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1 Introduction

Polynomial splines are an efficient tool for data and function approximation. In this paper,
polynomial splines are thought to be continuous piece-wise polynomial functions in an ap-
proximation interval [a, b]. Their derivatives may be discontinuous at the points where the
polynomials are joined together. In this paper we are focusing on linear splines.

Polynomial splines are more flexible approximation techniques than polynomials. The
combination of the simplicity of polynomials and the flexibility allows the significant decrease
of the degree of the corresponding polynomials and the reduction of severe oscillations of
associated deviation functions.

Polynomial splines with fixed knots have been extensively studied. Optimality conditions
for fixed knots polynomial spline approximations can be found in [5, 7, 9]. These conditions
are generalisations of the Chebyshev theorem which represents necessary and sufficient op-
timality conditions for the case of polynomial approximation [2]. In the case of polynomial
approximation and fixed knots polynomial spline approximation the corresponding optimi-
sation problems are convex, and therefore necessary and sufficient optimality conditions
coincide. In the case of free knots polynomial spline approximation the corresponding opti-
misation problems are nonconvex and therefore necessary conditions may not coincide with
sufficient ones.

The problem of polynomial spline approximation with free knots has been studied by
several researchers. An extensive review of the existing results can be found in [5]. This
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book also contains a characterization theorem for free knots polynomial spline approxima-
tion. In this paper, we derive a necessary optimality condition which can be treated as a
complimentary condition to the one presented in [5]. Also, in this paper we show that in
the case of free knots polynomial spline approximation internal knots may belong to two
different categories (regular and irregular). By taking this into account, it may be possible
to improve the existing necessary optimality condition [5]. This property for internal knots
has not been identified before.

The necessary optimality condition, derived in this paper, is based on the notion of alter-
nance. Similar to the case of polynomial and fixed knots polynomial spline approximation,
this condition may be used for developing Remez-like algorithms for constructing polynomial
splines which satisfy this necessary optimality condition.

This paper is constructed as follows. In section 2 we present necessary definitions and
earlier obtained results for the case of polynomial and fixed knots polynomial spline ap-
proximation. In section 3 we formulate a necessary optimality condition for the case of free
knots linear spline approximation. This condition is based on the notion of stationarity.
Section 4 introduces an approach for the verification of this necessary optimality condition.
This approach is based on the number of alternance points. Section 5 contains conclusions
and further research directions.

2 Preliminaries

2.1 Definitions

There are several definitions for polynomial splines. In this paper we use the following
approach to define polynomial splines: suppose that a polynomial spline Sp(t) is determined
in an interval [a, b] (approximation interval), suppose also that this interval has been divided
into n segments (subintervals), such that

a = θ0 < θ1 < θ2 < · · · < θn = b. (2.1)

Definition 2.1. A polynomial spline (or spline) is a continuous piece-wise polynomial func-
tion, which is represented in each segment Ti = [θi−1, θi], i = 1, . . . , n by a polynomial of
degree less than or equal to m, where m is the degree of the polynomial spline.

Definition 2.2. The points θi, i = 0, . . . , n are called the polynomial spline knots (or knots).
The points θi, i = 1, . . . , n− 1 are called the internal knots. The points θ0 and θn are called
the external knots.

Definition 2.3. The difference between the degree of the spline and the order of the highest
continuous derivative is called the defect of the spline.

Consider an example of polynomial spline construction (see [9]).

Sm(A, t) = a0 +
n∑

i=1

m∑

j=m−d+1

aij(t− θi−1)
j
+, (2.2)

where m is the spline degree, d is the spline defect, θi, i = 0, . . . , n are the spline knots,

(ξ(x))+ =
{

ξ(x), ξ(x) > 0,
0, ξ(x) ≤ 0.
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Definition 2.4. Vector A = (a0, a11, . . . , anm) ∈ Rmn+1 is called the vector of spline pa-
rameters.

Remark 2.5. Notice also that according to the Haar theorem (see [4] and references within)
in the case of polynomial approximation the best polynomial approximation is unique, since
1, x, x2, . . . , xn form a Chebyshev system. In the case of polynomial spline approximation
the best polynomial spline approximation is not necessarily unique, since (t − θi−1)

j
+, i =

1, . . . , n, j = 1, . . . , m do not form a Chebyshev system.

