CONICALLY EQUIVALENT CONVEX SETS AND APPLICATIONS

Elisa Caprari and Alberto Zaffaroni

Abstract

Given a normed space X and a cone $K \subseteq X$, two closed, convex sets A and B in X^{*} are said to be K-equivalent if the support functions of A and B coincide on K. We characterize the greatest set in an equivalence class, analyze the equivalence between two sets, fin Conditions for the existence and the uniqueness of a minimal set, extending previous results. We give some plications to the study of gauges of order hypodifferential.

Key words: convex sets, support function, convex ragan sets, Minkowski gauge, convex coradiant sets, cogauge, hypodifferentiable functions Mathematics Subject Classification: 52A07, A30, $20,49 J 52$

\section*{1 Introduction}

It is well known that a lon icont nuous sublinear function h defined on a normed space X is completely char ariz dits lupport set $$
\partial h \text { tands for } \partial h(0) \text {, the subdifferential of } h \text { at the origin, wh }
$$ where ∂h tands for $\partial h(0)$, the subdifferential of h at the origin, which is a w^{*}-closed convex set in the vologi al dual space X^{*}; moreover one can recover h from ∂h by the formula $$
h(x)=\sup \{\langle x, \ell\rangle: \ell \in \partial h\},
$$

that is, h is the support function of the convex set ∂h. Exploiting the above relations we obtain the well-known duality between the family $\mathcal{C}^{*}\left(X^{*}\right)$ of nonempty, w^{*}-closed, convex sets of X^{*} and the family $\mathcal{S}(X)$ of proper, lower semicontinuous, sublinear functions p : $X \rightarrow \mathbb{R}_{\infty}:=\mathbb{R} \cup\{+\infty\}$ (see e.g. [14]).

In a number of problems one needs to consider the restriction of h to some cone K. If K is not the whole space, there are several support functions which agree with h on K and two sets A and B in X^{*} are said to be equivalent with respect to K if their support functions coincide, when restricted to K; that is if it holds

$$
\sigma_{A}(x):=\sup \{\langle x, \ell\rangle: \ell \in A\}=\sigma_{B}(x):=\sup \{\langle x, \ell\rangle: \ell \in B\}, \quad \forall x \in K .
$$

Given a sublinear function $h \in \mathcal{S}(X)$ and a cone $K \subseteq X$ we obtain an equivalence class, formed by those sets $A \subseteq X^{*}$ such that

$$
\sigma_{A}(x):=\sup \{\langle x, \ell\rangle: \ell \in A\}=h(x), \quad \forall x \in K
$$

Conically equivalent sets were studied in [5], where an application to the calculus of codifferentials was also given. We extend here some results from [5], by considering unbounded sets in infinite dimensional spaces, and give further results about conically equivalent sets.

In Section 2 we study the greatest set in some equivalence class and give some characterization for the equivalence between two sets. Special emphasis is given to the search for the sets which are minimal with respect to inclusion, and to the conditions which guarantee uniqueness.

The remaining sections are devoted to applications. In Section 3 we deal with the description of a closed, convex, radiant set $C \subseteq X$ by means of a sublinear gauge. Although the term gauge often includes the property of being nonnegative, we say here that a positively homogeneous function $p: X \rightarrow \mathbb{R}_{\infty}$ is a gauge for C if $C=[p \leq 1]$. This definition is meaningful for all radiant sets, but we only deal with convex sets and will only consider sublinear gauges. The Minkowski gauge (see the definition (Section 4) is shown to be the greatest sublinear gauge of a convex radiant set. We obtain vo different characterizations, expressed in dual terms, for $p \in \mathcal{S}(X)$ to be a ga oe C describe the support set of the least gauge of C. Moreover we study the ca fit s_{s} under which the Minkowski gauge is minimal. In this case it is the uniqu sub ear gauge of C. Such conditions apply for instance to bounded convex se and ma gally, to continuous convex sets, as introduced by Gale and Klee [12]. In Sect. wonsider some results, presented in [23], about the existence of continuous coa res ocon coradiant set and the existence of a minimal cogauge. Such results ar nterp led somewhat extended, in the light of the analysis of Section 2. Section 5ea with order hypodifferential, as introduced by emyanov and Rubinov [7].

We consider a normed space \mathbf{V} in which the closed ball of radius δ centered in x is denoted by $B_{\delta}(x)=B(x, \delta \sim$ clos re, interior, boundary of some set $S \subseteq X$ are denoted by cl S, int S and bd S pect rely; he convex hull and the conic hull of S are denoted, respectively, as conv S ne $=\lambda x: x \in S, \lambda>0\}$. Let X^{*} be the topological dual space of X, wowe wit theak ${ }^{*}$ topology and denote by $\langle x, \ell\rangle$, or equivalently $\ell(x)$, the usual bilirear pairin bet veen $\boldsymbol{\ell} \in X$ and $\ell \in X^{*}$. For a function $f: X \rightarrow \overline{\mathbb{R}}=[-\infty,+\infty]$ and $r \in$ we denote $[f \leq r]$ the sublevel set $\{x \in X: f(x) \leq r\}$ and by $[f \geq r]$ the superleve set $\{x \in X: f(x) \geq r\}$. The symbols $[f<r]$ and $[f>r]$ have similar meanings.

2 Conically Equivalent Sets

Let us consider the family $\mathcal{S}(X)$ of all proper lower semicontinuous (l.s.c. for short) sublinear functions $h: X \rightarrow \mathbb{R}_{\infty}$. There exists a convex and w^{*}-closed subset A of X^{*} such that for all $u \in X$

$$
\begin{equation*}
h(u)=\sup _{\ell \in A}\langle u, \ell\rangle . \tag{2.1}
\end{equation*}
$$

Let us denote by $\mathcal{C}^{*}\left(X^{*}\right)$ the family of all nonempty, convex and w^{*}-closed subsets of X^{*} (and analogously $\mathcal{C}(X)$ for the family of all nonempty, closed, convex subsets of X). In the sequel we will often drop the prefix w^{*} - as no other topology for X^{*} will be used.

Definition 2.1. Given a cone $K \subseteq X$, the sets $A, B \in \mathcal{C}^{*}\left(X^{*}\right)$ are said to be equivalent
w.r.t. the cone K, or K-equivalent, denoted $A \sim_{K} B$, if

$$
\begin{equation*}
\sup _{\ell \in A}\langle u, \ell\rangle=\sup _{\ell \in B}\langle u, \ell\rangle \quad \forall u \in K \tag{2.2}
\end{equation*}
$$

Since any proper l.s.c. sublinear function vanishes at the origin, it is obvious that (2.2) always holds for $u=0$. For the same reason, it is not relevant if the origin belongs to K or not. Moreover the requirement that K is a cone is not restrictive, since, due to positive homogeneity, for any set $C \subseteq X$ it holds

$$
\sigma_{A}(u)=\sigma_{B}(u) \quad \forall u \in C
$$

if and only if the same equality holds for all u in the conic hull of C.
Given any proper, l.s.c. sublinear function h and its support set A, we indicate by $\mathcal{E}_{K}(A) \subset \mathcal{C}^{*}\left(X^{*}\right)$ the family of all sets equivalent to A, with respect to K :

$$
\mathcal{E}_{K}(A):=\left\{C \in \mathcal{C}^{*}\left(X^{*}\right): h(u)=\sup _{\ell \in C}\langle u, \ell\rangle \quad \forall u \in K\right\}
$$

Observe that, if $K=X$, then $\mathcal{E}_{K}(A)=\{A\}$, but if $I=X$ the family $\mathcal{E}_{K}(A)$ can be quite rich. We consider here several problems relat to eq valence class $\mathcal{E}_{K}(\cdot)$: describe the conditions ensuring the equivalence $A \sim_{K} B$, carcrize minimal sets inside this class, give conditions for uniqueness and find a formu to mpute such a minimal set.

We start with the description of the greate the equivalence class $\mathcal{E}_{K}(\cdot)$. Given the cone $K \subseteq X$ and the function $h \in \mathcal{S}$), w th $h=A$, let us consider the following set:

$$
\left.G_{K}(A):=\left\{\ell \in X^{v} \ell\right\} \leq n(u), \quad \forall u \in K\right\}
$$

Such a set is convex and closed the intersection of closed halfspaces in X^{*}, but in general it is not bounded.

Denoting by $\iota_{S}: X \rightarrow \mathbb{R}$ and $\iota_{S}(x)=+\infty$ for $x \notin \infty$ and $\iota_{S}(x)=+\infty$ for $x \notin$ the gh ι_{K} is a convex function only when the cone K is
convex, we can rewrite C_{A}, the upport set of the function $s(x)=\sigma_{A}(x)+\iota_{K}(x)$, that is
Note that the sum +$)_{K}$ is ©nvex if and only if $b(A) \cap K$ is convex, where $b(A)=\{x \in$ $X: \sigma_{A}(x<+\infty\}$ js the barrier cone of A.

For ev $\quad x \in X$ and $\alpha \in \mathbb{R}$, denote by

$$
H^{-}[x, \alpha]:=\left\{a \in X^{*}:\langle x, a\rangle \leq \alpha\right\}
$$

the lower halfspace determined by x and α. By convention let, for every $x \in X, H^{-}[x,+\infty]=$ X^{*}.

