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Abstract: In this paper we survey recent advances and mathematical foundations of regulatory networks.
We explain their interdisciplinary implications with special regard to Operational Research and financial
sciences and introduce the so-called eco-finance networks. These networks, originally developed in the context
of modeling and prediction of gene-expression patterns, have proved to provide a conceptual framework for
the modeling of dynamical systems with respect to errors and uncertainty as well as the influence of certain
environmental items. Given the noise-prone measurement data we extract nonlinear differential equations
to describe and investigate the interactions and regulating effects between the data items of interest and the
environmental items. In particular, these equations reflect data uncertainty by the use of interval arithmetics
and comprise unknown parameters resulting in a wide variety of the model. For an identification of these
parameters Chebychev approximation and generalized semi-infinite optimization are applied. In addition,
the time-discrete counterparts of the nonlinear equations are introduced and their parametrical stability is
investigated by a combinatorial algorithm which detects the region of parameter stability. We analyze the
structural stability of the regulatory networks, we discuss a modeling by stochastic differential equations
and explain how spline regression applied in an additive model could be integrated into our analysis. We
conclude with two examples for eco-finance networks in the fields of CO2-emissions-control and portfolio
optimization for natural gas transportation systems.
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1 Introduction

In the last decade, the mathematical analysis of highly interconnected systems has become
increasingly important as the development of high-throughput technologies resulted in an
accelerated generation of massive quantities of financial, technical, environmental and bio-
logical data. The availability of large data sets now allows to gain deeper insights in the
dynamic behaviour of complex systems and opens promising avenues for further scientific
progress. These systems often involve two different kinds of data sets in form of certain key
or target variables and additional environmental variables. For a deeper analysis one has to
describe and investigate the interactions and regulating effects between data items of interest
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and the environmental items, encoded in the regulatory-network. As these models are based
on real-world data, errors and uncertainty have to be considered. In this paper we present
various kinds of inter-regulated models under uncertainty, we investigate their dynamics and
analyze their stability behaviour. In addition, we present some recent approaches based on
stochastic differential equations and additive regression models. Finally, we explain the in-
terdisciplinary implications in finance, technology and Operational Research and introduce
the so-called Eco-Finance-Networks.

2 The General Model

A first and quite general model for complex two-class-systems is given by the time-continuous
system

Ẋ = F(X),

where the time-dependent d-vector X = (X1, . . . ,Xn,Xn+1, . . . ,Xn+m)T comprises the n
levels of the target variables and the values of the m environmental factors. The continuous
change in the data is represented by Ẋ (= dX

dt ), and F : Rd → Rd is composed of nonlinear
coordinate functions Fi : Rd → R (i = 1, 2, . . . , d = n+m) (cf. [10, 22, 41, 53, 62] for different
dimensions). As the nonlinear function F in the time-continuous system is determined by
unknown parameters we have to deal with parameter identification based on noise-prone
data vectors obtained from measurements X̄κ (κ = 0, 1, . . . , l).

Example:

(i) The models under consideration have been developed in the context of the analysis
and prediction of gene-expression patterns [54, 60, 61, 62, 63, 64, 65, 66, 69]. In
this gene-environment networks the target variables represent the expression levels
of the n genes, whereas the m environmental items stand for external factors (e.g.,
transscription factors, toxins or radiation).

(ii) In Section 13 we introduce the eco-finance networks and apply them to an example
from Operational Research. In [36, 60, 62] the Technology-Emissions-Means Model
(in short: TEM-model) has been investigated, which allows a simulation of the co-
operative economic behaviour of countries/enterprises with the aim of a reduction of
CO2-emissions. Here, the target variables are the emissions that the actors wish to
reduce and the required financial means act as additional environmental items.

3 Errors and Uncertainty

For a representation of measurement errors and uncertainty we integrate interval arithmetics
into our modelling [11, 14, 31, 32, 40, 42]. The levels of the target and environmental items
are given by

Xi = X̄i ± Erri (i = 1, 2, . . . , d),

where Erri > 0 denotes the maximal error to be made at the measurements of the variable
Xi [54]. This measurement error leads us to assume that the state Xi has to lie in the
interval [X̄i − Erri, X̄i + Erri] and, hence, the state vector X = (X1,X2, . . . ,Xd)T has to be
in the parallelpipe

d∏

i=1

[
X̄i − Erri, X̄i + Erri

]
.
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Here, we can speak of confidence intervals and a confidence parallelpipe. Those parallelpipes
and intervals usually come from a perspective where functional dependencies among any
two of the errors made in the measurements of the variables Xi are not taken into account
explicitly. Moreover, they are usually smaller than the ellipsoides and their orthogonal
projections into the 2-dimensional Cartesian planes, respectively. Indeed, those confidence
ellipsoids are obtained with respect to stochastic dependencies of the error variables. Those
dependencies are the case in reality, e.g., in financial studies and in microarray experiments
as well. In reverse, any ellipsoid can be inscribed into a sufficiently large parallelpipe which,
in addition, could be suitably located and directed in space around its eigenaxes. According
to his/her experience and wish for confidence (trust region), the modeler can enforce a
certain size of the parallelpipe by additional constraints on the interval limits, which are
the variables in our parameter estimation. We underline that a direct modeling based on
ellipsoidal calculus [29] and corresponding parameters is possible, too. This approach will
be discussed in a forthcoming paper.

4 Regulatory Networks

The dynamic interaction between the n target variables (without any environmental items)
can be modelled by a system of continuous differential equations

(CE)target Ẋ = A(X)X,

where the (interval) matrix A may depend on the vector X = (X1,X2, . . . ,Xn)T of target
variables (cf. [54, 65]). From this equation we obtain the following discrete-time equation
and dynamics

(DE)target X(k+1) = A(k)X(k) (k ∈ N0),

where the A(k) can be taken as interval matrices and the stability can be investigated by
Brayton and Tong’s algorithm [1, 65]. In order to include environmental items into our
continuous model under the presence of noise and uncertainty we extended in [53, 54, 65]
the model from [17, 20] and provided the continuous equation

(CE) Ẋ = A(X)X, X(t0) = X(0).

