
RESTRICTED-STEP JOSEPHY-NEWTON METHOD FOR
GENERAL VARIATIONAL INEQUALITIES WITH

POLYHEDRAL CONSTRAINTS∗

Mend-Amar Majig and Masao Fukushima

This paper is dedicated to the memory of Professor Alex Rubinov.
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1 Introduction

Consider the variational inequality problem (VIP): Find x∗ ∈ S such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ S, (1.1)

where F : <n → <n is a continuously differentiable mapping, S ⊆ <n is a closed convex set
and 〈·, ·〉 denotes the inner product in <n. This problem has been studied extensively and
many important applications may be found in [6]. Although there are plenty of methods
proposed for solving (1.1), most of them rely on the basic assumption that the mapping
F is monotone [6]. Some methods [10, 11, 15] may be applied to the general VIP by
reformulating the problem as a mixed complementarity problem through its KKT system.
But those approaches increase the dimension of the problem by introducing Lagrangian
multipliers.

This paper presents two methods for general VIPs, both of which keep the dimension
of the problem intact. These methods are designed with quite different ideas, but they are
linked in that the second method can be used as a subprocedure within the first method.

∗This research was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for
the Promotion of Science.
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The first method is a modification of the classical Josephy-Newton method for VIPs.
The Josephy-Newton method is an iterative method that successively solves sub-linearized
variational inequalities and local superlinear convergence of the method has been established
[9]. Globalization of the Josephy-Newton method by combining it with some line search
methods for equivalent optimization problem of VIP has also been designed [6, 16]. A
difficulty of using those approaches in practice is that solvability of the subproblems is not
guaranteed, i.e., in some case the subproblems have no solution. Furthermore, even when the
subproblems have solutions, it is not easy to find them because the subproblems themselves
are general variational inequalities with the same constraint set S.

Our method adopts the idea that an extra bound constraint (such as a box or a ball)
is added to the original constraint set in the subproblems so that the Josephy-Newton sub-
problems have always solutions. In order to get a global convergence property, we combine
the Josephy-Newton method with the gradient projection method for the equivalent opti-
mization problem and we employ the regularized gap function for (1.1) as a merit function.
Although the solvability of the subproblems is ensured by means of the above mentioned
modification, we still need some effective method for solving those subproblems.

The second method we develop is to meet this requirement. It is an evolutionary al-
gorithm designed to solve the VIP with bounded polyhedral constraints and also relies on
the equivalent global optimization problem of the VIP. The global minimum value of the
equivalent optimization problem is known to be zero and the algorithm uses this fact as a
stopping condition. Moreover, crossover and mutation procedures amenable to the polyhe-
dral constraint set are devised as well as the initial population generation procedure. In
addition, we use the fitness function modification procedure to increase the validity of the
algorithm. In general, an evolutionary algorithm is expensive computationally. However,
our target here is to solve VIPs with bounded polyhedral sets, of which size is presumably
small. For such problems, we may expect that the algorithm can find a solution with a
reasonable amount of computations.

The organization of the paper is as follows. In Section 2, we give a brief review of
the equivalent global optimization reformulation of the VIP. In Section 3, we propose the
restricted-step Josephy-Newton method and discuss its convergence properties. Section 4
presents the evolutionary algorithm for solving VIPs with bounded polyhedral constraints.
Appropriate crossover and mutation procedures as well as the fitness function modification
procedure will also be discussed. In Section 5, we report numerical results of the methods
for some test problems. Section 6 concludes the paper.

2 Equivalent Reformulation of VIP

Many methods for solving the VIP (1.1) adopt the idea of reformulating the problem as a
system of nonlinear equations or an optimization problem with zero global minimum value
[7, 10, 11, 12, 13, 14, 15, 16]. To reformulate the VIP as an optimization problem, we
usually use so-called merit functions. Any global minimum of a merit function, say θ, with
zero function value is a solution of VIP (1.1) and vice versa. So the VIP (1.1) is equivalent
to the following global optimization problem with zero minimum value:

min θ(x) s.t x ∈ S. (2.1)

Three well known merit functions for the VIP are the following:
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• Gap function
θgap(x) = sup

y∈S
〈F (x), x− y〉. (2.2)

• Regularized gap function

θreg(x) = max
y∈S

(〈F (x), x− y〉 − 1
2
‖x− y‖2)

= 〈F (x), x− PS(x− F (x))〉 − 1
2
‖x− PS(x− F (x))‖2. (2.3)

• Natural residual function

θnat(x) := ‖x− PS(x− F (x))‖2.