In some cases, it is necessary to specify the degree of the polynomials which represent
the spline in each segment more precisely. This approach may help to reduce the dimension
of the corresponding optimisation problem.

Definition 2.6. If in each segment [θi−1, θi] the spline is thought to be a polynomial of de-
gree less than or equal to mi then the vector M = (m1,m2, . . . , mn) is called the generalised
(vector) degree of the polynomial spline.

A polynomial spline of generalised degree M = (m1, . . . , mn) can be constructed as
follows: in each segment Ti = [θi−1, θi] it is presented by a polynomial Pi(t), such that

P1(t) =
m1∑

j=1

a1j(t− θ0)j +a0, Pi(t) =
mi∑

j=1

aij(t− θi−1)j +Pi−1(θi−1), i = 2, . . . , n. (2.3)

Definition 2.7. Vector A = (a0, a11, a12, . . . , a1m1 , a21, . . . a2m2 , . . . , anmn) ∈ Rγ+1, γ =∑n
j=1 mj is called the vector of the parameters of the polynomial spline of generalised degree

M = (m1, . . . , mn).

A polynomial spline of generalised degree M = (m1, . . . , mn) can be also presented as
follows:

SM (A, t) = a0 +
n∑

i=1

mi∑

j=mi−di+1

aij((min{t, θi} − θi−1)+)j , (2.4)

where A = (a0, a11, . . . , anmn) ∈ Rγ+1 is the vector of spline parameters, D = (d1, . . . , dn)
is the defect vector, θi are the spline knots (i = 0, . . . , n, a = θ0, b = θn),

(ξ(x))+ =
{

ξ(x), ξ(x) > 0,
0, ξ(x) ≤ 0.

This presentation of polynomial splines is similar to (2.2). However, the meanings of
spline parameters in (2.2) and (2.4) are not the same. There are two main advantages
of (2.4) compared to (2.2).

Firstly, the presentation (2.4) allows for the construction of polynomial splines with
various degree polynomials in different intervals, which is not straight forward in the case
of (2.2) if, for example, mi > mi+1.

Secondly, the components of the vector of the spline parameters in (2.4) are the coeffi-
cients of the corresponding polynomials, namely

• a0, a11, . . . , a1m1 are the parameters of P1(t) from (2.3);

• Pi(θi−1), ai1, . . . , aimi
are the parameters of Pi(t) from (2.3), i = 2, . . . , n.
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Definition 2.8. Polynomial spline of generalised degree M = (m1, . . . , mn) and defect
D = (m1, . . . , mn) are called the highest defect polynomial splines.

In this paper we are focusing on polynomial splines of degree one and defect one.

2.2 Necessary and Sufficient Optimality Conditions for Polynomial Splines
with Fixed Knots

In this subsection we present a short review of existing results, covering optimality condi-
tions for the case of polynomial and fixed knots polynomial spline approximation. These
optimality conditions are based on the notion of alternance points.

Definition 2.9. A function g(t) alternates p times in an interval [a, b] if there exist p + 1
points ti < ti+1 ∈ [a, b], such that

g(ti) = −g(ti+1) = ± max
t∈[a,b]

|g(t)|.

Definition 2.10. Alternance points are the points where the absolute value of the deviation
is maximal and the sign of the deviation at any two consequent points is opposite.

Necessary and sufficient optimality conditions in the case of polynomials have been ob-
tained by Chebyshev (see [2]). Later they were generalised to some particular types of
polynomial splines ([5, 7, 9]).

Theorem 2.11 (Chebyshev). Necessary and sufficient conditions for a polynomial of
degree m to be the best Chebyshev approximation are that the approximation interval contains
at least m + 2 alternance points.

In 1967 this theorem was generalised to the case of polynomial splines of defect 1 (Rice,
see [7], the characterization theorem).

Theorem 2.12 (Rice). Let f(t) be continuous in [a, b] and let S(A, t) be a polynomial
spline of defect 1 and degree m. Then necessary and sufficient conditions for S(A∗, t) to
be a best Chebyshev approximation to f(t) is that there exists a subinterval [θi, θi+p], which
contains at least m + p + 1 alternance points.

Definition 2.13. A minimal length subsequence of intervals, where the condition of Rice
theorem are satisfied is called a minimal subsequence (see [9]).

