · · , l − 1

and ψl+1 ≡ 0 is called a sequence of Sturm. Denote by v(x) the number of changes of signs
in the sequence ψ0(x), ψ1(x), · · · , ψl(x)). Then the number of distinct real roots of ψ on the
interval (c1, c2) is equal to v(c1)− v(c2).
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We may find the approximate solutions of all the real roots of this one-dimensional
polynomial such that their differences with the exact solutions are within a given error bound.
We then substitute them to (4.4) to find the corresponding approximate real solutions of
u. Correspondingly, approximate values of all the Z-eigenvalues and Z-eigenvectors can be
obtained. Based on this, we can obtain the largest and smallest ASC values.

The second method is used to find all the D-eigenvalues of W , which is similar as above
and is based on the following theorem given in [16].

Theorem 4.3. Let W̄ be a fourth order three dimensional tensor such that its entries satisfy

W̄ijkl =
3∑

h=1

d̄ihWijkl for i, j, k, l = 1, 2, 3, where d̄ih is the ith row hth column element in

the inverse D−1 of D. Then we have

(a) If W̄2111 = W̄3111 = 0, then λ =
W̄111

D11
is a D-eigenvalue of W with a D-eigenvector

x = (±
√

1
D11

, 0, 0)T .

(b) For any real root t of the following equations:



−W̄2111t

4 + (W̄1111 − 3W̄2112)t3 + 3(W̄1112 − W̄2122)t2

+(3W̄1122 − W̄2222)t + W̄1222 = 0,
W̄3111t

3 + 3W̄3112t
2 + 3W̄3122t + W̄3222 = 0,

(4.5)

x = ± 1√
D11t2 + 2D12t + D22

(t, 1, 0)T (4.6)

is a D-eigenvector of W with the D-eigenvalue λ = Wx4.
(c) λ = Wx4 and

x =
±(u, v, 1)T

√
D11u2 + 2D12uv + 2D13u + D22v2 + 2D23v + D33

(4.7)

constitute a D-eigenpairs of W , where u and v are a real solution of the following polynomial
equations:





−W̄3111u
4 − 3W̄3112u

3v + (W1111 − 3W̄3113)u3 − 3W̄3122u
2v2

+(3W̄1112 − 6W̄3123)u2v + +(3W̄1113 − 3W̄3133)u2

−3W̄3223uv2 − W̄3222uv3 + 3W̄1122uv2 + (6W1123 − 3W̄3233)uv
+(3W̄1133 − W̄3333)u + W̄1222v

3 + 3W̄1223v
2 + 3W̄1233v + W̄1333 = 0,

−W̄3111u
3v + W̄2111u

3 − 3W̄3112u
2v2 + (3W̄2112 − 3W̄3113)u2v

+3W̄2113u
2 − 3W̄3122uv3 + (3W̄2122 − 6W̄3123)uv2

+(6W̄2123 − 3W̄3133)uv + 3W̄2133u + 3W̄2223v
2 − W̄3222v

4

+(W2222 − 3W̄3223)v3 − 3W̄3233v
2 + (3W̄2233 − W̄3333)v + W̄2333 = 0.

(4.8)

All the D-eigenpairs of tensor W are given by (a), (b) and (c) if W̄2111 = W̄3111 = 0,
and by (b) and (c) otherwise.

5 Numerical Examples

In this section, we present preliminary numerical experiments for the DS tensor with the
method presented in Section 4. The computation was done on a personal computer (Pentium
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IV, 2.8GHz) by running MatlabR2006a. A numerical example for DK tensor can be found
in [16]. That example is derived from data of MRI experiments on the white matter of rat
spinal cord specimen fixed in formalin. The MRI experiments were conducted on a 7 Tesla
MRI scanner at Laboratory of Biomedical Imaging and Signal Processing at The University
of Hong Kong.

For the test examples below, we choose the parameters in (1.2) as follows

4 = 1, δ = 0.5, g = 1, γ = 1.

Then the tensor P in (3.1) becomes P =
3
32

D(3).

By Theorem 4.1, we can obtain all the Z-eigenvalues of P , and the associated eigenvectors.
As mentioned in Remark 3.3, −λ must be another Z-eigenvalue of it when λ is a Z-eigenvalue
of P . Throughout this section, we present only the nonnegative Z-eigenvalues and the
corresponding Z-eigenvectors of P in the following tables.

Example 5.1 This example was taken from [8], conducted by Monte-Carlo simulations using
computer-synthesized phantoms with a Y -shape tube. The Y -shape tube is asymmetric and
the DTI technique fails to identify this structure.