Here PS denotes the projection mapping onto the set S. The gap function and the natural
residual function are non-differentiable while the regularized gap function is continuously
differentiable whenever so is F , and its gradient can be obtained by the following formula
[7]:

∇θreg(x) = F (x) + (F ′(x)− I)T (x− y(x)),

where y(x) = PS(x − F (x)). To compute the value of the regularized gap function or the
natural residual function, it is necessary to solve the following convex optimization problem:

min ‖y − (x− F (x))‖2 s.t. y ∈ S. (2.4)

When S is a polyhedral set, problem (2.4) becomes a convex quadratic programming prob-
lem. In the remainder of this paper, we will restrict ourselves to the regularized gap function
and simply denote θreg as θ.

3 Restricted-step Josephy-Newton Method

In this section we present the restricted-step Josephy-Newton method for solving the general
VIP. First we will briefly review the classical Josephy-Newton method [9]. Let us consider
the VIP (1.1). At the k-th iteration, the Josephy-Newton method solves the linearized
sub-VIP

〈F k(x), x′ − x〉 ≥ 0, ∀x′ ∈ S (3.1)

to get the next iteration point xk+1. Here F k is the linear approximation of the mapping F
at xk, i.e.,

F k(x) := F (xk) + F ′(xk)(x− xk).

It has been shown [9] that this algorithm is locally superlinearly convergent and, by combin-
ing it with a descent method for a merit function, there have been developed some methods
which are globally convergent and locally superlinearly convergent [6, 16]. A drawback of
these methods is that the solvability of (3.1) is not guaranteed and even if it has a solution,
without some kind of monotonicity assumption on (3.1) we may fail to solve it. We propose
here a modification of the Josephy-Newton method which is implementable in practice.

We consider the Josephy-Newton subproblem modified as

〈F k(x), x′ − x〉 ≥ 0, ∀x′ ∈ S ∩B(xk, δ), (3.2)
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where δ > 0 is a fixed scalar and B(xk, δ) := {x ∈ <n| ‖x − xk‖ ≤ δ}. We combine this
method with the gradient projection method for the equivalent optimization problem to VIP
(1.1)

min θ(x) s.t x ∈ S. (3.3)

Lemma 3.1. A point xk is a solution of VIP (1.1) if and only if it is a solution of the
modified Josephy-Newton subproblem (3.2).

Proof. Let xk be a solution to VIP (1.1). Then 〈F (xk), x′ − xk〉 ≥ 0, ∀x′ ∈ S, and since
xk ∈ S ∩B(xk, δ) and F k(xk) = F (xk), xk is solution to (3.2).

Next, let xk be a solution of the modified Josephy-Newton subproblem (3.2) and show it
is a solution of VIP (1.1). Assume to the contrary that there exists a point x̄ ∈ S such that

〈F (xk), x̄− xk〉 < 0. Then the point x̃ := xk + min{δ, 1} x̄− xk

‖x̄− xk‖ is in S ∩B(xk, δ) and

〈F k(xk), x̃− xk〉 =
min{δ, 1}
‖x̄− xk‖ 〈F (xk), x̄− xk〉 < 0.

This contradicts the fact that xk is a solution of (3.2).

