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Abstract: Given a normed space X and a cone K C X, two closed, convex sets A and B in X™* are said
to be K-equivalent if the support functions of A and B coincide oy K. We characterize the greatest set
in an equivalence class, analyze the equivalence between two sets, finfionditions for the existence and the
uniqueness of a minimal set, extending previous results. We give som plications to the study of gauges of
convex radiant sets and of cogauges of convex coradiant se; udy the minimality of a second
order hypodifferential.
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Introduction

It is well known that a 1A% icontfnuous sublinear function A defined on a normed space

X is completely cha 12

where Oh\@tands fo}0h(0), the subdifferential of h at the origin, which is a w*-closed convex
set in the ologigal dual space X*; moreover one can recover h from Oh by the formula

h(z) = sup{(x,£) : £ € Oh},

that is, h is the support function of the convex set dh. Exploiting the above relations we
obtain the well-known duality between the family C*(X*) of nonempty, w*-closed, convex
sets of X* and the family S(X) of proper, lower semicontinuous, sublinear functions p :
X — Ry :=RU{+00} (see e.g. [14]).

In a number of problems one needs to consider the restriction of h to some cone K. If K
is not the whole space, there are several support functions which agree with h on K and two
sets A and B in X™* are said to be equivalent with respect to K if their support functions
coincide, when restricted to K; that is if it holds

oa(x) :=sup{(z,f): L € A} = op(x) := sup{(z,¥) : { € B}, Vo € K.
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Given a sublinear function h € S(X) and a cone K C X we obtain an equivalence class,
formed by those sets A C X* such that

oa(x) :==sup{(z, ) : L € A} = h(x), Vo € K.

Conically equivalent sets were studied in [5], where an application to the calculus of cod-
ifferentials was also given. We extend here some results from [5], by considering unbounded
sets in infinite dimensional spaces, and give further results about conically equivalent sets.

In Section 2 we study the greatest set in some equivalence class and give some charac-
terization for the equivalence between two sets. Special emphasis is given to the search for
the sets which are minimal with respect to inclusion, and to the conditions which guarantee
uniqueness.

The remaining sections are devoted to applications. In Section 3 we deal with the
description of a closed, convex, radiant set C' C X by means of a sublinear gauge. Although
the term gauge often includes the property of being nonnegative, we say here that a positively
homogeneous function p : X — Ry is a gauge for C if C' = [p < 1]. This definition is
meaningful for all radiant sets, but we only deal with cogpvex sets and will only consider
sublinear gauges. The Minkowski gauge (see the definition) Section 4) is shown to be the

greatest sublinear gauge of a convex radiant set. obtain \@wo different characterizations,
expressed in dual terms, for p € S(X) to be a ga describe the support set
of the least gauge of C'. Moreover we study the cqadli s under which the Minkowski
gauge is minimal. In this case it is the uniqueg earvgauge of C. Such conditions

e g@herally, to continuous convex sets,
onsider some results, presented in
ex coradiant set and the existence
g/l somewhat extended, in the light of
the analysis of Section 2. Section e existence and the minimality of a second
order hypodifferential, as intro emyanov and Rubinov [7].

We consider a normed space in which the closed ball of radius § centered in x is
e, interior, boundary of some set S C X are denoted
he convex hull and the conic hull of S are denoted,
=Xz : xz €S, A>0}. Let X* be the topological dual

as introduced by Gale and Klee [12]. In
[23], about the existence of continuous ¢ es ol

yc X and ¢/ € X*. For a function f: X — R = [—o00, +00]
o7 [/ <'r] the sublevel set {x € X : f(x) < r} and by [f > 7] the
: f(z) > r}. The symbols [f < r] and [f > r] have similar meanings.

Conically Equivalent Sets

Let us consider the family S(X) of all proper lower semicontinuous (1.s.c. for short) sublinear
functions h : X — R.,. There exists a convex and w*-closed subset A of X* such that for
all w e X

h (u) = sup (u, £). (2.1)

LeA

Let us denote by C* (X*) the family of all nonempty, convex and w*-closed subsets of X*
(and analogously C(X) for the family of all nonempty, closed, convex subsets of X). In the
sequel we will often drop the prefix w*- as no other topology for X* will be used.

Definition 2.1. Given a cone K C X, the sets A,B € C*(X*) are said to be equivalent
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w.r.t. the cone K, or K-equivalent, denoted A ~g B, if

sup (u, £) = sup (u, £) Yu € K. (2.2)
LeA teB

Since any proper l.s.c. sublinear function vanishes at the origin, it is obvious that (2.2)
always holds for u = 0. For the same reason, it is not relevant if the origin belongs to K
or not. Moreover the requirement that K is a cone is not restrictive, since, due to positive
homogeneity, for any set C' C X it holds

oa(u) =op(u) YueC

if and only if the same equality holds for all  in the conic hull of C.
Given any proper, ls.c. sublinear function h and its support set A, we indicate by
Ex(A) C C* (X*) the family of all sets equivalent to A, with respect to K:

Ex(4) = {C eC*(X*): h(u) =sup(u,l) Yuée K}.