The system matrix A(X) is a (d× d)-matrix whose entries are intervals, defined by a family
of functions which include unknown parameters. In this way, we can integrate uncertainty
with respect to the interactions between the target variables, to the effects between the
environment and the target variables, or between environmental items. The initial value X(0)

in (CE) consists of the interval-valued levels obtained by the first measurement X̄(t0) = X̄(0).
As this may result in a large and highly interconnected network we will later on restrict on an
approximate model and network. For this we will improve our model by imposing bounds
on the admissible number of regulating effects exercised per target item and also on the
effects of the environment onto the target variables.

5 Identification and Stability

When we look at the parameterized entries of the continuous model (CE) we have to ex-
amine the respective optimization and must provide a stability analysis. We note that both
issues lead to bilevel problems. In case of optimization we have to deal with the problem

miny

l−1∑
κ=0

∥∥∥Ay

(
X̄(κ)

)
X̄(κ) − ˙̄X(κ)

∥∥∥
2

∞
and by this with approximation based on squared errors.
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Here, the vector y comprises a subset of all the parameters and the vector ˙̄X(κ) consists of
interval-valued difference quotients raised on the κth experimental data X̄(κ) and on step
lengths h̄κ := t̄κ+1 − t̄κ between neighbouring samplings times [16, 20, 54]. As we make use
of intervals we inserted Chebychev or maximum norm ‖·‖∞. When we turn to the stability
analysis we can refer to the second class of parameters not comprised in the vector y and
we can capitalize on the structure of (CE) that allows a time-discretization represented by
a sequence of matrix multiplications. The regions of stability can then be detected by the
application of a combinatorial algorithm on polyhedra sequences [17].

6 Extended Dynamics of Regulation-Networks

The model (CE)target can be further enhanced when we additionally add a variable shift
vector [43, 44, 45, 53, 65, 68]:

(ACE)target Ẋ = A(X)X + C(X).

We call this decomposition a normal form, an unfolding [5, 9, 21, 25] or a (generalized)
additive model [21, 47, 49, 50]. The affine linear shift term provides a more accurate data
fitting and C(X) represents environmental perturbations and contributions and may be,
e.g., exponential, logarithmic, trigonometric or piecewise polynomial (splines). In addition,
it displays special effects on each target variable emanated from any environmental item
itself or cumulatively by all or several items working together or catalyzing each other. This
cumulative effect might not be further divisible or quantifiable by the single effects.

We note that in (ACE)target we lost the multiplicative structure. This multiplicative
form can be reconstructed as has been shown in [54, 65]. For this, the shift vector C(X) of
(ACE)gene has to be divided into the sum W(X)X̌+ V(X) and we obtain the decomposition

(ACE) Ẋ = A(X)X + W(X)X̌ + V(X).

Here, the m-vector (of intervals) X̌(t) =
(
X̌1(t), X̌2(t), . . . , X̌m(t)

)T
comprises the levels of

the m environmental factors that can affect the target variables and their variation. The
single effects of the factors X̌` on the target data Xi can be incorporated by the weight
matrix W = (wi`) i=1,...,n

`=1,...,m
into the system, and by this the n target items and the m environ-

mental factors are individually matched. In addition, the column vector V(X) = (vi)i=1,...,n

comprises all the cumulative effects of all (or several) environmental items influencing the
target variables together. We note that the total effect of the environment on the value Xi

is given by
m∑

`=1

wi`(X)X̌` + vi.

We now define the regulation matrix Ǎ(X) :=
(
W(X) |diag(V(X))

)
of external effects,

where the second block represents V(X) as a diagonal matrix with intervals on the diago-
nal. In addition, we set X̌∨ :=

(
X̌T , eT

)T with the n-vector e := (1, 1, . . . , 1)T and with
W(X)X̌ + V(X) = Ǎ(X)X̌∨ we obtain the following representation of (ACE):

Ẋ = A(X)X + Ǎ(X)X̌∨.

Finally, by introducing the (d = m + 2n)-vector X :=
(
X, X̌∨)T

, and the (d× d)-matrix

A(X) =
(

A(X) Ǎ(X)
0(m+n)×n 0(m+n)×(m+n)

)
=




A(X) W(X) diag(V(X))
0m×n 0m×m 0m×n

0n×n 0n×m 0n×n


 ,
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we arrive at the extended (multiplicative) system (CE) together with an extended initial
value as follows:

(CE) Ẋ = A(X)X, X(0) = X(t0) =
(

X(0)

X̌∨,0

)
.

We note that we have not included any environmental dynamics, but our modeling frame-
work allows us to do this. In fact, by turning the 0 matrices in the second and the third
(block) columns of A(X) to matrices which are different from 0, we can permit variable and
interacting factors of the environment. Allowing also the 0 matrices in the first column
to have nonzero entries, then this would express that the target variables influence vari-
ous items of the environment (cf. Figure 1). In addition, the vector V(X) and the weight
matrix W(X) could also depend on the variable X̆ or even X̆∨. This higher generality of
(CE) could also be implied into the parameter estimation from Section 9. We note that
this generalization will become important for the introduction of the eco-finance networks
in Section 13 and the related examples of CO2-emissions control and portfolio optimization.
For a stability analysis of the time-continuous model (CE) we refer to [60, 61, 62].




T → T E → T CE → T
T → E E → E CT → E
0n×n 0n×m 0n×n




Figure 1: The regulation matrix. The first row describes the dynamics of the target items, depending

on the target values (T), the single effects of the environmental items (E) and the cumulative environmental

effects (CE). The second row describes the dynamics of the environmental items according to the single

effects of the target variables (T), the states of the environmental items (E) and the cumulative effects of

the target items (CT). The last row comes from the dimensional extension of the system that allows the

representation in multiplication form.

