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1 Introduction

It is well known that a lower semicontinuous sublinear function h defined on a normed space
X is completely characterized by its support set

∂h := {` ∈ X∗ : 〈x, `〉 ≤ h(x), ∀x ∈ X},

where ∂h stands for ∂h(0), the subdifferential of h at the origin, which is a w∗-closed convex
set in the topological dual space X∗; moreover one can recover h from ∂h by the formula

h(x) = sup{〈x, `〉 : ` ∈ ∂h},

that is, h is the support function of the convex set ∂h. Exploiting the above relations we
obtain the well-known duality between the family C∗(X∗) of nonempty, w∗-closed, convex
sets of X∗ and the family S(X) of proper, lower semicontinuous, sublinear functions p :
X → R∞ := R ∪ {+∞} (see e.g. [14]).

In a number of problems one needs to consider the restriction of h to some cone K. If K
is not the whole space, there are several support functions which agree with h on K and two
sets A and B in X∗ are said to be equivalent with respect to K if their support functions
coincide, when restricted to K; that is if it holds

σA(x) := sup{〈x, `〉 : ` ∈ A} = σB(x) := sup{〈x, `〉 : ` ∈ B}, ∀x ∈ K.



282 E. CAPRARI AND A. ZAFFARONI

Given a sublinear function h ∈ S(X) and a cone K ⊆ X we obtain an equivalence class,
formed by those sets A ⊆ X∗ such that

σA(x) := sup{〈x, `〉 : ` ∈ A} = h(x), ∀x ∈ K.

Conically equivalent sets were studied in [5], where an application to the calculus of cod-
ifferentials was also given. We extend here some results from [5], by considering unbounded
sets in infinite dimensional spaces, and give further results about conically equivalent sets.

In Section 2 we study the greatest set in some equivalence class and give some charac-
terization for the equivalence between two sets. Special emphasis is given to the search for
the sets which are minimal with respect to inclusion, and to the conditions which guarantee
uniqueness.

The remaining sections are devoted to applications. In Section 3 we deal with the
description of a closed, convex, radiant set C ⊆ X by means of a sublinear gauge. Although
the term gauge often includes the property of being nonnegative, we say here that a positively
homogeneous function p : X → R∞ is a gauge for C if C = [p ≤ 1]. This definition is
meaningful for all radiant sets, but we only deal with convex sets and will only consider
sublinear gauges. The Minkowski gauge (see the definition in Section 4) is shown to be the
greatest sublinear gauge of a convex radiant set. We obtain two different characterizations,
expressed in dual terms, for p ∈ S(X) to be a gauge of C and describe the support set
of the least gauge of C. Moreover we study the conditions under which the Minkowski
gauge is minimal. In this case it is the unique sublinear gauge of C. Such conditions
apply for instance to bounded convex sets and, more generally, to continuous convex sets,
as introduced by Gale and Klee [12]. In Section 4 we consider some results, presented in
[23], about the existence of continuous cogauges of a convex coradiant set and the existence
of a minimal cogauge. Such results are interpreted, and somewhat extended, in the light of
the analysis of Section 2. Section 5 deals with the existence and the minimality of a second
order hypodifferential, as introduced by Demyanov and Rubinov [7].

We consider a normed space X, in which the closed ball of radius δ centered in x is
denoted by Bδ(x) = B(x, δ); the closure, interior, boundary of some set S ⊆ X are denoted
by cl S, intS and bdS respectively; the convex hull and the conic hull of S are denoted,
respectively, as convS and cone S = {y = λx : x ∈ S, λ > 0}. Let X∗ be the topological dual
space of X, endowed with the weak∗ topology and denote by 〈x, `〉, or equivalently `(x), the
usual bilinear pairing between x ∈ X and ` ∈ X∗. For a function f : X → R = [−∞,+∞]
and r ∈ R we denote by [f ≤ r] the sublevel set {x ∈ X : f(x) ≤ r} and by [f ≥ r] the
superlevel set {x ∈ X : f(x) ≥ r}. The symbols [f < r] and [f > r] have similar meanings.

2 Conically Equivalent Sets

Let us consider the family S(X) of all proper lower semicontinuous (l.s.c. for short) sublinear
functions h : X → R∞. There exists a convex and w∗-closed subset A of X∗ such that for
all u ∈ X

h (u) = sup
`∈A

〈u, `〉. (2.1)

Let us denote by C∗ (X∗) the family of all nonempty, convex and w∗-closed subsets of X∗

(and analogously C(X) for the family of all nonempty, closed, convex subsets of X). In the
sequel we will often drop the prefix w∗- as no other topology for X∗ will be used.

Definition 2.1. Given a cone K ⊆ X, the sets A,B ∈ C∗ (X∗) are said to be equivalent
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w.r.t. the cone K, or K-equivalent, denoted A ∼K B, if

sup
`∈A

〈u, `〉 = sup
`∈B

〈u, `〉 ∀u ∈ K. (2.2)

Since any proper l.s.c. sublinear function vanishes at the origin, it is obvious that (2.2)
always holds for u = 0. For the same reason, it is not relevant if the origin belongs to K
or not. Moreover the requirement that K is a cone is not restrictive, since, due to positive
homogeneity, for any set C ⊆ X it holds

σA(u) = σB(u) ∀u ∈ C

if and only if the same equality holds for all u in the conic hull of C.
Given any proper, l.s.c. sublinear function h and its support set A, we indicate by

EK(A) ⊂ C∗ (X∗) the family of all sets equivalent to A, with respect to K:

EK(A) :=
{

C ∈ C∗ (X∗) : h (u) = sup
`∈C

〈u, `〉 ∀u ∈ K

}
.

Observe that, if K = X, then EK(A) = {A} , but if K 6= X the family EK(A) can be
quite rich. We consider here several problems related to an equivalence class EK( · ): describe
the conditions ensuring the equivalence A ∼K B, characterize the minimal sets inside this
class, give conditions for uniqueness and find a formula to compute such a minimal set.

We start with the description of the greatest set in an equivalence class EK( · ). Given
the cone K ⊆ X and the function h ∈ S(X), with ∂h = A, let us consider the following set:

GK (A) := {` ∈ X∗ : 〈u, `〉 ≤ h (u) , ∀u ∈ K} .

Such a set is convex and closed, being the intersection of closed halfspaces in X∗, but in
general it is not bounded.

Denoting by ιS : X → R∞ the indicator function of the set S, that is ιS(x) = 0 if x ∈ S
and ιS(x) = +∞ for x /∈ S, and though ιK is a convex function only when the cone K is
convex, we can rewrite GK(A) as the support set of the function s(x) = σA(x)+ ιK(x), that
is

GK(A) = ∂s = ∂(σA + ιK). (2.3)

Note that the sum σA + ιK is convex if and only if b(A) ∩K is convex, where b(A) = {x ∈
X : σA(x) < +∞} is the barrier cone of A.

For every x ∈ X and α ∈ R, denote by

H−[x, α] := {a ∈ X∗ : 〈x, a〉 ≤ α}

the lower halfspace determined by x and α. By convention let, for every x ∈ X, H−[x,+∞] =
X∗.