LeC
Observe that, if K = X, then Ex(A) = {4}, but if X the family Ex(A) can be
quite rich. We consider here several problems rela eqNvalence class Ex (- ): describe
the conditions ensuring the equivalence A ~x B, c izOhe minimal sets inside this
class, give conditions for uniqueness and find a forgiu pute such a minimal set.

n equivalence class Ex (). Given
, let us consider the following set:

We start with the description of the great
the cone K C X and the function h € S@),

0 VueK}.

Gk (A) ={te X
Such a set is convex and closedgbeM¥ the intersection of closed halfspaces in X*, but in
general it is not bounded.

icator function of the set S, that is tg(z) =0ifx € S

Denoting by ts: X — R
and tg(x) = 400 for z ¢ th®egh ¢k is a convex function only when the cone K is
convex, we can rewrite the qupport set of the function s(x) = o4(x) +tx (), that
G
K

1S

k(A) = 0s = (o4 + 1x). (2.3)

is Jonvex if and only if b(A) N K is convex, where b(A4) = {z €
{s the barrier cone of A.
and a € R, denote by

Note thatffthe sum

H z,a] ={a€ X" : (z,a) < a}
the lower halfspace determined by x and «. By convention let, for every z € X, H ™ [z, +o0] =
X*.
For A € C(X*), we have by definition

G(A)= () H [k,oa(k)]= [ H [koa(k)] = Grrpa)(A), (2.4)
keK ke KNb(A)

since for k ¢ b(A) we have H™ [k,04(k)] = X*.
Some straightforward properties of Gk (-), whose verification is trivial, are the following:

1. for every set A € X*, it holds Gx(A) = Gg(clconv (A4));
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2. for every set A € C* (X*) it holds Gk (A) € Ex(A), that is the restriction to K of the
support function of Gk (A) concides with o4|x;

3. for all B € £k (A), it holds B C Gk (A4);
4. if B e C*(X*) and A C B, then B € £x(A) if and only if B C Gk (A);
5. if Ky C Ks, then Gk, (A) C Gk, (A);

6. if A is bounded (i.e. if 04 is continuous on X), then Gk (A) = Gg (A), so that
Gk (A) = A (and consequently Ex(A) = {A}), if K is dense in X.

We also note that in general Gg(A) # Geonv K (A), as shown for instance by Example
2.4 below.

To discuss the boundedness of Gk (A) it is important to separate two important cases,
namely that the cone K be contained in some closed halfspace or not. If the polar cone
Kt ={te X*: (k) >0, Vk € K} contains some nonzero element (or, equivalently, K is
contained in a closed halfspace), then Gk (A4) is unboundel as it holds

A-Kt CGaMY),
In particular we have the following result.

Proposition 2.2. If A € C(X™) is bounged a con® K is convex, then

Proof. The inclusion 2O is obvious. pose that z* ¢ A — KT, which is w*-closed, since
A is w*-compact and KT is w*sclosdd. the separation theorem, there exist z € X and

Vy* € A, zF € KT. (2.5)
1 e nonzero z* € K1, as the latter is a cone, we would have a
ceQr2*) > 0 for all z* € KT and x € KT = cl K. By taking

(2, y") < a < (z,x"), Yy* € A,

that is o4(z) < a < (z,2*) and hence z* ¢ Go x (A) = G (A). O

As the referee pointed out to us, the reader more acquainted with convex analysis would
easily prove Proposition 2.2 recalling (2.3) and showing that the equalities

GK(A) = GclK(A) =0og+ 0t = A-—KT

hold under the given assumptions, as o4 is convex continuous and tx is convex.
If KT = {0}, that is if K is not contained in any halfspace, then we may wonder if
Gk (A) is bounded, at least if so is A. This is indeed true in finite dimensional spaces.

Proposition 2.3. Let X = R"™ and A be bounded. If KT = {0}, then Gk (A) is bounded.
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Proof. As K+ = {0}, the cone K is not contained in any halfspace and hence conv K = R™.
Thus there exists a finite set of vectors Y = {z!, 22, ...,2°} C K such that 0 € int S, where
S = conv {z!, 22, ..., 2%}.

To prove that Gk (A) is contained in some bounded set, consider the polar set of S:

S :={veR": (z,v) <1,VxeS}

We have that S° is a polyhedral convex set (see [19, Sect. 19]) and 0 € int S implies that
S° is a bounded set (see [19, Cor.14.5.1]). Actually it holds

Se={veR": (z',v)<1,Vi=1,..,s} =Y°.
Since A is bounded, each linear functional (z%,-) is bounded on A. Let
a; = sup {(z',v), v € A} = 5a(2"), i=1,..,s

and @ = max{a1,ag,...,as} > 0. Setting K’ = coneY, we have
Gr(A) CGr(A) =) H [2',a)g aS°
i=1

and Gk (A) is bounded. O

dimensional spaces, as shown

by the following example, which was sug&este @ . E. Martinez-Legaz.

\— l27
Let A = By, the unit ball, and let K % of@ll#bquences having at most one nonzero
term. Obviously A is bounded an ot contained in any halfspace. On the other hand
Gk (A) consists of all sequenceg whi ong to lo and whose terms belong to the interval
[—1,1]. This set is unbounded #Za®gg dontains the sequence {2}, whose general element has

i=1 "1

1/2
e usual norm ||a:||:( Foo 2) .

the first n components e 1 all the remaining components equal to 0 (we have
2" = v/n).
To have ay i 0 type of questions we will deal with, consider the following

Exampl@2.5. Let nsidef X = R?, the cone K = {(:E,y) ER?: y=0,z> O} and the
= § for all (z,y) € X, with Oh = {0} = A. In this case we have

A) = {(u,v) € R? : ux <0, Vo >0} = {(u,v) € R*: u <0}

and B € Ex(A) if and only if sup{u : (u,v) € B} = 0. Each singleton set {(0,v)}, v € Ris
minimal by inclusion inside the class Ex (A).

The most remarkable fact in Example 2.5 is that, while the greatest element Gy (A)
is well defined, the family £x(A) contains many different sets which are minimal w.r.t.
inclusion and a least element does not exist.

In order to give further results on conically equivalent sets and discuss, in particular, the
question of minimality, we need to introduce one more concept.

