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with a given time delay A > 0, where F: X x X X [a,b] = X and C: [a— A, a] = X are set-
valued mappings defined the system dynamics and the initial state conditions, respectively,
and where the functions y;, ¢ =1,...,m + r, define the endpoint constraints.
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By a feasible arc above we mean a mapping x: [a — A,b] — X that is summable on
[a — A, a], Fréchet differentiable for a.e. t € [a, b] satisfying the Newton-Leibnitz formula

(1) :x(a)—k/tj:(s)ds for all t € [a,8] (1.5)

and all the constraints in (1.1)—(1.4), where the integral in (1.5) is taken in the Bochner sense.
It is well known that for X = IR™ the classical a.e. differentiability and Newton-Leibnitz
requirements on z(t),a < t < b, can be equivalently replaced by its absolute continuity in the
standard sense. In fact, there is a full description of Banach spaces, where this equivalence
holds true: they are spaces satisfying the so-called Radon-Nikodgm property (RNP); see,
e.g., [2]. The latter property is fulfilled, in particular, in any reflexive space.

Given now the endpoint cost function pg: X — IR and the integrand f: X x X x X x
[a,b] — IR, we consider the Bolza functional

b
Jla] := o(x(b)) +/ f@(t),2(t = A), (1), ) di (1.6)
and formulate the dynamic optimization/optimal cgntrol lem (P) as
minimize J[z] subject to ( 1.4 (1.7)

over feasible arcs z: [a — A b] — X assuming .

there is at least one feasible x(-) with J[@ <
It has been well recogmzed that the ne o

model in dynamic optimization unifyin,

in particular, conventional paramet fo

controlled delay-differential equati

[ —oo for all the feasible arcs and

Nolza problem (P) is a convenient
bblems of this kind and containing,
#htimal control problems governed by

-+

0
0 he type

u€eU, ae. te€lad). (1.8)

Besides more generality 43 er advantages of model (1.1) in comparison with that for
(1.8), the dlrcct incl

a specific feature of delay-differential systems providing an additional
source for #io the cost functional (1.6) by a choice of the initial condition z(t) € C(t)

on [a — A, a).

The problem (P) under consideration has been studied in [12] in the case of finite-
dimensional state spaces X = IR™; see also the references therein for previous developments
on finite-dimensional delay-differential inclusions as well as the books [8, 14] for more dis-
cussions and references on a variety of approaches and results on nondelayed counterparts
of problem (P) and related finite-dimensional control systems. On the other hand, there
are recent developments in [8, 9] for nondelayed differential and evolution inclusions with
infinite-dimensional state spaces and various types of endpoint constraints. Finally, in our
recent paper [11] we consider a counterpart of problem (P) in infinite dimensions with gen-
eral endpoint constraints in the geometric form

z(b) e C X (1.9)
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instead of the functional ones given by in (1.3) and (1.4).

The major and most restrictive assumption of [11] imposes the sequential normal com-
pactness (SNC) property on the target set {2, which is automatic when the space X is
finite-dimensional while cannot be easily checked in infinite-dimensional settings. Roughly
speaking, the SNC property means that a set should be “sufficiently fat” around the point in
question; in particular, it is never satisfied for singletons in every infinite-dimensional space.
This property is closely related to the so-called finite-codimension property of convex sets,
which is essential for the fulfillment of the appropriate versions of the Pontryagin maximum
principle for infinite-dimensional problems of optimal control; see, e.g., [3, 5, 8] for more
discussions and references.

The main result of this paper justifies extended Fuler-Lagrange necessary optimality con-
ditions for the formulated Bolza problem (P) that are of the same type as in [11] with an
appropriate subdifferential counterpart of the transversality inclusion, but without any SNC'
assumptions on the set of endpoint constraints given by finitely many Lipschitzian functions.
It follows from [7, Theorem 3.86] that sets described by finitely many Lipschitz continuous
functions exhibit the SNC property provided the fulfillment of certain qualification condi-
tions that are not imposed in this paper. The results obtagned below are extensions to the
case of delay bystems under conslderatlon of those ebtabhs in [9] for nondelayed infinite-
rovements of [9] even in the

In comparison with [11] we derive n@ess ity conditions not just for global
difficult setting of relazed interme-

solutions to (P) but in the essentially mo
fferential problems with multivalued

diate local minimizers introduced here del
initial conditions following the schern fof nondelayed differential inclusions.

Y

The treatment of local minimizers type requires a more delicate variational analysis
performed in this paper.

The driving force of our agpro
time systems is the methog
nondelayed inclusions arfd

obtain necessary optimality conditions for continuous-
approzimations developed in [6] for finite-dimensional
pxtendled in [8, 9, 11, 12] to more general settings.

ganized as follows. In Section 2 we formulate the standing
d discuss the notions of intermediate local minimizers and

diate local minimizers for problem (P) with taking into account the
lonal description of endpoint constraints in (1.3) and (1.4). Using fur-
ther the possibility of strong approzimation of feasible trajectories for (P) by their discrete
counterparts established in [11] and developing a certain relaxation procedure, we prove the
L' /WY strong convergence of optimal trajectories for discrete problems to the given relaxed
intermediate local minimizer for the original problem (P). This result requires appropriate
geometric assumptions on the Banach state space X in question that hold, in particular,
when X is reflexive.

In Section 4 we briefly overview the basic constructions of dual-space generalized dif-
ferentiation (normals to sets, coderivatives of set-valued mappings, and subdifferentials of
extended-real-valued functions) playing a fundamental role in the subsequent variational
analysis and the derivation of necessary optimality conditions for discrete-time and continuous-
time optimization problems.

Section 5 is devoted to deriving necessary optimality conditions for the discrete approxi-
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mation problems constructed in Section 3, which are governed by delay-difference inclusions
with Lipschitzian endpoint constraints in infinite-dimensional spaces. Our approach is based
on reducing the dynamic discrete-time problems under consideration to the corresponding
non-dynamic problems of mathematical programming that contain, along with Lipschitzian
functional constraints, an increasing number of geometric constraints with possibly empty
interiors. We obtain necessary optimality conditions for these problems by using advanced
tools of variational analysis and generalized differential calculus in infinite dimensions. Fi-
nally, Section 6 presents the main result of the paper on the FEuler-Lagrange mecessary
optimality conditions for relaxed intermediate local minimizers in the infinite-dimensional
problem (P) with Lipschitzian endpoint constraints without SNC assumptions on the ini-
tial data. These conditions are derived by passing to the limit from the “fuzzy” optimality
conditions for the approximating delay-difference problems established in Section 5.