For A ∈ C(X∗), we have by definition

GK(A) =
⋂

k∈K

H−[k, σA(k)] =
⋂

k∈K∩b(A)

H−[k, σA(k)] = GK∩b(A)(A), (2.4)

since for k /∈ b(A) we have H−[k, σA(k)] = X∗.
Some straightforward properties of GK(·), whose verification is trivial, are the following:

1. for every set A ∈ X∗, it holds GK(A) = GK(cl conv (A));
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2. for every set A ∈ C∗ (X∗) it holds GK (A) ∈ EK(A), that is the restriction to K of the
support function of GK(A) concides with σA|K ;

3. for all B ∈ EK(A), it holds B ⊆ GK (A);

4. if B ∈ C∗(X∗) and A ⊆ B, then B ∈ EK(A) if and only if B ⊆ GK(A);

5. if K1 ⊆ K2, then GK2 (A) ⊆ GK1 (A);

6. if A is bounded (i.e. if σA is continuous on X), then Gcl K (A) = GK (A), so that
GK (A) = A (and consequently EK(A) = {A}), if K is dense in X.

We also note that in general GK(A) 6= Gconv K(A), as shown for instance by Example
2.4 below.

To discuss the boundedness of GK (A) it is important to separate two important cases,
namely that the cone K be contained in some closed halfspace or not. If the polar cone
K+ = {` ∈ X∗ : 〈k, `〉 ≥ 0, ∀k ∈ K} contains some nonzero element (or, equivalently, K is
contained in a closed halfspace), then GK (A) is unbounded, as it holds

A−K+ ⊆ GK (A) .

In particular we have the following result.

Proposition 2.2. If A ∈ C(X∗) is bounded and the cone K is convex, then

GK (A) = A−K+.

Proof. The inclusion ⊇ is obvious. So suppose that x∗ /∈ A−K+, which is w∗-closed, since
A is w∗-compact and K+ is w∗-closed. By the separation theorem, there exist x ∈ X and
α ∈ R such that

〈x, y∗ − z∗〉 ≤ α < 〈x, x∗〉, ∀y∗ ∈ A, z∗ ∈ K+. (2.5)

If it were 〈x, z∗〉 < 0 for some nonzero z∗ ∈ K+, as the latter is a cone, we would have a
contradiction to (2.5). Hence 〈x, z∗〉 ≥ 0 for all z∗ ∈ K+ and x ∈ K++ = cl K. By taking
z∗ = 0 in (2.5), we obtain

〈x, y∗〉 ≤ α < 〈x, x∗〉, ∀y∗ ∈ A,

that is σA(x) ≤ α < 〈x, x∗〉 and hence x∗ /∈ Gcl K (A) = GK(A).

As the referee pointed out to us, the reader more acquainted with convex analysis would
easily prove Proposition 2.2 recalling (2.3) and showing that the equalities

GK(A) = Gcl K(A) = ∂σA + ∂ιcl K = A−K+

hold under the given assumptions, as σA is convex continuous and ιK is convex.
If K+ = {0}, that is if K is not contained in any halfspace, then we may wonder if

GK (A) is bounded, at least if so is A. This is indeed true in finite dimensional spaces.

Proposition 2.3. Let X = Rn and A be bounded. If K+ = {0}, then GK (A) is bounded.
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Proof. As K+ = {0}, the cone K is not contained in any halfspace and hence convK = Rn.
Thus there exists a finite set of vectors Y = {x1, x2, ..., xs} ⊂ K such that 0 ∈ intS, where
S = conv {x1, x2, ..., xs}.

To prove that GK(A) is contained in some bounded set, consider the polar set of S:

S◦ := {v ∈ Rn : 〈x, v〉 ≤ 1, ∀x ∈ S}.
We have that S◦ is a polyhedral convex set (see [19, Sect. 19]) and 0 ∈ intS implies that

S◦ is a bounded set (see [19, Cor.14.5.1]). Actually it holds

S◦ = {v ∈ Rn : 〈xi, v〉 ≤ 1, ∀i = 1, ..., s} = Y ◦.

Since A is bounded, each linear functional 〈xi, ·〉 is bounded on A. Let

αi = sup {〈xi, v〉, v ∈ A} = σA(xi), i = 1, ..., s

and α = max{α1, α2, ..., αs} > 0. Setting K ′ = cone Y , we have

GK(A) ⊆ GK′(A) =
s⋂

i=1

H−[xi, αi] ⊆ αS◦

and GK(A) is bounded.

The above result cannot be extended in general to infinite dimensional spaces, as shown
by the following example, which was suggested to us by J. E. Mart́ınez-Legaz.

Example 2.4. Consider the Hilbert space X = l2, with the usual norm ‖x‖ =
(∑+∞

i=1 x2
i

)1/2

.
Let A = BX , the unit ball, and let K be the cone of all sequences having at most one nonzero
term. Obviously A is bounded and K is not contained in any halfspace. On the other hand
GK (A) consists of all sequences which belong to l2 and whose terms belong to the interval
[−1, 1]. This set is unbounded, as it contains the sequence {xn}, whose general element has
the first n components equal to 1 and all the remaining components equal to 0 (we have
‖xn‖ =

√
n).

To have an impression of the type of questions we will deal with, consider the following
simple example.

Example 2.5. Let us consider X = R2, the cone K =
{
(x, y) ∈ R2 : y = 0, x ≥ 0

}
and the

function h (x, y) = 0 for all (x, y) ∈ X, with ∂h = {0} = A. In this case we have

GK (A) = {(u, v) ∈ R2 : ux ≤ 0, ∀x > 0} = {(u, v) ∈ R2 : u ≤ 0}
and B ∈ EK(A) if and only if sup{u : (u, v) ∈ B} = 0. Each singleton set {(0, v)}, v ∈ R is
minimal by inclusion inside the class EK (A).

The most remarkable fact in Example 2.5 is that, while the greatest element GK(A)
is well defined, the family EK(A) contains many different sets which are minimal w.r.t.
inclusion and a least element does not exist.

In order to give further results on conically equivalent sets and discuss, in particular, the
question of minimality, we need to introduce one more concept.

Definition 2.6. Given A ∈ C∗(X∗) and the cone K ⊂ X, we say that the point ` ∈ A
is illuminated by K (or K-illuminated), and denote it by ` ∈ illK (A), if there exists some
u ∈ K\{0} such that 〈u, `〉 = σA(u). Then u is said to illuminate A.
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The set illK (A) is formed by all w∗-support points of A, for which the w∗-support func-
tionals are elements of K. We will use the notation SF (A) to denote the set of w∗-support
functionals of A. And will say that a pair (a, x) ∈ X∗ × X is a supporting pair for A, if
a ∈ A is a support point in A with w∗-support functional x.

It is easy to verify that K1 ⊆ K2 implies illK1(A) ⊆ illK2(A), for every A ∈ C∗(X∗).
If we want to obtain uniqueness for the minimal set inside a given equivalence class and

find a formula to compute it starting from a set A we need additional hypotheses on the
cone K.

We will assume in the sequel that K satisfies the following condition:

int K = K \ {0} . (2.6)

Since every support function σ satisfies σ(0) = 0, there is no loss in generality if we
suppose that K does not contain the origin and substitute (2.6) with the requirement that
K is open.

Theorem 2.7. Let the cone K ⊆ X be open. If A,B ∈ C∗(X∗) and A ∼K B, then

illK (A) = illK (B) . (2.7)

Proof. Let us assume that (2.7) does not hold, i.e there exists ā ∈ illK (A) s.t. ā /∈ illK (B) .
Since ā ∈ illK (A) , there exists ū ∈ K s.t.

〈ū, ā〉 = σA (ū) .

On the other hand ā /∈ illK (B) and σA(ū) = σB(ū) imply ā /∈ B. By the separation theorem
there exist x ∈ X and δ > 0 s.t.