For $A \in \mathcal{C}\left(X^{*}\right)$, we have by definition

$$
\begin{equation*}
G_{K}(A)=\bigcap_{k \in K} H^{-}\left[k, \sigma_{A}(k)\right]=\bigcap_{k \in K \cap b(A)} H^{-}\left[k, \sigma_{A}(k)\right]=G_{K \cap b(A)}(A), \tag{2.4}
\end{equation*}
$$

since for $k \notin b(A)$ we have $H^{-}\left[k, \sigma_{A}(k)\right]=X^{*}$.
Some straightforward properties of $G_{K}(\cdot)$, whose verification is trivial, are the following:

1. for every set $A \in X^{*}$, it holds $G_{K}(A)=G_{K}(\mathrm{cl} \operatorname{conv}(A))$;
2. for every set $A \in \mathcal{C}^{*}\left(X^{*}\right)$ it holds $G_{K}(A) \in \mathcal{E}_{K}(A)$, that is the restriction to K of the support function of $G_{K}(A)$ concides with $\left.\sigma_{A}\right|_{K}$;
3. for all $B \in \mathcal{E}_{K}(A)$, it holds $B \subseteq G_{K}(A)$;
4. if $B \in \mathcal{C}^{*}\left(X^{*}\right)$ and $A \subseteq B$, then $B \in \mathcal{E}_{K}(A)$ if and only if $B \subseteq G_{K}(A)$;
5. if $K_{1} \subseteq K_{2}$, then $G_{K_{2}}(A) \subseteq G_{K_{1}}(A)$;
6. if A is bounded (i.e. if σ_{A} is continuous on X), then $G_{c l K}(A)=G_{K}(A)$, so that $G_{K}(A)=A$ (and consequently $\left.\mathcal{E}_{K}(A)=\{A\}\right)$, if K is dense in X.

We also note that in general $G_{K}(A) \neq G_{\text {conv } K}(A)$, as shown for instance by Example 2.4 below.

To discuss the boundedness of $G_{K}(A)$ it is important to separate two important cases, namely that the cone K be contained in some closed halfspace or not. If the polar cone $K^{+}=\left\{\ell \in X^{*}:\langle k, \ell\rangle \geq 0, \forall k \in K\right\}$ contains some nonzero element (or, equivalently, K is contained in a closed halfspace), then $G_{K}(A)$ is unbounde ${ }^{\vee}, ~ a s ~ i t ~ h o l d s ~$

In particular we have the following result.

Proof. The inclusion \supseteq is obvious. pose that $x^{*} \notin A-K^{+}$, which is w^{*}-closed, since A is w^{*}-compact and K^{+}is w^{*}-clos d. y the separation theorem, there exist $x \in X$ and $\alpha \in \mathbb{R}$ such that

that is $\sigma_{A}(x) \leq \alpha<\left\langle x, x^{*}\right\rangle$ and hence $x^{*} \notin G_{c l} K(A)=G_{K}(A)$.
As the referee pointed out to us, the reader more acquainted with convex analysis would easily prove Proposition 2.2 recalling (2.3) and showing that the equalities

$$
G_{K}(A)=G_{c l K}(A)=\partial \sigma_{A}+\partial \iota_{c l K}=A-K^{+}
$$

hold under the given assumptions, as σ_{A} is convex continuous and ι_{K} is convex.
If $K^{+}=\{0\}$, that is if K is not contained in any halfspace, then we may wonder if $G_{K}(A)$ is bounded, at least if so is A. This is indeed true in finite dimensional spaces.

Proposition 2.3. Let $X=\mathbb{R}^{n}$ and A be bounded. If $K^{+}=\{0\}$, then $G_{K}(A)$ is bounded.

Proof. As $K^{+}=\{0\}$, the cone K is not contained in any halfspace and hence conv $K=\mathbb{R}^{n}$. Thus there exists a finite set of vectors $Y=\left\{x^{1}, x^{2}, \ldots, x^{s}\right\} \subset K$ such that $0 \in \operatorname{int} S$, where $S=\operatorname{conv}\left\{x^{1}, x^{2}, \ldots, x^{s}\right\}$.

To prove that $G_{K}(A)$ is contained in some bounded set, consider the polar set of S :

$$
S^{\circ}:=\left\{v \in \mathbb{R}^{n}:\langle x, v\rangle \leq 1, \forall x \in S\right\} .
$$

We have that S° is a polyhedral convex set (see [19, Sect. 19]) and $0 \in \operatorname{int} S$ implies that S° is a bounded set (see [19, Cor.14.5.1]). Actually it holds

$$
S^{\circ}=\left\{v \in \mathbb{R}^{n}:\left\langle x^{i}, v\right\rangle \leq 1, \forall i=1, \ldots, s\right\}=Y^{\circ} .
$$

Since A is bounded, each linear functional $\left\langle x^{i}, \cdot\right\rangle$ is bounded on A. Let

$$
\alpha_{i}=\sup \left\{\left\langle x^{i}, v\right\rangle, v \in A\right\}=\sigma_{A}\left(x^{i}\right), \quad i=1, \ldots, s
$$

and $\alpha=\max \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}>0$. Setting $K^{\prime}=$ cone Y, we have
and $G_{K}(A)$ is bounded.

$$
G_{K}(A) \subseteq G_{K^{\prime}}(A)=\bigcap_{i=1}^{s} H^{-}\left[x^{i}, \alpha_{i}\right) \propto \alpha S^{\circ}
$$

The above result cannot be extended in generd to finn dimensional spaces, as shown by the following example, which was suggested to by . E. Martínez-Legaz.
 term. Obviously A is bounded and not contained in any halfspace. On the other hand $G_{K}(A)$ consists of all sequences whi h long to l_{2} and whose terms belong to the interval $[-1,1]$. This set is unbounded, antains the sequence $\left\{x^{n}\right\}$, whose general element has the first n components equad $1 a d$ all the remaining components equal to 0 (we have $\left.\left\|x^{n}\right\|=\sqrt{n}\right)$.

To have an impr O the type of questions we will deal with, consider the following simple exa
Exampl 2.5. Let unsider $X=\mathbb{R}^{2}$, the cone $K=\left\{(x, y) \in \mathbb{R}^{2}: y=0, x \geq 0\right\}$ and the function $(x, y)=\}$ for all $(x, y) \in X$, with $\partial h=\{0\}=A$. In this case we have

$$
(A)=\left\{(u, v) \in \mathbb{R}^{2}: u x \leq 0, \forall x>0\right\}=\left\{(u, v) \in \mathbb{R}^{2}: u \leq 0\right\}
$$

and $B \in \mathcal{E}_{K}(A)$ if and only if $\sup \{u:(u, v) \in B\}=0$. Each singleton set $\{(0, v)\}, v \in \mathbb{R}$ is minimal by inclusion inside the class $\mathcal{E}_{K}(A)$.

The most remarkable fact in Example 2.5 is that, while the greatest element $G_{K}(A)$ is well defined, the family $\mathcal{E}_{K}(A)$ contains many different sets which are minimal w.r.t. inclusion and a least element does not exist.

In order to give further results on conically equivalent sets and discuss, in particular, the question of minimality, we need to introduce one more concept.

Definition 2.6. Given $A \in \mathcal{C}^{*}\left(X^{*}\right)$ and the cone $K \subset X$, we say that the point $\ell \in A$ is illuminated by K (or K-illuminated), and denote it by $\ell \in \operatorname{ill}_{K}(A)$, if there exists some $u \in K \backslash\{0\}$ such that $\langle u, \ell\rangle=\sigma_{A}(u)$. Then u is said to illuminate A.

The set $\operatorname{ill}_{K}(A)$ is formed by all w^{*}-support points of A, for which the w^{*}-support functionals are elements of K. We will use the notation $S F(A)$ to denote the set of w^{*}-support functionals of A. And will say that a pair $(a, x) \in X^{*} \times X$ is a supporting pair for A, if $a \in A$ is a support point in A with w^{*}-support functional x.

It is easy to verify that $K_{1} \subseteq K_{2}$ implies $\operatorname{ill}_{K_{1}}(A) \subseteq \operatorname{ill}_{K_{2}}(A)$, for every $A \in \mathcal{C}^{*}\left(X^{*}\right)$.
If we want to obtain uniqueness for the minimal set inside a given equivalence class and find a formula to compute it starting from a set A we need additional hypotheses on the cone K.

We will assume in the sequel that K satisfies the following condition:

$$
\begin{equation*}
\operatorname{int} K=K \backslash\{0\} \tag{2.6}
\end{equation*}
$$

Since every support function σ satisfies $\sigma(0)=0$, there is no loss in generality if we suppose that K does not contain the origin and substitute (2.6) with the requirement that K is open.
Theorem 2.7. Let the cone $K \subseteq X$ be open. If $A, B \in \mathcal{C}^{*}\left(X^{*}\right)$ and $A \sim_{K} B$, then

$$
\begin{equation*}
\operatorname{ill}_{K}(A)=\operatorname{ill}_{K}(B) \tag{2.7}
\end{equation*}
$$

Proof. Let us assume that (2.7) does not hold, i.e re ins $\mathcal{A l l} \operatorname{ill}_{K}(A)$ s.t. $\bar{a} \notin \operatorname{ill}_{K}(B)$. Since $\bar{a} \in \operatorname{ill}_{K}(A)$, there exists $\bar{u} \in K$ s.t.

On the other hand $\bar{a} \notin \operatorname{ill}_{K}(B)$ and $\sigma_{A}(\bar{u}) \sigma_{B}$ in $\bar{a} \notin B$. By the separation theorem there exist $x \in X$ and $\delta>0$ s.t.

i.e. for all $b \in B$

$$
\begin{equation*}
\left\langle x_{\lambda}, b\right\rangle \leq-\delta \lambda+\left\langle x_{\lambda}, \bar{a}\right\rangle . \tag{2.8}
\end{equation*}
$$

Since $\bar{u} \in \operatorname{int} K$, then for $\lambda>0$ small enough we have that $x_{\lambda} \in K$. Moreover, as $\bar{a} \in A$, we have

$$
\left\langle x_{\lambda}, \bar{a}\right\rangle \leq \sigma_{A}\left(x_{\lambda}\right)
$$

As (2.8) holds, then

$$
\sigma_{B}\left(x_{\lambda}\right)=\sup _{b \in B}\left\langle x_{\lambda}, b\right\rangle \leq-\delta \lambda+\left\langle x_{\lambda}, \bar{a}\right\rangle \leq \sigma_{A}\left(x_{\lambda}\right)-\delta \lambda<\sigma_{A}\left(x_{\lambda}\right),
$$

which is a contradiction.

Theorem 2.7 extends a similar result from [5]. The proof is given for the sake of completeness, although the arguments are not new.