Definition 2.6. Given A € C*(X*) and the cone K C X, we say that the point £ € A
is dlluminated by K (or K-illuminated), and denote it by ¢ € illx (A), if there exists some
u € K\{0} such that (u,¢) = 04(u). Then u is said to illuminate A.
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The set illg (A) is formed by all w*-support points of A, for which the w*-support func-
tionals are elements of K. We will use the notation SF(A) to denote the set of w*-support
functionals of A. And will say that a pair (a,z) € X* x X is a supporting pair for A, if
a € A is a support point in A with w*-support functional x.

It is easy to verify that K7 C K, implies illg, (4) C illk, (A), for every A € C*(X*).

If we want to obtain uniqueness for the minimal set inside a given equivalence class and
find a formula to compute it starting from a set A we need additional hypotheses on the
cone K.

We will assume in the sequel that K satisfies the following condition:

int K = K\ {0}. (2.6)

Since every support function o satisfies o(0) = 0, there is no loss in generality if we
suppose that K does not contain the origin and substitute (2.6) with the requirement that
K is open.

Theorem 2.7. Let the cone K C X be open. If A,B € C*(X*) and A ~k B, then
illg (A) =illg (B). (2.7)
illg (A) s.t. a ¢ illg (B)

Proof. Let us assume that (2.7) does not hold, i.e
Since a € illg (A), there exists 4 € K s.t.

(u,a
.
On the other hand a ¢ illg (B) and o4(@)

there ex1st:r€Xand6>Ost ﬂ
If we consider the point

—ANu+ Az
with X € ( , we have

.' ) (@, b—a) + Az,b—a), VbeB.

(u,b)y < op(u u) = (u,ay, Vb € B,

it follows
(xn,b—a) < —0A <0,
le. forallbe B
(X2, b) < =X+ (zy, Q). (2.8)

Since @ € int K, then for A > 0 small enough we have that x) € K. Moreover, as a € A, we
have

(xx,a) <oa(xy).

As (2.8) holds, then

op(zx) = iug@m b) < —0A+ (zx,a) < oa(xy) — 0N <oa(xy),
€

which is a contradiction. O
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Theorem 2.7 extends a similar result from [5]. The proof is given for the sake of com-
pleteness, although the arguments are not new.

With the aim of giving a converse to Theorem 2.7, we start by studying the relation
between the support function of a set A € C*(X*) and the one of its illuminated points.
This analysis needs at least two warnings. First of all, as initially discovered by V. Klee
[15] and then analyzed e.g. by Borwein and Tingley [4] and Fonf [11], in every incomplete
normed space X there exist instances of closed, bounded, convex sets with no support points.
Thus the set of illuminated points may be empty. Moreover the set of illuminated points
may fail to conveniently describe a convex set A when a w*-functional v € K is unbounded
on A. The following example illustrate this situation.

Example 2.8. Let X = R? with K = intR2 UintR2 and A = RZ. In this case all w*-
functionals in int R? support A at the origin (and at no other point), while all w*-functionals
in RZ are unbounded above on A. Hence illg (A) = {0}.

On the other hand we have that 04 (21, 22) = 0 for all pairs (z1,22) € R% and 04 (1, 22) =
+o00 otherwise, so that the sets A and B := illx (A4) have the same sets of illuminated points
but not the same support functions.

In order to overcome these problems and prove that JMet A € C*(X™*) and its set of
illuminated points have the same support functiongwe wil e to make some assumptions.
First of all, we will have to require that the set ing functionals have some
density property. This can be proved in various For instance by assuming
that A is w*-compact, so that all elements in
Phelps [18] (see also [3]), who proved thgf thg @
A € C*(X™) is norm dense among those vghicNQgaf
Banach space. Another possibility, explaf{tdQ in
between supporting pairs for a conve C ose of its (reverse) polar set.

To overcome the second type of groMkms, we will have to pay attention to w*-functionals
u € K, which are unbounded ahove dn Mand bounded above on illk (A).

Theorem 2.9. Let X be
K C X. Suppose that S
we have the following:

bf wesupporting functionals of any set
ded above on A, provided X is a
4, is based on the correspondence

space and consider A € C*(X*) and the open cone
in b(A). Setting L :=illg (A) and K4 := K Nb(A),

C A, and recalling (2.4), it holds

Gra(L) € Gr,(A) = G (A).
To prove the converse relation, let @ ¢ Gk, (L). Then there exists k € K N b(A) such that
(k,a) > SLEHL)UC,@ = o (k). (2.9)

Consider the set K/ C K of all k € K which are w*-supporting functionals for A, that
is all k € K for which there exist ay € A with (k,axr) = 04(k). The vector ay, is indeed an
illuminated point of A, and hence a;, € L. This implies that o4(k) = or(k), for all k € K’.

Since K is open, K’ is dense in K Nb(A), and (2.9) implies that there exist k € K’ and
aj, € A such that

(k,a) > sup{k,a) = (k,az) = sup(k, 1),
acA leEL
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so that a ¢ GKﬂb(A) (A) = Gk (A).

To prove (b) it is enough to recall that, for any set C' € C(X*) and any cone K, Gi(C) €
Ex(C), so that (a), with L =illg (A), B =clconv L and z € K Nb(A), yields

0A(@) = 06, (4)(@) = 06y, (1) () = 0y, () (@) = 0B(z) = 0L(2).
O

To illustrate what we learn from Theorem 2.9, let us return to Example 2.8. It holds

b(A) =R?% and K Nb(A) = int R? so that
A =Gg(A) = Gk, (A) = Gk, (L) # Gk (L) = {0}

Moreover, for all k € K Nb(A) = int R2, it holds o, (k) = oa(k), while for k € K \ b(A) =
intR%, it holds o4 (k) = 400 # o,(k) = 0.

Given the set A € C*(X™), let us consider the set

Mg (A) := clconv (illk (A)).