〈x, b− ā〉 ≤ −δ < 0, ∀b ∈ B.

If we consider the point
xλ = (1− λ) ū + λx

with λ ∈ (0, 1] , we have that

〈xλ, b− ā〉 = (1− λ) 〈ū, b− ā〉+ λ〈x, b− ā〉, ∀b ∈ B.

As
〈ū, b〉 ≤ σB (ū) = σA(ū) = 〈ū, ā〉, ∀b ∈ B,

it follows that
〈xλ, b− ā〉 ≤ −δλ < 0,

i.e. for all b ∈ B
〈xλ, b〉 ≤ −δλ + 〈xλ, ā〉. (2.8)

Since ū ∈ int K, then for λ > 0 small enough we have that xλ ∈ K. Moreover, as ā ∈ A, we
have

〈xλ, ā〉 ≤ σA (xλ) .

As (2.8) holds, then

σB (xλ) = sup
b∈B

〈xλ, b〉 ≤ −δλ + 〈xλ, ā〉 ≤ σA (xλ)− δλ < σA (xλ) ,

which is a contradiction.
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Theorem 2.7 extends a similar result from [5]. The proof is given for the sake of com-
pleteness, although the arguments are not new.

With the aim of giving a converse to Theorem 2.7, we start by studying the relation
between the support function of a set A ∈ C∗(X∗) and the one of its illuminated points.
This analysis needs at least two warnings. First of all, as initially discovered by V. Klee
[15] and then analyzed e.g. by Borwein and Tingley [4] and Fonf [11], in every incomplete
normed space X there exist instances of closed, bounded, convex sets with no support points.
Thus the set of illuminated points may be empty. Moreover the set of illuminated points
may fail to conveniently describe a convex set A when a w∗-functional u ∈ K is unbounded
on A. The following example illustrate this situation.

Example 2.8. Let X = R2 with K = intR2
+ ∪ intR2

− and A = R2
+. In this case all w∗-

functionals in intR2
− support A at the origin (and at no other point), while all w∗-functionals

in R2
+ are unbounded above on A. Hence illK (A) = {0}.

On the other hand we have that σA(x1, x2) = 0 for all pairs (x1, x2) ∈ R2
− and σA(x1, x2) =

+∞ otherwise, so that the sets A and B := illK (A) have the same sets of illuminated points
but not the same support functions.

In order to overcome these problems and prove that a set A ∈ C∗(X∗) and its set of
illuminated points have the same support functions, we will have to make some assumptions.
First of all, we will have to require that the set of w∗-supporting functionals have some
density property. This can be proved in various situations. For instance by assuming
that A is w∗-compact, so that all elements in K are illuminating, or using a results by
Phelps [18] (see also [3]), who proved that the set of w∗-supporting functionals of any set
A ∈ C∗(X∗) is norm dense among those which are bounded above on A, provided X is a
Banach space. Another possibility, exploited in Section 4, is based on the correspondence
between supporting pairs for a convex set C ⊆ X and those of its (reverse) polar set.

To overcome the second type of problems, we will have to pay attention to w∗-functionals
u ∈ K, which are unbounded above on A and bounded above on illK (A).

Theorem 2.9. Let X be a normed space and consider A ∈ C∗(X∗) and the open cone
K ⊆ X. Suppose that SF (A) is dense in b(A). Setting L := illK (A) and KA := K ∩ b(A),
we have the following:

a) GK(A) = GKA
(L);

b) σA(x) = σL(x), ∀x ∈ KA.

Proof. (a) Since L ⊆ A, and recalling (2.4), it holds

GKA
(L) ⊆ GKA

(A) = GK(A).

To prove the converse relation, let ā /∈ GKA
(L). Then there exists k ∈ K ∩ b(A) such that

〈k, ā〉 > sup
a∈L

〈k, a〉 = σL(k). (2.9)

Consider the set K ′ ⊆ K of all k ∈ K which are w∗-supporting functionals for A, that
is all k ∈ K for which there exist ak ∈ A with 〈k, ak〉 = σA(k). The vector ak is indeed an
illuminated point of A, and hence ak ∈ L. This implies that σA(k) = σL(k), for all k ∈ K ′.

Since K is open, K ′ is dense in K ∩ b(A), and (2.9) implies that there exist k̄ ∈ K ′ and
ak̄ ∈ A such that

〈k̄, ā〉 > sup
a∈A

〈k̄, a〉 = 〈k̄, ak̄〉 = sup
l∈L

〈k̄, l〉,
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so that ā /∈ GK∩b(A)(A) = GK(A).
To prove (b) it is enough to recall that, for any set C ∈ C(X∗) and any cone K, GK(C) ∈

EK(C), so that (a), with L = illK (A), B = cl convL and x ∈ K ∩ b(A), yields

σA(x) = σGK(A)(x) = σGKA
(L)(x) = σGKA

(B)(x) = σB(x) = σL(x).

To illustrate what we learn from Theorem 2.9, let us return to Example 2.8. It holds
b(A) = R2

− and K ∩ b(A) = intR2
− so that

A = GK(A) = GKA
(A) = GKA

(L) 6= GK(L) = {0}.
Moreover, for all k ∈ K ∩ b(A) = intR2

−, it holds σL(k) = σA(k), while for k ∈ K \ b(A) =
intR2

+, it holds σA(k) = +∞ 6= σL(k) = 0.
Given the set A ∈ C∗(X∗), let us consider the set

MK (A) := cl conv (illK (A)).

The next result shows how the information conveyed by the set MK(A) can be used in
order to obtain the values of σA and gives a partial converse to Theorem 2.7.

Theorem 2.10. Let X be a normed space and consider A ∈ C∗(X∗) and the open cone
K ⊆ X. Suppose that SF (A) is dense in b(A). Then, setting M = MK(A), it holds

a)
σA(u) = σM (u) + ιb(A)(u) ∀u ∈ K. (2.10)

b) For all sets B ∈ C∗(X∗) it holds

B ∼K A ⇐⇒ MK(A) ⊆ B ⊆ GK(A) and b(B) ∩K = b(A) ∩K.

c) If A is bounded, then MK (A) is the least element w.r.t. inclusion in EK (A).

Proof. (a) follows immediately from Theorem 2.9 and the fact that σA(u) = +∞ when
u /∈ b(A), irrespective of the value σM (u). The ’only if’ implication in (b) follows from
Theorem 2.7, while the converse follows from part a). Finally c) is an immediate consequence
of b), as b(A) = X when A is bounded and MK(A) ⊆ A yields b(A) ⊆ b(MK(A)).

If we return to Example 2.8 we observe that the family EK(A) contains infinitely many
minimal sets and no least element exists. Indeed every set

Bα = {(v1, v2) ∈ R2 : v2 = αv1, v1 ≥ 0}, α ≥ 0,

together with B∞ = {(v1, v2) : v1 = 0, v2 ≥ 0} satisfies illK (Bα) = {(0, 0)} and b(Bα)∩K =
intR2

−, so that
A ∼K Bα, ∀α ∈ [0,+∞].

Moreover each set Bα is minimal and no least element exists.
Theorem 2.10 (c) proves the existence of a least element in some class EK(A) under the

assumption that A is bounded. We will see in Sections 3 and 4 that the existence of a least
element can be proved under less restrictive assumptions when the sets A and K have some
special structure.