With the aim of giving a converse to Theorem 2.7, we start by studying the relation between the support function of a set $A \in \mathcal{C}^{*}\left(X^{*}\right)$ and the one of its illuminated points. This analysis needs at least two warnings. First of all, as initially discovered by V. Klee [15] and then analyzed e.g. by Borwein and Tingley [4] and Fonf [11], in every incomplete normed space X there exist instances of closed, bounded, convex sets with no support points. Thus the set of illuminated points may be empty. Moreover the set of illuminated points may fail to conveniently describe a convex set A when a w^{*}-functional $u \in K$ is unbounded on A. The following example illustrate this situation.

Example 2.8. Let $X=\mathbb{R}^{2}$ with $K=\operatorname{int} \mathbb{R}_{+}^{2} \cup \operatorname{int} \mathbb{R}_{-}^{2}$ and $A=\mathbb{R}_{+}^{2}$. In this case all $w^{*}-$ functionals in int \mathbb{R}_{-}^{2} support A at the origin (and at no other point), while all w^{*}-functionals in \mathbb{R}_{+}^{2} are unbounded above on A. Hence $\operatorname{ill}_{K}(A)=\{0\}$.

On the other hand we have that $\sigma_{A}\left(x_{1}, x_{2}\right)=0$ for all pairs $\left(x_{1}, x_{2}\right) \in \mathbb{R}_{-}^{2}$ and $\sigma_{A}\left(x_{1}, x_{2}\right)=$ $+\infty$ otherwise, so that the sets A and $B:=\operatorname{ill}_{K}(A)$ have the same sets of illuminated points but not the same support functions.

In order to overcome these problems and prove that $A \in \mathcal{C}^{*}\left(X^{*}\right)$ and its set of illuminated points have the same support functions we will he to make some assumptions. First of all, we will have to require that the set oupp ding functionals have some density property. This can be proved in various s qat ds. For instance by assuming that A is w^{*}-compact, so that all elements in ard llumating, or using a results by Phelps [18] (see also [3]), who proved the the set w supporting functionals of any set $A \in \mathcal{C}^{*}\left(X^{*}\right)$ is norm dense among those whic \quad nded above on A, provided X is a Banach space. Another possibility, exphte in Sy- 4, is based on the correspondence between supporting pairs for a convenset $C \backslash X$ nose of its (reverse) polar set.

To overcome the second type of ms , we will have to pay attention to w^{*}-functionals $u \in K$, which are unbounded above n and bounded above on $\operatorname{ill}_{K}(A)$.
Theorem 2.9. Let X be N space and consider $A \in \mathcal{C}^{*}\left(X^{*}\right)$ and the open cone $K \subseteq X$. Suppose that $S F(A)$ dens in $b(A)$. Setting $L:=\operatorname{ill}_{K}(A)$ and $K_{A}:=K \cap b(A)$, we have the following:
a)

A, and recalling (2.4), it holds

$$
G_{K_{A}}(L) \subseteq G_{K_{A}}(A)=G_{K}(A)
$$

To prove the converse relation, let $\bar{a} \notin G_{K_{A}}(L)$. Then there exists $k \in K \cap b(A)$ such that

$$
\begin{equation*}
\langle k, \bar{a}\rangle>\sup _{a \in L}\langle k, a\rangle=\sigma_{L}(k) . \tag{2.9}
\end{equation*}
$$

Consider the set $K^{\prime} \subseteq K$ of all $k \in K$ which are w^{*}-supporting functionals for A, that is all $k \in K$ for which there exist $a_{k} \in A$ with $\left\langle k, a_{k}\right\rangle=\sigma_{A}(k)$. The vector a_{k} is indeed an illuminated point of A, and hence $a_{k} \in L$. This implies that $\sigma_{A}(k)=\sigma_{L}(k)$, for all $k \in K^{\prime}$.

Since K is open, K^{\prime} is dense in $K \cap b(A)$, and (2.9) implies that there exist $\bar{k} \in K^{\prime}$ and $a_{\bar{k}} \in A$ such that

$$
\langle\bar{k}, \bar{a}\rangle>\sup _{a \in A}\langle\bar{k}, a\rangle=\left\langle\bar{k}, a_{\bar{k}}\right\rangle=\sup _{l \in L}\langle\bar{k}, l\rangle
$$

so that $\bar{a} \notin G_{K \cap b(A)}(A)=G_{K}(A)$.
To prove (b) it is enough to recall that, for any set $C \in \mathcal{C}\left(X^{*}\right)$ and any cone $K, G_{K}(C) \in$ $\mathcal{E}_{K}(C)$, so that (a), with $L=\operatorname{ill}_{K}(A), B=\mathrm{cl}$ conv L and $x \in K \cap b(A)$, yields

$$
\sigma_{A}(x)=\sigma_{G_{K}(A)}(x)=\sigma_{G_{K_{A}}(L)}(x)=\sigma_{G_{K_{A}}(B)}(x)=\sigma_{B}(x)=\sigma_{L}(x)
$$

To illustrate what we learn from Theorem 2.9, let us return to Example 2.8. It holds $b(A)=\mathbb{R}_{-}^{2}$ and $K \cap b(A)=\operatorname{int} \mathbb{R}_{-}^{2}$ so that

$$
A=G_{K}(A)=G_{K_{A}}(A)=G_{K_{A}}(L) \neq G_{K}(L)=\{0\}
$$

Moreover, for all $k \in K \cap b(A)=\operatorname{int} \mathbb{R}_{-}^{2}$, it holds $\sigma_{L}(k)=\sigma_{A}(k)$, while for $k \in K \backslash b(A)=$ $\operatorname{int} \mathbb{R}_{+}^{2}$, it holds $\sigma_{A}(k)=+\infty \neq \sigma_{L}(k)=0$.

Given the set $A \in \mathcal{C}^{*}\left(X^{*}\right)$, let us consider the set

$$
M_{K}(A):=\operatorname{cl} \operatorname{conv}\left(\operatorname{ill}_{K}(A)\right) .
$$

The next result shows how the information conveyed by the set $M_{K}(A)$ can be used in order to obtain the values of σ_{A} and gives a partial conver to Theorem 2.7.
Theorem 2.10. Let X be a normed space and consider $\in \mathcal{C}^{*}\left(X^{*}\right)$ and the open cone $K \subseteq X$. Suppose that $S F(A)$ is dense in $b(A)$. Th $\alpha \operatorname{ving}=M_{K}(A)$, it holds
a)

$$
\begin{equation*}
\left.\sigma_{A}(u)=\sigma_{N} \emptyset^{u}+b_{(A} \quad u\right) \quad \forall u \in K \tag{2.10}
\end{equation*}
$$

b) For all sets $B \in \mathcal{C}^{*}\left(X^{*}\right)$ it holds

$$
B \sim_{K} A \Longleftrightarrow M_{K}(A) \leadsto \subseteq A \text { nd } \quad b(B) \cap K=b(A) \cap K
$$

c) If A is bounded, then $M_{K}(A)$ least element w.r.t. inclusion in $\mathcal{E}_{K}(A)$.

Proof. (a) follows immedia $u \notin b(A)$, irrespective ohe Theorem 2.7, while theocon rse ollo

Theorem 2.9 and the fact that $\sigma_{A}(u)=+\infty$ when Theorem 2.7 , while t
of b$)$, as $b(A)=X$

If we eturn to \mathbf{A} am le 2. we observe that the family $\mathcal{E}_{K}(A)$ contains infinitely many minimal ts and $n \boldsymbol{p}$ least element exists. Indeed every set

$$
B_{\alpha}=\left\{\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}: v_{2}=\alpha v_{1}, v_{1} \geq 0\right\}, \quad \alpha \geq 0
$$

together with $\bar{B}_{\infty}=\left\{\left(v_{1}, v_{2}\right): v_{1}=0, v_{2} \geq 0\right\}$ satisfies ill ${ }_{K}\left(B_{\alpha}\right)=\{(0,0)\}$ and $b\left(B_{\alpha}\right) \cap K=$ int \mathbb{R}_{-}^{2}, so that

$$
A \sim_{K} B_{\alpha}, \quad \forall \alpha \in[0,+\infty] .
$$

Moreover each set B_{α} is minimal and no least element exists.
Theorem 2.10 (c) proves the existence of a least element in some class $\mathcal{E}_{K}(A)$ under the assumption that A is bounded. We will see in Sections 3 and 4 that the existence of a least element can be proved under less restrictive assumptions when the sets A and K have some special structure.

In [5] the issues of conical equivalence and minimality are studied under less restrictive assumptions on K than openness. More precisely the cone K is required to satisfy the condition $\mathrm{cl}(\operatorname{int} K)=\operatorname{cl} K$. Further results are given for cones with nonempty interior. We address the interested reader to [5] for more details.

3 Gauges of Convex Radiant Sets

This section and the following one show how the concepts developed in Section 2 can be used to discuss the functional representation (in primal terms) of some particular classes of convex sets. If C is a closed, convex set of X containing the origin, the Minkowski gauge μ_{C} is used for the description of C, in that it satisfies $C=\left[\mu_{C} \leq 1\right]$, and this equality finds several applications in Functional Analysis and in the theory of normed spaces. More generally we will call gauge of C any positively homogeneous function $p: X \rightarrow \mathbb{R}_{\infty}$ such that $C=[p \leq 1]$. In the next section we will consider a set C which is closed, convex and coradiant (see the definition below); in this case C can be described in functional terms by means of a cogauge, that is a positively homogeneous function q such that $C=[q \leq-1]$.

We introduce here some concepts which will be used in the next two sections.
Definition 3.1. The set $A \subseteq X$ is called radiant if $x \in A, t \in[0,1]$ imply that $t x \in A$. It is called coradiant if its complement $A^{C}=X \backslash A$ is radiant, that is if either $A=X$ or $0 \notin A$ and $x \in A, t \geq 1$ imply that $t x \in A$.