The use of the subproblem (3.2) has some advantages. First of all, this problem always
has a solution because the constraint set is bounded and closed convex. Secondly, we may
develop some effective method for solving it when the parameter δ is of appropriate size. In
general, the choice of the parameter δ is important for the efficiency of the algorithm. If
δ is inappropriately big, then the procedure of solving the sub-VIP (3.2) may not be very
effective. On the other hand, if we choose δ too small, then the improvement of the solution
might also be very small, resulting in slow convergence. One possible way to cope with this
situation is to adjust the parameter δ appropriately during the iterations in a way similar
to the trust region method in nonlinear optimization. We use some upper limit δmax and
lower limit δmin for the parameter δ to prevent it from becoming too large or too small. In
the next section, we will present an algorithm for solving sub-VIP (3.2).

The restricted-step Josephy-Newton algorithm is formally stated as follows.

Algorithm rJN

1. Initialization. Choose x0 ∈ S and set parameters ε1 > 0, ε2 > 0, p > 1, γ ∈ (0, 1), σ ∈
(0, 1), ρ > 0, β ∈ (0, 1), 0 < δmin < δmax and a negative integer imin. Set δ0 := δmax and
the iteration counter k := 0.
2. Stopping condition. If θ(xk) ≤ ε1 or ‖xk − PS(xk −∇θ(xk))‖ ≤ ε2, then STOP.
3. Sub-VIP. Find a solution x̄k of the sub-VIP (3.2) with δk, and let dk := x̄k − xk.
(a) If the condition

θ(xk + dk) ≤ σ · θ(xk) (3.4)

is satisfied, then set xk+1 := x̄k and δk+1 :=
{

min{2δk, δmax}, if ‖xk+1 − xk‖ = δk;
max{δmin, ‖xk+1 − xk‖}, otherwise.

Set k := k + 1 and go to Step 2.
(b) Otherwise, check the condition

∇θ(xk)T dk ≤ −ρ · ‖dk‖p, (3.5)
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and if it holds, then find the smallest nonnegative integer ik such that

θ(xk + βikdk) ≤ θ(xk) + γβik∇θ(xk)T dk. (3.6)

If ik = 0, then redefine ik by finding the largest nonpositive integer in [imin, 0] satisfying
(3.6) and

θ(xk + βik−1dk) > θ(xk + βikdk), xk + βikdk ∈ S. (3.7)

Set xk+1 := xk + βikdk, δk+1 := mid{δmin, ‖xk+1 − xk‖, δmax}. Set k := k + 1 and go to
Step 2.
(c) If either of conditions (3.4) and (3.5) is not satisfied, then go to Step 4.
4. Gradient projection step. Find xk+1 by the following gradient projection procedure:

Define xk(α) := PS(xk − αδk

‖∇θ(xk)‖∇θ(xk)) and find the smallest nonnegative integer ik

such that
θ(xk(βik)) ≤ θ(xk) + γ∇θ(xk)T (xk(βik)− xk). (3.8)

If ik = 0, then redefine ik by finding the largest nonpositive integer in [imin, 0] satisfying
(3.8) and

θ(xk(βik−1)) > θ(xk(βik)). (3.9)

Set xk+1 := xk(βik), δk+1 := mid{δmin, ‖xk+1 − xk‖, δmax}, k := k + 1 and go to Step 2.

Remark 3.2. In Step 3(b) and Step 4, when ik = 0 is accepted by (3.6) or (3.8), we try to
find a stepsize larger than unity in the hope of achieving a further reduction in the function
value. Note that this modification does not affect the theoretical convergence properties of
the algorithm.

In the algorithm, we use a gradient projection step when the Josephy-Newton subprob-
lem fails to give a useful direction. The idea of combining Newton-type methods with
gradient related methods is an important technique to make Newton-type methods globally
convergent and can be found in many literatures [6, 11, 15, 16]. When the iterative point
approaches a solution satisfying a certain regularity condition, Newton type methods will
take effect and make the convergence faster.

Convergence of the algorithm

Theorem 3.3. Let F be a continuously differentiable mapping and S be a closed convex set.
Let {xk} be an infinite sequence generated by Algorithm rJN. Then

(a) every accumulation point of {xk} is a stationary point of the optimization problem
(3.3).

(b) if x∗ is an accumulation point of {xk} such that F ′(x∗) is positive definite, then x∗

is a solution of the VIP (1.1) and the whole sequence {xk} converges to this point.
Furthermore, if p > 2 and γ < 1

2 in Algorithm rJN, then the following statements
hold:

(i) eventually the unit step size for the direction dk is accepted so that xk+1 = x̄k.