7 The Time-Discretized Model

For a numerical analysis of our time-continuous modeling we can apply Runge-Kutta meth-
ods [13]. For example, when we use Heun’s method on the system (CE) we obtain the
following time-discrete equation:

X(k+1) = X(k) +
hk

2
A

(
X(k)

)
X(k) +

hk

2
A

(
X(k) + hkA

(
X(k)

)
X(k)

) ·
(
X(k) + hkA

(
X(k)

)
X(k)

)

=
[
I +

hk

2
A

(
X(k)

)
+

hk

2
A

(
X(k) + hkA

(
X(k)

)
X(k)

)(
I + hkA

(
X(k)

))]
X(k)

= A(k)X(k) (k ∈ N0).

This equation allows a representation in “multiplication-form”:

(DE) X(k+1) = A(k)X(k).

With this model we can calculate predictions of future values. For this we introduce the
data vector X̄(κ) :=

(
(X̄(κ))T , (X̌∨,κ)T

)T
(κ = 0, 1, . . . , l − 1), which comprises the results
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from measurements of the target and the environmental items. The predictions are denoted
by X̂(κ) and we set X̂(0) = X(0). The kth prediction is then calculated by

X̂(k) (:= X(k)) = A(k−1)(A(k−2) · · · (A(1)(A(0)X(0))) · · · ) (k ∈ N0).

8 Extracting and Optimizing Regulation Networks

8.1 The Hybrid Model

Many financial, technical and biological systems exhibit switching behaviour. In the context
of the regulatory networks under consideration we propose the following hybrid model [20,
54, 65]:

(HE)

Ẋ(t) = As(t)X(t) + Ws(t)X̌(t) + Vs(t),

where s(t) := S(Q(X(t))) with

Q(X(t)) = (Q1(X(t)), Q2(X(t)), . . . , Qn(X(t))), where

Qi(X(t)) :=





0, Xi(t) < θi,1

1, θi,1 ≤ Xi(t) < θi,2

...
di, θi,di

≤ Xi(t) (i = 1, 2, . . . , n).

In (HE) thresholds of the target variables are given by θi,1 < θi,2 < . . . < θi,di and they can
be defined by Akaike’s Information Criterion [21] as in the original hybrid model presented
in [20] and in the model extensions in [2, 19, 20, 27]. At these thresholds instantaneous
changes of the parameter constellation can occur such that we have to choose a local model
by the special selection of the (n × n)-matrix As(t), the (n × m)-matrix Ws(t) and the n-
vector Vs(t) (all three ones over intervals). The function Q : Rn → Nn

0 implies the threshold
constellation, and S(Q(X)) indicates where in the state space the system is placed at X, and
which matrices and vectors A, W, V have to be chosen to specify the system such that the
given data are approximated best. The function S : Nn

0 → N0 must be injective, such that a
different triplet (A,W,V) is used whenever a threshold is traversed. By this construction, the
thresholds define a partition in subparallelpipes and the hybrid system (HE) reduces in each
subparallelpipe P∗ to a system of ordinary linear differential equations that can be solved
analytically. For this we have to extract the parametric unknowns As(t), Ws(t) and Vs(t)

from the given data. We note that we make use of binary and constant environmental data
¯̌X(κ) (κ = 0, 1, . . . , l − 1), but this data could also be variable in a more refined modeling.

8.2 Mixed-Integer Parameter Estimation

For an estimation of parameters we have to minimize the quadratic error between the differ-
ence quotients ˙̄X(κα) and the right-hand side of the differential equations evaluated at the
finitely many measurement intervals X̄(κα) ∈ P∗ (α = 0, 1, . . . , l∗−1) which are lying in the
regarded regime P∗ takes the following form:

(HLS) min
(a∗ij),(w∗

i`),(v∗i )

l∗−1∑
α=0

∥∥∥A∗X̄(κα) + W∗ ¯̌X(κα) + V∗ − ˙̄X(κα)
∥∥∥

2

∞
.

In (HLS), ‖·‖∞ stands for the Chebychev norm of the set inserted, i.e., it is the maximum
norm with respect to the vector-valued functions defined by (independent) parametrization
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which we get from the interval-valued entries of M∗, W∗ and V∗ as well as the ones of
the vectors X̄(κα), ¯̌X(κα) and ˙̄X(κα), respectively. The classical “scalar” version of (HLS),
i.e., Gaussian approximation, can be canonically treated by building the partial derivatives
with respect to the unknowns and equating them to 0. Then, one has to solve the resulting
normal equations, which are linear in the unknown parameters a∗ij , w∗i` and v∗i , e.g., by
Gaussian elimination method algorithm. But (HLS) is a generalized Chebychev approxi-
mation problem; since it can equivalently be written as a semi-infinite optimization problem
(cf. [66]), we get access to the applicable methodology of SIP.

As nowadays high-throughput technologies are available, regulation networks are very
large. Therefore, for practical reasons we have to rarefy them by diminishing the number
of arcs [54, 65]. Here, upper bounds on the outdegrees of nodes (the variables) are intro-
duced firstly; then, these constraints are further weakened by a continuous way of model
improvement. We shortly recall this process in our interval-valued generalized Chebyche-
vian way [63]. Firstly, we define the Boolean matrices and vectors, by χ = (χij)i,j=1,...,n,
Ξ = (ξi`) i=1,...,n

`=1,...,m
, Z = (ζi)i=1,...,n with

χij :=
{

1, provided target item j regulates target item i
0, if target item j does not regulate target item i,

ξi` :=
{

1, provided environmental item ` regulates target item i
0, if environmental item ` does not regulate target item i,

ζi :=
{

1, provided the environment cumulatively regulates target item i
0, if the environment does not cumulatively regulate target item i.

The outdegrees
∑n

i=1 χij ,
∑n

i=1 ξi` and
∑n

i=1 ζi count the numbers of target items reg-
ulated by target item j, by environmental item ` or by the cumulative environment, re-
spectively. Herewith, our parameter estimation task becomes a (generalized) mixed-integer
Chebychev approximation problem

(MICP)

min
(a∗ij),(w∗

i`),(v∗i ),(χij),(ξi`),(ζi)

l∗−1∑
α=0

∥∥∥A∗X̄(κα) + W∗ ¯̆
X(κα) + V∗ − ˙̄X(κα)

∥∥∥
2

∞

subject to





∑n
i=1 χij ≤ αj (j = 1, 2, . . . , n)∑n
i=1 ξi` ≤ β` (` = 1, 2, . . . , m)∑n
i=1 ζi ≤ γ

aii ≥ δi,min (i = 1, 2, . . . , n).