We deduce that the empty set \emptyset and the set X are both radiant and coradiant. Alternative definitions of a radiant and coradiant set can be given terms of their kernel or outer kernel.
Definition 3.2. [20] The kernel of a set $A \subseteq X$ is t Se of pants

$$
\begin{aligned}
& \text { [20] The kernel ot a set } A \subseteq X \text { is t, } \\
& \text { ker } A=\{z \in X: z+t(x-z)
\end{aligned}
$$

The outer kernel of a set $A \subseteq X$, oker A, is the its complement A^{C}, that is the set oker $A=\left\{z \in X: z+\boldsymbol{\rho}_{x}-z \notin A, \forall h \notin A, \forall t \in(0,1]\right\}$.
It is obvious that a set $A \subseteq X$ qu ng the origin is radiant if and only if $0 \in \operatorname{ker} A$ and that a proper set A excluding the or coradiant if and only if $0 \in$ oker A.

Given a set $A \subseteq X$, we call sho v of A the set

$$
\hat{\mathrm{w}} A=\{x\}=X: x=t a, a \in A, t \geq 1\}
$$

If $0 \notin A$ then the set $B=$ sho is coradiant; it is indeed the smallest coradiant set containing A, that is he cora iant pull $\mathrm{f} A$. It follows from the definition that, if $0 \in A$, then its coradiant hull coinc es yith

We an particultrly interested in those radiant or coradiant sets which are also convex and, given normg h space X, will denote by $\mathcal{C}_{0}(X)$ the sets in $\mathcal{C}(X)$ which are radiant and by $\mathcal{C}_{\infty}(X)$ in $\mathcal{C}(X)$ which are coradiant. It is easy to see that a convex set is radiant if and only if it contains the origin.

If $C \subseteq X$ is any radiant set, a number of features of C can be described by means of its Minkowski gauge $\mu_{C}: X \rightarrow \mathbb{R}_{\infty}$, where

$$
\mu_{C}(x)=\inf \{\lambda>0: x \in \lambda C\}
$$

which is a nonnegative positively homogeneous function which satisfies $\left[\mu_{C}<1\right] \subseteq C \subseteq$ [$\left.\mu_{C} \leq 1\right]$. This relation specifies to $C=\left[\mu_{C} \leq 1\right]$ provided C is closed and this assumption will always be standing in what follows. Moreover the function μ_{C} is sublinear if and only if C is convex, and our attention in this paper restricts to this situation. In the latter case the support set $\partial \mu_{C}$ coincides with the polar set

$$
C^{\circ}=\left\{\ell \in X^{*}:\langle x, \ell\rangle \leq 1, \forall x \in C\right\}
$$

For $C \in \mathcal{C}(X), \mu_{C}$ is continuous (or equivalently finite valued) on X if and only if $0 \in \operatorname{int} C$ and equivalently if and only if C° is bounded.

It is easy to see that $\mu_{C}(x)=0$ if the ray $R_{x}:=\{y=\lambda x, \lambda>0\}$ is contained in C and consequently it holds

$$
\begin{equation*}
\left[\mu_{C}=0\right]=\operatorname{Rec} C \tag{3.1}
\end{equation*}
$$

where $\operatorname{Rec} C=\{d \in X: x+t d \in C, \forall x \in C, \forall t \geq 0\}$ is the recession cone of C, a closed convex cone. Conversely it holds $\left[\mu_{C}>0\right]=X \backslash \operatorname{Rec} C$.

Although the Minkowski gauge has so often and so succesfully been used to give a functional description of a convex radiant set C, it suffers some drawback if it is used in the framework of the separation theory for coradiant sets, as expressed in the following result, whose proof can be found in [22].

Theorem 3.3. For a proper subset $F \subseteq X$ the following are equivalent:
a) F is closed and coradiant;
b) for every $x \notin F$ there exists an open convex radiant set G such that $x \in G$ and $F \cap G=\emptyset ;$
c) for every $x \notin F$ there exists a continuous and ablanean fion $p: X \rightarrow \mathbb{R}$ such that $p(x)>-1$ and $p(a) \leq-1$ for all $a \in F$.

Theorem 3.3 shows that convex radiant sets sets and this can be expressed in functionar tern ush sublevel sets of a continuous sublinear function as the separating set. Part (c) Ther 3 can be easily proved by taking $p=\mu_{G}$, but this choice has a drawback as hg Mk ski gauge is always nonnegative, it can never become a linear function. fant thow hat the separation property expressed in Theorem 3.3 is a true extension t classical separation result for convex sets and, to reach this aim, we need to shoy a diderent definition can be given for p, in a way that, in those cases in which the set G is a halfspace, its functional description gives a linear function.

As we are only interest he e in onvex sets, we will restrict our attention to sublinear representations and gn $n=\mathcal{C}_{0}(X)$, we will see that the Minkowski gauge is not, in general, th ony su line ga ge of the set C.

For in tance all

$$
p_{\alpha}(x)=\left\{\begin{array}{cl}
\alpha x & x \leq 0 \\
x & x>0
\end{array} \quad \alpha \in[0,1]\right.
$$

are continuous sublinear gauges of the set $C=(-\infty, 1]$ and among them $\mu_{C}=p_{0}$ is the greatest, while the least one is given by $p_{1}(x)=x$, which is linear.

We will see in this section how the search for equivalent gauges of a convex radiant set, and in particular one which is minimal, is related to the results of Section 2. This topic is analysed further in [24]. Since the separating set G in Theorem 3.3 always has the origin as an interior point, we are particularly interested in this case, but will not restrict to it.

The following result, whose proof is straightforward, explains to what extent a sublinear gauge of some set $C \in \mathcal{C}(X)$ can differ from the Minkowski gauge.

Proposition 3.4. Let $C \in \mathcal{C}_{0}(X)$. Then $p \in \mathcal{S}(X)$ is a gauge of C if and only if

$$
\begin{equation*}
[p \leq 0]=\operatorname{Rec} C \quad \text { and } \quad\left(x \notin \operatorname{Rec} C \quad \Longrightarrow \quad p(x)=\mu_{C}(x)\right) \tag{3.2}
\end{equation*}
$$

Since $\mu_{C}(x)=0$ for all $x \in \operatorname{Rec} C$, we deduce from Proposition 3.4 that $p \in \mathcal{S}(X)$ is a gauge of C if and only if it holds

$$
p \leq \mu_{C} \quad \text { and } \quad p(x)=\mu_{C}(x) \quad \forall x \in X \backslash \operatorname{Rec} C
$$

and this can immediately be translated in terms of conical equivalence: indeed for $C \in \mathcal{C}_{0}(X)$ it holds $\mu_{C}=\sigma_{C}$ 。 and $p \in \mathcal{S}(X)$ is a gauge of C if and only if

$$
\begin{equation*}
\partial p \subseteq \partial \mu_{C}=C^{\circ} \quad \text { and } \quad \partial p \sim_{K} C^{\circ}, \quad \text { with } K=X \backslash \operatorname{Rec} C \tag{3.3}
\end{equation*}
$$

In this case we are not interested in the determination of the set $G_{K}\left(C^{\circ}\right)$, since, if the condition $p \leq \mu_{C}$ is not satisfied, then p is not a gauge of C. Conversely the Minkowski gauge is always the greatest gauge of a set $C \in \mathcal{C}_{0}(X)$. The following example shows that the support set C° needs not be the greatest element in $\mathcal{E}_{K}\left(C^{\circ}\right)$.

Example 3.5. Take any linear continuous functional $0 \neq \ell \in X^{*}$ and let $C=[\ell \leq 1]$. Then we have $\operatorname{Rec} C=[\ell \leq 0]$ and

$$
\mu_{C}(x)= \begin{cases}0 & \text { if }\langle x, \ell\rangle<0 \\ \alpha & \text { if }\langle x\rangle=\alpha\end{cases}
$$

Moreover $C^{\circ}=\{\alpha \ell, \alpha \in[0,1]\}, K=[\ell>0]$ and, acc flin yo Proposition 2.2, we have

$$
G_{K}\left(C^{\circ}\right)=C^{\circ}-K^{+}=\{\beta \in(-\infty, 1]\}
$$

It is easy to see that the support function et $G:=G_{K}\left(C^{\circ}\right)$, given by
is not a gauge of C.
We pass now to chat eriz thos sublinear functions which are gauges of a given set $C \in \mathcal{C}_{0}(X)$, and this ill dye terms of conical equivalence of support sets. As we always consid closed sc C the recession cone $\operatorname{Rec} C$ is closed and $K=X \backslash \operatorname{Rec} C$ is open, thus allowhg us to se the re, $\boldsymbol{y}_{\mathrm{t}}$ in Section 2. Observe that the assumption of density in Theorem s. 6 and in nelow is certainly satisfied if either X is Banach or if $0 \in \operatorname{int} C$.
Theoren 2.6. Le X be a normed space and $C \in \mathcal{C}_{0}(X)$. Suppose that $S F\left(C^{\circ}\right)$ is dense in $b\left(C^{\circ}\right)$. Then he l.s.c. sublinear function $p: X \rightarrow \mathbb{R}_{\infty}$ the following are equivalent:
a) p is a gauge of C;
b) $\operatorname{ill}_{K}\left(C^{\circ}\right)+\operatorname{Rec}\left(C^{\circ}\right) \subseteq \partial p \subseteq C^{\circ}$, with $K=X \backslash \operatorname{Rec} C$;
c) $\mathrm{cl} \operatorname{conv}(\partial p \cup\{0\})=C^{\circ}$.