(ii) the convergence rate is Q-superlinear; furthermore, if the Jacobian F ′(x) is Lip-
schitz continuous in a neighborhood of x∗, the convergence rate is Q-quadratic.
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Proof. Part (a) can be proved by using standard arguments on descent methods. For part
(b), if we show that eventually the subproblems (3.1) and (3.2) have identical solution sets,
then everything will essentially follow from Theorem 10.4.23 of [6].

Since F is continuously differentiable and F ′(x∗) is positive definite, there exists a scalar
δ1 > 0 such that F ′(xk) is positive definite for any xk ∈ B(x∗, δ1). This implies that the
mapping F k(x) = F (xk) + F ′(xk)(x− xk) is strongly monotone for all k large enough, and
hence the subproblems (3.1) and (3.2) both have unique solutions.

Theorem 7.3.3 of [6] states that there exists a positive scalar ε̄ such that for every ε ∈ (0, ε̄]
a δ2 > 0 exists such that for every xk ∈ S∩B(x∗, δ2), the problem (3.1) has a unique solution
in B(xk, ε). If we choose ε = min{ε̄, δmin

2 }, then we can ensure that the solution of (3.1) is
in B(xk, δmin). Therefore, this solution is also a solution of (3.2), and since they both have
unique solutions, their solution sets are identical.

4 Evolutionary Algorithm for VIP with a Bounded Constraint Set

In this section, we present a method for solving the following VIP: Find x ∈ D such that

〈F̄ (x), x′ − x〉 ≥ 0, ∀x′ ∈ D, (4.1)

where F̄ : <n → <n and D ⊆ <n. If we let F̄ (x) := F k(x) and D := S ∩ B(xk, δ), then
this VIP reduces to the Josephy-Newton subproblems (3.1) in the previous section. We will
confine ourselves to the case where S is a polyhedral set and the norm used to define B(xk, δ)
is the l∞ norm. Then the set D is a bounded polyhedral set represented by a system of
linear inequalities, that is,

D := {x ∈ <n|Ax ≤ b},
where A ∈ <m×n and b ∈ <m.

Then the VIP (4.1) can be reformulated as the following global optimization problem:

min θ̄(x) s.t x ∈ D, (4.2)

where θ̄ is the gap function (2.2) associated with (3.2). The method presented here follows
the main framework of the evolutionary algorithm [4, 8] and uses some additional procedures
to exploit the special features of the problem such as the known minimum value and the
polyhedrality of the constraint set.

Firstly, the global minimum value of the problem is known to be zero if the VIP (4.1) has
a solution. We use this fact not only as a stopping condition but also to improve the validity
of the evolutionary algorithm. The evolutionary algorithm is a population-based algorithm.
It makes use of a fitness function to evaluate the goodness of a solution, thereby keeping the
population set consisting of promising solutions. If, during the search, the population set
gets stuck around a point which is not a global minimum, we need to direct the population
set to another possible region which may contain a global solution. But if we use the same
fitness function all the time, even with a different initial population set, the algorithm is
very likely to converge back to this non-global solution. So we modify the fitness function
by increasing the function value around this non-global solution. More specifically, we use
the tunneling function technique [2] and consider a new fitness function

ft(x, x̄) := fc(x) · exp
( 1
‖x− x̄‖2

)
, (4.3)

where fc(x) is the current fitness function and x̄ is the above-mentioned non-global solution.
The modified fitness function ft(x, x̄) will have the same exact global minimum points as
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the original function.