The connectivity of the network could be strongly restricted by the loss of the edges emanat-
ing at a few target items which are considered to play a very important role in regulation,
i.e., to have very high outdegrees (“knockout”; [18]). This can be the result of perturbations
caused by the environment and affecting the problem (MICP) with its rigid (exclusive)
binary constraints. We therefore replace them by continuous constraints in Section 9.

9 Improved Modeling by GSIP Extension

9.1 The GSIP Extension

The mixed-integer Chebychev approximation problem (MICP) includes rigid binary con-
straints. To alleviate the effects of these constraints we replace the binary variables χij , ξi`
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and ζi by real variables pij , qi`, ri ∈ [0, 1] which linearly depend on the elements of aij , wi`

and vi (also interpretable as probabilities) and assume some reasonable box constraints. By
this, the values

∑n
j=1 pij(a∗ij),

∑m
i=1 qi`(w∗i`) and

∑m
i=1 ri(v∗i ) have become interval-valued

approximations of the numbers of target items regulated by target item j, environmental
item ` and cumulative environment, respectively. All this leads us to a continuous optimiza-
tion problem [54, 63, 65, 66]. Having solved the continuous optimization problem, we could
return the binary variables and, hence, network rarefaction, by rounding or staying below
some small prescribed values εij , εi`, εi ∈ [0, 1), respectively [65].

The environment can seriously affect the connectedness between the target items. For
those reasons, the papers [54, 65] implied all the possible convex combinations of the envi-
ronmental effects into the inequalities about the bounded outdegrees. The set of combined
environmental effects is defined as the convex hull of all the vectors w∗i`ea(i−1)+` and v∗i emn+i:

Y (V∗,W∗) := conv
( {

w∗i`em(i−1)+`

∣∣ i = 1, 2, . . . , n; ` = 1, 2, . . . , m
}

∪{
v∗i σi,m+1emn+i

∣∣ i = 1, 2, . . . , n
} )

=





∑
i=1,...,n,
`=1,...,m

σi`w∗i`em(i−1)+` +
∑

i=1,...,n

σi,m+1v∗i emn+i

∣∣∣∣

σiτ ≥ 0 (i = 1, 2, . . . , n; τ = 1, 2, . . . , m + 1),

∑
i=1,...,n

τ=1,...,m+1

σiτ = 1





,

with eη denoting the ηth ((m + 1)n)-dimensional unit vector (0, . . . , 1, . . . , 0)T . Formally,
we can write Y (V∗,W∗) as a parallelpipe [61]

Y (V∗,W∗) =
∏

i=1,...,n
`=1,...,m

[0,w∗i`] ×
∏

i=1,...,n

[0, v∗i ].

Now, we get our (generalized) relaxed Chebychev approximation problem:

(RCP) min
(a∗ij),(w∗

i`),(v∗i )

l∗−1∑
α=0

∥∥∥A∗X̄(κα) + W∗ ¯̌X(κα) + V∗ − ˙̄X(κα)
∥∥∥

2

∞
,

subject to
∑n

i=1 pij(a∗ij , y) ≤ αj(y) (y ∈ Y (V∗,W∗); j = 1, 2, . . . , n),∑m
i=1 qi`(w∗i`, y) ≤ β`(y) (y ∈ Y (V∗,W∗); ` = 1, 2, . . . , m),∑m

i=1 ri(v∗i , y) ≤ γ(y) (y ∈ Y (V∗,W∗)),
δi,min ≤ a∗ii (i = 1, 2, . . . , n),

a∗ij ≤ a∗ij ≤ a∗ij (i, j = 1, 2, . . . , n),
w∗i` ≤ w∗i` ≤ w∗i` (i = 1, 2, . . . , n; ` = 1, 2, . . . , m),
v∗i ≤ v∗i ≤ v∗i (i = 1, 2, . . . , n).

Now we compare a∗ii and δi,min and choose the largest of the two values as a single lower
bound instead (δi,min < a∗ii provided). As given in the objective function by generalized
Chebychev approximation, this uniform interpretation of the “≤” conditions amounts to
the SIP character of (RCP). By the additional coupling of our inequality constraint set
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Y (V∗,W∗) with the states (V∗,W∗), (RCP) even becomes a GSIP problem. In the objective
function, the terms with the κth Chebychev norm ‖·‖∞ are nonsmooth max-type functions
(κ = 0, 1, . . . , l∗ − 1). By the following standard technique, (RCP) becomes smoothly
modeled. For each max-type function, we introduce a new coordinate τκ (in addition to the
unknowns of (RCP)), considered as a new coordinate and as a uniform bound for the squared
Euclidean norms of the elements inside the Chebychev norms. Herewith, we minimize the
sum of the bounds. As new inequalities we just introduce these bounding conditions; we
write them so that the Euclidean norms of all the elements inside the Chebychev norms have
uniformly to stay below the corresponding bounds.