In the case of higher degree fixed knots polynomial splines necessary and sufficient opti-
mality conditions can be found in [5, 9].

Apart from their theoretical importance, these optimality conditions can be used to
develop an algorithm of optimal spline construction (Remez-type algorithm).

The classical Remez algorithm [6] plays an important role in the area of polynomial
approximation. At each iteration of this algorithm necessary and sufficient optimality con-
ditions for the case of polynomial approximation are verified. This method has been gener-
alised to the case of fixed knots polynomial splines (see [5, 8]). The generalisations in [8] also
require the verification of the necessary and sufficient optimality conditions for polynomial
spline approximation.
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3 Free Knots Linear Spline Approximation: Necessary Conditions

3.1 Formulation

In [1] the author uses piece-wise linear functions to separate two sets of points. These piece-
wise linear functions have been constructed as a max min of some linear functions. In our
research we use a similar approach to construct polynomial splines of degree one, which
are simply piece-wise linear functions. The corresponding approximation problem can be
formulated as follows:

minimise Ψ(A,B) subject to A ∈ Rn, B ∈ Rn, (3.1)

where n is the number of subintervals,

Ψ(A,B) = max
t∈[a,b]

max{ϕ(A,B, t),−ϕ(A,B, t)},

ϕ(A,B, t) = max
i∈I

min
j∈Ji

(aijt− bij)− f(t),

Ji, i ∈ I are partitions.
Each partition is a subsequence of successive intervals, such that the corresponding piece-

wise linear functions are concave (after taking min) and the number of intervals in the
subsequence is maximal (maximal length subsequence). Then, by taking max over concave
functions one gets the whole spline. Each interval can be identified as a pair (i, j) : i ∈
I, j ∈ Ji, basing on the partition. This pair is called an identification pair. Henceforth the
following notation is used:
T (i, j) is the interval with the identification pair (i, j),

ϕi,j(A,B, t) = (aijt− bij)− f(t), i ∈ I, j ∈ Ji; (3.2)

I = {1, . . . , |I|}, Ji = {1, . . . , ji}, ji = |Ji|.
Remark 3.1. It is essential that the lengths of the corresponding subsequences are maximal.

Remark 3.2. In most practical problems optimal partitions are unknown. The goal of our
study is to obtain a necessary optimality condition for polynomial spline approximation.
Therefore, our goal is not to find an optimal partition, but to assess whether the obtained
partition may be optimal or not.

Remark 3.3. Also notice that in the case of free knots polynomial splines necessary opti-
mality conditions may not coincide with sufficient optimality conditions as the optimisation
problem is not convex.

Now let us highlight some important characteristics of the points located in an approxi-
mation interval. These characteristics are direct consequences of partitioning.

• Points which are not internal knots (external knots and internal interval points) enjoy
the following properties:

− at each point there is exactly one i ∈ I, such that the max is reached;

− at each point there is exactly one j ∈ Ji, such that the min is reached;
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• Polynomial spline internal knots enjoy the following properties:

− at each internal knot there are no more than two i ∈ I, such that the max is
reached;

− at each internal knot there are no more than two j ∈ Ji, such that the min is
reached.

Definition 3.4. If for an internal knot θ there exists exactly one pair of indexes i1, i2 ∈ I
(j1, j2 ∈ Ji), such that the max (min) is reached then this knot is a responsible for max
(min) knot.

Definition 3.5. If for an internal knot θ there exist exactly two indexes i1, i2 ∈ I (j1, j2 ∈
Ji), such that max (min) is reached then this knot is a responsible for max (min) knot.

Definition 3.6. If an internal knot joins two linear functions with the same linear coeffi-
cients then the spline is smooth at this knot and the knot is called a smooth knot.

Notice that each internal knot is either responsible for a max or for a min or this knot
is smooth.

Example 3.7.

Figure 1: Example of regular and irregular alternance points.

Figure 1 represents a linear spline approximating the dashed curve. The spline can be
constructed as follows:

max{min{`1, `2, `3},min{`4, `5, `6},min{`7},min{`8}},
where `k, k = 1, . . . , 8 are the linear functions corresponding to the spline in the kth interval.
Then I = {1, 2, 3, 4}, J1 = {1, 2, 3}, J2 = {1, 2, 3}, J3 = {1}, and J4 = {1}: `1, `2, `2
correspond to J1, `4, `5, `6 correspond to J2, `7 corresponds to J3,`8 corresponds to J4.