Next we use crossover and mutation procedures that are amenable to the polyhedral
constraint set D = {x ∈ <n|Ax ≤ b}. Let aT

i , i = 1, . . . , m be the rows of matrix A,
and bi, i = 1, . . . , m be the components of vector b. Suppose we have two points x /∈ D
and y ∈ int D, where int D denotes the interior of D. First we determine the point where
the line segment [x, y] intersects the boundary of D. Let us define the index sets I(x) :=
{i | aT

i x− bi > 0}. Then the point of intersection is determined as

x̄ := y +
−aT

i(x,y)y + bi(x,y)

aT
i(x,y)(x− y)

(x− y),

where i(x, y) := argmin
i∈I(x)

−aT
i y + bi

aT
i x− bi

. During the evolutionary search, points generated by

the crossover and mutation procedures may go outside the constraint set D, and we need to
bring them back into the set D. Because the projection operator may project many different
points onto the same point on the boundary, it may be helpful to use points of intersection
computed by the above mentioned procedure instead of projection.

To describe our procedures, it will be convenient to define the mapping P : <n× int D →
D by

P (x, y) :=





x, for x ∈ D;

y +
−aT

i(x,y)y + bi(x,y)

aT
i(x,y)(x− y)

(x− y), for x /∈ D. (4.4)

Remark 4.1. The coefficient
−aT

i(x,y)y + bi(x,y)

aT
i(x,y)(x− y)

in (4.4) is well defined and actually bounded.

In fact, we have

−aT
i(x,y)y + bi(x,y)

aT
i(x,y)(x− y)

=
−aT

i(x,y)y + bi(x,y)

−aT
i(x,y)y + bi(x,y) + aT

i(x,y)x− bi(x,y)

=
(
1 +

aT
i(x,y)x− bi(x,y)

−aT
i(x,y)y + bi(x,y)

)−1

,

which is bounded by the definition of i(x, y).

Initial population generation. First we determine the analytical center x0 of the set D
and a box D1 containing D inside. Finding such a box can be done easily by solving the 2n
linear programming problems

li := min
x∈D

eT
i x, ui := max

x∈D
eT
i x, i = 1, 2, . . . , n,

where ei is the i-th unit vector, and then letting D1 := {x ∈ <n| li ≤ xi ≤ ui, i = 1, . . . , n}.
Moreover the analytical center x0 of D will be determined by

x0 := argmin
x∈D

m∑

i=1

− log(bi − aT
i x).

Then we will generate points randomly in the box D1 and bring them inside the set D.
Specifically, let x ∈ D1 be a generated point. Then we compute a new point xnew as follows
and add it to the population set:

xnew := x0 + α · (P (x, x0)− x0),
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where P (·, ·) is defined by (4.4) and α ∈ (0, 1) is a random scalar. Clearly all points in the
population set lie in the interior of D.

Crossover. Let x1 and x2 be parents to mate and xc ∈ <n be a point created by the
intermediate recombination of x1 and x2, whose components are corresponding components
of either x1 or x2. Then we produce two children as follows:

c1 := x1 + α1 · (P (x1, xc)− x1), c2 := x2 + α2 · (P (x2, xc)− x2),

where α1, α2 ∈ (0, 1) are random scalars.
Mutation. We choose some component of a newly produced child and change it randomly
in a certain range.

Now we state our evolutionary algorithm for problem (4.2), thereby solving the general
VIP (4.1) with a bounded polyhedral constraint.

Algorithm EA

1. Initialization. Choose a population size M and fix parameters lN , ls, N̄ , η,NFmax, ε >
0. Construct an initial population set P and let the initial fitness function be the original
objective function of (4.2),

fc(x) := θ̄(x).

Evaluate the trial points in P and order them according to their fitness function values so
that x1 is the best solution and xM is the worst, i.e.,

fc(x1) ≤ fc(x2) ≤ · · · ≤ fc(xM ).