Our notation is basically standard; cf. [7, 8]. Unless otherwise stated, all the spaces
considered are Banach with the norm || - || and the canonical pairing (-, -) between the space
in question, say X, and its topological dual X* the weak* topology of which is denoted
by w*. We use the symbols B and IB* to signify the closed unit balls of the space in
question and its dual, respectively. Given a set-valued mafpjng F': X = X* its sequential
Painlevé-Kuratowski upper/outer limit at T is

.
w .
— x* with

= {1,2,...}}.

Limsup F(x) := {x* € X*| 3 sequences

T—T

(1.10)
o

Intermediate Minimizers

We begin this section with formulagpge notion of intermediate local minimizers for prob-
lem (P), which extends the orjginal\deNgition given in [6] (see also [8, Subsection 6.1.2])
ifferential systems with multivalued initial conditions.

Definition 2.1 (interm minimizers for delay-differential systems). A
feasible arc Z: [a — Jagh INTERMEDIATE LOCAL MINIMIZER (i.l.m.) of rank
(r,p) € [1, for P) NWhQ are numbers ¢ > 0, v > 0, and « > 0 such that J[Z] < J[z]
for all feagfble arcs

lz(t) — Z(t)|| < e for all ¢ € [a,b] and (2.1)

V/iA lx(t) — Z(t)||" dt + a/ l&(t) — z(t)||” dt < e. (2.2)

Observe that relationships (2.1) and (2.2) mean that we consider in fact a neighborhood
of Z(t), t € [a — A, b], in the Sobolev space WP ([a,b]; X) with the norm

b » 1/p
e Ollwrr = s ool + ([ lecep )

on the main interval [a, b] and in the classical Lebesgue space L"([a — A, a]; X) on the initial
interval [a — A,a]. The case of & = 0 for nondelayed systems (A = 0) with the only
requirement (2.1) in Definition 2.1 clearly corresponds to the classical strong local minimum
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with respect to a neighborhood of Z(-) in the norm topology of C([a,b]; X). If instead of
(2.2) with A = 0 we put the more restrictive L>-norm requirement

|&(t) — #(t)|| < e ae. teab],

we have the classical weak local minimum in the framework of Definition 2.1. Thus the notion
introduced for the first time in Definition 2.1 for delay-differential systems with taking into
account the multivalued initial condition (1.2) reduces to the notion of intermediate local
minimizers given in [6] for ordinary differential inclusions and occupies, for any p € [1,00), an
intermediate position between the classical concepts of strong and weak local minima. It has
been well recognized that this notion is indeed different from both classical notions even for
convex and autonomous nondelayed systems in finite dimensions; see [8] and the references
therein. Of course, all the necessary conditions for intermediate minimizers automatically
hold for strong (and hence for global) minimizers considered in [11] for the case of geometric
endpoint constraints.

Let now Z(-) be an arbitrary i.l.m. for problem (P). We impose the following standing
assumptions on the the initial data of (P) used throughout the whole paper:

(H1) The mapping C: [a — A,a] = X is compact-valucl Hausdorff continuous for a.e.
t € [a— A, a], and uniformly bounded, i.e., tjfre is M, 0 such that

(H2) There are an open set U C M¢Bgand § ositYpe numbers Ly and Mp such that
Z(t) € U for any t € [a,b], the sets I are nonempty and compact for all
(z,y,t) € U x (McIB) x [a,b], an followg#® 1jclusions

F(z,y,t) C M for t) €U x (McIB) X [a, b], (2.3)
\ (2Q2,t) + L (|1 — 22| + [lyr — v2l)) B, (2.4)

€ U x (M¢cB) and t € [a,b]. Note that (2.3) means
Ly, t) on U x (Mg IB) X [a,b] while (2.4) signifies the
)., t) around (Z(t), Z(t — A)).

(H4) T fundlion gy and all the endpoint constraint functions ¢;, i =

1,. re locally Lipschitzian around Z(b) with the common Lipschitz constant

>

(H5) The integrand f(z,y,v,-) is continuous for a.e. t € [a,b] and bounded uniformly with
respect to (z,y,v) € U x (McIB) x (MpIB); furthermore, there is u > 0 such that
f( - - t) is continuous on the set

Au(t) = {(z,y,v) €U x (McIB) x (Mp + p)B| v € F(z,y,s) for some s € (t—p,t]}
uniformly in ¢ € [a, b].

It is easy to observe that the assumptions made allow us to conclude that the i.l.m. notion
introduced in Definition 2.1 is invariant with respect to any r,p € [1,00). We use this in
what follows.

To proceed further, along with the original problem (P) consider its “relaxed” counter-
part constructed in the way well understood in optimal control and variational analysis; see,
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e.g., the books [8, 13, 15]. Roughly speaking, the relaxed problem is obtained from (P) by
a convezification procedure with respect to the wvelocity variable. Let

fr(z,y,v,t) = f(x,y,v,t) + 0(v; F(x,y,t)),

where §(-; ©) stands for the indicator function of the set in question equal to 0 on © and to
oo otherwise. Denote by fr(z,y,v,t) the biconjugate (second conjugate) function to fg in
v, i.e.,

fF(x7 Y, v, t) = (fF);k)* (‘T7 Y, v, t)

The relazed generalized Bolza problem (R) for the original problem (P) governed by the
delay-differential inclusions under consideration is defined as follows:

o~ b ~
minimize J[x] := ¢o(z(b)) +/ fr(x(t),z(t — A),&(t),t)dt (2.5)

over feasible trajectories z(t), a — A < t < b, of the same class as for (P) but to the
converified delay-differential inclusion

&(t) € cleoF (z(t), x(t — A),1) (a) = xo (2.6)
with the initial condition (1.2) and the endpoint cgn¥QairRed(1.3) and (1.4). As usual, the
symbol “clco” in (2.6) stands for the conver clga e set in question. Note that, since

the domain of fr((z(t), z(t—A),-,t) bel@gs t

constraint (2.6) automatically follows fro

the convexified structure of the relaxed flela
Close relationships between the op/Mhal an

(x(t),z(t— A),t), the dynamic
N would like to keep it to emphasize
inclusion.