Functions `4 and `5 coincide. Hence the knot t4 is a smooth knot. Points t3, t6 and t7 are
max-knots; t1, t2 and t5 are min-knots. Unlike the other knots, t2, t4 and t6 are not points
of maximal deviation, and so are not considered in the construction of the quasidifferentials.

3.2 Characterization Theorem for Free Knots Linear Spline Approximation:
Existing Results

An extensive review of existing results in the area of free knots polynomial spline approxi-
mation can be found in [5]. In this book one can find a characterization theorem obtained
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for free knots polynomial spline approximation. Since in this paper we are focusing on poly-
nomial splines of degree one, we reformulate the characterization theorem from [5] to the
case of linear splines.

Theorem 3.8 (Characterization theorem). Suppose that a continuous or discrete func-
tion (data) is approximated by free knots polynomial splines of degree one. A necessary
condition for a linear spline to be optimal is that there exists a subsequence of k subintervals
of the original interval [a, b], such that this subsequence contains at least 2k + 1 alternance
points.

3.3 Optimality Conditions for Free Knots Linear Spline Approximation

The objective function in optimisation problem (3.1) is nonsmooth and nonconvex. This
function is quasidifferentiable (see [3]). A necessary condition for a point (A∗, B∗) to be a
local minimum of Ψ(A,B) is as follows [3]:

−∂Ψ(A∗, B∗) ⊂ ∂Ψ(A∗, B∗), (3.3)

where ∂Ψ(A∗, B∗) and ∂Ψ(A∗, B∗) are sub- and superdifferential of Ψ(A∗, B∗) at (A∗, B∗).
The condition (3.3) is also known as a stationarity condition.

Definition 3.9. For a given pair (A∗, B∗) points tk, where ϕ(A∗, B∗, tk) reaches its maximal
absolute value are called maximal deviation points.

A subdifferential ∂Ψ(A,B) at (A∗, B∗) can be constructed as follows:

∂Ψ(A∗, B∗) = co





⋃

k∈K+

∂ϕ(A∗, B∗, tk)−

 ∑

i∈K+,i 6=k

∂ϕ(A∗, B∗, ti)−
∑

i∈K−
∂ϕ(A∗, B∗, ti)


 ,

(3.4)

⋃

k∈K−
−∂ϕ(A∗, B∗, tk)−


 ∑

i∈K+

∂ϕ(A∗, B∗, ti)−
∑

i∈K−,i 6=k

∂ϕ(A∗, B∗, ti)








and the corresponding superdifferential ∂Ψ(A,B) at (A∗, B∗) can be constructed as follows:

∂Ψ(A∗, B∗) =
∑

k∈K+

∂ϕ(A∗, B∗, tk)−
∑

k∈K−
∂ϕ(A∗, B∗, tk), (3.5)

where ∂ϕ(A∗, B∗, tk) and ∂ϕ(A∗, B∗, tk) are sub- and superdifferentials of ϕ(A,B, t) at
(A∗, B∗, tk), K+ and K− are sets of indexes, such that

• tk : k ∈ K+ are maximal deviation points and ϕ(A∗, B∗, tk) > 0;

• tk : k ∈ K− are maximal deviation points and ϕ(A∗, B∗, tk) < 0.

Definition 3.10. A maximal deviation point tk is regular if

k /∈ (K+
⋂

Lmin)
⋃

(K−⋂
Lmax).

Otherwise, a maximal deviation point tk is irregular.
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Henceforth, the following notation is used:

∇Cϕ(C, t) =
∂ϕij(C, t)

∂C
,

where C = (A,B).
Sub- and superdifferentials of ϕ(A,B, t) at (A∗, B∗, tk) can be constructed as follows:

1. Let tk : k ∈ Lsmooth be an internal point of one of the intervals, one of the external
knots or an internal knot, which joins linear functions with the same slope (smooth
knot). Suppose that the identification pair of this interval is (i, j). Then

∂ϕ(A∗, B∗, tk) = sign (ϕi,j(A∗, B∗, tk))∇Cϕi,j(A∗, B∗, tk),

∂ϕ(A∗, B∗, tk) = 02n,

where n is the number of subintervals.