In [5] the issues of conical equivalence and minimality are studied under less restrictive
assumptions on K than openness. More precisely the cone K is required to satisfy the
condition cl (intK) = cl K. Further results are given for cones with nonempty interior. We
address the interested reader to [5] for more details.
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3 Gauges of Convex Radiant Sets

This section and the following one show how the concepts developed in Section 2 can be
used to discuss the functional representation (in primal terms) of some particular classes of
convex sets. If C is a closed, convex set of X containing the origin, the Minkowski gauge
µC is used for the description of C, in that it satisfies C = [µC ≤ 1], and this equality
finds several applications in Functional Analysis and in the theory of normed spaces. More
generally we will call gauge of C any positively homogeneous function p : X → R∞ such
that C = [p ≤ 1]. In the next section we will consider a set C which is closed, convex and
coradiant (see the definition below); in this case C can be described in functional terms by
means of a cogauge, that is a positively homogeneous function q such that C = [q ≤ −1].

We introduce here some concepts which will be used in the next two sections.

Definition 3.1. The set A ⊆ X is called radiant if x ∈ A, t ∈ [0, 1] imply that tx ∈ A. It
is called coradiant if its complement AC = X\A is radiant, that is if either A = X or 0 /∈ A
and x ∈ A, t ≥ 1 imply that tx ∈ A.

We deduce that the empty set ∅ and the set X are both radiant and coradiant. Alterna-
tive definitions of a radiant and coradiant set can be given in terms of their kernel or outer
kernel.

Definition 3.2. [20] The kernel of a set A ⊆ X is the set of points

kerA = {z ∈ X : z + t(x− z) ∈ A, ∀x ∈ A, ∀t ∈ (0, 1]}.
The outer kernel of a set A ⊆ X, okerA, is the kernel of its complement AC , that is the set

okerA = {z ∈ X : z + t(x− z) /∈ A, ∀x /∈ A, ∀t ∈ (0, 1]}.
It is obvious that a set A ⊆ X including the origin is radiant if and only if 0 ∈ kerA and

that a proper set A excluding the origin is coradiant if and only if 0 ∈ okerA.
Given a set A ⊆ X, we call shadow of A the set

shwA = {x ∈ X : x = ta, a ∈ A, t ≥ 1}.
If 0 /∈ A then the set B = shw A is coradiant; it is indeed the smallest coradiant set containing
A, that is the coradiant hull of A. It follows from the definition that, if 0 ∈ A, then its
coradiant hull coincides with X.

We are particularly interested in those radiant or coradiant sets which are also convex
and, given a normed space X, will denote by C0(X) the sets in C(X) which are radiant and
by C∞(X) the sets in C(X) which are coradiant. It is easy to see that a convex set is radiant
if and only if it contains the origin.

If C ⊆ X is any radiant set, a number of features of C can be described by means of its
Minkowski gauge µC : X → R∞, where

µC(x) = inf{λ > 0 : x ∈ λC},
which is a nonnegative positively homogeneous function which satisfies [µC < 1] ⊆ C ⊆
[µC ≤ 1]. This relation specifies to C = [µC ≤ 1] provided C is closed and this assumption
will always be standing in what follows. Moreover the function µC is sublinear if and only
if C is convex, and our attention in this paper restricts to this situation. In the latter case
the support set ∂µC coincides with the polar set

C◦ = {` ∈ X∗ : 〈x, `〉 ≤ 1, ∀x ∈ C}.
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For C ∈ C(X), µC is continuous (or equivalently finite valued) on X if and only if 0 ∈ intC
and equivalently if and only if C◦ is bounded.

It is easy to see that µC(x) = 0 if the ray Rx := {y = λx, λ > 0} is contained in C and
consequently it holds

[µC = 0] = Rec C, (3.1)

where Rec C = {d ∈ X : x + td ∈ C, ∀x ∈ C, ∀t ≥ 0} is the recession cone of C, a closed
convex cone. Conversely it holds [µC > 0] = X \ Rec C.

Although the Minkowski gauge has so often and so succesfully been used to give a
functional description of a convex radiant set C, it suffers some drawback if it is used in the
framework of the separation theory for coradiant sets, as expressed in the following result,
whose proof can be found in [22].

Theorem 3.3. For a proper subset F ⊆ X the following are equivalent:

a) F is closed and coradiant;

b) for every x /∈ F there exists an open convex radiant set G such that x ∈ G and
F ∩G = ∅;

c) for every x /∈ F there exists a continuous and sublinear function p : X → R such that
p(x) > −1 and p(a) ≤ −1 for all a ∈ F .

Theorem 3.3 shows that convex radiant sets can be used to separate points from coradiant
sets and this can be expressed in functional terms using sublevel sets of a continuous sublinear
function as the separating set. Part (c) of Theorem 3.3 can be easily proved by taking
p = µG, but this choice has a drawback: as the Minkowski gauge is always nonnegative, it
can never become a linear function. We want to show that the separation property expressed
in Theorem 3.3 is a true extension of the classical separation result for convex sets and, to
reach this aim, we need to show that a different definition can be given for p, in a way that,
in those cases in which the separating set G is a halfspace, its functional description gives a
linear function.

As we are only interested here in convex sets, we will restrict our attention to sublinear
representations and, given C ∈ C0(X), we will see that the Minkowski gauge is not, in
general, the only sublinear gauge of the set C.

For instance all functions

pα(x) =
{

αx x ≤ 0
x x > 0 α ∈ [0, 1]

are continuous sublinear gauges of the set C = (−∞, 1] and among them µC = p0 is the
greatest, while the least one is given by p1(x) = x, which is linear.

We will see in this section how the search for equivalent gauges of a convex radiant set,
and in particular one which is minimal, is related to the results of Section 2. This topic is
analysed further in [24]. Since the separating set G in Theorem 3.3 always has the origin as
an interior point, we are particularly interested in this case, but will not restrict to it.

The following result, whose proof is straightforward, explains to what extent a sublinear
gauge of some set C ∈ C(X) can differ from the Minkowski gauge.

Proposition 3.4. Let C ∈ C0(X). Then p ∈ S(X) is a gauge of C if and only if

[p ≤ 0] = Rec C and ( x /∈ Rec C =⇒ p(x) = µC(x) ) . (3.2)
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Since µC(x) = 0 for all x ∈ Rec C, we deduce from Proposition 3.4 that p ∈ S(X) is a
gauge of C if and only if it holds

p ≤ µC and p(x) = µC(x) ∀x ∈ X\Rec C,

and this can immediately be translated in terms of conical equivalence: indeed for C ∈ C0(X)
it holds µC = σC◦ and p ∈ S(X) is a gauge of C if and only if

∂p ⊆ ∂µC = C◦ and ∂p ∼K C◦, with K = X\Rec C. (3.3)

In this case we are not interested in the determination of the set GK(C◦), since, if the
condition p ≤ µC is not satisfied, then p is not a gauge of C. Conversely the Minkowski
gauge is always the greatest gauge of a set C ∈ C0(X). The following example shows that
the support set C◦ needs not be the greatest element in EK(C◦).

Example 3.5. Take any linear continuous functional 0 6= ` ∈ X∗ and let C = [` ≤ 1]. Then
we have Rec C = [` ≤ 0] and

µC(x) =
{

0 if 〈x, `〉 < 0
α if 〈x, `〉 = α ≥ 0

Moreover C◦ = {α`, α ∈ [0, 1]}, K = [` > 0] and, according to Proposition 2.2, we have

GK(C◦) = C◦ −K+ = {β`, β ∈ (−∞, 1]}.