For this example, the ten independent elements of D(3) are D
(3)
111 = −2.36, D

(3)
112 =

47.9, D
(3)
113 = 0, D

(3)
122 = −0.773, D

(3)
123 = −0.575, D

(3)
133 = 0.282, D

(3)
222 = −28.7, D

(3)
223 =

0, D
(3)
233 = 3.61, D

(3)
333 = 0.488 in unit of 10−8mm3/s.

The numerical results for Example 5.1 are listed in the Table 1.

number x1 x2 x3 λ× 107

(1) 0 -1.0000 0 0.2691
(2) -0.0062 -1.0000 -0.0002 0.2691
(3) -0.8514 0.5244 0.0097 0.4922
(4) 0.8480 0.5299 -0.0108 0.4548
(5) -0.0431 0.0557 0.9975 0.0044
(6) 0.0494 -0.0684 0.9964 0.0049

Table 1: Z-eigenvalues and eigenvectors of P in Example 5.1

From Table 1, we can see that there are 12 Z-eigenvalues and corresponding Z-eigenvectors
for P , and the largest and smallest Z-eigenvalues of P are 0.4922×10−7 and −0.4922×10−7,
which attained at (−0.8514, 0.5244, 0.0097)T and (0.8514,−0.5244,−0.0097)T , respectively.
This implies that Smax = 0.4922× 10−7 and Smin = −0.4922× 10−7.

In order to illustrate the efficiency of our method, we also calculate the Z-eigenvalues
and corresponding Z-eigenvectors of ten third order three dimensional full symmetric tensors
which are constructed randomly in the following example.

Example 5.2 The elements of P are drawn by a normal distribution with mean zero and
standard deviation one.

Using the method provided in Section 4, we compute all the Z-eigenvalues of P , and
the associated eigenvectors. In Table 2, the largest Z-eigenvalue and the corresponding Z-
eigenvectors are listed for ten tensors. Moreover, in Table 3, all the nonnegative Z-eigenvalues
with corresponding Z-eigenvectors are presented for Tensor 1 in ten tensors.
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Tensor x1 x2 x3 λZ
max

1 -0.5784 0.7896 0.2050 2.1161
2 -0.8364 -0.0495 0.5459 3.2879
3 -0.6272 -0.2393 -0.7411 2.6702
4 -0.0836 -0.8832 -0.5467 2.9957
5 0.7021 -0.6410 0.3100 2.5146
6 -0.7327 0.6778 0.0612 4.1874
7 0.1531 0.5353 0.8307 3.5715
8 0.7981 -0.5944 0.0991 4.2279
9 -0.6308 -0.6893 -0.3563 3.3815
10 -0.2657 0.7381 -0.6201 3.4800

Table 2: The Largest Z-eigenvalues with Z-eigenvectors for ten tensors

number x1 x2 x3 λ
(1) -0.3518 -0.9140 0.2020 0.9434
(2) -0.5784 0.7896 0.2050 2.1161
(3) -0.4346 -0.6970 -0.5704 1.6851
(4) 0.9455 0.1980 -0.2585 1.4644
(5) 0.0836 -0.5452 0.8341 1.5940
(6) 0.8322 -0.1726 0.5269 0.5171
(7) 0.3823 -0.1797 -0.9064 0.0165

Table 3: Nonnegative Z-eigenvalues and Z-eigenvectors of Tensor 1

6 Final Conclusion

In this paper, we introduced the concept of diffusion skewness in magnetic resonance imaging
and discussed the measure of the diffusion skewness and kurtosis. The diffusion skewness
and kurtosis provide two dimensionless values for characterizing the phase of the signal in
tissues and the degree of non-Gaussian of the diffusion displacement probability distribution,
respectively. For the water molecule with Gaussian distribution in biological structures,
the skewness and kurtosis are zero. But, for those non-Gaussian signal with asymmetry
about the origin, the skewness and the kurtosis have significant values. Based on the Z-
eigenvalues and D-eigenvalues of tensor, the methods for calculating the largest (smallest)
ASC values and largest (smallest) AKC values were presented. These ASC and AKC values
are the principal invariants under rotations of co-ordinate systems and can be calculated in
any Cartesian co-ordinate system. For the fourth order three dimensional fully symmetric
tensor, we presented some properties of it and discussed the functionally independence for
the largest D-eigenvalue, the smallest D-eigenvalue and the trace in sense of Kelvin. We
hope that these quantities and properties can be useful for the diffusion analysis of the signal
in GDTI practice.
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