Pd problems have been well understood

in the calculus of variations and tr8@ theory for both differential and delay-differential
systems; see the aforementione okk an® the references therein. In fact, these relationships
involving a certain relazratiog reflect the deep hidden convezity property inherent in

Definitid@ 2.2 (rglaxed intermediate local minimizers for delay-differential sys-
tems). A iblgfarc Z(-) to the Bolza problem (P) is a RELAXED INTERMEDIATE LOCAL
MINIMIZER (1.1.L.m.) of rank (r,p) € [1,00)? for (P) if it is an intermediate local minimizer
of this rank for the relaxed problem (R) providing the same value of the cost functionals:
J[z] = J[Z].

Similarly to the i.l.m. case, we conclude and use in what follows that the notion of
relaxed intermediate local minimizers do not actually depend on rank (r,p) € [1,00)? under
the assumptions made. Also we always take v = a = 1 in (2.2) for simplicity.

Discrete Approximations

In this section we present basic constructions of the method of discrete approrimations in
the theory of necessary optimality conditions for delay-differential inclusions following the
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scheme of [11] developed there for the case of geometric constraints. Here we make im-
portant modifications required for intermediate local minimizers and Lipschitzian functional
endpoint constraints (1.3) and (1.4) under consideration.

Let us first construct discrete approximations of the delay-differential inclusion (1.1) by
replacing the time-derivative in (1.1) by the uniform Euler finite difference:

o o z(t+h) —2()

To formalize this procedure, for any natural number N € IN we define the discretization
step hy = A/N and consider the discrete mesh on [a — A, b] given by t; := a + jhy for
j=—=N,...,k and tg41 := b, where k € IN is defined by

a—|—khN§b<a+(k:+1)hN. (31)

Note that t_y = a — A, tg = a, and hy — 0 as N — oo. Then the sequence of delay-
difference inclusions approximating (1.1) is constructed as follows:

N(tj+1) € an(ty) + hnF(zn(t)), an(t; — A)t), iK=0,....k, z(to) = o,

(3.2)
N(t]‘) S C(tj) forj=—-N,...,—1.
The collection of vectors {zn(t;) | j = —N,..., k+ ifying (3.2) is called a discrete
trajectory. The corresponding collectlon
{SCN(th) 9 ( k}
is called a discrete velocity. We also ded discrete velocities defined by
UN(t) - t_j7tj+1)7 .7_07 7k
It follows from the definit e B&®hner integral that the corresponding extended discrete

0 x(a)+/ on(s)ds, ¢ € [ab)],

on the milin interve [a, b] and by
_xN(tj)7 te[tjvtj-i-l)v j:_N7~-~7_1a
on the initial tail interval [a — A, a). Observe that @y (t) = vn(t) for a.e. t € [a, b].

The next result, which plays a significant role in the method of discrete approximations,
establishes the strong approximation of any feasible trajectory Z(-) to the original delay-
differential inclusion given in (1.1) and (1.2) by extended feasible trajectories to its delay-
difference counterpart (3.2) in the following sense: the approximation/convergence in the
Wht([a, b]; X )-norm on the main interval [a,b] and the one in the L!(ja — A, a]; X )-norm on
the initial interval [ — A, a]. Note that the strong W'!l-convergence of extended discrete
trajectories on [a, b] implies not only their uniform convergence on this interval but also the
a.e. pointwise convergence of their derivatives on [a,b] along some subsequence of {N} as
N — 0. A detailed proof of this result is given in [11, Theorem 2.1] with more discussions
therein.
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Lemma 3.1 (strong approximation by discrete trajectories). Let Z(-) be a feasible
trajectory to (1.1) and (1.2) under assumptions (H1)-(H3), where X is an arbitrary Banach
space. Then there is a sequence of solutions {zn(t;) | j = —N,...,k + 1} to the delay-
difference inclusions (3.2) such that the extended discrete trajectories zn(t), t € [a — A, Y],
converge to Z(-) strongly in L' on [a — A, a] and strongly in Wb on [a,b] as N — oco.

From now on we fix an arbitrary arc Z(-) and assume that it is a relazed intermediate local
minimizer for problem (P) considering the case of r = p = 2 and v = @ = 1 in Definition 2.1
and Definition 2.2 without loss of generality. Having a positive number ¢ from the latter
definitions and an open set U from the assumptions in (H2), we always suppose that

Z(t)+¢e/2€U forall t € [a,d]

and take a sequence {zn(t),a — A < ¢t < b} of the extended trajectories for the delay-
difference inclusions (3.2) approximating Z(-) in the sense of Lemma 3.1. Denoting

v i= max ey (t) —a(t)] — 0 as N — o, (3:3)
te|a,

construct the sequence of discrete approximation ) as follows:

(tJ)va(tj_A)7tJ)7 j:O,,k, $(to):$0,(35)
-1, (3.6)
e, M, (3.7)
Y<tInn, fori=m+1,...,m+r, (3.8)
J=1,.. k41, (3.9)
e
< — 1
2 << (3.10)
k
Z/ty+1 xN(tj—&-l) — iL’N(tj) B _(t)H2dt < E (3 11)
=Yt hy T2 .

The next theorem justifies the existence of optimal solutions Zx(-) to the discrete ap-
proximation problems (Py) and their strong convergence to the reference r.i.l.m. z(-) for the
original problem (P). The strong convergence Zy(-) — Z(+) is understood in the same sense
as in Lemma 3.1, i.e., as the norm convergence in L' on the initial tail interval [a — A, a] and
as the norm convergence in Wh! on the main interval [a, b]. In fact, under the assumptions
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made in (H1) and (H2), the strong convergence above can be equivalently replaced by that
in the norm of L” on [a — A, a] and in the norm of WP on [a, b] for any r,p > 1.