9.2 GSIP for Regulation Networks

When we apply GSIP for our regulatory network problem (RCP) we obtain the general
program form

PGSI(f, h, g, u, v)





minimize f(x) on MGSI [h, g], where
MGSI [h, g] :=

{
x ∈ Rd|hi(x) = 0 (i ∈ I),

gj(x, y) ≥ 0 (y ∈ Y j(x), j ∈ J)
}
,



 (A1)

with |I|, |J | < ∞, and with sets Y j = Y j(x) defined as finitely constrained (F) feasible
sets [59]. For each x ∈ Xd, we have a representation

Y j(x) = MF [uj(x, ·), vj(x, ·)]
:=

{
y ∈ Rq

∣∣ uk(x, y) = 0 (k ∈ Kj), v`(x, y) ≥ 0 (` ∈ Lj)
}}

(A2)

with finite sets Kj and Lj . The model (A1)-(A2) allows equality constraints on both the
upper (x-) level and lower (y-) level representing, e.g., further restrictions, reactions or
balance equations [54, 63, 65]. The outdegree constraints in (RCP) may be assumed to
be of class C2, too. The bounds guarantee that the feasible set MGSI [h, g] is compact in
the projective sense of the original 2(n2 + mn + n) unknowns (with intervals encoded by
tuples of endpoints), but not in the “height” dimensions of the new coordinates τκ. This
noncompactness can be overcome as shown in [56, 59]. Here, the sets Y j(x) are compact
and fulfill the Linear Independence Constraint Qualification (LICQ), an appropriate choice
of the overall box constraints provided. The works [54, 59, 65, 66] provide more detailed
discussions and generalizations of GSIP.

9.3 Structural Stability for Regulation Networks

In this subsection we state the main theorem on structural stability of our regulation net-
works. Perturbations of the form (f, h, g, u, v) 7→ (f̃ , h̃, g̃, ũ, ṽ) may be caused, e.g., by
outliers of parallelpipes, “perturbed” problems and networks and certain kinds of errors,
imprecision and uncertainty [54, 65]. The strong Whitney topology C2

S [24] serves as a
“measure” of perturbations so that asymptotic aspects are taken into account. If the per-
turbed and the arbitrarily slightly unperturbed lower level sets of its objective function are
homeomorphic to each other, under some correspondence between the levels, we call (RCP)
structurally stable [24, 26, 56, 59]. Now, we can carry over and state the Characterization
Theorem on Structural Stability for Regulation Networks from [54, 65] for (RCP) (for details
cf. [57, 58, 59]). Our main theorem basically states that structural stability can just be
characterized by two well-known regularity conditions and a more technical one:
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Characterization Theorem on Structural Stability for Regulation Networks. [63,
66]
The optimization problem PGSI(f, h, g, u, v) on regulatory networks is structurally stable,
if and only if the following triplet of conditions C1, 2, 3 is satisfied:

C1. EMFCQ holds for MGSI [h, g].

C2. All the generalized-ordinary (G-O) Kuhn-Tucker points x of PGSI(f, h, g, u, v) are (G-O)
strongly stable.

C3. For each two different G-O Kuhn-Tucker points x1 6= x2 of PGSI(f, h, g, u, v) the corre-
sponding critical values are different (separate), too: f(x1) 6= f(x2).

This characterization theorem helps for a well understanding of the topological “land-
scape” of regulation networks, for their perturbational behaviour and for the development
of numerical procedures. For example, we can consider “mountain paths” (saddle points)
between any two candidate networks being given by local minimizers of (RCP). All the
points around candidate solutions can be regarded as potential networks which may be ob-
tained after perturbations [57, 58, 59]. They may be outcomes of underlying constellations
in the experimental design which may have to be reconstructed, which is an inverse problem.
In terms of testing the goodness of data fitting, the lower level sets can be interpreted as
confidence regions around the parameters estimated. The size of these regions is basically
governed by the steepness of the function around the solution. In cases where a local or
global minimizer is very steep, we can associate this with stability, whereas flatness is more
likely related with instability [66]. For a better analytical understanding of (RCP) and its
solution, we identify possible pathologies in terms of one or more of the conditions C1, 2, 3

violated.
We point out a relation to conic programming (CP), however, in a GSIP sense. If in

(RCP) all the functions defining the constraints are linear and the squares on the Chebychev
norms deleted, then we obtain such a CP problem. If we square both the linear constraint
functions and the bounds, we arrive at the special case of CP called conic quadratic program-
ming (CQP) [49]. In CP problems, interior point methods can be introduced and efficiently
applied.

10 On the Numerics of the Linear Inverse Problem

Our parameter estimation problems, as far as they are linear, do not directly have the canon-
ical form of linear least-squares (or inverse) problems. Indeed, the unknowns are matrices
here rather than vectors. However, our problem can be represented in a canonical way such
that the coefficient matrix reveals a block-diagonal form [16]. In case of sufficiently many
blocks and zeros in them, the matrix is sparse. Already in the underlying problem form
(CE)ext, there are many vanishing entries. Kazcmarz algorithm with its different versions
of iterative projection methods [6] is an important and advisable way for approximately
solving linear inverse (or feasibility) problems with a sparse coefficient matrix. Numerically,
it is important to have or otherwise to prepare neighbouring linear conditions (defining hy-
perplanes) to be as “distant” as possible. The work [8] can be regarded as a generalization
of this idea to other types of feasibility and optimization problems; there are convex sets in-
stead of hyperplanes. In [8], a new version of the successive projection algorithms introduced
by Brègman and von Neumann [7, 55] is given. These algorithms are widely applicable in
medical imaging, computerized tomography and signal processing. The authors study the
convergence and propose a finite termination criterion allowing to analyze the complexity.
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11 Modeling by Stochastic Differential Equations

A further interesting approach to our modeling, in particular in financial sciences, is based
on stochastic differential equations (SDE). Such an equation is typically given by

Ẋ(t) = a(X, t) + b(X, t)δt (t ∈ [0,∞)),
X(0) = x0,

where a is the deterministic part, bδt is the stochastic part, and δt denotes a generalized
stochastic process [28, 62]. An example for a generalized stochastic process is white noise.
Suppose that Wt is a generalized version of a Wiener process, i.e., a time-continuous process
with the property Wt ∼ N(0, t) (0 ≤ t ≤ T ). To obtain our approximate and a smoothed
model, we treat Wt as differentiable. Then, white noise δt is defined as δt = Ẇt = dWt/dt
and a Wiener process can be obtained by smoothing the white noise. If we replace δtdt by
dWt in our SDE, we obtain

dXt = a(Xt, t)dt + b(Xt, t)dWt,

where a(Xt, t) and b(Xt, t) are drift and diffusion terms, respectively, and Xt is a solution
which we try to find based on the experimental data. Since we do not know the distribution
of Xt, we want to simulate its values. For this reason, we simulate a discretized version of
SDE. We consider the Milstein scheme and obtain

