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Introduyctioy

Consider equ@ty problem (VIP): Find z* € S such that

(F(z*),z —2*) >0, Yz €S, (1.1)

where F' : is a continuously differentiable mapping, S C R" is a closed convex set
and (-,-) denotes the inner product in ™. This problem has been studied extensively and
many important applications may be found in [6]. Although there are plenty of methods
proposed for solving (1.1), most of them rely on the basic assumption that the mapping
F is monotone [6]. Some methods [10, 11, 15] may be applied to the general VIP by
reformulating the problem as a mixed complementarity problem through its KKT system.
But those approaches increase the dimension of the problem by introducing Lagrangian
multipliers.

This paper presents two methods for general VIPs, both of which keep the dimension
of the problem intact. These methods are designed with quite different ideas, but they are
linked in that the second method can be used as a subprocedure within the first method.

*This research was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for
the Promotion of Science.
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The first method is a modification of the classical Josephy-Newton method for VIPs.
The Josephy-Newton method is an iterative method that successively solves sub-linearized
variational inequalities and local superlinear convergence of the method has been established
[9]. Globalization of the Josephy-Newton method by combining it with some line search
methods for equivalent optimization problem of VIP has also been designed [6, 16]. A
difficulty of using those approaches in practice is that solvability of the subproblems is not
guaranteed, i.e., in some case the subproblems have no solution. Furthermore, even when the
subproblems have solutions, it is not easy to find them because the subproblems themselves
are general variational inequalities with the same constraint set S.

Our method adopts the idea that an extra bound constraint (such as a box or a ball)
is added to the original constraint set in the subproblems so that the Josephy-Newton sub-
problems have always solutions. In order to get a global convergence property, we combine
the Josephy-Newton method with the gradient projection method for the equivalent opti-
mization problem and we employ the regularized gap function for (1.1) as a merit function.
Although the solvability of the subproblems is ensured by means of the above mentioned
modification, we still need some effective method for solving those subproblems.

The second method we develop is to meet this requirgment. It is an evolutionary al-
gorithm designed to solve the VIP with bounded polyhedf constraints and also relies on
the equivalent global optimization problem of t IPgl'h&Qlgbal minimum value of the
equivalent optimization problem is known to be ze hegorithm uses this fact as a
i ures amenable to the polyhe-

addition, we use the fitness function mo@ficaf Jrocellure to increase the validity of the
algorithm. In general, an evolutionary algrit 1 yensive computationally. However,

our target here is to solve VIPs with b oly 1 sets, of which size is presumably
small. For such problems, we may ect t tMw#hlgorithm can find a solution with a
reasonable amount of computatio

iq asWollows. In Section 2, we give a brief review of
ormulation of the VIP. In Section 3, we propose the
d and discuss its convergence properties. Section 4

The organization of the p
the equivalent global optimy
restricted-step Josephy-

Appropriate
procedure
for some

Many methods for solving the VIP (1.1) adopt the idea of reformulating the problem as a
system of nonlinear equations or an optimization problem with zero global minimum value
[7, 10, 11, 12, 13, 14, 15, 16]. To reformulate the VIP as an optimization problem, we
usually use so-called merit functions. Any global minimum of a merit function, say 6, with
zero function value is a solution of VIP (1.1) and vice versa. So the VIP (1.1) is equivalent
to the following global optimization problem with zero minimum value:

min (z) s.t x € S. (2.1)

Three well known merit functions for the VIP are the following;:
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e Gap function

Ogap () = sup (F(z),z —y). (2.2)
e Regularized gap function
rea(w) = max (F(@),o =) = 5llo —yl>)
= (F(e),o—Psla— F@) ~ glla —Ps(e — F@)I’.  (23)

e Natural residual function
Onat(z) := ||z — Ps(z — F(x))].

Here Pg denotes the projection mapping onto the set S. The gap function and the natural
residual function are non-differentiable while the regularized gap function is continuously
differentiable whenever so is F', and its gradient can be olgtained by the following formula
[7]:

When S is a polyhedral set, problem (28) bgoine; gnvex quadratic programming prob-
lem. In the remainder of this paper, ill reNgict®®rselves to the regularized gap function

the classical Josephy-Newton method [9]. Let us consider
the VIP cyation, the Josephy-Newton method solves the linearized
sub-VIP

(FF(x),2’ —2) >0, Va' €S (3.1)

to get the ation point zF+!. Here F* is the linear approximation of the mapping F
at =¥, ie.,

FF(z) := F(z*) + F'(2%) (z — ).