The next result shows how the information conveyed by the set Mg (A) can be used in

order to obtain the values of 04 and gives a partial convery{e,to Theorem 2.7.

Theorem 2.10. Let X be a normed space and ggnsider

K C X. Suppose that SF(A) is dense in b(A)

c C*(X™*) and the open cone
= Mg (A), it holds

ing

a)
—01\/‘u u) Yu € K. (2.10)

b) For all sets B € C*(X*) it holds

B~k A <= Mg(A nd b(B)NK =b(A)NK.
c) If A is bounded, then My (A least element w.r.t. inclusion in Ex (A).

Proof. (a) follows immedig Theorem 2.9 and the fact that o4(u) = 400 when
u ¢ b(A), irrespective oM ‘ v (w). The ’only if” implication in (b) follows from
Theorem 2.7, while thgggon ¥ from part a). Finally ¢) is an immediate consequence
of b), as b( Bounded and Mg (A) C A yields b(A) C b(Mg(A)). O

If we ample 2 we observe that the family Ex(A) contains infinitely many
minimal east element exists. Indeed every set

By = {(v1,v2) € R?: vy = awy, v; > 0}, a >0,

together with Bo, = {(v1,v2) : v1 =0, vy > 0} satisfies illx (B,) = {(0,0)} and b(B,)NK =
int RZ , so that

A~k By, Va € [0, +o0].
Moreover each set B, is minimal and no least element exists.

Theorem 2.10 (c) proves the existence of a least element in some class Ex(A) under the
assumption that A is bounded. We will see in Sections 3 and 4 that the existence of a least
element can be proved under less restrictive assumptions when the sets A and K have some
special structure.

In [5] the issues of conical equivalence and minimality are studied under less restrictive
assumptions on K than openness. More precisely the cone K is required to satisfy the
condition ¢l (int K') = cl K. Further results are given for cones with nonempty interior. We
address the interested reader to [5] for more details.
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Gauges of Convex Radiant Sets

This section and the following one show how the concepts developed in Section 2 can be
used to discuss the functional representation (in primal terms) of some particular classes of
convex sets. If C' is a closed, convex set of X containing the origin, the Minkowski gauge
pe is used for the description of C, in that it satisfies C = [uc < 1], and this equality
finds several applications in Functional Analysis and in the theory of normed spaces. More
generally we will call gauge of C any positively homogeneous function p : X — R, such
that C' = [p < 1]. In the next section we will consider a set C' which is closed, convex and
coradiant (see the definition below); in this case C' can be described in functional terms by
means of a cogauge, that is a positively homogeneous function ¢ such that C' = [¢ < —1].
We introduce here some concepts which will be used in the next two sections.

Definition 3.1. The set A C X is called radiant if z € A, t € [0,1] imply that tz € A. Tt
is called coradiant if its complement A = X'\ 4 is radiant, that is if either A = X or 0 ¢ A
and x € A, t > 1 imply that tz € A.

We deduce that the empty set ) and the set X are bothsradiant and coradiant. Alterna-
tive definitions of a radiant and coradiant set can be givenJM terms of their kernel or outer
kernel.

Definition 3.2. [20] The kernel of a set A C X is t

f p¥Ints

kerA={ze X : z+t(x— z) , , vVt € (0,1]}.
o
The outer kernel of a set A C X, oker A, isgh elgf its complement A, that is the set

okerA={z€ X : z4Mx ¢ ¢ A, Vvt e (0,1]}.

It is obvious that a set A C X i
that a proper set A excluding
Given a set A C X, we ¢

[uMlng the origin is radiant if and only if 0 € ker A and
orkinV coradiant if and only if 0 € oker A.
of A the set

X:z=ta,a€ A, t>1}.

s coradiant; it is indeed the smallest coradiant set containing
. It follows from the definition that, if 0 € A, then its

space X, will denote by Co(X) the sets in C(X) which are radiant and
in C(X) which are coradiant. It is easy to see that a convex set is radiant
if and only if it contains the origin.

If C C X is any radiant set, a number of features of C' can be described by means of its
Minkowski gauge puc : X — Ry, where

po(z) =inf{\ > 0: z € A\C},

which is a nonnegative positively homogeneous function which satisfies [uc < 1] € C C
[te < 1]. This relation specifies to C' = [uc < 1] provided C' is closed and this assumption
will always be standing in what follows. Moreover the function uc is sublinear if and only
if C' is convex, and our attention in this paper restricts to this situation. In the latter case
the support set Ouc coincides with the polar set

Co={leX*: (x,0) <1, Vo e}
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For C € C(X), pc is continuous (or equivalently finite valued) on X if and only if 0 € int C
and equivalently if and only if C° is bounded.
It is easy to see that uc(z) = 0 if the ray R, := {y = Az, A > 0} is contained in C' and
consequently it holds
(e = 0] = RecC, (3.1)

where RecC ={d € X : z+1td € C, Vo € C, ¥t > 0} is the recession cone of C, a closed
convex cone. Conversely it holds [ > 0] = X \ RecC.

Although the Minkowski gauge has so often and so succesfully been used to give a
functional description of a convex radiant set C', it suffers some drawback if it is used in the
framework of the separation theory for coradiant sets, as expressed in the following result,
whose proof can be found in [22].

Theorem 3.3. For a proper subset F' C X the following are equivalent:

a) F is closed and coradiant;

b) for every x ¢ F there exists an open convex radiant set G such that © € G and
FNnG =10

c) for every x ¢ F there exists a continuous a
p(z) > -1 and p(a) < =1 for alla € F.

unction p: X — R such that

Theorem 3.3 shows that convex radiant sets to separate points from coradiant
sets and this can be expressed in function®® ter

function as the separating set. Part (c T 3 can be easily proved by taking
p = pg, but this choice has a drawbacki®as [Inkgfski gauge is always nonnegative, it
can never become a linear function. ant tshowrthat the separation property expressed

in Theorem 3.3 is a true extension®X tNQ classical separation result for convex sets and, to
reach this aim, we need to sho dWerent definition can be given for p, in a way that,
in those cases in which the set G is a halfspace, its functional description gives a
linear function.