Xk+1 = Xk + a(Xk, t)(tk+1 − tk) + b(Xk, t)(Wk+1 −Wk)

+
1
2
(b′b)(Xj , t)

((
Wk+1 −Wk

)2 − (
tk+1 − tk

))

as an approximation for Xt (here, we understand Xk in the sense of our estimation X̂(k)

and the prime “ ′ ” denotes the derivative with respect to t). When we refer to the finitely
many sample points

(
Xj , t̄j

)
, we get the discrete approximation

Ẋκ = a
(
Xκ, tκ

)
+ b

(
Xκ, tκ

) ∆Wκ

hκ

+
1
2
(b′b)

(
Xκ, tκ

)( (∆Wκ)2

hκ

− 1
)

for κ = 0, 1, . . . , N . Here, the vector Ẋκ represents difference quotients based on the κth
experimental data and on step lengths hκ := tκ+1−tκ = ∆tκ between neighbouring sampling
times. This relation cannot hold in an exact sense since we consider real data, but it is
satisfied best in the approximate sense of least squares of errors. The increments ∆Wt

are independent on non-overlapping intervals and we have Var
(
∆W t

)
= ∆tκ. Hence, the

increments having a normal distribution can be simulated by normal distributed random
numbers Zκ and we obtain a discrete model:

∆W t = Zκ

√
∆tκ, Zκ ∼ N(0, 1).

If we use this in our discretized equation, we obtain

Ẋκ = a
(
Xκ, tκ

)
+ b

(
Xκ, tκ

) Zκ√
hκ

+
1
2
(b′b)

(
Xκ, tκ

)(
Z

2

κ − 1
)
.

We can rewrite this as
Ẋκ = Gκ + Hκcκ +

(
H
′
κHκ

)
dκ,
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where

cκ :=
Zκ√
hκ

, dκ :=
1
2
(
Z

2

κ − 1
)
, Gκ := a

(
Xκ, tκ

)
, Hκ := b

(
Xκ, tκ

)
.

The unknowns Gκ and Hκ can be determined by the optimization problem

min
y

l−1∑
κ=1

(
Ẋκ −

(
Gκ + Hκc +

(
H
′
κHκ

)
d
))2

,

where the vector y comprises all the parameters in the Milstein model. As the data may have
a high variation we must use a parameter estimation method which will give a smoother
approximation to the data. In [46, 48] splines were used to avoid large oscillations observed
for high degree polynomial approximation. In addition, a penalized residual sum of squares
for SDE and a related Tikhonov regularization problem (that could be solved with MATLAB
Regularization Toolbox) have been proposed. Alternatively to the concept of Tikhonov
regularization we can apply conic quadratic programming and we refer to [23, 46, 48] for
further details and to [23] for a study on the prediction of the credit-default risk that already
demonstrated the value of generalized additive models.

12 On Spline Regression Applied in an Additive Model

In [63, 66], spline regression has firstly become introduced into our modeling and analysis.
This approach has been generalized to the interval-valued case [61]. There, we understand
integrals with interval-valued integration endpoints as families of integrals. Splines, i.e.,
smooth piecewise polynomial functions [12], are very suitable to approximate observed data
X̄ without any significant asymptotic growths → ±∞. They are described as linear com-
binations of basis splines and approximate the data (t̄κ, ˙̄X(κ)). In (ACE), we use splines
fα(Xα) per entry of A(X), W(X) and V(X), within an approach which we call separation
of variables; i.e., with base (B-) splines h1,i,j

α,γ (Xα), h2,i,j
α,γ (Xα), h3,i,j

α,γ (Xα), evaluated at the ex-
pression levels of the αth target variable, and partial intercepts β1,i,j

0 , β2,i,j
0 , β3,i,j

0 , depending
on Ẋ(κ) (κ = 0, 1, . . . , l − 1) [63, 66]. We obtain the representation

aij(X) = β1,i,j
0 +

n∑
α=1

f1,i,j
α (Xα) = β1,i,j

0 +
n∑

α=1

pij∑
γ=1

θ1,i,j
α,γ h1,i,j

α,γ (Xα) (i, j = 1, 2, . . . , n)

and

wi`(X) = β2,i,`
0 +

n∑
α=1

f2,i,`
α (Xα) = β2,i,`

0 +
n∑

α=1

qi∑̀
ϕ=1

θ2,i,`
α,ϕ h2,i,`

α,ϕ (Xα)

as well as

vi(X) = β3,i
0 +

n∑
α=1

f3,i
α (Xα) = β3,i

0 +
n∑

α=1

ri∑
ν=1

θ3,i
α,νh3,i

α,ν(Xα)

with i = 1, . . . , n; l = 1, . . . , m. A great benefit of using the base splines is provided by
the following recursion, where we denote the kth order base spline by hη,k (a polynomial of
degree k − 1) with knots xη:

hη,1(x) =

{
1 , if xη ≤ x < xη+1

0 , otherwise,
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hη,k(x) =
x− xη

xη+k − xη
hη,k−1(x) +

xη+k+1 − x

xη+k+1 − xη+1
hη+1,k−1(x)

for all orders k ≥ 1. In the above representation, h1,i,j
α,γ (Xα) are base splines evaluated at the

expression levels of the αth target item. By the parameters β1,i,j
0 we denote partial intercepts

depending of the output data Ẋ(κ) (κ = 0, 1, . . . , l− 1) (percentages of their averaged data).
By this an additive separation of the variables is realized. However, this linear kind of
interaction is not always given but can be considered as an approximation. Instead, below,
we will come to a different interpretation of our additive functional structure by a clustering
of the input data. This additivity may be regarded as a model richness which is intermediate
in-between both affine linearity and a nonlinearity that takes into account more complex
interactions and correlations between the variables or data clusters, respectively. Firstly,
we choose splines degrees individually for each entry aij(X). Likewise, we represent the
entries of W(X) and V(X) by splines. Indeed, when using spline functions for the entries
wi`(X) and vi(X) we must be careful since they are environmental effects influencing the
target levels and their approximation. Since we consider these effects to be very small,
they have a restricted effect represented by the selected spline degrees for wi`(X) and vi(X)
not larger than those of aij(X). Otherwise, the approximated levels of the target variables
can become affected and this may imply instability in the parameter estimation [49]. To
quantify that possible instability, we refer to the second order derivatives (curvature) of the
model functions. Then, looking at the equation (ACE)gene, our model becomes fitted by
minimizing the criterion of penalized sum of squares [21]:

PRSS(A,W,V) =
l−1∑
κ=0

∥∥∥ ˙̄X(κ) −A(X̄(κ))X̄(κ) −W(X̄(κ)) ¯̆
X(κ) −V(X̄(κ))

∥∥∥
2

∞

+ Penalty Term

=
l−1∑
κ=0

n∑

i=1

(
˙̄X(κ)
i −

n∑

j=1

aij(X̄κ)X̄(κ)
j −

m∑

`=1

wi`(X̄(κ)) ¯̆
X

(κ)
` − vi(X̄(κ))

)2

+ Penalty Term.

Here, ‖·‖∞ denotes the Chebychev norm. If we use our additive model approximations
for aij(X), wi`(X) and vi(X), then PRSS has the following form, where (·)′′Xα

denotes
differentiation with respect to Xα:

Penalty Term =
n∑

i=1

n∑

j=1

[
n∑

α=1

λ1,i,j
α

∥∥∥∥
∫ XU

α

XL
α

(
f1,i,j

α (Xα)Xj

)′′2
Xα

dXα

∥∥∥∥
2

∞

]

+
n∑

i=1

m∑

l=1

[
n∑

α=1

µ2,i,`
α

∥∥∥∥
∫ XU

α

XL
α

(
f2,i,l

α (Xα)X̆l

)′′2
Xα

dXα

∥∥∥∥
2

∞

]

+
n∑

i=1

[
n∑

α=1

ς3,i
α

∥∥∥∥
∫ XU

α

XL
α

(
f3,i

α (Xα)
)′′2
Xα

dXα

∥∥∥∥
2

∞

]
,

where λ1,i,j
α , µ2,i,`

α , ς3,i
α ≥ 0 are penalty parameters, and XL

α , XU
α are lower and upper

bounds of Xα. Here, X̆l are the constant environmental factors and not depending on
the levels of the target variable Xα; we may uniformly replace them by the averaged data
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X̆` := 1
l

∑l−1
κ=0

¯̆
X

(κ)
l . Then, denoting φ2,i,`

α := µ2,i,`
α X̆2

` , the penalty term can be written as

Penalty Term =
n∑

i=1

n∑

j=1

[
n∑

α=1

λ1,i,j
α

∥∥∥∥
∫ XU

α

XL
α

(
f1,i,j

α (Xα)Xj

)′′2
Xα

dXα

∥∥∥∥
2

∞

]

+
n∑

i=1

m∑

`=1

n∑
α=1

[
φ2,i,`

α

∥∥∥∥
∫ XU

α

XL
α

(
f2,i,`

α (Xα)
)′′2
Xα

dXα

∥∥∥∥
2

∞

]

+
n∑

i=1

[
n∑

α=1

ς3,i
α

∥∥∥∥
∫ XU

α

XL
α

(
f3,i

α (Xα)
)′′2
Xα

dXα

∥∥∥∥
2

∞

]
.

Inside the integrals of the first sum terms, we find the squared second order derivatives to
have the values ((Xj +δαj)(f1,i,j

α (Xα)Xj)
′′
Xα

+δαj(f1,i,j
α (Xα)Xj)

′
Xα

), with Kronecker’s delta
symbol δαj representing some “on/off” kind of activation/deactivation, such there is a shift
in terms of first-order derivatives (denoted by (·)′Xα

), and a mixing effect by squaring. Using
spline functions inside PRSS, putting

G(M, W,V) :=
l−1∑
κ=0

n∑

i=1


 ˙̄X(κ)

i −
n∑

j=1

aij(X̄(κ))X̄(κ)
j −

m∑

l=1

wil(X̄(κ)) ¯̆
X

(κ)
l − vi(X̄(κ))




2

=:
∥∥U(θ1, θ2, θ3)

∥∥2

∞

and using the discretized form [49] for all members in the integral terms, then we can
write each of them as

∥∥Vi,α,j(θ1)
∥∥2

∞,
∥∥Wi,α,`(θ2)

∥∥2

∞ and
∥∥Zi,α(θ3)

∥∥2

∞. Now, turning to a
constrained rather than a penalized program, PRSS can be interpreted as an optimization
problem of the following form:

min
t,θ1,θ2,θ3

t,

where
∥∥U(θ1, θ2, θ3)

∥∥2

∞ ≤ t2∥∥Vi,α,j(θ1)
∥∥2

∞ ≤ Ai,α,j (i, α, j = 1, 2, . . . , n)∥∥Wi,α,`(θ2)
∥∥2

∞ ≤ Ni,α,` (i, α = 1, 2, . . . , n; ` = 1, 2, . . . , m)∥∥Zi,α(θ3)
∥∥2

∞ ≤ Ri,α (i, α = 1, 2, . . . , n)
t ≥ 0.

This optimization problem has the form of a conic quadratic programming (CQP) prob-
lem, which can be solved by interior points method (IPM) [33, 34, 35, 49]. Except for very
large-scale problems with dense matrices, these problems have a moderate complexity. As
learned in [49], CQP and IPM are much more convenient than penalty methods connected
with backfitting algorithm [21]. Conic programming is also helpful in clustering theory, es-
pecially, in computational biology [3, 4]. We note that among the basic kinds and important
kinds of spline regression, MARS (multivariate adaptive repression spline) belongs, which
uses natural, elementary base functions which are nonsmooth [15, 21]. The most widespread
MARS algorithm bases on a forward step of setting up the model and minimizing the lack
of fit, an a backward step on controlling the complexity by generalized cross-validation. In
[51], an alternative to the backward step was proposed with the help conic quadratic pro-
gramming [34], and Tikhonov regularization [6] which can be regarded as a penalization
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techniques or multiobjective optimization for inverse problems. By the study [67] it has
been demonstrated that this new approach coming from continuous optimization is very
much competitive and even superior to the classical MARS, applied to different data sets.