It has been shown [9] that this algorithm is locally superlinearly convergent and, by combin-
ing it with a descent method for a merit function, there have been developed some methods
which are globally convergent and locally superlinearly convergent [6, 16]. A drawback of
these methods is that the solvability of (3.1) is not guaranteed and even if it has a solution,
without some kind of monotonicity assumption on (3.1) we may fail to solve it. We propose
here a modification of the Josephy-Newton method which is implementable in practice.

We consider the Josephy-Newton subproblem modified as

(FF(x),2' —2) >0, Va' € SN B(z",6), (3.2)
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where § > 0 is a fixed scalar and B(z*,6) := {z € R"?| ||z — 2*| < §}. We combine this
method with the gradient projection method for the equivalent optimization problem to VIP
(1.1)

min §(x) s.t z € S. (3.3)

Lemma 3.1. A point x* is a solution of VIP (1.1) if and only if it is a solution of the
modified Josephy-Newton subproblem (3.2).

Proof. Let z* be a solution to VIP (1.1). Then (F(z%),2’ — 2*) > 0, V2’ € S, and since
2% € SN B(2*,6) and F*(z*) = F(2%), 2* is solution to (3.2).

Next, let ¥ be a solution of the modified Josephy-Newton subproblem (3.2) and show it
is a solution of VIP (1.1). Assume to the contrary that there exists a point Z € S such that

=~ _ .k
(F(z%),z — 2*) < 0. Then the point 7 := z*¥ + min{4, 1}H is in S N B(z*,4) and
T—zx
in{dJ, 1
(F*(z%), 5 — 2F) = M(F(xk),f -2y <.
[
This contradicts the fact that z* is a solution of O
The use of the subproblem (3.2) has some advan rst of all, this problem always
has a solution because the constraint set is bouy c®sed convex. Secondly, we may
develop some effective method for solvin@t wien e p®ameter § is of appropriate size. In
general, the choice of the parameter ¢ is i 3 the efficiency of the algorithm. If

0 is inappropriately big, then the proce
effective. On the other hand, if we ch en the improvement of the solution
might also be very small, resultingg convergence. One possible way to cope with this
situation is to adjust the parametery afpropriately during the iterations in a way similar

e sub-VIP (3.2) may not be very

to the trust region method in nkar Optimization. We use some upper limit d,,,, and
lower limit §,,;, for the payf prevent it from becoming too large or too small. In
the next section, we willA % an algorithm for solving sub-VIP (3.2).

The restrict, hy-ewton algorithm is formally stated as follows.

Choose 2° € S and set parameters ; > 0, g2 >0, p> 1, v € (0,1), 0 €
(0,1), 0 < 6min < Omaxr and a negative integer i, Set 00 := 6,4, and
the iteration counter k := 0.

2. Stopping condition. If §(z*) < &1 or ||2% — Ps(z* — VO(2¥))|| < &2, then STOP.

3. Sub-VIP. Find a solution Z* of the sub-VIP (3.2) with 6%, and let d* := z¥ — 2*.

(a) If the condition

O(z* + d*) < o - 0(zF) (3.4)

min{26%, 6,02}, if |zFt — 2F| = o%;

is satisfied, then set 2**! := z¥ and ¢+ +! := .
’ max{dmin, |2¥T1 — 2¥||}, otherwise.

Set k:=k + 1 and go to Step 2.
(b) Otherwise, check the condition

Vo(ah)Td" < —p-||d*|7, (3.5)
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and if it holds, then find the smallest nonnegative integer iy such that
0(z* + BixdF) < 0(x*) + 43V (z*) T d". (3.6)

If i), = 0, then redefine i; by finding the largest nonpositive integer in [iin, 0] satisfying
(3.6) and
O(z" + 1Y) > 0(a* + grdb), ot + grd" € S (3.7)

Set xFt1 := 2F 4 Birdk KT i= mid{dmin, |2FT — 2¥||, 6mas}- Set k =k + 1 and go to
Step 2.

(c) If either of conditions (3.4) and (3.5) is not satisfied, then go to Step 4.