Co(X), we will see that the Minkowski gauge is not, in
of the set C.

<
TSy echa
are continuous sublinear gauges of the set C' = (—o0, 1] and among them pc = po is the
greatest, while the least one is given by p;(z) = x, which is linear.

We will see in this section how the search for equivalent gauges of a convex radiant set,
and in particular one which is minimal, is related to the results of Section 2. This topic is
analysed further in [24]. Since the separating set G in Theorem 3.3 always has the origin as
an interior point, we are particularly interested in this case, but will not restrict to it.

The following result, whose proof is straightforward, explains to what extent a sublinear
gauge of some set C' € C(X) can differ from the Minkowski gauge.

Proposition 3.4. Let C € Co(X). Then p € S(X) is a gauge of C if and only if

[p < 0] =RecC and (¢ RecC = p(x)=pc(x)). (3.2)
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Since puc(z) = 0 for all € Rec C, we deduce from Proposition 3.4 that p € S(X) is a
gauge of C' if and only if it holds

p<pc  and  p(x)=pc(z) VoeX\RecC,

and this can immediately be translated in terms of conical equivalence: indeed for C' € Cy(X)
it holds uc = o¢e and p € S(X) is a gauge of C' if and only if

Op C Ouec =C° and Op ~x C°,  with K = X\RecC. (3.3)

In this case we are not interested in the determination of the set Gg(C®), since, if the
condition p < pc is not satisfied, then p is not a gauge of C'. Conversely the Minkowski
gauge is always the greatest gauge of a set C € Co(X). The following example shows that
the support set C° needs not be the greatest element in Ex (C°).

Example 3.5. Take any linear continuous functional 0 # ¢ € X* and let C' = [¢ < 1]. Then
we have RecC' = [¢ < 0] and

0 if(z,0) <0

Gr(C°) = C° ™

It is easy to see that the support functiow%

is not a gauge of C.

We pass now to chay¥ thos¢ sublinear functions which are gauges of a given set

C € Cp(X), and thiggill iglterms of conical equivalence of support sets. As we
i ; e recession cone Rec C' is closed and K = X\Rec C' is open,

s in Section 2. Observe that the assumption of density in

e l.s.c. sublinear function p: X — Ry, the following are equivalent:

a) p is a gauge of C;
b) illg (C°) + Rec (C°) C9p C C°, with K = X \ Rec C
¢) cleonv (9p U{0}) = C°.
Proof. Recalling Theorem 2.10 (b) and condition (3.3), we obtain that p € S(X) is a gauge

of C if and only if
b(Op) \ RecC' = b(C°) \ RecC (3.4)

and
illg (C°) COp C C°, (3.5)
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with K = X \ RecC.

Since the equality b(B) = cone (B°) holds for every B € C*(X*), we have that b(C°) =
cone ((C°)°) = coneC = dom uc and b(dp) = domp, just by comparing the definitions.
Then (3.4) is equivalent to

dom p = cone C, (3.6)

since Rec C is contained in both sets.

In order to show that relations (3.6) and (3.5) are equivalent to the one in (b), we start
by assuming that (b) holds. Then (3.5) is obvious. To obtain (3.6), observe that dp C C°
implies p < pe and cone C' = dom pe € domp. Moreover (b) yields

Rec (C°) C Rec (0p)

and consequently
(Rec (0p))~ C (Rec(C°))™ = coneC,

where K~ = — K™ is the negative polar cone of a set K C X. To prove that domp C coneC,
it is enough to show that domp C (Rec(dp))~. Suppose that (z,£¢) > 0 holds, for some
£ € Rec (Op) and some = € X. Since p(x) > a*(x) 4+ tl(x) his for all ¢ > 0 and all 2* € Jp,
then p(z) cannot be finite valued, and = ¢ dom p.

Now we need to show that (3.5) and (3.6)
Rec (C°) C Rec (dp). To this aim, take £ € Rec (C°)
inequality

—

only need to prove that
—,t>0and z* € Op. The

p(r) @z ( (z)
is certainly true if x ¢ domp. If x € do s = cone C, we have £(z) < 0 and
again the inequality holds, and ¢ € Rec @p)

th

To prove that (a) is equivalent to obse " taking into account (3.1), p is a gauge
of C' if and only if

ax®p(z),0), Ve € X.

Indeed if p is a gauge the
pe(z) = 0, while p(z) >A

By standard res 2,
C*(X™), it

lity p(z) < 0 is only possible for those x such that
ue(x), so that pe = max(p,0).
t functions, we know that, given two sets A,B €

max (04,08) = 0p,
where D & clconv (A U B). Hence
pe(x) =oce(z) =op(z),  VreX,
with D = clconv (Op U {0}) and the two support sets coincide. O

Various consequences of Theorem 3.6 should be underlined. The first is stated in the
next result, whose proof is immediate.

Corollary 3.7. Let X be a normed space and C € Co(X). Suppose that SF(C®) is dense
in b(C°). Then the least gauge of C is the support function of the set illx (C°) 4+ Rec (C°).
If moreover 0 € int C' then the support set of the least gauge of C' is given by

Mg (C®) := clconv (illg (C°)).

The following example is useful to understand the content of the above result.
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Example 3.8. Let X = R? and C = {(z1,22) € R? : 21 > —1, 29 > 0, 21 + 22 > 0}. It
holds

0 1 2>0,222>0
po(xy,xe) = —x1 21 <0, 21 +222>0
+00 else.