13 Eco-Finance Networks

The models and analysis of the previous sections provide a conceptual framework for various
problems in Operational Research. We illustrate this with an important example in the field
of CO2-emissions-control and an example of operational planning and portfolio optimization
in the context of natural gas transportation systems. By this, our regulatory-networks are
extended to the so-called eco-finance networks.

The model under consideration is the so-called Technology-Emissions-Means Model (in short:
TEM model), developed by S. Pickl for the mathematical analysis of international collabora-
tions and joint implementation programs (JI) in the framework of the Kyoto Protocol [36].
The TEM model integrates the simulation of the technical and financial parameters and
describes the economical interactions between several actors (countries, companies) which
intend to minimize their emissions by means of cooperative game theory. The players are
linked by technical cooperations and the market, which expresses itself in the nonlinear time
discrete dynamics of the TEM model [30, 37, 38, 39]. We denote by Ei the emissions caused
by technologies Ti using financial means Ei, where the index i stands for the ith player
(i = 1, 2, . . . , N). The relationship between financial means and reduced emission in a JI
program is given by

∆Ei(k) =
N∑

j=1

emij(k)Mj(k),

∆Mi(k) = −λiMi(k)(Mi −Mi(k))(Ei(k) + ϕi∆Ei(k))

with

∆Ei(k) := Ei(k + 1)− Ei(k) and ∆Mi(k) := Mi(k + 1)−Mi(k),

where the discrete times tk are renamed by k. Furthermore, Mi stands for the upper bounds
for the financial investigations. The first equation describes the time-dependent behaviour
of the emissions reduced so far by each player. These levels Ei are influenced by financial
investigations Mj which are restricted by the second equation. We understand Ei as the
reduced emissions of actor i in % and Mi as the financial means of actor i. The parameters
ϕi are called memory parameters. Thus, the multiplication of ∆Ei with ϕi can be regarded
as a memory effect; this expression stands for the influence of earlier investments. The first
part of the second equation resembles a logistic difference equation, where the proportional
factor λi can be seen as a growth parameter. Each coefficient emij describes the effect on
the emissions of the ith actor if the jth actor invests one unit of money for his technologies,
e.g., devices of filters in energy production of consumption. This also shows how effective
technology cooperations are, what is the kernel of the JI program. The parameters emij

have to be determined empirically. The numerical examinations which show that chaotic
behaviour can occur, underline the necessity of a control theoretic approach which is implied
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by an additional control term in the second equation of the TEM model:

Ei(k + 1) = Ei(k) +
N∑

j=1

emij(k)Mj(k),

Mi(k + 1) = Mi(k)− λiMi(k)(Mi −Mi(k)) (Ei(k) + ϕi∆Ei(k)) + ui(k).

We note that the TEM model relies on exact data, but this approach aims to model real-
world processes, imprecisions and errors have to be considered. For this, in [60] an interval-
valued reformulation within the framework of our regulation networks has been proposed
and the TEM model has been structured as follows:

(
ET ,MT

)T (k+1)
= M (k)

((
ET ,MT

)T (k))(
ET ,MT

)T (k)
.

Having added the control parameter, we obtain the time-discrete dynamics

(
E
M

)(k+1)

= M (k)

((
E
M

)(k))(
E
M

)(k)

+
(

0
u(k)

)
,

which we can represented by

(DE) X(k+1) = A(k)X(k).

Here, the matrices A(k) incorporate the control variables. In this extended space notation,
the variable X and entire dynamics (DE) could be enriched by further environmental and,
in particular, target items and relations. The shift vector (0T , (u(k))T )T can be regarded as
parametric and as a realization of V(X, X̌∨); then, our stability theory could be employed.
According to how those matrices are adjusted, we arrive at different behaviours of stability
or instability of (DE) or of parameter estimation. As a dual alternative to that feedback-like
realization by the vector V(X, X̌∨) which becomes incorporated into the matrix A(k), the
control vectors u(k) could also become integrated into X(k). The time-dependent parameters
em

(k)
ij can be treated in similar ways as the controls.

Finally, as a further application of our eco-finance networks we mention the operational
planning for the “natural gas value chain”, where the production (gas transportation and
storage, processing) as well as the market situation (financial market, spot market, contract
market) have to be considered. In [52] a portfolio optimization model for gas transport
systems with the aim of production and market optimization has been proposed. For the
arrangement of short term production plans, for market balancing (mixing physical produc-
tion, spot trades) and for transportation booking and storage utilization - which could be
interpreted as the economic key variables - various positions and resources on different time-
scales with inherent uncertainty have to be considered. In particular, strategic plans (field
and pipeline investments, long term contracts, production profiles, lifting agreements) and
tactical plans (production plans, transportation plans, storage profiles) have to be observed,
that built the environmental items in our eco-finance networks.

14 Conclusion

In the previous sections we have presented various models for the mathematical analysis
of highly-interconnected systems under uncertainty. We have analyzed the dynamic inter-
actions between a class of target variables and certain environmental items and explored
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the structure of the underlying regulatory network. In addition, we conducted a parameter
estimation and a stability analysis for the resulting models. Finally, we have shown that our
modelling can be successfully applied to important problems from finance and technology
and we have introduced the eco-finance networks.
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[13] T. Ergenç and G.-W. Weber, Modeling and prediction of gene-expression patterns re-
considered with Runge-Kutta discretization, Journal of Computational Technologies 9
(2004) 40–48.

[14] M. Fiedler, J. Nedoma, J. Ramik, J. Rohn and K. Zimmermann, Linear optimization
problems with inexact data, Springer Verlag, Berlin, 2006.

[15] J.H. Friedman, Multivariate Adaptive Regression Splines, The Annals of Statistics 19
(1991) 1–67.
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