In contrast to Lemma 3.1 held in the general Banach state space X, the main part (ii)
of Theorem 3.2 established below requires additional geometric assumptions imposed on the
Banach space X in question. Namely, we assume that both spaces X and X* are Asplund,
which automatically holds if X is reflezive. Recall that a Banach space X is Asplund if every
separable subspace of X has a separable dual. This is a broad class of Banach spaces well
investigated in geometric theory and widely applied to many aspects of variational analysis
and generalized differentiation; see the books [1, 2, 7, 8] for more details, numerous results,
and discussions. Recall a remarkable fact from the geometric theory of Banach spaces: X
is Asplund if and only if the dual space X* has the Radon-Nikodym property.

Furthermore, part (ii) of the next theorem requires additional technical assumptions on
the initial data in the case of set-valued initial conditions (1.2):

(H6) either the set C(t) is a singleton {c(¢)} for a.e. ¢t € [a— A, a]; or the set C(t) is convex
for a.e. t € [a — A, al], the mapping F(z,y,t) is linear in y for a.e. t € [a,a + A], and
the function f(z,y,v,t) is convex in (y,v) for a.e. t € [a,a + A].

Theorem 3.2 (strong convergence of discrete optl | solutions). Let z(-) be the
given relaxed intermediate local minimizer for th ; [ problem (P) with the Ba-
nach state space X, let {(Pn)} as N € IN be a sequ is@tte approrimation problems
constructed above, and let the standing assumptiggs 5) be satisfied. Then the fol-
lowing assertions hold:

®
(i) For all N € IN sufficiently large problegg ( gadts an optimal solution.

(ii) If in addition both spaces X and and (HG6) holds, then any sequence
{Zn ()} of optimal solutions to (P, xten £ continuous-time interval [a — A, b
converges to () as N — oo in t orm topology on [a — A, a] and in the W1-norm
topology on [a, b)].

problem (Py) i
trajectory zy(+)

€ IN sufficiently large. Indeed, pick the discrete
ven minimizer Z(-) by Lemma 2.1 and show that it

Thisfimplies the fulfillment of the endpoint constraints (3.7) and (3.8) for
zn(+), sinc g (1.3) and (1.4) hold for Z(-). The fulfillment of (3.9) for zn(:) follows
directly from the construction of ny — 0 in (3.3). Further, it is easy to check that

5 / T ente) - s = [ fante) - 2P = ax

j=—N

for the piecewise linear extension of zy(-) to [a — A, a) and

Z/

for the piecewise linear extension of zy(:) to [a,b]. By the aforementioned equivalence
between the L'/WhHt and L? /W12 convergence in Lemma 2.1, we have that ay — 0 and

o j+1>—zw< (o)t = /HZN )= #(t)|%dt =: By
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By — 0 as N — oo, which justifies the fulfillment of (3.10) and (3.11) for large N. The
existence of optimal solutions to (Py) follows now from the classical Weierstrass theorem
due to the compactness and continuity assumptions made in (H1)-(H5).

To justify further assertion (ii) of the theorem on the strong convergence of discrete
optimal trajectories, we observe first that

limsup Jy[Zn] < J[Z] (3.12)

N —o00

in any Banach spaces, which can be proved similarly to [8, Theorem 6.13] by using the
Lebesgue dominated convergence theorem for the Bochner integral held due to (H5). Let
us show that (3.12) implies the claimed strong convergence Zy(-) — Z(-) as N — oo under
(H6) and the Asplund property of both spaces X and X*. This clearly follows from the
relation

a b
Jim [py = / () a0+ / lin(t) — ()12 de] =0, (3.13)

which we now prove by contradiction under the additional &sumptions imposed.

Supposing that (3.13) does not hold, we get a > ch that py — pas N — oo
with no loss of generality. Observe, by the discussi ve Qhat both spaces X and X*
have the Radon-Nikodym property. Thus, applyingt rd weak compactness theorem
given, e.g., in [2, Theorem IV.I], we find Z(-) ([aN§ A, a); X) and v(-) € L'([a,b]; X)
such that o

Zn(-) — Z(-) weakly in L'([a — A, a;¥) v(-) weakly in L'([a, b]; X)(3.14)

as N — oo. It follows from [13, m 3.4.2] that the sequence {Zn(t),a < t < b} is
the space C([a,b]; X). Taking into account the
1 as an operator from L'([a,b]; X) into X and passing

relatively compact in the norm,
to the limit in the Newt e mula for Zy(t), a <t < b, as N — oo we conclude
that z(+) € C([a,b]; X) on\g nd thlat v(t) = Z(¢) for a.e. t € [a, b].

Qiiting tunction Z(t), a—A <t < b, satisfies all the constraints
belongs to the prescribed neighborhood of the intermediate

classical ur thgprem, which ensures by the first relation in (3.14) the L!([a — A, a]; X)-
noTrm conv to Z(-) of a sequence of convex combinations of Tn(-). Since the latter
convergence implies the a.e. pointwise on [a — A, a] convergence of a subsequence of these
convex combinations and since the sets C'(t) are assumed to be Hausdorff continuous in (H1)
and convex in (H6) for a.e. t € [a — A, a], we conclude that Z(-) satisfies (1.1) by passing
to the limit in (3.6) as N — oo. The fulfillment of the endpoint constraints (1.3) and (1.4)
for z(-) follows by passing to the limit in (3.7) and (3.8) for Zn(-) with ¢x4+; = b therein
by taking into account the norm convergence zx(b) — Z(b), the continuity of the endpoint
functions ;, and the convergence ny — 0 as N — co.

By passing to the limit in (3.9), we justify the intermediate minimum relation (2.1) for
Z(+) since Zn(-) — Z(-) in the norm topology of C([a, b]; X). To get the integral intermediate
minimum relation (2.2) for z(-), we pass to the limit in (3.10) and (3.11) as N — oo
by using subsequently the weak convergence in (3.14), the Mazur theorem for {Zx(-)} in
LY ([a — A, a]; X) and for {Zn(-)} in L'([a,b]; X), and the weak lower semicontinuity of the
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integral functionals

a b
/ |- —2(t)|?dt and / |- &) dt
a—A a

in the aforementioned spaces, respectively.