To find the least gauge of C, we need to evaluate the following sets:

K = X\RecC ={(x1,22): min(zy,xs) < 0},

C° = {(vi,v2) €R?: w3 <0,v3 <0, v —vg > —1},
illg (C°) = {(v1,v2): v1 —ve =—1, 03 < =1},
Rec(C°) = {(v1,v2): v1 —we >0, v; <0},

so that dp = illg (C°) + Rec (C°) = {(v1,v2) : v1 < =1, v1 —vg > —1} and

—T1 29020, 21+222>0
p(1,22) = +00 else.

Remark 3.9. Consider again the case when C' is a halface, as in Example 3.5. Say
C = H~[¢,1] for some nonzero ¢ € X*. Then C° 0,1]} and illg (C°) = {¢}, so
that the least gauge is linear.

An application of Theorem 3.6 (c¢) allows to chag e the cases in which pc is minimal.
Since the Minkowski gauge is always thegreatfist Jfuge®f C, if there exists no gauge lower

than pe, then pe is the only sublinear gayge & e also the least one.
Proposition 3.10. Given C € Co(Xp,[®up t ’ (C°) is dense in b(C°). Then the
Minkowski gauge pc is the least sub T gau, if and only if

K (C°

)] =: Mg (C°).

0 ~CO§V 1
Proof. 1t holds 0 € Mg ( d oy if
v (M (C°) U{0}) = Mk(C®),
(c

Q s the minimal gauge of C. Applying Theorem 3.6 (c) we
theresult is proved. O

sult allows to understand more clearly what type of convex sets have no
sublinear ga ther than uc. We need to recall some properties of the barrier cone of a
convex set C: it holds b(C') = cone (C°) and moreover clb(C) = (Rec C)~, but b(C') needs
not be closed.

Theorem 3.11. Given C € Cyo(X), suppose that SF(C®) is dense in b(C°). If b(C) is not
closed, then there exists no sublinear gauge of C' lower than pc.

Proof. We first check the equality
cleonv [illg (C°) U {0}] = C°. (3.7)
Indeed it is

C° = clconv [Mg (C°) U{0}] = clconv [clconv (il (C°)) U {0}] (3.8)
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and, calling Cy the left hand side in (3.7) and Cy the right hand side in (3.8), we obviously
have C; C Cy. On the other hand it holds clconv (illg (C°)) C C4, 0 € C; and, since C; is
closed and convex, we have Cy C C1, so that (3.7) holds.

As b(C) is not closed, there exists £ € (RecC')~\b(C). Since b(C) = cone C°, we have
that R, NC° = 0.

Since (Rec C)~ = clcone C°, and recalling (3.7), there exists a net {¢,} C illx (C°) and
a net {t,} of positive real numbers, such that ¢,¢, converges to /.

If t,, converges to £ > 0, then £, converges to £ = £/t € C° C b(C'), which is not possible.
If ¢, converges to 0, then ¢, is unbounded and

¢ € As(C°) = Rec (C°) C C°, (3.9)

where As(A) = {¢ € X*: 3, € A, Ft, — 07, with £ = lim¢,£,} is the asymptotic cone
of the set A and the last inclusion in (3.9) stems from the definition of recession cone, since
0 € C°. Hence we have again a contradiction.

Thus we have t, — 400 and ¢, converges to 0 in X*. It is enough to apply Proposition
3.10 to conclude. O

Theorem 3.11 can be applied in particular if C is a cd@inuous convex set. These sets
were originally introduced by Gale and Klee [12], Cco sets for which the support
function is continuous on X\{0}, and were more re d for instance in [1, 6, 10].
Among the many useful characterizations (in fings inite dimensional spaces), we
have that C is continuous if and only if g(C)\ (C). Hence Theorem 3.11 applies

le

to convex continuous sets.

We conclude this section with an exa,
3.11 does not hold, i.e. not all sets (7 i
barrier cone which is not closed.

Example 3.12. Consider the

given by

1§z1§1,z22\/1x2}.

: vy < 0}, which is closed. On the other hand we have
nd, since RecC = {(0,22) : 22 > 0} and K = {(z1,22) :
% > 0}, we have that

illg (C°) = {v = (vy,v2) : V|| =1, va <0}
and 0 € convillg (C°) = Mk (C?), so that pc is minimal.

If the Minkowski gauge puc is not minimal for the set C' € Cy(X), then there exists a
gauge p of C with p(x) < 0 for at least one € RecC. In this case 0 is not the minimal
value of p and 0 ¢ Jp. The existence of such a gauge of C' can be characterized by reverting
Proposition 3.10 and proving that the origin can be separated from the set of illuminated
points. The study of those sets which admit a ‘negative’ gauge is carried out in [24].

Cogauges of Convex Coradiant Sets

A question very similar to the one treated in the previous section can be raised in connection
to convex coradiant sets.
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The conditions under which a convex coradiant set C' admits a continuous sublinear
cogauge were studied in [23]. In this section we wish to show how the results discussed
in Section 2 can be used in order to obtain in a different way, and somehow extend, some
results presented in [23], to which we refer for further details on the topics treated in this
section.

In [23] the main attention was devoted to the functional characterization of a convex
coradiant set C', which we also call shady, as in [17], and mainly to the possibility to define
a superlinear continuous function ¢ : X — R such that C = [¢ > 1]. In order to make the
discussion comparable to the present setting, in which sublinear functions are considered,
we slightly modify our approach. We will say that a positively homogeneous function p :
X — R = [~00,+0q] is a cogauge of the coradiant set A C X if A = [p < —1].