Proof. Recalling Theorem 2.10 (b) and condition (3.3), we obtain that $p \in \mathcal{S}(X)$ is a gauge of C if and only if

$$
\begin{equation*}
b(\partial p) \backslash \operatorname{Rec} C=b\left(C^{\circ}\right) \backslash \operatorname{Rec} C \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ill}_{K}\left(C^{\circ}\right) \subseteq \partial p \subseteq C^{\circ} \tag{3.5}
\end{equation*}
$$

with $K=X \backslash \operatorname{Rec} C$.
Since the equality $b(B)=$ cone $\left(B^{\circ}\right)$ holds for every $B \in \mathcal{C}^{*}\left(X^{*}\right)$, we have that $b\left(C^{\circ}\right)=$ cone $\left(\left(C^{\circ}\right)^{\circ}\right)=\operatorname{cone} C=\operatorname{dom} \mu_{C}$ and $b(\partial p)=\operatorname{dom} p$, just by comparing the definitions. Then (3.4) is equivalent to

$$
\begin{equation*}
\operatorname{dom} p=\operatorname{cone} C, \tag{3.6}
\end{equation*}
$$

since $\operatorname{Rec} C$ is contained in both sets.
In order to show that relations (3.6) and (3.5) are equivalent to the one in (b), we start by assuming that (b) holds. Then (3.5) is obvious. To obtain (3.6), observe that $\partial p \subseteq C^{\circ}$ implies $p \leq \mu_{C}$ and cone $C=\operatorname{dom} \mu_{C} \subseteq \operatorname{dom} p$. Moreover (b) yields

$$
\operatorname{Rec}\left(C^{\circ}\right) \subseteq \operatorname{Rec}(\partial p)
$$

and consequently

$$
(\operatorname{Rec}(\partial p))^{-} \subseteq\left(\operatorname{Rec}\left(C^{\circ}\right)\right)^{-}=\operatorname{cone} C
$$

where $K^{-}=-K^{+}$is the negative polar cone of a set $K \subseteq X$. To prove that dom $p \subseteq$ cone C, it is enough to show that $\operatorname{dom} p \subseteq(\operatorname{Rec}(\partial p))^{-}$. Suppose that $\langle x, \ell\rangle>0$ holds, for some $\ell \in \operatorname{Rec}(\partial p)$ and some $x \in X$. Since $p(x) \geq x^{*}(x)+t \ell(x)$ h $/$ as for all $t>0$ and all $x^{*} \in \partial p$, then $p(x)$ cannot be finite valued, and $x \notin \operatorname{dom} p$.

Now we need to show that (3.5) and (3.6) $\operatorname{Rec}\left(C^{\circ}\right) \subseteq \operatorname{Rec}(\partial p)$. To this aim, take $\ell \in \operatorname{Rec}\left(C^{\circ}\right)(\cos)^{-}, t>0$ and $x^{*} \in \partial p$. The inequality

is certainly true if $x \notin \operatorname{dom} p$. If $x \in$ don sind $p=\operatorname{cone} C$, we have $\ell(x) \leq 0$ and again the inequality holds, and $\ell \in \operatorname{Rec} \boldsymbol{\rho} p$).

To prove that (a) is equivalent to obser that, taking into account (3.1), p is a gauge of C if and only if

Indeed if p is a gauge then ane ality $p(x)<0$ is only possible for those x such that $\mu_{C}(x)=0$, while $p(x) \geq$ field $p(x)=\mu_{C}(x)$, so that $\mu_{C}=\max (p, 0)$.

with $D=\mathrm{cl}$ conv $(\partial p \cup\{0\})$ and the two support sets coincide.
Various consequences of Theorem 3.6 should be underlined. The first is stated in the next result, whose proof is immediate.

Corollary 3.7. Let X be a normed space and $C \in \mathcal{C}_{0}(X)$. Suppose that $S F\left(C^{\circ}\right)$ is dense in $b\left(C^{\circ}\right)$. Then the least gauge of C is the support function of the set $\operatorname{ill}_{K}\left(C^{\circ}\right)+\operatorname{Rec}\left(C^{\circ}\right)$. If moreover $0 \in \operatorname{int} C$ then the support set of the least gauge of C is given by

$$
M_{K}\left(C^{\circ}\right):=\operatorname{cl} \operatorname{conv}\left(\operatorname{ill}_{K}\left(C^{\circ}\right)\right)
$$

The following example is useful to understand the content of the above result.

Example 3.8. Let $X=\mathbb{R}^{2}$ and $C=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geq-1, x_{2} \geq 0, x_{1}+x_{2} \geq 0\right\}$. It holds

$$
\mu_{C}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
0 & x_{1} \geq 0, x_{2} \geq 0 \\
-x_{1} & x_{1} \leq 0, x_{1}+x_{2} \geq 0 \\
+\infty & \text { else }
\end{array}\right.
$$

To find the least gauge of C, we need to evaluate the following sets:

$$
\begin{aligned}
K & =X \backslash \operatorname{Rec} C=\left\{\left(x_{1}, x_{2}\right): \min \left(x_{1}, x_{2}\right)<0\right\} \\
C^{\circ} & =\left\{\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}: v_{1} \leq 0, v_{2} \leq 0, v_{1}-v_{2} \geq-1\right\}, \\
\operatorname{ill}_{K}\left(C^{\circ}\right) & =\left\{\left(v_{1}, v_{2}\right): v_{1}-v_{2}=-1, v_{1} \leq-1\right\}, \\
\operatorname{Rec}\left(C^{\circ}\right) & =\left\{\left(v_{1}, v_{2}\right): v_{1}-v_{2} \geq 0, v_{1} \leq 0\right\},
\end{aligned}
$$

so that $\partial p=\operatorname{ill}_{K}\left(C^{\circ}\right)+\operatorname{Rec}\left(C^{\circ}\right)=\left\{\left(v_{1}, v_{2}\right): v_{1} \leq-1, v_{1}-v_{2} \geq-1\right\}$ and

$$
p\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
-x_{1} & x_{2} \geq 0, x_{1}+x_{2} \geq 0 \\
+\infty & \text { else }
\end{array}\right.
$$

Remark 3.9. Consider again the case when C is a hal aace, as in Example 3.5. Say $C=H^{-}[\ell, 1]$ for some nonzero $\ell \in X^{*}$. Then $\left.C^{\circ} \sim \alpha \ell \alpha \in[0,1]\right\}$ and $\operatorname{ill}_{K}\left(C^{\circ}\right)=\{\ell\}$, so that the least gauge is linear.

An application of Theorem 3.6 (c) allows to ch cte ze the cases in which μ_{C} is minimal. Since the Minkowski gauge is always the reat gt uge C, if there exists no gauge lower than μ_{C}, then μ_{C} is the only sublinear gayze dome also the least one.
Proposition 3.10. Given $C \in \mathcal{C}_{0}(X)$, upp that $\mathcal{F}\left(C^{\circ}\right)$ is dense in $b\left(C^{\circ}\right)$. Then the Minkowski gauge μ_{C} is the least suble fr gauge of C if and only if
Proof. It holds $0 \in M_{K}(C)$ if nd on ly if
whence σ, for M
have $\sigma_{M}=\sigma_{C^{\circ}}=\mu C$ a $M_{K}\left(C^{\circ}\right)$. sublinear gato other than μ_{C}. We need to recall some properties of the barrier cone of a convex set C : it holds $b(C)=\operatorname{cone}\left(C^{\circ}\right)$ and moreover $\operatorname{cl} b(C)=(\operatorname{Rec} C)^{-}$, but $b(C)$ needs not be closed.

Theorem 3.11. Given $C \in \mathcal{C}_{0}(X)$, suppose that $S F\left(C^{\circ}\right)$ is dense in $b\left(C^{\circ}\right)$. If $b(C)$ is not closed, then there exists no sublinear gauge of C lower than μ_{C}.

Proof. We first check the equality

$$
\begin{equation*}
\operatorname{cl} \operatorname{conv}\left[\operatorname{ill}_{K}\left(C^{\circ}\right) \cup\{0\}\right]=C^{\circ} . \tag{3.7}
\end{equation*}
$$

Indeed it is

$$
\begin{equation*}
C^{\circ}=\mathrm{cl} \operatorname{conv}\left[M_{K}\left(C^{\circ}\right) \cup\{0\}\right]=\mathrm{cl} \operatorname{conv}\left[\operatorname{cl} \operatorname{conv}\left(\operatorname{ill}_{K}\left(C^{\circ}\right)\right) \cup\{0\}\right] \tag{3.8}
\end{equation*}
$$

and, calling C_{1} the left hand side in (3.7) and C_{2} the right hand side in (3.8), we obviously have $C_{1} \subseteq C_{2}$. On the other hand it holds cl conv $\left(\mathrm{ill}_{K}\left(C^{\circ}\right)\right) \subseteq C_{1}, 0 \in C_{1}$ and, since C_{1} is closed and convex, we have $C_{2} \subseteq C_{1}$, so that (3.7) holds.

As $b(C)$ is not closed, there exists $\ell \in(\operatorname{Rec} C)^{-} \backslash b(C)$. Since $b(C)=$ cone C°, we have that $R_{\ell} \cap C^{\circ}=\emptyset$.

Since $(\operatorname{Rec} C)^{-}=\operatorname{cl}$ cone C°, and recalling (3.7), there exists a net $\left\{\ell_{\alpha}\right\} \subseteq \operatorname{ill}_{K}\left(C^{\circ}\right)$ and a net $\left\{t_{\alpha}\right\}$ of positive real numbers, such that $t_{\alpha} \ell_{\alpha}$ converges to ℓ.

If t_{α} converges to $\bar{t}>0$, then ℓ_{α} converges to $\bar{\ell}=\ell / \bar{t} \in C^{\circ} \subseteq b(C)$, which is not possible. If t_{α} converges to 0 , then ℓ_{α} is unbounded and

$$
\begin{equation*}
\ell \in \operatorname{As}\left(C^{\circ}\right)=\operatorname{Rec}\left(C^{\circ}\right) \subseteq C^{\circ}, \tag{3.9}
\end{equation*}
$$

where $\operatorname{As}(A)=\left\{\ell \in X^{*}: \exists \ell_{\alpha} \in A, \exists t_{\alpha} \rightarrow 0^{+}\right.$, with $\left.\ell=\lim t_{\alpha} \ell_{\alpha}\right\}$ is the asymptotic cone of the set A and the last inclusion in (3.9) stems from the definition of recession cone, since $0 \in C^{\circ}$. Hence we have again a contradiction.

Thus we have $t_{\alpha} \rightarrow+\infty$ and ℓ_{α} converges to 0 in X^{*}. It is enough to apply Proposition 3.10 to conclude.