2. Let tk : k ∈ Lmax is be internal knot which is responsible for max. Suppose that the
identification pairs for the corresponding intervals are (i, ji) and (i + 1, 1). Then

∂ϕ(A∗, B∗, tk) = sign (ϕi,ji(A
∗, B∗, tk))co {∇Cϕi,ji(A

∗, B∗, tk),∇Cϕi+1,1(A∗, B∗, tk)} ,

∂ϕ(A∗, B∗, tk) = 02n,

where n is the number of subintervals.

3. Let tk : k ∈ Lmin is be internal knot which is responsible for min. Suppose that the
identification pairs for the corresponding intervals are (i, j) and (i, j + 1). Then

∂ϕ(A∗, B∗, tk) = 02n,

∂ϕ(A∗, B∗, tk) = sign (ϕi,j(A∗, B∗, tk))co {∇Cϕi,j(A∗, B∗, tk),∇Cϕi,j+1(A∗, B∗, tk)} ,

where n is the number of subintervals.

Therefore, the superdifferential can be calculated as follows

∂Ψ(A∗, B∗) = 02n +
∑

k∈K+
T

Lmin

co{∇Cϕik,jk
(A∗, B∗, tk),∇Cϕik,jk+1(A∗, B∗, tk)}− (3.6)

−
∑

k∈K−TLmax

co{∇Cϕik,jik
(A∗, B∗, tk),∇Cϕik+1,1(A∗, B∗, tk)} =

= 02n + Σ+ − Σ−.

and the subdifferential can be calculated as follows

∂Ψ(A∗, B∗) = co





⋃

k∈K+
T

Lsmooth

(∇Cϕik,jk
(A∗, B∗, tk)− ∂Ψ(A∗, B∗)), (3.7)

⋃

k∈K+
T

Lmax

(co{∇Cϕik,jik
(A∗, B∗, tk),∇Cϕik+1,1(A∗, B∗, tk)} − ∂Ψ(A∗, B∗)),

⋃

k∈K+
T

Lmin

(02n −
∑

l∈K+
T

Lmin,l 6=k

co{∇Cϕil,jil
(A∗, B∗, tl),∇Cϕil+1,1(A∗, B∗, tl)}+ Σ−),



FREE KNOTS SPLINES: SPECIAL CASES 313

⋃

k∈K−TLsmooth

(−∇Cϕik,jk
(A∗, B∗, tk)− ∂Ψ(A∗, B∗)),

⋃

k∈K−TLmax

(02n − Σ+ +
∑

l∈K−TLmax,l 6=k

co{∇Cϕil,jil
(A∗, B∗, tl),∇Cϕil+1,1(A∗, B∗, tl)}),

⋃

k∈K−TLmin

(−co{∇Cϕik,jk
(A∗, B∗, tk),∇Cϕik,jk+1(A∗, B∗, tk)} − ∂Ψ(A∗, B∗))



 .

Notice that

∇Cϕi,j(A∗, B∗, tk) = sign (ϕi,j(A∗, B∗, tk))(0, . . . , 1, tk, 0 . . . , 0)T , (3.8)

the non-zero block corresponds to the coefficients of the interval with the identification pair
(i, j).

Notice that if (K+
⋂

Lmin)
⋃

(K−⋂
Lmax) is empty then the stationarity condition (3.3)

at (A∗, B∗) can be simplified to the following:

02n ∈ ∂Ψ(A∗, B∗). (3.9)

Notice also, that the verification of (3.3) is not easy, especially when

(K+
⋂

Lmin)
⋃

(K−⋂
Lmax) 6= ∅.

In the next section we present an approach which allows one to simplify the verification
procedure in the case of ∂Ψ(A∗, B∗) = 02n and some special cases of ∂Ψ(A∗, B∗) 6= 02n.
Similar to the case of fixed knots spline approximation, this verification approach is based
on the notion of alternance.

4 Necessary Condition Verification

4.1 Regular Maximal Deviation Points

In this subsection we are concentrating on a necessary optimality condition when

(K+
⋂

Lmin)
⋃

(K−⋂
Lmax) = ∅.