The application of the Minkowski idea to a closed coradiant set A C X, yields the notion
of Minkowski cogauge (see e.g. [20] for details):

va(x):= —sup{A > 0: x € AA},

which is a real valued, positively homogeneous function, with v4 < 0 for all = € cone A and
va(z) = 0 otherwise. Notice that —v4, rather than v4, wiggnamed Minkowski cogauge in
[20].

A different functional description of a shady
[2], and relies on the concept of reverse polarity.

reverse polar of C' the set
Q —1. Ve e C}.

(

The name reverse polar is sometime %n @
set —C©. We adopt the convention Mt C© C = 0. Tt is easy to see that C® is
always closed, convex and coradia\in ™ and that C' C X is closed and shady if and only
if it satisfies C°° = C.

We are interested in t function of C'©, which turns out to be a sublinear
cogauge of C. Assume t i.e. C is contained in some closed halfspace disjoint

S g by Barbara and Crouzeix
empty set C' C X we call

C®:={le x®. ¢,

appens for instance in [23]) for the

all possible cogauges of C, that is if p : X — R, is a positively homogeneous cogauge of C,
then it holds

ve(r) <p(x) < pc(z), VreX.

Notice that v¢ is not sublinear, as it takes the value 0 = inf(0,4+o00) outside the set
K = coneC. The main aim in [23] is to describe those shady sets C' for which there exists
a sublinear cogauge which is continuous and characterize the least sublinear cogauge. Since
all cogauges p of C satisty p(x) = vo(z) = po(z) for all z € cone C, we can reformulate
the same question in a different way. Given a closed, convex, coradiant set C, its reverse
polar C® and the cogauge ¢c = oce, how can we describe the sets in C* (X*) which are
equivalent to C® with respect to K = coneC? And how can we characterize the minimal
set in £ (C®)? In what cases can we find bounded sets in Ex(C®) (so that their support
functions are continuous)?
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Obviously we have C® = C° — KT = G (C®), and oce = @ is the maximal cogauge
of C.

The following definition, which introduces some particular classes of shady sets, helps us
to give an answer.

Definition 4.1. Let C' C X be a proper coradiant set. We will say that C' is:

a) coradiative [20] if every ray from the origin has at most one intersection with the
boundary of C

b) strongly shady if C € C»(X) and 0 € int oker C}
¢) reducible if C' € Coo(X) and there exists some M > 0 such that C' = shw (C'N By (0)).
It is proved in [20] that a set A C X is coradiative if and only if its Minkowski cogauge

v4 is continuous on X. Moreover, for a coradiative set A, it holds bd A = [v4 = —1] and
hence, for a coradiative set C' € Coo(X), it holds

bdC = [ve = —1] = [pc = —1] and bJMbne C' = [pc = 0]. (4.1)
It is possible to prove that every strongly sha orqlijtive (see [23]), while, for a
convex coradiant set C, the specifications that C' is jve and that C is reducible are

(a) There exists a continuous sub\neX& function p : X — R such that [p < —1] = C;

(b) C is strongly shady;

e continuity of v¢ on X, which is guaranteed if the shady set
vty on K = cone C', do not imply that C' admits a sublinear
uous’on X. For instance the set

cogauge @which is c8

C={(z1,22) ER*: 21 >0, z122 > 1},

yields o (z1,22) = —\/21 - 22 for (x1,22) € Ri and +oo elsewhere. This function cannot be
extended to a continuous sublinear function defined on R? since its subdifferential is empty
at points (0, z2), with 22 > 0 or (z1,0), with 2; > 0.

If we want to use the results of Section 2 to answer the questions raised above, we need
to check whether the main assumptions are satisfied. The results of this verification are
gathered together in the following proposition, which also contains a useful characterization
of illuminated points of C®.

Proposition 4.3. Let X be a normed space and C € Coo(X) be coradiative. Then the
following hold:

a) K =coneC is open;
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b) b(C®) = clconeC;
c) the set SF(C®) of w*-supporting functionals for C® satisfies
K = coneC C SF(C®).
Hence SF(C®) is dense in b(C®);
d) for K = coneC, it holds

illg (C°) = Ac :=={l € C®, l(c) = —1 for some c € C}. (4.2)

Proof. a) Since the Minkowski cogauge v of a coradiative set C' is continuous (see [20]),
then K = cone C' = [v¢ < 0] is open;

b) for every x € K = coneC and ¢ € C® it holds (z,¢) < 0; hence it holds (z,¢) < 0
for all z € clcone C and clcone C C b(C®). If w ¢ clcone C, there exists £ € X* such
that (w,£) >0 > (x,£) for all x € clconeC. As coneC' is open, it holds (z,¢) < 0 for

all z € coneC and there exists o > 0 such that ¢ = € C°. Since (w,?) > 0 and
C® is coradiative, then the linear functional (v, - ) isM@bounded above on C® so that
w ¢ b(C®);

¢) since C' is coradiative, if z € cone C there exjst! ) @ > 0 such that y = az €
bdC. As intC # § (recall that C' = [v¢ nd ve is continuous), there exists

¢ € C® such that (y,0) = —1, hence‘y,
(£,y) is a w*-supporting pair for C’9

\-/
=}
k)
.
=}
09
o
e
=
¥
=
Q
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=)
§=)
o)
0
-+
=
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-+

6).

© then I(c) < —1 and consequently

d) take £ € C© and ¢ € C such that '
VieC®,
whence
=max{l(c): | € C®}
which yields ¢ ¢

If, coyffer ly7 (), there exists k € K = cone C such that

=max{l(k): | € C®}.

This ) = po(k).
Since C' is coradiant and closed, the set Ly = {a > 0 : ak € C} is a nonempty
interval of the type [@, +00), with @ > 0. The point ¢ = ak satisfies pc(¢) = —1 and
£(¢) = pc(¢) = —1 which implies £ € Ac.

O

Observe that A¢ is nonempty whenever C' has a nonempty interior, hence in particular
when C is coradiative.