By using similar arguments, the structures of the cost functionals in (1.6) and (3.4), the
additional assumptions on F' and f together with the imposed standing assumptions, and
the upper estimate (3.12) established above, we conclude by the construction of the relaxed
problem (R) in Section 2 that Z(-) is a feasible arc for (R) satisfying the relations

b o~ .
J[Z] = ¢o(2(b)) +/ Fr@(),T(t — A),Z(t),t) dt + p < J[7). (3.15)

Since we suppose that p > 0 and we have J[Z] = J[Z], the inequality in (3.15) is strict, and
thus we get J[Z] < J[Z] that contradicts the choice of Z(-) as a relaxed intermediate local
minimizer for (P). Thus (3.13) holds, which justifies (ii) and completes the proof of the

theorem. 0

Generalized Differentiation

) wew as of its discrete counterpart
pr®sence of dynamic constraints (1.1)

A characteristic feature of the original proble

(Pn) is intrinsic nonsmoothness primarilg due
and (3.5). In what follows we deal with gon by using appropriate generalized
. For the reader’s convenience, we

differential constructions studied in detagl/ R4t
briefly review these constructions ang fome@{)t portant properties in this section.
on

Since the corresponding construc re used in the paper only in Asplund spaces, we
adjust the definitions to this sefting.

The normal cone to a set
Mordukhovich normal con

at 1ts point T € Q (known as the basic, limiting, or
by

L= Lim sup N (; Q) (4.1)
Q

via the sgfjuential I\g
normal clie to Q apg T

é-Kylatowski outer/upper limit (1.10) of the prenormal/Fréchet
Q) given by

=5 % * . (x*,u - .'L'>

where the symbol x £ # indicates that 2 — 7 with 2 € Q. Note that for convex sets Q we
have R
N(z;Q) = N(z;Q) = {z* € X*
Given a set-valued mapping F: X = Y and a point (Z,y) € gph F, define the basic
coderivative of F' at (z,y) and the Fréchet coderivative of F' at this point by, respectively,

(", —Z) <0 forall z € Q}. (4.3)

D*F(z,7)(y") = {a" € X*[ (¢, —y") € N((Z,7);eph F) }, (4.4)

D*F(z,5)(y*) = {a* € X*| (a", —y*) € N((z,7); gph F)}. (4.5)




364 B.S. MORDUKHOVICH{, D. WANG AND L. WANG

Note that both coderivatives (4.4) and (4.5) are positively homogeneous set-valued mappings
from Y* to X*. They both are single-valued and linear

D*F(z)(y*) = D*F(z)(y*) = {VF(z)*y"} forall y* € Y*

if F: X — Y is single-valued and C' around Z, or merely strictly differentiable at this point.
Given now an extended-real-valued function ¢: X — IR := (—o0,00] finite at Z, the
(basic, limiting, Mordukhovich) subdifferential of ¢ at Z is defined by

Op(Z) := Lim sup 5(,0(96), (4.6)

.
T

where = % Z means that © — Z with p(z) — ¢(Z), and where 5@(96) stands for the Fréchet
subdifferential of p at x defined by

Bp(z) = {x e X*| liminf £W = P@) = @u=-2) 0}. (4.7)
u—z lu—z|
Besides the above generalized differential constructions employ their extended limit-

ing versions for mowving (parameter-dependent) objects nee in the case of nonautonomous
systems. Given a moving set Q: T = X, the ez one to Q(t) at T € Q(t) is
defined by

(4.8)

Given a parameter-dependent function
ferential of p(-,t) at T is defined by

where dp(-,t) is taken y
cone (4.8) and the exjg

can find
calculus

In this section we derive necessary conditions for optimal solutions to the discrete opti-
mization problems (Py). We reduce these discrete-time dynamic optimization problems
to problems of mathematical programming with functional, operator, and finitely many
geometric constraints.

It is easy to observe that each discrete optimization problem (Py ), for any fixed N € IN
and the corresponding number k € IN defined in (3.1), can be equivalently written as the
following problem of mathematical programming (M P):

minimize ¢o(z) subject to
¢j(z)§07j:]‘7"'787

5.1
2€0;CZ j=1,...,1,
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where ¢; are real-valued functions on the Banach space Z := XN*+2*+3 where g: Z — E is
a mapping between Banach spaces, and where ©; C Z. To see this, let

N = (mJ—VNa s 7x]1cv+17yév7 . ?yljev) = (I‘N(t—N)? s 7xN(tk+1)?yN(t0)7' .. ,yN(tkr)) € Z7(52)

E:= XN, s:=k+34+m+2r, and | := k+2, where y¥ := (¢}, ; —2})/hn. Rewrite (Py)
as an (M P) problem (5.1) with the following data:

z

—1 tit+1
o) =)+ 3 [ e —aoPar

jsz J

(5.3)

k koot .

i S pa )+ 30 [ I - dolPde
j=0 j=071t

HEAE (5.4)
9(z") = (go ("), ... 9;(zN) =2l — 2 —hnyY, §=0,..k  (55)
| zN eC(t))}, j=-N,...,—1, (5.6)
W)y € Flay ol noty)}y, 5=0,... k. (5.7)

The sent$ necessary conditions for optimal solutions to each problem
(Pn) in tWe fuzzy/dpprozimate discrete-time forms of the Euler-Lagrange and transversality
inclusions in terms of the Fréchet-like generalized differential constructions re-

viewed in Se 4. The proof is based on applying the corresponding fuzzy calculus rules
and neighborhood criteria for metric reqularity and Lipschitzian behavior of mappings taken
from [7]. Note that fuzzy calculus rules provide representations of Fréchet subgradients
and normals of sums and intersections at the reference points via those at points that are
arbitrarily close to the reference ones. Just for notational simplicity and convenience, we
suppose in the formulation and proof of the next theorem that these arbitrary close points
reduce to the reference ones in question. It makes no difference for the limiting procedure to
derive the main necessary optimality conditions for constrained delay-differential inclusions
given in Section 6.