It is easy to see that the support function σG(x) of the set G := GK(C◦), given by

σG(x) =
{

+∞ if 〈x, `〉 < 0
α if 〈x, `〉 = α ≥ 0

is not a gauge of C.

We pass now to characterize those sublinear functions which are gauges of a given set
C ∈ C0(X), and this will be done in terms of conical equivalence of support sets. As we
always consider closed sets C, the recession cone Rec C is closed and K = X\Rec C is open,
thus allowing us to use the results in Section 2. Observe that the assumption of density in
Theorem 3.6 and in the ones below is certainly satisfied if either X is Banach or if 0 ∈ intC.

Theorem 3.6. Let X be a normed space and C ∈ C0(X). Suppose that SF (C◦) is dense in
b(C◦). Then for the l.s.c. sublinear function p : X → R∞ the following are equivalent:

a) p is a gauge of C;

b) illK (C◦) + Rec (C◦) ⊆ ∂p ⊆ C◦, with K = X \ Rec C;

c) cl conv (∂p ∪ {0}) = C◦.

Proof. Recalling Theorem 2.10 (b) and condition (3.3), we obtain that p ∈ S(X) is a gauge
of C if and only if

b(∂p) \ Rec C = b(C◦) \ Rec C (3.4)

and
illK (C◦) ⊆ ∂p ⊆ C◦, (3.5)
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with K = X \ Rec C.
Since the equality b(B) = cone (B◦) holds for every B ∈ C∗(X∗), we have that b(C◦) =

cone ((C◦)◦) = cone C = dom µC and b(∂p) = dom p, just by comparing the definitions.
Then (3.4) is equivalent to

dom p = cone C, (3.6)

since Rec C is contained in both sets.
In order to show that relations (3.6) and (3.5) are equivalent to the one in (b), we start

by assuming that (b) holds. Then (3.5) is obvious. To obtain (3.6), observe that ∂p ⊆ C◦

implies p ≤ µC and coneC = dom µC ⊆ dom p. Moreover (b) yields

Rec (C◦) ⊆ Rec (∂p)

and consequently
(Rec (∂p))− ⊆ (Rec (C◦))− = cone C,

where K− = −K+ is the negative polar cone of a set K ⊆ X. To prove that dom p ⊆ cone C,
it is enough to show that dom p ⊆ (Rec (∂p))−. Suppose that 〈x, `〉 > 0 holds, for some
` ∈ Rec (∂p) and some x ∈ X. Since p(x) ≥ x∗(x)+ t`(x) holds for all t > 0 and all x∗ ∈ ∂p,
then p(x) cannot be finite valued, and x /∈ dom p.

Now we need to show that (3.5) and (3.6) imply (b). We only need to prove that
Rec (C◦) ⊆ Rec (∂p). To this aim, take ` ∈ Rec (C◦) = (cone C)−, t > 0 and x∗ ∈ ∂p. The
inequality

p(x) ≥ x∗(x) + t`(x)

is certainly true if x /∈ dom p. If x ∈ dom p, since dom p = cone C, we have `(x) ≤ 0 and
again the inequality holds, and ` ∈ Rec (∂p).

To prove that (a) is equivalent to (c), observe that, taking into account (3.1), p is a gauge
of C if and only if

µC(x) = max (p(x), 0) , ∀x ∈ X.

Indeed if p is a gauge then the inequality p(x) < 0 is only possible for those x such that
µC(x) = 0, while p(x) ≥ 0 yields p(x) = µC(x), so that µC = max(p, 0).

By standard results about support functions, we know that, given two sets A,B ∈
C∗(X∗), it holds

max (σA, σB) = σD,

where D = cl conv (A ∪B). Hence

µC(x) = σC◦(x) = σD(x), ∀x ∈ X,

with D = cl conv (∂p ∪ {0}) and the two support sets coincide.

Various consequences of Theorem 3.6 should be underlined. The first is stated in the
next result, whose proof is immediate.

Corollary 3.7. Let X be a normed space and C ∈ C0(X). Suppose that SF (C◦) is dense
in b(C◦). Then the least gauge of C is the support function of the set illK (C◦) + Rec (C◦).
If moreover 0 ∈ intC then the support set of the least gauge of C is given by

MK(C◦) := cl conv (illK (C◦)).

The following example is useful to understand the content of the above result.
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Example 3.8. Let X = R2 and C = {(x1, x2) ∈ R2 : x1 ≥ −1, x2 ≥ 0, x1 + x2 ≥ 0}. It
holds

µC(x1, x2) =





0 x1 ≥ 0, x2 ≥ 0
−x1 x1 ≤ 0, x1 + x2 ≥ 0
+∞ else.

To find the least gauge of C, we need to evaluate the following sets:

K = X \ Rec C = {(x1, x2) : min(x1, x2) < 0},
C◦ = {(v1, v2) ∈ R2 : v1 ≤ 0, v2 ≤ 0, v1 − v2 ≥ −1},

illK (C◦) = {(v1, v2) : v1 − v2 = −1, v1 ≤ −1},
Rec (C◦) = {(v1, v2) : v1 − v2 ≥ 0, v1 ≤ 0},

so that ∂p = illK (C◦) + Rec (C◦) = {(v1, v2) : v1 ≤ −1, v1 − v2 ≥ −1} and

p(x1, x2) =
{ −x1 x2 ≥ 0, x1 + x2 ≥ 0

+∞ else.

Remark 3.9. Consider again the case when C is a halfspace, as in Example 3.5. Say
C = H−[`, 1] for some nonzero ` ∈ X∗. Then C◦ = {α` : α ∈ [0, 1]} and illK (C◦) = {`}, so
that the least gauge is linear.

An application of Theorem 3.6 (c) allows to characterize the cases in which µC is minimal.
Since the Minkowski gauge is always the greatest gauge of C, if there exists no gauge lower
than µC , then µC is the only sublinear gauge of C, hence also the least one.

Proposition 3.10. Given C ∈ C0(X), suppose that SF (C◦) is dense in b(C◦). Then the
Minkowski gauge µC is the least sublinear gauge of C if and only if

0 ∈ cl conv [illK (C◦)] =: MK(C◦).

Proof. It holds 0 ∈ MK(C◦) if and only if

cl conv (MK(C◦) ∪ {0}) = MK(C◦),

whence σM , for M = MK(C◦), is the minimal gauge of C. Applying Theorem 3.6 (c) we
have σM = σC◦ = µC and the result is proved.

The following result allows to understand more clearly what type of convex sets have no
sublinear gauges other than µC . We need to recall some properties of the barrier cone of a
convex set C: it holds b(C) = cone (C◦) and moreover cl b(C) = (Rec C)−, but b(C) needs
not be closed.

Theorem 3.11. Given C ∈ C0(X), suppose that SF (C◦) is dense in b(C◦). If b(C) is not
closed, then there exists no sublinear gauge of C lower than µC .

Proof. We first check the equality

cl conv [illK (C◦) ∪ {0}] = C◦. (3.7)

Indeed it is

C◦ = cl conv [MK(C◦) ∪ {0}] = cl conv [cl conv (illK (C◦)) ∪ {0}] (3.8)
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and, calling C1 the left hand side in (3.7) and C2 the right hand side in (3.8), we obviously
have C1 ⊆ C2. On the other hand it holds cl conv (illK (C◦)) ⊆ C1, 0 ∈ C1 and, since C1 is
closed and convex, we have C2 ⊆ C1, so that (3.7) holds.