In this case all maximal deviation points are regular.
Notice that

co{X1, . . . , Xp, co{Y1, . . . , Yq}} = co{X1, . . . , Xp, Y1, . . . , Yq},
where Xi, Yj , i = 1, . . . , p, j = 1, . . . , q are arbitrary vectors in Rn. Then the condition (3.9)
can be presented in the following way: there exists a nonnegative solution of a linear homo-
geneous system

TΛ = 02n, (4.1)

where T is a matrix whose columns correspond to the points of maximal deviation tk,
namely:

• k ∈ Lsmooth and tk belongs to an interval with an identification pair (i, j) then the
corresponding column is

sign (ϕi,j(A∗, B∗, tk))∇Cϕi,j(A∗, B∗, tk);
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• k ∈ K+
⋂

Lmax and tk belongs to an interval with identification pairs (i, ji) and (i+1, 1)
then the corresponding columns are

∇Cϕi,ji(A
∗, B∗, tk), ∇Cϕi+1,1(A∗, B∗, tk);

• k ∈ K−⋂
Lmin and tk belongs to an interval with identification pairs (i, j) and (i, j+1)

then the corresponding columns are

−∇Cϕi,j(A∗, B∗, tk), −∇Cϕi,j+1(A∗, B∗, tk).

Define T as a matrix whose columns correspond to maximal deviation points from a
subsequence of intervals. Then, similar to fixed knots polynomial spline approximation,
minimal subsequence can be defined as follows.

Definition 4.1. A minimal length subsequence of intervals, such that 02n can be constructed
with the columns of the corresponding matrix T is called a minimal subsequence of intervals.

Suppose that in our case the minimal subsequence starts at the p−th interval and ends
at the q−th interval.

Each interval l : p ≤ l ≤ q with ml maximal deviation points corresponds to a block Tl,
which can be presented as follows:

(
sign (ϕi,j(A∗, B∗, tl1))

(
1
tl1

)
, . . . , sign (ϕi,j(A∗, B∗, tlml

))
(

1
tlml

) )
(4.2)

The corresponding components λl,1, . . . , λl,ml
of the vector Λ are nonnegative. Consider

a new auxiliary subsystem
TlΛl = 02, (4.3)

where Λl = (λl,1, . . . , λl,ml
)T . Therefore, in this interval there are at least three maximal

deviation points (assume for simplicity that they are the points tl1, t
l
2, t

l
3 and λl,1, λl,2, λl,3

are the corresponding coefficients), such that the following system has a positive solution:
(

sign (ϕ(A∗, B∗, tl1)) sign (ϕ(A∗, B∗, tl2))
sign (ϕ(A∗, B∗, tl1))t

l
1 sign (ϕ(A∗, B∗, tl2))t

l
2

) (
λl,1

λl,2

)
= (4.4)

= −λl,3sign (ϕ(A∗, B∗, tl3))
(

1
tl3

)

Equivalently, system (4.4) has a positive solution if and only if the following system has
a nonzero solution

(
1 1
tl1 tl2

) (
λ̄l,1

λ̄l,2

)
= −λ̄l,3

(
1
tl3

)
, (4.5)

where λ̄l,i = sign (ϕ(A∗, B∗, tli))λl,i, i = 1, 2, 3. The transpositions of the corresponding
system matrices are Vandermonde matrices. Using Cramer’s rules deduce that each interval
of a minimal subsequence should contain at least three alternance points. Therefore, the
following theorem holds.

Theorem 4.2. Suppose that a continuous or discrete function (data) is approximated by
a free knots linear spline piece-wise linear function). Suppose also that all the maximal
deviation points are regular and there exists an interval with at least three alternance points
tk. Then the stationarity condition (3.3) is satisfied.
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4.2 Irregular Maximal Deviation Points

In this subsection we assume that not all the maximal deviation points are regular. First
we have to prove the following lemma.

Lemma 4.3. Suppose that B̄, Āi, i = 1, . . . , m are convex compact sets in Rn then

B̄ ⊂ co{
⋃

i=1,...,m

(Āi + B̄)} ⇔ 0n ∈ co{
⋃

i=1,...,m

Āi}.

Proof. 1. 0n ∈ co{⋃i=1,...,m Āi} ⇒ B̄ ⊂ co{⋃i=1,...,m(Āi + B̄)}.
Since 0n ∈ co{⋃i=1,...,m Āi} there exist vectors āi ∈ Āi, i = 1, . . . , m and coefficients
αi ≥ 0, i = 1, . . . , m,

∑m
i=1 αi = 1, such that 0n =

∑m
i=1 αiāi.