Theorem 5.1 (approximate Euler-Lagrange conditions for delay-difference inclu-
sions). Let 2V (-) be an optimal solution to problem (Py) with any fized N € IN sufficiently
large under the standing hypotheses (H1)—(H5). Denote F; := F(-,-,t;) and f; := f(-,-,-,t;)
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and assume in addition that X is Asplund and that the functions p; and f; are Lipschitz con-
tinuous around f,ICVJrl and (f;v, fJN_N, gjv), respectively, fort=10,...,m+r andj=0,... k.
Consider the quantities

o, -zl

N tj+1 i
§! ;:2/ —g*ctHdt, = 0,....k
J ¢ hN () J

tj+1
oN ::2/ 1z —z(t)| dt, j=-N,...,—1.
t

J J

J

Then for any sequence of positive numbers ey — 0 as N — oo there are sequences of

Lagrange multipliers A\, i = 0,...,m +r, and sequences of the discrete adjoint arcs pév €

X* j=0,...,k+1, and qj—v € X*, j=—N,...,k+1, satisfying the following relationships:
e the sign and nontriviality conditions

m—+r

/\fVEO forall i=0,...,m+r, Zx\fvzl; (5.9)
=0

o the complementary slackness conditions

AN i (@) — nn] = (5.10)
e the approximate Fuler-Lagrange inclusion
o
(pé‘\fo—l —pév qjv—N—o—l - (IJN_N
hy 7 hn
(5.11)
with some b;.V € B*, j=—N,...,—1, (5.12)
N _ S )
;G =0, j=k-—N+1,...,k+1
e and the approzimate transversality inclusion
m . m+r . .
—pay1 € > A 0pi(Ey )+ Y AN [G%(kaﬂ)Ua(—%)(@ivﬂ) +enhyIB*. (5.13)
i=0 i=m-+1

Proof. We basically follow the procedure developed in the proof of [8, Theorem 6.19] given
for the case of discrete approximations of nondelayed differential inclusions with geometric
endpoint constraints, while here we take into account new elements in the structure of the
initial data in the constrained delay problem under consideration. We present a detailed
proof of the theorem in the major case of metric regularity of operator constraints while
referring the reader to our similar previous consideration in the remaining case, which does
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not actually incorporate the new specific features of the problem under consideration; see
below.

Consider problem (Py) in the equivalent mathematical programming form (5.1) for the
decision variable 2 € Z in (5.2) with the initial data defined in (5.3)—(5.7). Given € > 0 in
(3.9)-(3.11), take N € IN so large that constraints (3.9)—(3.11) hold as strict inequalities;
this is ensured by Theorem 3.2. Then all the inequality constraints in (5.4) are inactive at
the point

N o= (@ B T TR ) = (@ (N BN (), T (F0), - T (),
and thus the functions ¢;, j = 1,...,k + 3, can be ignored in the arguments below.

Let us examine the following two mutually exclusive cases in the proof of the theorem,
which are complemented to each other.

Case 1. Assume that the operator constraint mapping g: XV 2k+3 — X*+1 iy (5.5) is
metrically reqular at ZV relative to the set

k
0:= () e (5.14)
j=—N
with ©; taken from (5.6) and (5.7), in the sense W a constant > 0 and a
neighborhood V' of zV such that the distance estigpat

dist(z; ) < pl|lg(z) — g(ZN)|| for all » @O ‘ ith 5:={z€0] g(z) = g(EN)}

fom [4] (see also [8, Theorem 5.16]),
constrained minimization problem:

is satisfied. Then, by Ioffe’s exact penali
we conclude that zZV is a local optimae

)%(xffﬂ)} +u(llg(2)]l + dist(2;©)) (5.15)

. ,m—&-r}‘ cither ¢;(Zn,,) = ény or —cpi(fivﬂ):énN}.

genegfllized Fermat rule from [7, Proposition 1.114] to the local optimal solution
arrive at the subdifferential inclusion

Applying
ZN for (5.1

0 € B max{on() ~ ("), max @i()} + pllgl)] + paist( O) (). (516

in terms of the Fréchet subdifferential (4.7). Picking then any sequenceey | 0as N — oo and
employing in (5.16) the fuzzy sum rule for Fréchet subgradients from [7, Theorem 2.33(b)],
we have by taking into account our notational convention that

0 € O max{oo(-)=go("), max ()] () +udllg()|(2")+uddist( 0)(M)+ N B

Computing now by [7, Proposition 1.85] the Fréchet subdifferential of the distance function
dist(2; ©) and using the simple chain rule for the composition ||g(2)|| = (¢ o ¢)(z) with
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@(y) := |ly|| and the smooth mapping g from (5.5), we get

0 S h
0 € o max{go() = do(="), Zax i)} (Z7) + Z Vg;(zN) el + N(zV;0) + 5N4 N B
i€l(ZTN

(5.17)
for some €} € X* satisfying

Zng(ZN)*e; =(0,...,0,—€g, €5 — €], €51 — € €h —hneg, ..., —hner)  (5.18)

due to the specific structure of the operator constraints in (5.1) and (5.5). By the fuzzy
rule for Fréchet subgradients of the maximum function from [7, Theorem 3.46] we have the
inclusion

9| max{gn(-) — 6o(="), max i()}] () € A Do (2 M)+ 30 AN B,

€l(zN) P
m+r

+ 3 W Feia) -0 @)

1=m-+1

: (5.19)

where the multipliers A, i = 0,...,m+r, satisfy the triviality, and complementary
slackness conditions in (5.9) and (5.10). Taking jsg acqunt the structure of cost functional
¢o in (5.3) and the specific forms of its @rms m the aforementioned fuzzy sum
rule that

n(z") C Dpn(afyy) + Z 2

k

ZES . €NhN .
[ gy -l @ B+ 2

variables andawherg th®&laqeh] relationship 9| - [|?(z) C 2|lz||IB* is used together with the
b1 the integral sign in (5.3) well known from convex analysis.