4. Gradient projection step. Find z*t! by the following gradient projection procedure:

k
Define z*(a) := Pg(xF — HVZELk)VH(mk)) and find the smallest nonnegative integer i
such that
O(z"(5™)) < 0(z") + Vo) (aF(5) — o). (3.8)

If i), = 0, then redefine i; by finding the largest nonposithve integer in [iin, 0] satisfying
(3.8) and
O(z* (B 71) > 0. (3.9)

Set 2kt := gk (pik), KL= mid{Snin, |28 — 2* k:=k 41 and go to Step 2.

epted by (3.6) or (3.8), we try to

find a stepsize larger than unity in the hopg of g a further reduction in the function
value. Note that this modification does %ct eoretical convergence properties of

ojection step when the Josephy-Newton subprob-
TI® idea of combining Newton-type methods with
nt technique to make Newton-type methods globally

(a) every accumulation point of {x*} is a stationary point of the optimization problem

(3.3).

(b) if x* is an accumulation point of {x*} such that F'(x*) is positive definite, then x*
is a solution of the VIP (1.1) and the whole sequence {x*} converges to this point.
Furthermore, if p > 2 and v < % in Algorithm rJN, then the following statements
hold:

(i) eventually the unit step size for the direction d* is accepted so that x*+1 = z*.

(i) the convergence rate is Q-superlinear; furthermore, if the Jacobian F'(x) is Lip-
schitz continuous in a neighborhood of x*, the convergence rate is Q-quadratic.
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Proof. Part (a) can be proved by using standard arguments on descent methods. For part
(b), if we show that eventually the subproblems (3.1) and (3.2) have identical solution sets,
then everything will essentially follow from Theorem 10.4.23 of [6].

Since F is continuously differentiable and F’(z*) is positive definite, there exists a scalar
81 > 0 such that F’(z%) is positive definite for any z* € B(x*,6;). This implies that the
mapping F*(x) = F(z*) 4+ F'(2%)(x — 2¥) is strongly monotone for all k large enough, and
hence the subproblems (3.1) and (3.2) both have unique solutions.

Theorem 7.3.3 of [6] states that there exists a positive scalar & such that for every € € (0, ]
a o > 0 exists such that for every x* € SNB(x*, d3), the problem (3.1) has a unique solution
in B(z*, ). If we choose ¢ = min{e, 2=}, then we can ensure that the solution of (3.1) is
in B(x", 0,in). Therefore, this solution is also a solution of (3.2), and since they both have
unique solutions, their solution sets are identical. O

Evolutionary Algorithm for VIP with a Bounded Constraint Set

In this section, we present a method for solving the following VIP: Find z € D such that
(F(z),2’ —x) >0, V2’ € (4.1)

where F': R — R" and D C R™. If we let F( () D := SN B(z*,6), then
this VIP reduces to the Josephy-Newton subproble i e previous section. We will
confine ourselves to the case where S is a polyhedrgse e norm used to define B(z*, §)

linear inequalities, that is,

where A € R™*™ and b € R™.
Then the VIP (4.1) can be ref ed as the following global optimization problem:

x)stxzeD, (4.2)

iated with (3.2). The method presented here follows

act not only as a stopping condition but also to improve the validity
lgorithm. The evolutionary algorithm is a population-based algorithm.
ness function to evaluate the goodness of a solution, thereby keeping the
population set consisting of promising solutions. If, during the search, the population set
gets stuck around a point which is not a global minimum, we need to direct the population
set to another possible region which may contain a global solution. But if we use the same
fitness function all the time, even with a different initial population set, the algorithm is
very likely to converge back to this non-global solution. So we modify the fitness function
by increasing the function value around this non-global solution. More specifically, we use
the tunneling function technique [2] and consider a new fitness function

fe(x,Z) := fe(x) ~exp<;>, (4.3)

[l — 2|2

where f.(z) is the current fitness function and Z is the above-mentioned non-global solution.
The modified fitness function f;(x,Z) will have the same exact global minimum points as
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the original function.

Next we use crossover and mutation procedures that are amenable to the polyhedral
constraint set D = {x € R"|Az < b}. Let al, i = 1,...,m be the rows of matrix A,
and b;, i = 1,...,m be the components of vector b. Suppose we have two points = ¢ D
and y € int D, where int D denotes the interior of D. First we determine the point where
the line segment [z,y] intersects the boundary of D. Let us define the index sets I(x) :=
{i | al'z —b; > 0}. Then the point of intersection is determined as

T
)Y + bi(l'»y)

aiT(%y) (@-y)

(fE _y)a

ri=y+

—aiTy + b;

where i(x,y) := argmin During the evolutionary search, points generated by

icl(x) @i T — b
the crossover and mutation procedures may go outside the constraint set D, and we need to
bring them back into the set D. Because the projection operator may project many different
points onto the same point on the boundary, it may be helpful to use points of intersection
computed by the above mentioned procedure instead of prgiection.