Then an arbitrary vector b̄ ∈ B̄ can be constructed as follows:

b̄ = b̄ + 0n = b̄ +
m∑

i=1

αiāi =
m∑

i=1

αi(āi + b̄) ∈ co{
⋃

i=1,...,m

(Āi + B̄)}.

2. B̄ ⊂ co{⋃i=1,...,m(Āi + B̄)} ⇒ 0n ∈ co{⋃i=1,...,m Āi}.
Suppose that B̄ ⊂ co{⋃i=1,...,m(Āi + B̄)}, but 0n /∈ co{⋃i=1,...,m Āi}.
Define ā0 ∈ co{⋃i=1,...,m(Āi)} as follows

‖ā0‖ = min
ā∈co{Si=1,...,m Āi}

‖ā‖.

Then ∀ā ∈ co{⋃i=1,...,n Āi}, ā0(ā− ā0) ≥ 0 ⇒ ā0ā ≥ ‖ā0‖2 > 0.

Define
b0 = argmin b∈B ā0b,

therefore
ā0(b̄− b̄0) ≥ 0 ∀b̄ ∈ B̄.

Then, for c̄ ∈ (B̄ + co{⋃i=1,...,m Āi}) obtain

ā0(c̄− b̄0) = ā0(ā + b̄− b̄0) = ā0ā + ā0(b̄− b̄0) ≥ ā0ā > 0

∀ā ∈ co{
⋃

i=1,...,m

Āi}, b̄ ∈ B̄.

Therefore ā0(c̄− b̄0) > 0 ∀c̄ ∈ (B̄ + co{⋃i=1,...,m Āi}).
Since ā0(b̄0 − b̄0) = 0, b̄0 ∈ B̄, but b̄0 /∈ (B̄ + co{⋃i=1,...,m Āi}). This contradicts the
original assumption and therefore

B̄ ⊂ co{
⋃

i=1,...,m

(Āi + B̄)} ⇒ 0n ∈ co{
⋃

i=1,...,m

Āi}.

The following theorem is a direct consequence of theorem 4.2 and lemma 4.3.
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Theorem 4.4. Suppose that a continuous or discrete function (data) is approximated by a
free knots linear spline. Suppose also that there exists an interval with at least three regular
alternance points. Then the stationary condition (3.3) is satisfied.

Proof. Assume that the set −B̄ from lemma 4.3 coincides with ∂Ψ(A∗, B∗) and vectors
Āi, i = 1, . . . , m from lemma 4.3 are the vertices of the set

⋃
t∗∈Reg ∂ϕ(A,B, t∗), where Reg

is the set of all regular alternance points. The combination of lemma 4.3 and theorem 4.2
completes the proof.

Comparing the results of theorem 4.4 with the existing results (theorem 3.8, see also
[5]), one can notice that in the case of one-interval subsequences the existence of three
alternance points is enough to satisfy the condition of theorem 3.8. However, theorem 4.4
still questions about the optimality of this spline. The following example shows that the
“doubts” are reasonable.

Example 4.5. The approximation interval [a, b] contains two subintervals. The second
interval contains three alternance points t1 < t2 < t3. The deviation at t1 is positive.
Suppose that t1 is an irregular alternance point, t2 and t3 are regular points. Then for
stationarity the following condition should satisfy:

co





−1 0
−t1 0
0 −1
0 −t1




⊂ co





−1 0 −1 0 0
−t1 0 −t1 0 0
−1 −2 1 0 0
−t2 −t1 − t2 t3 −t1 + t3 0





.

However, the first vector from the left hand side of the inclusion does not belong to the right
hand side of the inclusion. Therefore, this spline, indeed, cannot be optimal.

5 Conclusions and Further Research Directions

In this paper a new necessary condition for a particular type of free knots linear splines has
been obtained. This condition improves the earlier known condition. Also, in this paper
we show that internal knots may belong to two different categories (regular and irregular).
This characteristic for internal knots has not been identified before. We insist that this
characteristic is very important and may be used for further improvements of the existing
optimality condition in the case of higher degree polynomial splines.

Further research directions are to obtain

• optimality conditions for piece-wise linear approximations with irregular alternance
points (general case);

• optimality conditions for higher dimension and higher degree polynomial splines;

• a modification of the Remez algorithm, based on the obtained optimality conditions.
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