get

zN;@)CZ\AZ(ZN;G_N)—&—...—FJ\AT(ZN;@k)—&—gNjNB*. (5.21)

Let 2} = (mf]&j, o3 Thyy 1Y - - -+ Yr ;) and observe from the set structures in (5.6) that
for any 27 € N(zV; ©;), j = —N,...,—1, all but one components of %7 are zero with the
remaining one satisfying 27 ; € ]/\7(565\]7 C(t;)), j = —N,...,—1. Similarly the relationship
z; € J/\\T(ZN; ©,) for j =0,...,k implies that

(2% 5,25 noyr,) € N(@Y, 2Ny, gl )ieph Fy), j=0,... k, (5.22)

with all the other components of 27, j = 0,...,k, equal to zero. Combining these relation-
ships with (5.17)—(5.21) and using the notation

ukN+168g00(i‘{€V+1)7 (/U;V7I</§VN7 )Eaf( _77 j N7y77t )7j:O>~--ak7
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with g = (2.} — 2)¥)/hx due to g(zV) = 0 in (5.5), we arrive at

—af; —xf o n €N NN + Ao B +enhyB*, j=-N,...,—1,
—Ti; — XN € AéVhN/iéV + /\éVth;-V +eiy—e +enhnB*, j=1,....k— N,
—a5 ;€ N hyol +e5 | —ei +enhyB*, j=k—N+1,... .k, (5.23)
—y;; € X hyw + N ONB* — hyel + exhyB*, j=0,....k, '
0 € @1 pq1 + A0 Uupys + €k +enhy B,
—Zog € A hnkd + A hyv) — el + hyen IB*,
where the triples (2] ;,7_y ;,yj ;) satisfy (5.22) for all j =0,..., k and where
m . m+r . N
Tht1ht1 € Z)\i‘va@i(f{cvﬂ) + Z AY {a@i(fljyﬂ)ua(_%)(fgﬂ) . (5.24)
i=1 i=m+1
Further, we denote
5;\7 =ej_y for j=1,....k+1,
x* .
qy = MK+ ZLIEN for N, (5.25)
N
gy =0 for j=k—N+1,...
and define the the adjoint discrete tmjecﬁries
N N N
Qiy1 = 0, q; =441 £ /1y 5.96
{pé\’:—%\’, and p} 1= (5.26)

+1,...,k+1. Combining finally the relationships
timality conditions (5.11)—(5.13) of the theorem
~N | 0as N — oo. This completes the proof of the

and notation (5.22)—(5.26), w
along an arbitrarily chosen e
theorem in Case 1.

ation when the mapping g from (5.5) is not metrically
O. In this case the restriction

| g(») if z€0,
96(2) := { 0 otherwise (5.27)
of the map 1 the set © from (5.14) is not metrically regular around zZy in the standard

sense; see, e.g. [7, Definition 1.47]. Observe that neither g nor © involves the functional
constraints of the problems (Py) and (5.1) under consideration. Thus we can proceed
as in the proofs of [8, Theorem 6.19] and [11, Theorem 5.1] for the geometric constraint
cases therein and, employing the neighborhood characterizations of the metric regularity
and Lipschitz-like properties from [7, Theorem 4.5 and Theorem 4.7] as well as calculations
similar to the above Case 1, arrive at the conclusions of the theorem in the remaining case.
This completes the proof of the theorem. O

@ Euler-Lagrange Conditions for Delay-Differential Inclusions

The concluding section of the paper presents the main result on new necessary optimality
conditions for relazed intermediate local minimizers in the delay-differential systems under
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consideration given in the extended Fuler-Lagrange form. These conditions and their proof
are based on passing to the limit from the optimality conditions for discrete approximations
obtained in Section 5 with the use of the well-posedness/strong convergence results for
discrete approximations established in Section 3 and special properties of the generalized
differential constructions reviewed in Section 4 that allow us to justify the appropriate
convergence of adjoint trajectories.

In this section we keep the standing assumptions (H1)-(H4) and (H6), but instead of
(H5) impose its following strengthened modification:

(H5’) The integrand f(z,y,v,-) is continuous for a.e. t € [a, b] and bounded uniformly with
respect to (z,y,v) € U x (McIB) x (MpIB); furthermore, there are numbers g > 0
and Ly > 0 such that f(-,-,-,t) is Lipschitz continuous on the set A, (¢) from (H5)
with constraint L uniformly in ¢ € [a, b].

Now we are ready to formulate and prove aforementioned necessary optimality condi-
tions for relaxed intermediate local minimizers in (P) without imposing any sequential nor-
mal compactness assumptions on endpoint constraints given by finitely many Lipschitzian
equalities and inequalities.

Theorem 6.1 (extended Euler-Lagrange copditio or relaxed intermediated
local minimizers in delay-differential inclu it nctional endpoint con-
straints). Let Z(-) be a relazed intermediate loca izeNor problem (P) under hy-
potheses (H1)—-(H4), (H5’), and (H6). Assume ingud at both spaces X and X* are
Asplund. Then there are multzplzers ()\
dual arcs p: [a,b] — X* and q: [a — A, b sfying the following relationships:
e the sign and nontriviality conditions

Ai >0 for allgg

e the complementary slackn

)=0 for i=1 ; (6.2)
e the extendeq Fule cluston
(1), flt — A)) (u, w, p(t) + q(t)) € Mod4 f(2(t), 2(t — A), (1), t)
(6.3)

N (20, 3t~ A),35(1); @b F(, 1)} e t € [,
where the norm-closure operation can be omitted when the state space X is reflexive;

e the optimal tail conditions

(q(t), z(t)) = ngl(ﬂt)@(t), c) ae tela—Aa),
(6.4)

qit)y=0, teb—AD;

e the transversality inclusion

m+r

ZA Aei(z(b) + D Ni[dpi(x(b)) U(—g:)(z(D))]. (6.5)

i=m-+1
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Proof. Given the relaxed intermediate local minimizer Z(-) for the original problem (P), we
first employ Theorem 3.2 that ensures the strong L!-approximation of Z(-) on the initial
interval [a — A, a] and the strong W1l-approximation of Z(-) on the main interval [a,b]
by a sequence of optimal solutions Zy(-) to the discrete approximation problems (Ppy).
As mentioned, we actually have the L?/W2-approximation under the assumptions made.
Picking a sequence e | 0 as N — oo and using the necessary optimality conditions for Zy (-)
obtained in Theorem 5.1, find the corresponding sequences of multipliers AN, i = 0,..., m+r,
and of the discrete adjoint arcs pé»v e X", j=0,...,k+1, and qJN €eX* j=—N,...,k+1,
satisfying all the relationships in (5.9)—(5.13). By (5.9), we suppose without loss of generality
that

AV )\ as N - oo forall i=0,...,m+r,

where the limiting multipliers A;, ¢ = 0,...,m + r, satisfy the sign and nontriviality condi-
tions in (6.1). We easily get the complementarity slackness conditions (6.2) by passing to
the limit in (5.10) with taking into account that ny — 0 as N — oo.