Set the generation counters t := 1 and s := 0.
2. Parents Pool Generation. Generate a parents pool P ′, which consists of all different
pairs from the population set P.
3. Crossover and Mutation. Select a pair (p1, p2) from the parents pool P ′. Apply the
Crossover and Mutation Procedure to the pair (p1, p2) to obtain two new trial points c1, c2.
4. Survival Selection. If the newly produced point c1 or c2 is better than any point p̄ in
the population, then replace p̄ by that new point. Delete the pair (p1, p2) from the parents
pool P ′. If P ′ = ∅, then reorder the population set according to their fitness function value
and let

N := min{s, N̄}, B := {b1, b2, . . . , bN} ← {x1, b1, . . . , b(N−1)}, s := s + 1

and go to Step 5; otherwise go to Step 3.
5. Intensification. If, during the last N̄ generations of evolution, the fitness function has
not been modified and the best point in the population set has not been improved enough,
i.e.,

s ≥ N̄ and fc(bN̄ )− fc(b1) ≤ η · (1 + fc(b1)),

then choose x1, x2, ..., xlN ∈ P and for each xi, i = 1, 2, ..., lN , perform a local search on the
original objective function θ̄(x):

x̄i ←− Local Search (θ̄(x), xi, ls),



JOSEPHY-NEWTON METHOD 383

where ls is the maximum number of steps in the local search. If fc(xi) < fc(x̄i), i.e, after
the local search the current fitness function value increases, then construct a new fitness
function by

fc(x) := fc(x) · exp
( 1
‖x− xi‖2

)
.

Otherwise, let P := P ∪{x̄i}\{xi}. If the fitness function is modified at least once during
the above procedure, then set s := 1. Reorder the points in the population set according to
their fitness function values and let t := t + 1. Go to Step 6.
6. Stopping Condition. If fc(x1) < ε or the number of function evaluations exceeds the
pre-specified limit NFmax, then terminate the algorithm and refine the global solution x1

by some local search method.
If the fitness function of the problem has not been modified and x1 ∈ P has not been

improved enough during the last N̄ generations of evolution and a local search, i.e.,

s ≥ N̄ and fc(bN̄ )− fc(x1) ≤ η(1 + fc(x1)),

then construct a new fitness function by

fc(x) := fc(x) · exp
( 1
‖x− x1‖2

)

and set s := 1. Otherwise, let B := {b1, b2, . . . , bN̄} ← {x1, b1, . . . , b(N̄−1)}. Proceed to Step
2 with (fc(x),P).

5 Numerical Results

The performance of the restricted-step Josephy-Newton method was tested on a number
of test problems. The lack of test problems for general variational inequality problems
enforces us to generate test problems by ourselves. We did this task by modifying, i.e.,
adding some extra constraints to, well known mixed complementarity test problems in the
MCPLIB library [5]. The test problems used in our numerical experiments are included in
the Appendix. The programming code for the algorithm was written in MATLAB and run
on a computer Pentium 4 Microprocessor.

The algorithm is terminated if one of the following two conditions is satisfied:

θ(x∗) ≤ ε1, ‖x∗ − PS(x∗ −∇θ(x∗))‖ ≤ ε2.

In the implementation, we have used the following parameter settings:

β = 0.5, σ = 0.5, γ = 0.49, p = 2.1, ρ = 0.5, δmin = 0.2n, δmax = 10δmin, imin = −10

and
ε1 = 10−12, ε2 = 10−6.

The parameter settings of the evolutionary algorithm EA used to solve sub-VIPs are dis-
played in Table 1. The last two parameters in Table 1 are used in the stopping conditions
of EA, and they both depend on the current objective value in the main iteration, where n
is the dimension of the problem and xk is the current point of the main iteration. In the
early stage of the main iterations, i.e, when θ(xk) is relatively large, solving subproblems
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Table 1: Parameter settings.

with high precision is not so effective from the viewpoint of computational expense. As the
iteration process converges to a solution, the tolerance εEA in EA will decrease, while the
maximum number of function evaluations allowed will increase.

The results for the test problems are shown in Table 2. The columns in this table have
the following meanings:

Problem: name of the test problem,
n: dimension of the test problem,
t: number of main iterations,
Nθ: number of rJN directions accepted by the condition (3.4),
Nd: number of rJN directions accepted by the condition (3.6),
Nmon: number of monotone sub-VIPs solved,
Ninact: number of sub-VIPs where the constraint ‖x− xk‖ ≤ δ

was inactive at the solution,
Nunit: number of times rJN unit stepsize was taken,
θ(x∗): regularized gap function value at the obtained solution,
NF : number of function evaluations,
NFEA: number of function evaluations required to solve the sub-VIPs by EA,
CPU(sec): total CPU time to solve the problems.