To describe our procedures, it will be convenient e t(qJmapping P : R xint D —
D by
for x € D;
P = e @ 4.4
(z,9) + , (4.4)

' F(z—vy), forz¢D.
d,

Remark 4.1. The coefficient — 2 . in (4.4) is well defined and actually bounded.

In fact, we have

T
7ai(;c,y)y + bl(fﬂl) o
aix,y)(gﬁ - y)

T
a“i(;c,y)'r - bi(%y) >_1
~ (e ¥+ bitey)

l; := min ezrx, Uu; := max el-Tx, i=1,2,...,n,
xeD xeD
where e; is the i-th unit vector, and then letting Dy := {z € R"| ; < z; <wy, i=1,...,n}.

Moreover the analytical center 2° of D will be determined by

m

2Y := argmin Z —log(b; — al'z).
zeD T

Then we will generate points randomly in the box D; and bring them inside the set D.
Specifically, let © € D be a generated point. Then we compute a new point T, as follows
and add it to the population set:

Tpew = 20 4+ - (P(x,2°) — 20),
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where P(-,-) is defined by (4.4) and « € (0,1) is a random scalar. Clearly all points in the
population set lie in the interior of D.

Crossover. Let ' and 22 be parents to mate and z. € %" be a point created by the
intermediate recombination of ! and 22, whose components are corresponding components
of either z! or 22. Then we produce two children as follows:

cl = xl +ap- (P(xlaxc) - 1,1)7 02 = $2 + oy (P(‘T2vxc) - 1'2)7

where a1, s € (0,1) are random scalars.
Mutation. We choose some component of a newly produced child and change it randomly
in a certain range.

Now we state our evolutionary algorithm for problem (4.2), thereby solving the general
VIP (4.1) with a bounded polyhedral constraint.

Algorithm EA

1. Initialization. Choose a population size M al fix parMeters Iy, ls, N, 1, NFp 00, € >
0. Construct an initial population set P and let thQi | fiNQgss function be the original
objective function of (4.2),

Evaluate the trial points in P and order t to their fitness function values so

that ! is the best solution and =™ is t

rate a parents pool P’, which consists of all different
pairs from the populatio,
3. Crossover and {4

a pair (p!,p?) from the parents pool P’. Apply the
ure to the pair (p', p?) to obtain two new trial points c!, c2.
wly produced point ¢! or ¢? is better than any point p in

y that new point. Delete the pair (p',p?) from the parents

N :=min{s, N}, B:={b',b%,... 0"} — {2} 0!, ... bV} s:=5+1

and go to Step 5; otherwise go to Step 3.

5. Intensification. If, during the last NV generations of evolution, the fitness function has
not been modified and the best point in the population set has not been improved enough,
ie.,

s> N and f.(bV) = fo(b1) <n- (14 fo(bY),

then choose z!, 22, ..., z'¥ € P and for each z*, i = 1,2, ..., Iy, perform a local search on the

original objective function 0(x):

T’ «— Local Search (0(x), 1),
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where [, is the maximum number of steps in the local search. If f.(z%) < f.(z?), i.e, after
the local search the current fitness function value increases, then construct a new fitness
function by .
fe(@) == fe(x) ’exp(m)

Otherwise, let P := P U{z'}\{a'}. If the fitness function is modified at least once during
the above procedure, then set s := 1. Reorder the points in the population set according to
their fitness function values and let ¢t := ¢+ 1. Go to Step 6.
6. Stopping Condition. If f.(z!) < & or the number of function evaluations exceeds the
pre-specified limit NF,, .., then terminate the algorithm and refine the global solution z'
by some local search method.

If the fitness function of the problem has not been modified and ' € P has not been
improved enough during the last N generations of evolution and a local search, i.e.,

s> N and f,(bY) — fo(z") < n(1 + fo(zY)),

then construct a new fitness function by

fe(x) := fo(x) - exp

and set s := 1. Otherwise, let B := {b!,b2,... bN
2 with (f.(z), P). o

., bN=DY Proceed to Step

Numerical Results

The performance of the restricted-s\ep \osephy-Newton method was tested on a number
of test problems. The lack roblems for general variational inequality problems
enforces us to generate te by ourselves. We did this task by modifying, i.e.,
adding some extra cons

O(z*) <e1, |z*—Psg(z"— V(")) < ea.
In the implementation, we have used the following parameter settings:
ﬂ =0.5, 0 = 0.5, Y= 0.49, p =21, p= 0.5, Omin = 0.2n, Omaz = 105m1na Tonin = —10

and
g1 = 10_12, Eg = 1076,

The parameter settings of the evolutionary algorithm EA used to solve sub-VIPs are dis-
played in Table 1. The last two parameters in Table 1 are used in the stopping conditions
of EA, and they both depend on the current objective value in the main iteration, where n
is the dimension of the problem and 2* is the current point of the main iteration. In the
early stage of the main iterations, i.e, when 0(z*) is relatively large, solving subproblems
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Table 1: Parameter settings.