Theorem 3.11 can be applied in particular if C is a chuous convex set. These sets were originally introduced by Gale and Klee [12], function is continuous on $X \backslash\{0\}$, and were more Among the many useful characterizations (in fi have that C is continuous if and only if $b(C)$ to convex continuous sets.

We conclude this section with an exar le what the converse to Theorem 3.11 does not hold, i.e. not all sets C or igh the yinkowski gauge is minimal, have a barrier cone which is not closed.
Example 3.12. Consider the $C=\mathbb{R}$ given by

and $0 \in \operatorname{convill}{ }_{K}\left(C^{\circ}\right)=M_{K}\left(C^{\circ}\right)$, so that μ_{C} is minimal.
If the Minkowski gauge μ_{C} is not minimal for the set $C \in \mathcal{C}_{0}(X)$, then there exists a gauge p of C with $p(x)<0$ for at least one $x \in \operatorname{Rec} C$. In this case 0 is not the minimal value of p and $0 \notin \partial p$. The existence of such a gauge of C can be characterized by reverting Proposition 3.10 and proving that the origin can be separated from the set of illuminated points. The study of those sets which admit a 'negative' gauge is carried out in [24].

4 Cogauges of Convex Coradiant Sets

A question very similar to the one treated in the previous section can be raised in connection to convex coradiant sets.

The conditions under which a convex coradiant set C admits a continuous sublinear cogauge were studied in [23]. In this section we wish to show how the results discussed in Section 2 can be used in order to obtain in a different way, and somehow extend, some results presented in [23], to which we refer for further details on the topics treated in this section.

In [23] the main attention was devoted to the functional characterization of a convex coradiant set C, which we also call shady, as in [17], and mainly to the possibility to define a superlinear continuous function $\varphi: X \rightarrow \mathbb{R}$ such that $C=[\varphi \geq 1]$. In order to make the discussion comparable to the present setting, in which sublinear functions are considered, we slightly modify our approach. We will say that a positively homogeneous function p : $X \rightarrow \overline{\mathbb{R}}=[-\infty,+\infty]$ is a cogauge of the coradiant set $A \subseteq X$ if $A=[p \leq-1]$.

The application of the Minkowski idea to a closed coradiant set $A \subseteq X$, yields the notion of Minkowski cogauge (see e.g. [20] for details):

$$
\nu_{A}(x):=-\sup \{\lambda>0: x \in \lambda A\}
$$

which is a real valued, positively homogeneous function, with $\nu_{A}<0$ for all $x \in$ cone A and $\nu_{A}(x)=0$ otherwise. Notice that $-\nu_{A}$, rather than ν_{A}, whamed Minkowski cogauge in [20].

A different functional description of a shady [2], and relies on the concept of reverse polarity. reverse polar of C the set

$$
\begin{aligned}
& \text { cept of reverse polarity. } \\
& C^{\ominus}:=\{\ell \in X:\langle c, ~
\end{aligned}
$$

The name reverse polar is sometimes (andthis happens for instance in [23]) for the set $-C^{\ominus}$. We adopt the convention At $C^{\ominus} X$ _ $C=\emptyset$. It is easy to see that C^{\ominus} is always closed, convex and coradialnin ** and that $C \subseteq X$ is closed and shady if and only if it satisfies $C^{\ominus \ominus}=C$.

We are interested in t cogauge of C. Assume tb from the origin, and let $\varphi_{C}: X \rightarrow \mathbb{R} d$ be the function

This
obviousp $/$ $\varphi_{C}(x)=(x)$ holg
obviously 1 .s.c s for all $x \in \operatorname{cl}$ cone C, while $\varphi_{C}(x)=+\infty$ otherwise. Thus both ν_{C} and φ_{C} are cos res C and actually they are, respectively, the least and the greatest among all possible cogauges of C, that is if $p: X \rightarrow \mathbb{R}_{\infty}$ is a positively homogeneous cogauge of C, then it holds

$$
\nu_{C}(x) \leq p(x) \leq \varphi_{C}(x), \quad \forall x \in X
$$

Notice that ν_{C} is not sublinear, as it takes the value $0=\inf (0,+\infty)$ outside the set $K=$ cone C. The main aim in [23] is to describe those shady sets C for which there exists a sublinear cogauge which is continuous and characterize the least sublinear cogauge. Since all cogauges p of C satisfy $p(x)=\nu_{C}(x)=\varphi_{C}(x)$ for all $x \in$ cone C, we can reformulate the same question in a different way. Given a closed, convex, coradiant set C, its reverse polar C^{\ominus} and the cogauge $\varphi_{C}=\sigma_{C}$, how can we describe the sets in $\mathcal{C}_{\infty}^{*}\left(X^{*}\right)$ which are equivalent to C^{\ominus} with respect to $K=$ cone C ? And how can we characterize the minimal set in $\mathcal{E}_{K}\left(C^{\ominus}\right)$? In what cases can we find bounded sets in $\mathcal{E}_{K}\left(C^{\ominus}\right)$ (so that their support functions are continuous)?

Obviously we have $C^{\ominus}=C^{\ominus}-K^{+}=G_{K}\left(C^{\ominus}\right)$, and $\sigma_{C \ominus}=\varphi_{C}$ is the maximal cogauge of C.

The following definition, which introduces some particular classes of shady sets, helps us to give an answer.

Definition 4.1. Let $C \subseteq X$ be a proper coradiant set. We will say that C is:
a) coradiative [20] if every ray from the origin has at most one intersection with the boundary of C;
b) strongly shady if $C \in \mathcal{C}_{\infty}(X)$ and $0 \in \operatorname{int}$ oker C;
c) reducible if $C \in \mathcal{C}_{\infty}(X)$ and there exists some $M>0$ such that $C=\operatorname{shw}\left(C \cap B_{M}(0)\right)$.

It is proved in [20] that a set $A \subseteq X$ is coradiative if and only if its Minkowski cogauge ν_{A} is continuous on X. Moreover, for a coradiative set A, it holds bd $A=\left[\nu_{A}=-1\right]$ and hence, for a coradiative set $C \in \mathcal{C}_{\infty}(X)$, it holds

$$
\begin{equation*}
\operatorname{bd} C=\left[\nu_{C}=-1\right]=\left[\varphi_{C}=-1\right] \quad \text { and } \quad \mathrm{b} \quad \text { one } C=\left[\varphi_{C}=0\right] \tag{4.1}
\end{equation*}
$$

It is possible to prove that every strongly shady et cora jhtive (see [23]), while, for a convex coradiant set C, the specifications that C is ad tive and that C is reducible are mutually exclusive. The following result, which F ped n [23], explains why those two classes are important in order to find a onti uou subear cogauge. It also shows that strongly shady sets and reducible sets are dua ach other.
Proposition 4.2. [23] For a set $C \in \mathcal{C} \otimes(X)$ the llloping are equivalent:
(a) There exists a continuous subine function $p: X \rightarrow \mathbb{R}$ such that $[p \leq-1]=C$;
(b) C is strongly shady;
(c) C^{\ominus} is reducible.

This resul nde line ha the continuity of ν_{C} on X, which is guaranteed if the shady set C is corad ative, an its onve $k y$ on $K=$ cone C, do not imply that C admits a sublinear cogauge which is ca nuous on X. For instance the set

$$
C=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0, x_{1} x_{2} \geq 1\right\}
$$

yields $\varphi_{C}\left(x_{1}, x_{2}\right)=-\sqrt{x_{1} \cdot x_{2}}$ for $\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}$ and $+\infty$ elsewhere. This function cannot be extended to a continuous sublinear function defined on \mathbb{R}^{2} since its subdifferential is empty at points $\left(0, x_{2}\right)$, with $x_{2} \geq 0$ or $\left(x_{1}, 0\right)$, with $x_{1} \geq 0$.

If we want to use the results of Section 2 to answer the questions raised above, we need to check whether the main assumptions are satisfied. The results of this verification are gathered together in the following proposition, which also contains a useful characterization of illuminated points of C^{\ominus}.

Proposition 4.3. Let X be a normed space and $C \in \mathcal{C}_{\infty}(X)$ be coradiative. Then the following hold:
a) $K=\operatorname{cone} C$ is open;
b) $b\left(C^{\ominus}\right)=\mathrm{cl}$ cone C;
c) the set $S F\left(C^{\ominus}\right)$ of w^{*}-supporting functionals for C^{\ominus} satisfies

$$
K=\text { cone } C \subseteq S F\left(C^{\ominus}\right)
$$

Hence $S F\left(C^{\ominus}\right)$ is dense in $b\left(C^{\ominus}\right)$;
d) for $K=$ cone C, it holds

$$
\begin{equation*}
\operatorname{ill}_{K}\left(C^{\ominus}\right)=\Lambda_{C}:=\left\{\ell \in C^{\ominus}, \ell(c)=-1 \text { for some } c \in C\right\} . \tag{4.2}
\end{equation*}
$$

Proof. a) Since the Minkowski cogauge ν_{C} of a coradiative set C is continuous (see [20]), then $K=$ cone $C=\left[\nu_{C}<0\right]$ is open;
b) for every $x \in K=$ cone C and $\ell \in C^{\ominus}$ it holds $\langle x, \ell\rangle<0$; hence it holds $\langle x, \ell\rangle \leq 0$ for all $x \in \operatorname{cl}$ cone C and cl cone $C \subseteq b\left(C^{\ominus}\right)$. If $w \notin \operatorname{cl}$ cone C, there exists $\ell \in X^{*}$ such that $\langle w, \ell\rangle>0 \geq\langle x, \ell\rangle$ for all $x \in \mathrm{cl}$ cone C. As cone C is open, it holds $\langle x, \ell\rangle<0$ for all $x \in$ cone C and there exists $\alpha>0$ such that $\bar{\ell}=\nless \ell \in C^{\ominus}$. Since $\langle w, \bar{\ell}\rangle>0$ and C^{\ominus} is coradiative, then the linear functional $\langle\omega, \cdot\rangle$ is bounded above on C^{\ominus} so that $w \notin b\left(C^{\ominus}\right) ;$
c) since C is coradiative, if $x \in$ cone C there exjst un que) $\alpha>0$ such that $y=\alpha x \in$ $\operatorname{bd} C$. As int $C \neq \emptyset$ (recall that $C=\left[\nu_{C} \sim 1\right]$ nd ν_{C} is continuous), there exists $\ell \in C^{\ominus}$ such that $\langle y, \ell\rangle=-1$, hence $\left.y, \ell\right)$ s a upporting pair for C. This implies that (ℓ, y) is a w^{*}-supporting pair for C^{\ominus} ad $S F^{\ominus}$).
d) take $\ell \in C^{\ominus}$ and $c \in C$ such that $\ell(\varphi=$. I $l \in \ominus$ then $l(c) \leq-1$ and consequently

Since C is coradiant and closed, the set $L_{k}=\{\alpha>0: \alpha k \in C\}$ is a nonempty interval of the type $[\bar{\alpha},+\infty)$, with $\bar{\alpha}>0$. The point $\bar{c}=\bar{\alpha} k$ satisfies $\varphi_{C}(\bar{c})=-1$ and $\ell(\bar{c})=\varphi_{C}(\bar{c})=-1$ which implies $\ell \in \Lambda_{C}$.