As shown in Table 2, the main termination criterion

θ(x∗) ≤ ε1

was satisfied for all test problems. Moreover, the number of iterations was quite small overall
and the solutions of sub-VIPs were used very often. All the problems except choi∗ made use
of the directions determined from the solution of sub-VIPs. As for the problem choi∗, the
method solved sub-VIPs 8 times, and 7 of them gave successful directions.

The column 6 (Nmon) shows the number of monotone sub-VIPs we encountered. Most
of the test problems have non-monotone sub-VIPs, while every sub-VIP of the problem
nash∗ was monotone. This suggests that the problem nash∗ itself is monotone. The column
7 (Ninact) shows the number of sub-VIPs that had solutions interior to additional box
constraints. The column 8 (Nunit) gives the number of times the unit step size or a longer
step size was accepted in the direction determined by the solutions of sub-VIPs. For all
problems except mathisum∗ and choi∗, such a step size was accepted all the times.

The numbers of function evaluations required to solve all the sub-VIPs are shown in
column 10 (NF) and column 11 (NFEA) of the table. The column NF shows the number of
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actual function evaluations of F , while NFEA shows the number of merit function evaluations
for sub-VIPs (3.2). Since the evaluation of those merit functions requires to solve a linear
programming problem, these numbers equal the number of linear programming problems
solved. The last column of the table shows the CPU time in seconds used to solve the
problems.

Table 2: Numerical results for the restricted-step Josephy-Newton method.

6 Conclusions

In this paper we have proposed a practically implementable, globally convergent and lo-
cally superlinearly convergent method for solving the general variational inequality problem
with polyhedral constraints. Our restricted-step Josephy-Newton method is a modification
of the classical Josephy-Newton method and it solves the linearized sub-VIPs with addi-
tional box constraints. Moreover, an evolutionary algorithm for solving those sub-VIPs is
presented that can effectively deal with bounded polyhedral constraints. Numerical results
show that the proposed approach is able to solve various test problems of non-monotone
VIPs successfully.
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7 Appendix

The test problems used in the numerical experiments are displayed here. We have used some
standard test problems from the MCPLIB [5] to construct our test problems by modifying
the constraint sets. In particular, modifications have been made in such a way that the
solutions of the original test problems become infeasible to the new test problems.

• badfree∗

n = 5 and F (x) = Mx + q, where

M =




1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 1 1 0




, q =




−1
−1
−0.5
−0.5
−1




.

In this example, the original constraint set X was

X := {x ∈ <n| xi ≥ 0, i = 1, . . . , n− 1}.
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We have modified this by adding two linear constraints:

S = {x ∈ X|
n∑

i=1

xi ≤ n,
n∑

i=1

ixi ≥ n + 1}.

We use the feasible starting point x0 =
(n− 1

n
,
n− 1

n
, . . . ,

n− 1
n

)T

.

• choi∗

n = 13 and F (x) = (∇xjPj(x))n
j=1, where

Pj(x) = (xj − Cj)
Q

I

I∑

i=1

Prij ,

with

Prij =
exp{−χDUij}

J∑
m=1

exp{−χDUim}+ K

and

DUij =
N∑

n=1

vin(ajn − bin)2 + wixj + bi.

For the details of the coefficients given above, see [3]. In this example, the original
constraint set X was

X := {x ∈ <n| li ≤ xi ≤ ui},
where

l = (0.40.13280.40.12750.09750.11720.15410.40.3010.40.40.260.2383),

u = (1.20.39841.20.38250.29250.35160.46231.20.9031.21.20.780.7149).

We have modified this by adding two linear constraints:

S = {x ∈ X|
n∑

i=1

xi ≥ 5,
n∑

i=1

xi ≤ 10}.

We use the feasible starting point x0 =
(l + u)

2
.

• explcp∗

n = 16 and F (x) = Mx + q, where

M =




1 2 . . . 2

0
. . . . . .

...
...