Parameters  Definition Value
M number of elements in population 10
In number of best points for which local search is used 1
ls maximum number of steps in local search 20
Ni,n parameters controlling local search in EA 3, 0.995
€t Pt tunneling parameters 0.1, 2
EEA tolerance parameters for the objective function in EA  min{107%,1072 - §(z")}
. . . . . 400
NF oz maximum number of function evaluations in EA mid{100n,400n, _ }
f(x*)0-25

with high precision is not so effective from the viewpoint of computational expense. As the
iteration process converges to a solution, the tolerance eg 4 in EA will decrease, while the
maximum number of function evaluations allowed will increase.

The results for the test problems are shown in Table 2§ The columns in this table have
the following meanings:

Problem: name of the test problem,

n: dimension of the test problem,

t: number of main iterations,

Np: number of rJN directiolk acq @ | by Yhe condition (3.4),

Ny: number of rJN directiongaccefd he condition (3.6),

Nion: number of monotone - QP @

Ninaet: number of sub-VIPMthere cQwofraint ||z — z%|| <6
was inactive at ti@y sO@ition,

Nunit: number of ti it stepsize was taken,

O(x*): regularizedagap tion value at the obtained solution,

NF': I f N ction$evaluations,

NFga: tion pvaluations required to solve the sub-VIPs by EA,
CPU(secy: Je to®olve the problems.

0(z") < &,

test problems. Moreover, the number of iterations was quite small overall
and the solutions of sub-VIPs were used very often. All the problems except choi* made use
of the directions determined from the solution of sub-VIPs. As for the problem choi*, the
method solved sub-VIPs 8 times, and 7 of them gave successful directions.

The column 6 (Npop) shows the number of monotone sub-VIPs we encountered. Most
of the test problems have non-monotone sub-VIPs, while every sub-VIP of the problem
nash® was monotone. This suggests that the problem nash* itself is monotone. The column
7 (Ninact) shows the number of sub-VIPs that had solutions interior to additional box
constraints. The column 8 (Ny,i) gives the number of times the unit step size or a longer
step size was accepted in the direction determined by the solutions of sub-VIPs. For all
problems except mathisum* and choi*, such a step size was accepted all the times.

The numbers of function evaluations required to solve all the sub-VIPs are shown in
column 10 (NF) and column 11 (NFg4) of the table. The column NF shows the number of
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actual function evaluations of F', while NF g 4 shows the number of merit function evaluations
for sub-VIPs (3.2). Since the evaluation of those merit functions requires to solve a linear
programming problem, these numbers equal the number of linear programming problems
solved. The last column of the table shows the CPU time in seconds used to solve the
problems.

Table 2: Numerical results for the restricted-step Josephy-Newton method.

Problem || n | t | Nop ‘ Na ‘ Nion ‘ Ninact | Nunit | 0(z") | NF | NFEa ‘ CPU((sec)
badfree” 5 3 3 0 0 2 3 | 4.5391e-18 4 6556 4.7656
choi”* 13 8 7 0 5 4 7| 7.4270e-13 19 | 29095 80.0469
explep” 16 | 12 | 11 1 0 0 12 | 8.8818e-16 13 4527 23.8906
josephy™ 4 4 4 0 0 3 4 | 2.8813e-13 5 3968 5.7081
kojshin™® 4 4 4 0 0 3 4 | 1.4279e-16 5 2979 7.0156
mathinum™® 3 8 6 2 0 5 8 | 2.9116e-16 9 7944 9.8906
mathisum™ 4|10 8 2 0 3 9 | 6.0942e-16 12 | 11321 22.1406
nash™ 10 8 8 0 8 6 8 | 1.0027e-13 9 | 18871 45.1101

@ Conclusions

In this paper we have proposed a practgallyf§ bmeMable, globally convergent and lo-
cgmyeral variational inequality problem

cally superlinearly convergent method for sglvi
-Newton method is a modification

with polyhedral constraints. Our restricgdNep @
of the classical Josephy-Newton met, anq hg#f the linearized sub-VIPs with addi-
th

tional box constraints. Moreover, lutionary algorithm for solving those sub-VIPs is
presented that can effectively 1 unded polyhedral constraints. Numerical results
show that the proposed apprdac@us lable to solve various test problems of non-monotone
VIPs successfully.
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Appendix
S % he erical experiments are displayed here. We have used some
e