Consider the piecewise linear extensions p¥(¢) and ¢™ (¢) of the discrete adjoint trajec-

tories to the continuous-time intervals [a, b] and [a — A, b], kgspectively, and define by
N
OV (t) = a) for te[t;t;{] 0J. &,
hy 7

N
a:.
oV (t) = ﬁbﬁv for t @t;,t j=-N,...,—1,

the piecewise conbtraint extensions of e
intervals, where a} and bY are take m (5W) (5.12), respectively.
(t) we have the estimates

TNy —
L 7h ’dt—2/ 13N (1) — #(8)]| dt,
hN

tj+1 N _ N
3 [T sena=a [ e s

By the constructlons of O (t)

tjta

ae. telab], V() =0 ae tcla—A,a] as N — oo (6.6)

along a subsequence of IN that is assumed to be the whole natural series. Proceeding further
similarly to the proofs of [8, Theorem 6.21] and [11, Theorem 6.1], we derive from the ap-
proximate FEuler-Lagrange and transversality inclusions of Theorem 5.1 with the use of the
coderivative condition for the Lipschitzian property of set-valued mappings from [7, Theo-
rem 1.43] and the uniform boundedness of Fréchet subgradients for Lipschitzian functions
[7, Proposition 1.85] that the sequences {p™ (¢)} and {¢"V(t — A)} are uniformly bounded in
L'([a,b]; X*). Since both spaces X and X* have the Radon-Nikoym property, we conclude
without loss of generality, by using the Dunford weak compactness theorem and arguing
similarly to the proof of Theorem 3.2, that

N — * 2 *
{ pY(t) — p(t) weak* in X* for all ¢ € [a,b], (6.7)

pNV () — p(-) weakly in L'([a,b]; X*)
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as IN — oo with the absolutely continuous limiting function p: [a,b] — X* and

{ gV (t—A) — q(t —A) weak* in X* for all t € [a,b], (6.8)

V(- —A) — ¢(- — A) weakly in L!([a, b]; X*)

as IN — oo with the absolutely continuous limiting function ¢: [a — A, b] — X*. The latter
implies the optimal tail conditions in (6.4) by passing to the limit in (5.12) as N — oo and
taking into account the specific structure of the normal cone to the convex sets C(¢) therein
as well as the pointwise convergence of o (-) in (6.6).

Further, it is easy to observe that the approximate Euler-Lagrange inclusion (5.11) can
be equivalently written as

NYON al¥
(1100 (00) + 0" (1300) =52

e NYaf (z(ty), z(t; — A), &N (1), ;) (6.9)
+N((@V(t;), 7N (t; — A), 7V (1));gph F (-, -,tj))} +enB*

BN (), (t— A)) € {(u,v) € X* x X*

for all t € [t;,tj41), j =0,...,k, and N € IN. Usjag (6.6)~W&8) and applying the classical
Mazur convexification theorem to (6.9), we get the d r-Lagrange inclusion (6.3)
by passing to the limit in (6.9) as N — oo and ta account the extended normal
cone and subdifferential constructions in (4.8) gg ote that the closure operation
in (6.3) can be omitted of X is reﬂexive.‘nde ase the weak and weak* topology
agree and, furthermore, every bounded cx et is weakly compact in X* being
therefore automatically norm-closed cl ﬁ space due to the aforementioned
Mazur theorem. Hence the argumen o drop the closure operation in the

inclusion (6.5) and thus compk proof of the theorem. O

Remark 6.2 (other ty@k inimizers and maximum condition). Note that
necessary optimality eorem 6.1 for intermediate minimizers provide also
new results j sRgfhg minimizers (corresponding to the only requirement (2.1)
in Definiti#n 2. ¢ not applied to weak minimizers for the delay-differential
problem erat®n. The latter type of local minimizers can be treated as the

limiting mediate minimizers as r,p — oo in (2.2) and demands further analysis,
he scope of this paper.
ermore that the necessary conditions obtained in Theorem 6.1 do not con-
tain an appropriate counterpart of the Weierstrass-Pontryagin maximum condition on the
main time interval [a, b]. However, a version of the latter condition can be derived directly
from the extended Euler-Lagrange condition (6.3) for the relazed intermediate minimizer
Z(+) in Theorem 6.1.

To demonstrate this, consider for simplicity the case of autonomous delay-differential
inclusions (2.3) with f = 0 in (1.6). In this case the Euler-Lagrange condition (6.3) reduces
to

(p(t),d(t — A)) € clecoD*F(z(t), z(t — A), &(t)) (— p(t) — q(t)) ae. t€[a,b]. (6.10)

Since Z(-) is in fact an intermediate local minimizer for the relaxed problem (R), we can
replace F by clcoF in (6.10) and take adjoint arcs (p,q) corresponding to the convexified



OPTIMIZATION OF DELAY-DIFFERENTIAL INCLUSIONS 373

inclusion (2.6). Then it follows from (6.10) that Z(-) satisfies the mazimum condition

(p(t) +q(t),2(t)) = (p(t) +q(t),v) ae. tEla,b] (6.11)

max
vEF(2(),2(t—A))
Note the maximum operation in (6.11) is invariant with respect to taking the convex closure
of the velocity set F(Z(t),z(t — A)).
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