As b(C) is not closed, there exists ` ∈ (Rec C)−\b(C). Since b(C) = cone C◦, we have
that R` ∩ C◦ = ∅.

Since (Rec C)− = cl cone C◦, and recalling (3.7), there exists a net {`α} ⊆ illK (C◦) and
a net {tα} of positive real numbers, such that tα`α converges to `.

If tα converges to t̄ > 0, then `α converges to ¯̀= `/t̄ ∈ C◦ ⊆ b(C), which is not possible.
If tα converges to 0, then `α is unbounded and

` ∈ As (C◦) = Rec (C◦) ⊆ C◦, (3.9)

where As (A) = {` ∈ X∗ : ∃`α ∈ A, ∃tα → 0+, with ` = lim tα`α} is the asymptotic cone
of the set A and the last inclusion in (3.9) stems from the definition of recession cone, since
0 ∈ C◦. Hence we have again a contradiction.

Thus we have tα → +∞ and `α converges to 0 in X∗. It is enough to apply Proposition
3.10 to conclude.

Theorem 3.11 can be applied in particular if C is a continuous convex set. These sets
were originally introduced by Gale and Klee [12], as those convex sets for which the support
function is continuous on X\{0}, and were more recently studied for instance in [1, 6, 10].
Among the many useful characterizations (in finite and infinite dimensional spaces), we
have that C is continuous if and only if b(C)\{0} = int b(C). Hence Theorem 3.11 applies
to convex continuous sets.

We conclude this section with an example which shows that the converse to Theorem
3.11 does not hold, i.e. not all sets C for which the Minkowski gauge is minimal, have a
barrier cone which is not closed.

Example 3.12. Consider the set C ⊆ R2 given by

C =
{

(x1, x2) : −1 ≤ x1 ≤ 1, x2 ≥ −
√

1− x2
1

}
.

It holds b(C) = {(v1, v2) : v2 ≤ 0}, which is closed. On the other hand we have
C◦ = BR2 ∩ {(v1, v2) : x2 ≤ 0} and, since Rec C = {(0, x2) : x2 ≥ 0} and K = {(x1, x2) :
x2 < 0} ∪ {(x1, x2) : x1 6= 0, x2 ≥ 0}, we have that

illK (C◦) = {v = (v1, v2) : ‖v‖ = 1, v2 ≤ 0}

and 0 ∈ conv illK (C◦) = MK(C◦), so that µC is minimal.

If the Minkowski gauge µC is not minimal for the set C ∈ C0(X), then there exists a
gauge p of C with p(x) < 0 for at least one x ∈ Rec C. In this case 0 is not the minimal
value of p and 0 /∈ ∂p. The existence of such a gauge of C can be characterized by reverting
Proposition 3.10 and proving that the origin can be separated from the set of illuminated
points. The study of those sets which admit a ‘negative’ gauge is carried out in [24].

4 Cogauges of Convex Coradiant Sets

A question very similar to the one treated in the previous section can be raised in connection
to convex coradiant sets.
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The conditions under which a convex coradiant set C admits a continuous sublinear
cogauge were studied in [23]. In this section we wish to show how the results discussed
in Section 2 can be used in order to obtain in a different way, and somehow extend, some
results presented in [23], to which we refer for further details on the topics treated in this
section.

In [23] the main attention was devoted to the functional characterization of a convex
coradiant set C, which we also call shady, as in [17], and mainly to the possibility to define
a superlinear continuous function ϕ : X → R such that C = [ϕ ≥ 1]. In order to make the
discussion comparable to the present setting, in which sublinear functions are considered,
we slightly modify our approach. We will say that a positively homogeneous function p :
X → R = [−∞,+∞] is a cogauge of the coradiant set A ⊆ X if A = [p ≤ −1].

The application of the Minkowski idea to a closed coradiant set A ⊆ X, yields the notion
of Minkowski cogauge (see e.g. [20] for details):

νA(x) := − sup{λ > 0 : x ∈ λA},

which is a real valued, positively homogeneous function, with νA < 0 for all x ∈ cone A and
νA(x) = 0 otherwise. Notice that −νA, rather than νA, was named Minkowski cogauge in
[20].

A different functional description of a shady set C, was given by Barbara and Crouzeix
[2], and relies on the concept of reverse polarity. Given a nonempty set C ⊆ X we call
reverse polar of C the set

Cª := {` ∈ X∗ : 〈c, `〉 ≤ −1, ∀c ∈ C}.

The name reverse polar is sometimes used (and this happens for instance in [23]) for the
set −Cª. We adopt the convention that Cª = X∗ if C = ∅. It is easy to see that Cª is
always closed, convex and coradiant in X∗ and that C ⊆ X is closed and shady if and only
if it satisfies Cªª = C.

We are interested in the support function of Cª, which turns out to be a sublinear
cogauge of C. Assume that Cª 6= ∅, i.e. C is contained in some closed halfspace disjoint
from the origin, and let ϕC : X → R∞ be the function

ϕC(x) = sup{〈x, `〉 : ` ∈ Cª} = σCª(x).

This is obviously a l.s.c. sublinear function. It was proved in [2] that the equality
ϕC(x) = νC(x) holds for all x ∈ cl cone C, while ϕC(x) = +∞ otherwise. Thus both νC and
ϕC are cogauges of C and actually they are, respectively, the least and the greatest among
all possible cogauges of C, that is if p : X → R∞ is a positively homogeneous cogauge of C,
then it holds

νC(x) ≤ p(x) ≤ ϕC(x), ∀x ∈ X.

Notice that νC is not sublinear, as it takes the value 0 = inf(0,+∞) outside the set
K = cone C. The main aim in [23] is to describe those shady sets C for which there exists
a sublinear cogauge which is continuous and characterize the least sublinear cogauge. Since
all cogauges p of C satisfy p(x) = νC(x) = ϕC(x) for all x ∈ cone C, we can reformulate
the same question in a different way. Given a closed, convex, coradiant set C, its reverse
polar Cª and the cogauge ϕC = σCª , how can we describe the sets in C∗∞(X∗) which are
equivalent to Cª with respect to K = cone C? And how can we characterize the minimal
set in EK(Cª)? In what cases can we find bounded sets in EK(Cª) (so that their support
functions are continuous)?
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Obviously we have Cª = Cª −K+ = GK(Cª), and σCª = ϕC is the maximal cogauge
of C.

The following definition, which introduces some particular classes of shady sets, helps us
to give an answer.

Definition 4.1. Let C ⊆ X be a proper coradiant set. We will say that C is:

a) coradiative [20] if every ray from the origin has at most one intersection with the
boundary of C;

b) strongly shady if C ∈ C∞(X) and 0 ∈ int okerC;

c) reducible if C ∈ C∞(X) and there exists some M > 0 such that C = shw (C ∩BM (0)).

It is proved in [20] that a set A ⊆ X is coradiative if and only if its Minkowski cogauge
νA is continuous on X. Moreover, for a coradiative set A, it holds bdA = [νA = −1] and
hence, for a coradiative set C ∈ C∞(X), it holds

bdC = [νC = −1] = [ϕC = −1] and bd coneC = [ϕC = 0]. (4.1)

It is possible to prove that every strongly shady set is coradiative (see [23]), while, for a
convex coradiant set C, the specifications that C is coradiative and that C is reducible are
mutually exclusive. The following result, which was proved in [23], explains why those two
classes are important in order to find a continuous sublinear cogauge. It also shows that
strongly shady sets and reducible sets are dual to each other.