The test
standard flest probl om the MCPLIB [5] to construct our test problems by modifying
the cons J In particular, modifications have been made in such a way that the
solutions #inal test problems become infeasible to the new test problems.
e badfree*
n=>5and F(z) = Mz + ¢, where
10 0 0 1 -1
01 0 01 -1
M=]0 01 00|, g=| —-05
0 0010 -0.5
0 01 10 -1

In this example, the original constraint set X was

X={zeR"22>0,i=1,....,n—1}.
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We have modified this by adding two linear constraints:

n n
S={zeX]| Zmign, Zimizn—&—l}.
i=1 i—1

n—1n-1 n—1\T
We use the feasible starting point 20 = ( , e )
n n n

choi*
n =13 and F(z) = (V,,;P;(x))}_;, where

Q I
Pj(e) = (z; = Cj) 7 > Pry,
=1

with

exp{—xDUj;}
J

> exp{—xDUin y+ K

m=1

Prij =

and

N
DUZ']' = va(ajn —b

n=1

For the details of the coefficients ggyen §
constraint set X was

where

(0.40.13280.4490277%0.0850.11720.15410.40.3010.40.40.260.2383),

(1.20.3 .29250.35160.46231.20.9031.21.20.780.7149).
We have modified th two linear constraints:
{z € X| sz > 5, le < 10}.
i=1

l
We u hsible starting point 20 = ( —; u)
explcp*
n =16 and F(z) = Mz + g, where
1 2 2
-1
M = O 9 q = .
: .. .. 2 _1
0O ... 0 1

In this example, the original constraint set X was

X={zeR" x>0, i=1,...,n}
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We have modified this by adding two linear constraints:

S ={zeX]| ixizz ixlgn}
i=1 i=1

11 T
We use the feasible starting point 20 = (5, CIRREE 5)
e josephy™*
n =4 and

33:% +2x% + 2x129 + 23+ 314 — 6
223 + 23 + 21 + 3x3 + 224 — 2
3xf+2x§+x1x2+2x3+39:471
22 + 373 + 223 + 334 — 3

F(z) =

In this example, the original constraint set X was
X ={zeR"z;>0,i=1,...,n}.

We have modified this by adding two linear constrain|

S={zeX]| Zizizn,

i=1

1
. . . 1
We use the feasible starting point a@= ( 55 -
kojshin*
n =4 and
N 223 21T + 23+ 324 — 6

2+ 21+ 10w3 + 224 — 2
+ x%+x1x2+2£3—|—9x4—9
3JJ%+2$3+3$4—3

In this example, t bl conftraint set X was

We Wave modi sb

n n
S ={zeX] Zimizn, ingn—l}.
i=1 i=1

={reR"z;,>0,i=1,...,n}

Ridding two linear constraints:

We use the feasible starting point 20 = (1, }, 1, 1)T
2727272

mathinum®* and mathisum*

Both mathinum and mathisum test problems originate from the Mathiesen’s Walrasian

equilibrium problem with

—x1 + X2 + I3
0.9(522 + 3x3)
Ty — ———==
— x
Fx) = 0.1(522 + 323)

€2

5—1}4—

3—.134
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The dimension of the problem is n = 4 and the original constraint set X is given by
X={zeR"x2;>0,i=1,...,n}.

(a). mathinum*
Setting x7 = 4.2, we have mathinum test problem with dimension n = 3. We have
modified the problem by adding two linear constraints:

S ={zeX]| sz > 10, Zmi < 10n}.
i=1 i=1

We use the feasible starting point 2° = (4,4,4)7.

(b). mathisum*
n—1
Setting > x; = 1, we have mathisum test problem with dimension n = 4. We have

i=1
modified the problem by adding a linear constraint:

We use the feasible starting point 20 = (
nash*

o
n=10, y=12, c=(5, 3, 8, 5, 1,
B= (12,1, 0.9, 0.6, 1.5, 1, 0.7,

where

In thig mp
={zeR" z;,>0,i=1,...,n}.
We e mogffied this by adding two linear constraints:
n n
S ={zeX| ZCEZ >1, le <4n}.
i=1 i=1

We use the feasible starting point 2° = (1,1,...,1)7.
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