. . . . . . 2
0 . . . 0 1




, q =



−1
...
−1


 .

In this example, the original constraint set X was

X := {x ∈ <n| xi ≥ 0, i = 1, . . . , n}.
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We have modified this by adding two linear constraints:

S = {x ∈ X|
n∑

i=1

xi ≥ 2,
n∑

i=1

xi ≤ n}.

We use the feasible starting point x0 =
(1

2
,
1
2
, . . . ,

1
2

)T

.

• josephy∗

n = 4 and

F (x) =




3x2
1 + 2x2

2 + 2x1x2 + x3 + 3x4 − 6
2x2

1 + x2
2 + x1 + 3x3 + 2x4 − 2

3x2
1 + 2x2

2 + x1x2 + 2x3 + 3x4 − 1
x2

1 + 3x2
2 + 2x3 + 3x4 − 3


 .

In this example, the original constraint set X was

X := {x ∈ <n| xi ≥ 0, i = 1, . . . , n}.
We have modified this by adding two linear constraints:

S = {x ∈ X|
n∑

i=1

ixi ≥ n,

n∑

i=1

xi ≤ n− 1}.

We use the feasible starting point x0 =
(1

2
,
1
2
,
1
2
,
1
2

)T

.

• kojshin∗

n = 4 and

F (x) =




3x2
1 + 2x2

2 + 2x1x2 + x3 + 3x4 − 6
2x2

1 + x2
2 + x1 + 10x3 + 2x4 − 2

3x2
1 + 2x2

2 + x1x2 + 2x3 + 9x4 − 9
x2

1 + 3x2
2 + 2x3 + 3x4 − 3


 .

In this example, the original constraint set X was

X := {x ∈ <n| xi ≥ 0, i = 1, . . . , n}.
We have modified this by adding two linear constraints:

S = {x ∈ X|
n∑

i=1

ixi ≥ n,
n∑

i=1

xi ≤ n− 1}.

We use the feasible starting point x0 =
(1

2
,
1
2
,
1
2
,
1
2

)T

.

• mathinum∗ and mathisum∗

Both mathinum and mathisum test problems originate from the Mathiesen’s Walrasian
equilibrium problem with

F (x) =




−x1 + x2 + x3

x4 − 0.9(5x2 + 3x3)
x1

5− x4 − 0.1(5x2 + 3x3)
x2

3− x4




.
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The dimension of the problem is n = 4 and the original constraint set X is given by

X := {x ∈ <n| xi ≥ 0, i = 1, . . . , n}.

(a). mathinum∗

Setting x1 = 4.2, we have mathinum test problem with dimension n = 3. We have
modified the problem by adding two linear constraints:

S = {x ∈ X|
n∑

i=1

xi ≥ 10,
n∑

i=1

xi ≤ 10n}.

We use the feasible starting point x0 = (4, 4, 4)T .
(b). mathisum∗

Setting
n−1∑
i=1

xi = 1, we have mathisum test problem with dimension n = 4. We have

modified the problem by adding a linear constraint:

S = {x ∈ X|
n∑

i=1

xi ≤ n}.

We use the feasible starting point x0 =
(1

2
,
1
2
,
1
2
,
1
2

)T

.

• nash∗

n = 10, γ = 1.2, c = (5, 3, 8, 5, 1, 3, 7, 4, 6, 3), L = (10, 10, . . . , 10),
β = (1.2, 1, 0.9, 0.6, 1.5, 1, 0.7, 1.1, 0.95, 0.75) and

F (x) =
(
ci + (Lixi)

1
βi − P (x) + xi

P (x)
γQ(x)

)n

i=1
,

where

Q(x) =
n∑

j=1

xj , P (x) = 5000
1
γ Q(x)−

1
γ .

In this example, the original constraint set X was

X := {x ∈ <n| xi ≥ 0, i = 1, . . . , n}.

We have modified this by adding two linear constraints:

S = {x ∈ X|
n∑

i=1

xi ≥ 1,
n∑

i=1

xi ≤ 4n}.

We use the feasible starting point x0 = (1, 1, . . . , 1)T .
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