Proposition 4.2. [23] For a set C ∈ C∞(X) the following are equivalent:

(a) There exists a continuous sublinear function p : X → R such that [p ≤ −1] = C;

(b) C is strongly shady;

(c) Cª is reducible.

This result underlines that the continuity of νC on X, which is guaranteed if the shady set
C is coradiative, and its convexity on K = cone C, do not imply that C admits a sublinear
cogauge p which is continuous on X. For instance the set

C = {(x1, x2) ∈ R2 : x1 > 0, x1x2 ≥ 1},

yields ϕC(x1, x2) = −√x1 · x2 for (x1, x2) ∈ R2
+ and +∞ elsewhere. This function cannot be

extended to a continuous sublinear function defined on R2 since its subdifferential is empty
at points (0, x2), with x2 ≥ 0 or (x1, 0), with x1 ≥ 0.

If we want to use the results of Section 2 to answer the questions raised above, we need
to check whether the main assumptions are satisfied. The results of this verification are
gathered together in the following proposition, which also contains a useful characterization
of illuminated points of Cª.

Proposition 4.3. Let X be a normed space and C ∈ C∞(X) be coradiative. Then the
following hold:

a) K = cone C is open;
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b) b(Cª) = cl cone C;

c) the set SF (Cª) of w∗-supporting functionals for Cª satisfies

K = cone C ⊆ SF (Cª).

Hence SF (Cª) is dense in b(Cª);

d) for K = cone C, it holds

illK (Cª) = ΛC := {` ∈ Cª, `(c) = −1 for some c ∈ C}. (4.2)

Proof. a) Since the Minkowski cogauge νC of a coradiative set C is continuous (see [20]),
then K = cone C = [νC < 0] is open;

b) for every x ∈ K = cone C and ` ∈ Cª it holds 〈x, `〉 < 0; hence it holds 〈x, `〉 ≤ 0
for all x ∈ cl cone C and cl cone C ⊆ b(Cª). If w /∈ cl cone C, there exists ` ∈ X∗ such
that 〈w, `〉 > 0 ≥ 〈x, `〉 for all x ∈ cl cone C. As cone C is open, it holds 〈x, `〉 < 0 for
all x ∈ cone C and there exists α > 0 such that ¯̀ = α` ∈ Cª. Since 〈w, ¯̀〉 > 0 and
Cª is coradiative, then the linear functional 〈w, · 〉 is unbounded above on Cª so that
w /∈ b(Cª);

c) since C is coradiative, if x ∈ cone C there exists (unique) α > 0 such that y = αx ∈
bd C. As intC 6= ∅ (recall that C = [νC ≤ −1] and νC is continuous), there exists
` ∈ Cª such that 〈y, `〉 = −1, hence (y, `) is a supporting pair for C. This implies that
(`, y) is a w∗-supporting pair for Cª and x ∈ SF (Cª).

d) take ` ∈ Cª and c ∈ C such that `(c) = −1. If l ∈ Cª then l(c) ≤ −1 and consequently

`(c) ≥ l(c), ∀l ∈ Cª,

whence
`(c) = max{l(c) : l ∈ Cª}

which yields ` ∈ illK (Cª).

If, conversely, ` ∈ illK (Cª), there exists k ∈ K = cone C such that

`(k) = max{l(k) : l ∈ Cª}.

This yields `(k) = ϕC(k).

Since C is coradiant and closed, the set Lk = {α > 0 : αk ∈ C} is a nonempty
interval of the type [ᾱ, +∞), with ᾱ > 0. The point c̄ = ᾱk satisfies ϕC(c̄) = −1 and
`(c̄) = ϕC(c̄) = −1 which implies ` ∈ ΛC .

Observe that ΛC is nonempty whenever C has a nonempty interior, hence in particular
when C is coradiative.

Part (d), which does not actually depend on C ∈ C∞(X) being coradiative, says that the
set of illuminated points of Cª coincides with the radial boundary of Cª, i.e. those points
` of the coradiant set Cª such that α` /∈ Cª for α < 1.

The following result characterizes those sublinear functions which are cogauges of a closed
shady set.
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Corollary 4.4. Let C ∈ C∞(X) be coradiative. Then the l.s.c. sublinear function p : X →
R∞ is a cogauge of C if and only if

ΛC ⊆ ∂p ⊆ Cª. (4.3)

Moreover
MK(Cª) = cl conv illK (Cª),

with K = cone C, is the least element in EK(Cª).

Proof. As we observed above, the assumption that C be coradiative is (necessary and)
sufficient for K = cone C to be open. Moreover K ⊆ b(Cª), so that b(Cª)∩K = b(∂p)∩K =
K and (4.3) follows from (3.5). The proof of the last statement is immediate, since MK(Cª)
is contained in every other equivalent cogauge of C.

Proposition 4.5. Let C be strongly shady and K = cone C. Then MK(Cª) is bounded,
and hence C admits a continuous sublinear cogauge.

Proof. Let the outer kernel of C contain the ball B(0, δ) = Bδ, with δ > 0. Then, for
all ` ∈ ΛC , we have that `(Bδ) ≥ −1 and `(B) ≥ −1/δ. As B is symmetric, we have
|`(B)| ≤ 1/δ and ‖`‖ ≤ 1/δ, so that ΛC = illK (Cª) is bounded in X∗.

The assumption that C be coradiative cannot be dispensed with. It is needed to guarentee
that every cogauge be continuous on the boundary of K and this implies that every sublinear
function which coincides with ϕC on K has positive values on its complement. If C were
not coradiative this would not necessarily be true and we could find a sublinear function p
which coincides with ϕC on K, but such that the sublevel set [p ≤ −1] does not coincide
with C. For more details on the extension of convex functions from a convex domain to
X = Rn, see [21].

5 Minimality of a Second Order Hypo-differential

Let us recall the definition of a twice hypodifferentiable function, introduced by Demyanov
and Rubinov in [7].

A function f : Rn → R is called twice hypodifferentiable at the point x ∈ Rn if there
exists a convex and compact set d2f (x) ⊆ R× Rn × Rn×n such that, for all u ∈ Rn,

f (x + u) = f (x) + max
[a,l,A]∈d2f(x)

[
a + 〈l, u〉+

1
2
〈Au, u〉

]
+ ox (u) , (5.1)

with
lim
u→0

‖u‖−2 ox(u) = 0, (5.2)

being Rn×n the space of all square matrices of order n. The set d2f (x) is called a second
order hypodifferential of the function f at the point x.

A particularly important instance is given by marginal functions. Let f : S ⊆ Rn → R
be

f (x) = max
y∈G

ϕ (x, y) ,

where x ∈ S, y ∈ G, S is an open set in Rn, G is a compact set in Rm and the function
ϕ : S×G → R is continuous on S×G and twice continuously differentiable as a function of
x on the open set S ⊂ Rn. Then we can write

f (x + u) = max
y∈G

[
ϕ (x, y) + 〈ϕ′x (x, y) , u〉+

1
2
〈ϕ′′xx (x, y) u, u〉+ ox (u, y)

]
, (5.3)
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where ox(·, y) satisfies (5.2) for all y ∈ G.
Let us also suppose that the gradient ϕ′x and the Hessian matrix ϕ′′xx, are continuous

with respect to the variable y on G; this implies that condition (5.2) holds, for the function
ox (u, y) in (5.3), uniformly on G.