Observe that Λ_{C} is nonempty whenever C has a nonempty interior, hence in particular when C is coradiative.

Part (d), which does not actually depend on $C \in \mathcal{C}_{\infty}(X)$ being coradiative, says that the set of illuminated points of C^{\ominus} coincides with the radial boundary of C^{\ominus}, i.e. those points ℓ of the coradiant set C^{\ominus} such that $\alpha \ell \notin C^{\ominus}$ for $\alpha<1$.

The following result characterizes those sublinear functions which are cogauges of a closed shady set.

Corollary 4.4. Let $C \in \mathcal{C}_{\infty}(X)$ be coradiative. Then the l.s.c. sublinear function $p: X \rightarrow$ \mathbb{R}_{∞} is a cogauge of C if and only if

$$
\begin{equation*}
\Lambda_{C} \subseteq \partial p \subseteq C^{\ominus} \tag{4.3}
\end{equation*}
$$

Moreover

$$
M_{K}\left(C^{\ominus}\right)=\operatorname{cl} \operatorname{convill}{ }_{K}\left(C^{\ominus}\right)
$$

with $K=$ cone C, is the least element in $\mathcal{E}_{K}\left(C^{\ominus}\right)$.
Proof. As we observed above, the assumption that C be coradiative is (necessary and) sufficient for $K=$ cone C to be open. Moreover $K \subseteq b\left(C^{\ominus}\right)$, so that $b\left(C^{\ominus}\right) \cap K=b(\partial p) \cap K=$ K and (4.3) follows from (3.5). The proof of the last statement is immediate, since $M_{K}\left(C^{\ominus}\right)$ is contained in every other equivalent cogauge of C.

Proposition 4.5. Let C be strongly shady and $K=\operatorname{cone} C$. Then $M_{K}\left(C^{\ominus}\right)$ is bounded, and hence C admits a continuous sublinear cogauge.
Proof. Let the outer kernel of C contain the ball $B(0, \delta)=B_{\delta}$, with $\delta>0$. Then, for all $\ell \in \Lambda_{C}$, we have that $\ell\left(B_{\delta}\right) \geq-1$ and $\ell(B) \geq-1 / \delta$. As B is symmetric, we have $|\ell(B)| \leq 1 / \delta$ and $\|\ell\| \leq 1 / \delta$, so that $\Lambda_{C}=\operatorname{ill}_{K}\left(C^{\ominus}\right)$ is bou ted in X^{*}.

The assumption that C be coradiative cannot be isp sed ith. It is needed to guarentee that every cogauge be continuous on the boundary of an this mplies that every sublinear function which coincides with φ_{C} on K has posity luc on its complement. If C were not coradiative this would not necessarily be the nd could find a sublinear function p which coincides with φ_{C} on K, but sucP that the sublevel set $[p \leq-1$] does not coincide with C. For more details on the extensi of coblan from a convex domain to $X=\mathbb{R}^{n}$, see [21].

5 Minimality of a Secong O der Hypo-differential

Let us recall the definition twid hypodifferentiable function, introduced by Demyanov and Rubinov in [7].

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is chlled wice hypodifferentiable at the point $x \in \mathbb{R}^{n}$ if there exists a conve and act $d^{2} f(x) \subseteq \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n \times n}$ such that, for all $u \in \mathbb{R}^{n}$,
with

$$
\begin{gather*}
f\left(x+\max _{f(x)}\left[a+\langle l, u\rangle+\frac{1}{2}\langle A u, u\rangle\right]+o_{x}(u),\right. \tag{5.1}\\
\lim _{u \rightarrow 0}\|u\|^{-2} o_{x}(u)=0,
\end{gather*}
$$

being $\mathbb{R}^{n \times n}$ the space of all square matrices of order n. The set $d^{2} f(x)$ is called a second order hypodifferential of the function f at the point x.

A particularly important instance is given by marginal functions. Let $f: S \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be

$$
f(x)=\max _{y \in G} \varphi(x, y)
$$

where $x \in S, y \in G, S$ is an open set in \mathbb{R}^{n}, G is a compact set in \mathbb{R}^{m} and the function $\varphi: S \times G \rightarrow \mathbb{R}$ is continuous on $S \times G$ and twice continuously differentiable as a function of x on the open set $S \subset \mathbb{R}^{n}$. Then we can write

$$
\begin{equation*}
f(x+u)=\max _{y \in G}\left[\varphi(x, y)+\left\langle\varphi_{x}^{\prime}(x, y), u\right\rangle+\frac{1}{2}\left\langle\varphi_{x x}^{\prime \prime}(x, y) u, u\right\rangle+o_{x}(u, y)\right], \tag{5.3}
\end{equation*}
$$

where $o_{x}(\cdot, y)$ satisfies (5.2) for all $y \in G$.
Let us also suppose that the gradient φ_{x}^{\prime} and the Hessian matrix $\varphi_{x x}^{\prime \prime}$, are continuous with respect to the variable y on G; this implies that condition (5.2) holds, for the function $o_{x}(u, y)$ in (5.3), uniformly on G.

Under these assumptions (see [7]) the function f can be represented on S in the form

$$
f(x+u)=f(x)+\max _{y \in G}\left[\varphi(x, y)-f(x)+\left\langle\varphi_{x}^{\prime}(x, y), u\right\rangle+\frac{1}{2}\left\langle\varphi_{x x}^{\prime \prime}(x, y) u, u\right\rangle\right]+o_{x}(u)
$$

with the remainder o_{x} satisfying condition (5.2). In this case the function f is twice hypodifferentiable at the point x, taking for example the second order hypodifferential given by

$$
\begin{gathered}
d^{2} f(x)=\operatorname{conv}\left\{z=[a, l, A] \in \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n \times n}: a=\varphi(x, y)-f(x)\right. \\
\left.l=\varphi_{x}^{\prime}(x, y), \quad A=\frac{1}{2} \varphi_{x x}^{\prime \prime}(x, y), \quad y \in G\right\}
\end{gathered}
$$

$$
\begin{aligned}
& \text { For a fixed } x \in S \text {, let us take the function } \\
& \qquad h(u)=\max _{y \in G}\left[\varphi(x, y)-f(x)+\left\langle\varphi_{x}^{\prime}(\right.\right.
\end{aligned}
$$

and let us consider the second order hypodifferent d $d x$ of f at the point x. Such a set is not unique. For some $\bar{y} \in G$ and some $\left.\operatorname{iven} a^{\prime}, A\right] \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n \times n}$ such that

$$
a^{\prime}<\varphi(x, \bar{y})-f(x),
$$

we can take for instance the set

This is also a second ord hyp differ ntial of the function f at the point x.
We can consider the pr blen of fidding a minimal second order hypodifferential of f at the point x, ise the pro en finding a minimal convex compact set $L \subset \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n \times n}=$ $\mathbb{R}^{n^{2}+n+1}$ sych ar or al $u \in \mathbb{B}^{n}$, it holds
where

nv $\left\{d^{2} f(x),\left[a^{\prime}, l, A\right]\right\}$.

$$
\begin{equation*}
h(u)=\max _{\ell \in L}\left\langle\ell,\left(1, u, u u^{*}\right)\right\rangle, \tag{5.4}
\end{equation*}
$$

$$
\begin{aligned}
u u^{*} & =\left(u_{1}^{2}, u_{1} u_{2}, \ldots, u_{1} u_{n}, u_{2} u_{1}, u_{2}^{2}, u_{2} u_{3 \ldots}, u_{2} u_{n}, u_{3} u_{1}, u_{3} u_{2}, u_{3}^{2}, \ldots, u_{(n-1)} u_{n}, u_{n}^{2}\right) \\
& =\operatorname{vec}\left(u u^{T}\right)
\end{aligned}
$$

and, for any matrix M, vec (M) is the (row) vector obtained by putting together all the rows of M and $u u^{T}$ is the (rank 1) matrix obtained by multiplying the (column) vector u by its transpose u^{T}. Note that the inner product in (5.4) coincides with the one which can be written with the help of the Frobenius product of square matrices, $\langle A, B\rangle_{F}=\operatorname{tr}(A \cdot B)$. Indeed, with $\ell=(a, l, A) \in \mathbb{R}^{1+n+n^{2}}$, it holds

$$
\left\langle\ell,\left(1, u, u u^{*}\right)\right\rangle=a+\langle l, u\rangle+\left\langle\operatorname{vec} A, u u^{*}\right\rangle=a+\langle l, u\rangle+\left\langle A, u u^{T}\right\rangle_{F}
$$

To treat this problem with the tools developed in Section 2, we must express h as a function of a new variable, so that it becomes sublinear. Let $q: \mathbb{R}^{1+n+n^{2}} \rightarrow \mathbb{R}_{\infty}$ be the support function of the set L. It holds

$$
q(g)=\max _{\ell \in L}\left\langle\ell,\left(1, u, u u^{*}\right)\right\rangle=h(u)
$$

with $g=\left[1, u, u u^{*}\right], u \in \mathbb{R}^{n}$. If we set

$$
K=\left\{g \in \mathbb{R}^{n^{2}+n+1}: g=\lambda\left[1, u, u u^{*}\right], \quad u \in \mathbb{R}^{n}, \quad \lambda>0\right\}
$$

such a cone does not satisfy condition (2.6) and then the results developed in Section 2 cannot be used to find a set L which is minimal with respect to K.

We have to give up our previous aim of finding a unique minimal second order hypodifferential of f and consider a more modest problem: given the second order hypodifferential $d^{2} f(x)$, is it possible to reduce its size computing another second order hypodifferential of f that is included in the previous one? We will show how to perform this reduction in two steps.

Let us consider all the matrices A that appear as the thiy component of the second order hypodifferential $d^{2} f(x)$. We can suppose without $\mathbf{N s}$ of gene ality that they are symmetric, and each of them can be represented by elements $\Omega \operatorname{spa} \backslash \mathbb{R}^{n(n+1) / 2}$ in the following way:
in which all off-diagonal mer so matrix are multiplied by two. Then, for all w in the set

$$
\widehat{K}\left\{\begin{array}{l}
\left\{\begin{array}{l}
\text { en }
\end{array}{ }^{(n+}: w=\lambda(1, u, \tilde{u}), \lambda>0, u=\left(u_{1}, u_{2}, \ldots, u_{n}\right),\right. \\
\left.\widehat{u u}=\left(u_{1}^{2}, u_{1} u_{2}, \ldots, u_{1} u_{n}, u_{2}^{2}, u_{2} u_{3 \ldots}, u_{2} u_{n}, u_{3}^{2}, \ldots, u_{(n-1)}^{2}, u_{(n-1)} u_{n}, u_{n}^{2}\right)\right\},
\end{array}\right.
$$

where the vecuor $\widehat{u u}$ puts together the rows corresponding to the upper triangular part of the matrix $u u^{T}$, we can consider the function

$$
\begin{equation*}
p(w)=\max _{\ell \in D^{2} f(x)}\langle\ell, w\rangle \tag{5.5}
\end{equation*}
$$

with

$$
w=(1, u, \widehat{u u}), \quad u \in \mathbb{R}^{n}
$$

and

$$
\begin{aligned}
D^{2} f(x)=\left\{\ell=(a, l, \widetilde{A}) \in \mathbb{R}^{(n+1)(n+2) / 2}: a=\varphi(x, y)-f(x)\right. \\
\left.l=\left(l_{1}, l_{2}, \ldots, l_{n}\right)=\varphi_{x}^{\prime}(x, y), \quad A=\frac{1}{2} \varphi_{x x}^{\prime \prime}(x, y)\right\}
\end{aligned}
$$

Thus the description of f given by $D^{2} f(x)$ coincides with the one given by $d^{2} f(x)$ in (5.1), because writing

$$
p(w)=p(1, u, \widetilde{u})=h_{1}(u),
$$

it holds $h_{1}(u)=h(u)$ for all $u \in \mathbb{R}^{n}$, where h is defined in (5.4). But p is defined on a space of lower dimension than q. Unfortunately we still cannot analyze this problem with the tools developed in Section 2 because \widehat{K}, despite the reduced dimensionality, is not open.

In any case we can consider the cone (more precisely a halfspace)

$$
\widetilde{K}=\left\{w=\lambda(1, u, v): \lambda>0, u \in \mathbb{R}^{n}, v \in \mathbb{R}^{n(n+1) / 2}\right\} \subset \mathbb{R}^{(n+2)(n+1) / 2}
$$

which verifies $\widehat{K} \subseteq \widetilde{K}$ and satisfies condition (2.6). Then we can apply the previous results in order to find the unique minimal set equivalent to $D^{2} f(x)$ with respect to \widetilde{K}, i.e. $M_{\widetilde{K}}\left(D^{2} f(x)\right)$, which is certainly included in $D^{2} f(x)$.

On the other hand, as \widetilde{K} is quite a large set, it may be that the set $M_{\widetilde{K}}\left(D^{2} f(x)\right)$ is still too big. To operate a further reduction of this set, we observe that, by the usual meaning of the remainder function $o(u)$ in (5.1), the quality of the approximation of the difference $f(x+u)-f(x)$ offered by the hypodifferential $d^{2} f(x)$ (or quivalently, $D^{2} f(x)$), depends on the norm of the increment u. For this reason ivep any $\rightarrow 0$, we can substitute the function $p(w)$ given by (5.5), by any other function ch coin des with it on the cone

$$
\left.\widetilde{K}_{\varepsilon}=\left\{w=\lambda(1, u, v): \lambda>0, u \in \mathbb{R}^{n} \sim \mathbb{R}^{r}+1\right) / 2,\|(u, v)\|<\varepsilon\right\} \subset \widetilde{K}
$$

and obtain a different hypodifferential for Ind in this case equation (5.1) holds with a new remainder function $o_{1}(u)$ which di enent tho $o(u)$ and coincides with it for all u in an appropriate neighbourhood on orion, and hence satisfies (5.2). Since the cone $\widetilde{K}_{\varepsilon}$ is open, we can find the least Θ em in class $\mathcal{E}_{\widetilde{K}_{\varepsilon}}\left(D^{2} f(x)\right)$, which is a second order hypodifferential for f smaller the se $D^{2} f(x)$ obtained above.

Bibliographic Note: A or th paper was submitted, we became aware of the article [16], which treats a topic mil hry tours, and gives further understanding and source of applications the inte ste reader. The analysis carried out in [16] can be seen as a particular nstance f ou and wis in different respects. The authors study sublinear and increasin functions an ed on the nonnegative orthant of L^{∞}, and the possibility to extend them to t space $L{ }^{\infty}$. The analysis is based on some features which are specific of the setting chosen for e prolem, but nevertheless some of the concepts developed in the paper have close relation ours, as for instance the notion of quasiextremal points for subsets of L_{+}^{1}, which takes the place of illuminated points.

Acknowledgements

We are grateful to the anonymous referee, whose insightful comments allowed us to correct some inaccuracies appearing in the preceding version.

References

[1] A. Auslender and P. Coutat, On closed convex sets without boundary rays and asymptotes, Set-Valued Analysis 2 (1994) 19-33.
[2] A. Barbara and J.-P. Crouzeix, Concave gauge functions and applications, Math. Methods Oper. Res. 40 (1994) 43-74.
[3] E. Bishop and P.R. Phelps, The support functionals of a convex set, Proc. Symp. Pure Math., 7, Amer. Math. Soc., Providence, 1962, pp. 27-35.
[4] J.M. Borwein and D.W. Tingley, On supportless convex sets, Proc. Amer. Math. Soc. 94 (1985) 471-476.
[5] E. Caprari and V.F. Demyanov, Conically equivalent sets and their minimality, in Generalized Convexity and Optimization for Economic and Financial Decisions, G. Giorgi and F. Rossi (eds.), Verona, 1998, pp. 81-93.
[6] P. Coutat, M. Volle and J.-E. Martínez-Legaz, Convex functions with continuous epigraph or continuous level sets, J. Optim. Th. Appl. 88 (1996) 365-379.
[7] V.F. Demyanov and A.M. Rubinov, Constructive Nonsmooth Analysis, Frankfurt, Peter Lang Verlag, 1995.
[8] V.F. Demyanov, Minimality of equivalent pairs of con compact sets in \mathbb{R}^{2}, Vestnik of St. Petersburg University, (1997) 11-16.
[9] V.F. Demyanov and A.E. Aban'kin, Conically ed fan pairs of convex sets, in Recent Advances in Optimization, P. Gritzmann et $\boldsymbol{\nu}^{\prime}(\mathrm{ed})$, D.N.E.M.S. 452, Springer Verlag, Berlin, 1997, pp. 19-33.
[10] E. Ernst, M. Thera and C. Zalinescu ice-c us sets in reflexive Banach spaces: convex constrained optimization a st cy nve separation, J. Functional Analysis 223 (2005) 179-203.
[11] V.F. Fonf, On supportless net in incomplete normed spaces, Proc. Amer. Math. Soc. 120 (1994)
[12] D. Gale and V. Kle tont nuous convex sets, Math. Scand. 7 (1959) 379-391.
[13] J.-B. Hirirt-U rut, and Lemarechal, Convex Analysis and Minimization Algorithms I, Spr nger Ver ag, B prlin 1896.
[14] P.L. Iörmandgr, Sur la fonction d'appui des ensembles convexes dans un espace localement onvexe. Arkiv Math. 3 (1954) 181-186.
[15] V. Klee, Extremal structure of convex sets, II, Math. Z. 69 (1958) 90-104.
[16] A.A. Lebedev and V.A. Lebedev, On the minimal extension of increasing *-weakly semicontinuous sublinear functionals from L_{+}^{∞}, J. Convex Analysis 4 (1997) 177-187.
[17] J.-P. Penot, Duality for radiant and shady programs, Acta Math. Vietnamica 22 (1997) 541-566.
[18] R.R. Phelps, Weak* support points of convex sets in E*, Israel J. Math. 2 (1964) 177-182.
[19] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970.
[20] A.M. Rubinov, Abstract Convexity and Global Optimization, Kluwer, Dordrecht, 2000.
[21] K. Shultz and B. Schwartz, Finite extensions of convex functions, Optimization 10 (1979) 501-509.
[22] A. Zaffaroni, Superlinear separation of radiant and coradiant sets, Optimization 56 (1-2) (2007) 267-285.
[23] A. Zaffaroni, Continuous concave cogauges of convex coradiant sets, J. Convex Analysis 15 (2008) 325-343.
[24] A. Zaffaroni, Convex radiant costarshaped sets and the least sublinear gauge, submitted for publication.

Manuscript received 11 June 2008 revised 10 April 2009, 10 August 2009 accepted for publication 17 August 2009