Under these assumptions (see [7]) the function f can be represented on S in the form

f (x + u) = f (x) + max
y∈G

[
ϕ (x, y)− f (x) + 〈ϕ′x (x, y) , u〉+

1
2
〈ϕ′′xx (x, y) u, u〉

]
+ ox (u) ,

with the remainder ox satisfying condition (5.2). In this case the function f is twice hy-
podifferentiable at the point x, taking for example the second order hypodifferential given
by

d2f(x) = conv
{
z = [a, l, A] ∈ R× Rn × Rn×n : a = ϕ(x, y)− f(x)

l = ϕ′x(x, y), A =
1
2
ϕ′′xx(x, y), y ∈ G

}
.

For a fixed x ∈ S, let us take the function

h (u) = max
y∈G

[
ϕ (x, y)− f (x) + 〈ϕ′x (x, y) , u〉+

1
2
〈ϕ′′xx (x, y) u, u〉

]

and let us consider the second order hypodifferential d2f (x) of f at the point x. Such a set
is not unique. For some ȳ ∈ G and some given [a′, l, A] ∈ R× Rn × Rn×n such that

a′ < ϕ (x, ȳ)− f (x) , l = ϕ′x (x, ȳ) , A =
1
2
ϕ′′xx (x, ȳ) ,

we can take for instance the set

D = conv
{
d2f (x) , [a′, l, A]

}
.

This is also a second order hypodifferential of the function f at the point x.
We can consider the problem of finding a minimal second order hypodifferential of f at

the point x , i.e. the problem of finding a minimal convex compact set L ⊂ R×Rn×Rn×n =
Rn2+n+1 such that for all u ∈ Rn, it holds

h (u) = max
`∈L

〈`, (1, u, uu∗)〉 , (5.4)

where
u = (u1, u2, ..., un) ,

uu∗ =
(
u2

1, u1u2, ..., u1un, u2u1, u
2
2, u2u3..., u2un, u3u1, u3u2, u

2
3, ..., u(n−1)un, u2

n

)

= vec (uuT ),

and, for any matrix M , vec (M) is the (row) vector obtained by putting together all the
rows of M and uuT is the (rank 1) matrix obtained by multiplying the (column) vector u
by its transpose uT . Note that the inner product in (5.4) coincides with the one which can
be written with the help of the Frobenius product of square matrices, 〈A,B〉F = tr (A ·B).
Indeed, with ` = (a, l, A) ∈ R1+n+n2

, it holds

〈`, (1, u, uu∗)〉 = a + 〈l, u〉+ 〈vecA, uu∗〉 = a + 〈l, u〉+ 〈A, uuT 〉F .
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To treat this problem with the tools developed in Section 2, we must express h as a function
of a new variable, so that it becomes sublinear. Let q : R1+n+n2 → R∞ be the support
function of the set L. It holds

q(g) = max
`∈L

〈`, (1, u, uu∗)〉 = h(u),

with g = [1, u, uu∗], u ∈ Rn. If we set

K =
{

g ∈ Rn2+n+1 : g = λ [1, u, uu∗] , u ∈ Rn, λ > 0
}

,

such a cone does not satisfy condition (2.6) and then the results developed in Section 2
cannot be used to find a set L which is minimal with respect to K.

We have to give up our previous aim of finding a unique minimal second order hypodif-
ferential of f and consider a more modest problem: given the second order hypodifferential
d2f (x) , is it possible to reduce its size computing another second order hypodifferential of
f that is included in the previous one? We will show how to perform this reduction in two
steps.

Let us consider all the matrices A that appear as the third component of the second order
hypodifferential d2f (x) . We can suppose without loss of generality that they are symmetric,
and each of them can be represented by elements of the space Rn(n+1)/2 in the following
way:

A =




a11 a12 a13 ... a1n

a12 a22

a13

a1n ann




→ Ã =
(
a11, 2a12, ..., 2a1n, a22, 2a23..., 2a2n, a33, ..., 2a(n−1)(n−1), 2a(n−1)n, ann

)
,

in which all off-diagonal elements of the matrix are multiplied by two. Then, for all w in
the set

K̂ =
{

w ∈ R(n+2)(n+1)/2 : w = λ
(
1, u,

∼
u
)

, λ > 0, u = (u1, u2, ..., un),

ûu =
(
u2

1, u1u2, ..., u1un, u2
2, u2u3..., u2un, u2

3, ..., u
2
(n−1), u(n−1)un, u2

n

)}
,

where the vector ûu puts together the rows corresponding to the upper triangular part of
the matrix uuT , we can consider the function

p (w) = max
`∈D2f(x)

〈`, w〉, (5.5)

with
w = (1, u, ûu), u ∈ Rn,

and

D2f(x) =
{

` = (a, l, Ã) ∈ R(n+1)(n+2)/2 : a = ϕ (x, y)− f (x) ,

l = (l1, l2, ..., ln) = ϕ′x (x, y) , A =
1
2
ϕ′′xx(x, y)

}
.
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Thus the description of f given by D2f(x) coincides with the one given by d2f(x) in
(5.1), because writing

p(w) = p(1, u, ũ) = h1(u),

it holds h1(u) = h(u) for all u ∈ Rn, where h is defined in (5.4). But p is defined on a
space of lower dimension than q. Unfortunately we still cannot analyze this problem with
the tools developed in Section 2 because K̂, despite the reduced dimensionality, is not open.

In any case we can consider the cone (more precisely a halfspace)

K̃ =
{

w = λ (1, u, v) : λ > 0, u ∈ Rn, v ∈ Rn(n+1)/2
}
⊂ R(n+2)(n+1)/2,

which verifies K̂ ⊆ K̃ and satisfies condition (2.6). Then we can apply the previous re-
sults in order to find the unique minimal set equivalent to D2f (x) with respect to K̃, i.e.
M eK

(
D2f (x)

)
, which is certainly included in D2f(x).

On the other hand, as K̃ is quite a large set, it may be that the set M eK
(
D2f (x)

)
is still

too big. To operate a further reduction of this set, we observe that, by the usual meaning
of the remainder function o(u) in (5.1), the quality of the approximation of the difference
f(x + u) − f(x) offered by the hypodifferential d2f(x) (or, equivalently, D2f(x)), depends
on the norm of the increment u. For this reason, given any ε > 0, we can substitute the
function p(w) given by (5.5), by any other function which coincides with it on the cone

K̃ε =
{

w = λ (1, u, v) : λ > 0, u ∈ Rn, v ∈ Rn(n+1)/2, ‖(u, v)‖ < ε
}
⊂ K̃

and obtain a different hypodifferential for f . Indeed in this case equation (5.1) holds with
a new remainder function o1(u) which is different than o(u) and coincides with it for all
u in an appropriate neighbourhood of the origin, and hence satisfies (5.2). Since the cone
K̃ε is open, we can find the least element in class E eKε

(D2f(x)), which is a second order
hypodifferential for f smaller than the set D2f(x) obtained above.

Bibliographic Note: After the paper was submitted, we became aware of the article [16],
which treats a topic very similar to ours, and gives further understanding and source of
applications to the interested reader. The analysis carried out in [16] can be seen as a
particular instance of our analysis in different respects. The authors study sublinear and
increasing functions defined on the nonnegative orthant of L∞, and the possibility to extend
them to the space L∞. The analysis is based on some features which are specific of the setting
chosen for the problem, but nevertheless some of the concepts developed in the paper have
close relation to ours, as for instance the notion of quasiextremal points for subsets of L1

+,
which takes the place of illuminated points.
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