Part (d), which does not actually depend on C' € Co(X) being coradiative, says that the
set of illuminated points of C® coincides with the radial boundary of C©, i.e. those points
¢ of the coradiant set C© such that ol ¢ C° for a < 1.

The following result characterizes those sublinear functions which are cogauges of a closed
shady set.
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Corollary 4.4. Let C € Coo(X) be coradiative. Then the l.s.c. sublinear function p : X —
Ry is a cogauge of C if and only if

Ac CopC CP. (4.3)
Moreover
M (C®) = cleonvillg (CF),
with K = cone C, is the least element in Ex(C®).
Proof. As we observed above, the assumption that C' be coradiative is (necessary and)
sufficient for K = cone C' to be open. Moreover K C b(C®), so that b(C®)NK = b(dp)NK =

K and (4.3) follows from (3.5). The proof of the last statement is immediate, since Mg (C®)
is contained in every other equivalent cogauge of C. O

Proposition 4.5. Let C be strongly shady and K = coneC. Then Mg (C®) is bounded,
and hence C' admits a continuous sublinear cogauge.

Proof. Let the outer kernel of C' contain the ball B(0,d) = Bs, with § > 0. Then, for
all £ € Ac, we have that ¢(Bs) > —1 and ¢(B) > —1/¢. As B is symmetric, we have
|¢(B)| <1/4 and ||£]| < 1/6, so that Ac = illx (C®) is boujed in X*. O

The assumption that C' be coradiative cannot
that every cogauge be continuous on the boundary o
function which coincides with ¢ on K has positg
not coradiative this would not necessarily be ty ' could find a sublinear function p
which coincides with ¢ on K, but sucl®that Eublevel set [p < —1] does not coincide
with C. For more details on the extensigof COg ‘ nctions from a convex domain to

mplies that every sublinear

X =R", see [21]
Minimality of a Secon der Hypo-differential

Let us recall the deﬁnltlon ypodifferentiable function, introduced by Demyanov
and Rubinov in [7].
A function f lle w1ce hypodifferentiable at the point x € R™ if there

exists a cony and ) CR x R™ x R™*™ such that, for all u € R™,

1
—(A 1
L N a+ () + 5 {Au, u)| + o0z (u), (5.1)
with
lir% l|lul| =2 0, (u) = 0, (5.2)

being R™*" the space of all square matrices of order n. The set d*f (x) is called a second
order hypodifferential of the function f at the point z.

A particularly important instance is given by marginal functions. Let f : S CR™ — R
be

f(x) = ryneagw(aryy),

where z € S, y € G, S is an open set in R™, GG is a compact set in R™ and the function
@S x G — Ris continuous on S x G and twice continuously differentiable as a function of
x on the open set S C R™. Then we can write

@+ ) = max [ (,9) + 2% (0,9) ) + (0l @) +ou ()|, (53)
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where o, (-, y) satisfies (5.2) for all y € G.

Let us also suppose that the gradient ¢/, and the Hessian matrix ¢! , are continuous
with respect to the variable y on G; this implies that condition (5.2) holds, for the function
05 (u,y) in (5.3), uniformly on G.

Under these assumptions (see [7]) the function f can be represented on S in the form

o) = £ 0) + s (o) = £ @)+ Gl (o) 0 + 5ot (o] 0. (),

with the remainder o, satisfying condition (5.2). In this case the function f is twice hy-
podifferentiable at the point x, taking for example the second order hypodifferential given
by

d’f(z) = conv {z =[a,l,A] ERXxR" X R™™": a = p(x,y) — f(z)

1
I =g, (z,y), A=§<P;'a;($,y)7 yGG}-

For a fixed = € S, let us take the function

h(u) = max @ (x,y) — f(z) + (p (

and let us consider the second order hypodifferepdfl
is not unique. For some § € G and some‘ive 1% A

o < (@)~ f(2). %(

we can take for instance the set
cduv Va2 f (2),[d,1, A} .
This is also a second ordgs differgntial of the function f at the point x.
We can consider the p of figding a minimal second order hypodifferential of f at

thezpoint T, ige. finding a minimal convex compact set L C R xR"™ x R®»*" =
R tntlg " it holds

(zYof f at the point x. Such a set
R x R™ x R™*™ such that

1 _
= 5@0‘{1,{30 (:E,y) )

h(u) = max 0, (1,u,uu™)), (5.4)
where
u= (U1, U2, ..., Up) ,
uu® = (U%,ulum---,U1un,u2u17US7U2U3...,U2un7U3U17U3U2,U§7---,U(nf1)umui)

= vec (uu’),

and, for any matrix M, vec (M) is the (row) vector obtained by putting together all the
rows of M and uu” is the (rank 1) matrix obtained by multiplying the (column) vector u
by its transpose u”. Note that the inner product in (5.4) coincides with the one which can
be written with the help of the Frobenius product of square matrices, (4, B)r = tr (4 - B).
Indeed, with ¢ = (a,1, A) € R1*"+7° it holds

@, (1, u,uu)) = a+ (I, u) 4+ (vec A, uu*) = a+ (I, u) + (A, uu®) p.
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To treat this problem with the tools developed in Section 2, we mugt express h as a function
of a new variable, so that it becomes sublinear. Let g : R1*T?*"" — R_ be the support
function of the set L. It holds

alg) = max(t, (1,u, ue")) = h(w)

with g = [1, u, uu*], u € R™. If we set
K = {gER"2+"+1 g =A1lu,uu*], ueR", )\>0},

such a cone does not satisfy condition (2.6) and then the results developed in Section 2
cannot be used to find a set L which is minimal with respect to K.

We have to give up our previous aim of finding a unique minimal second order hypodif-
ferential of f and consider a more modest problem: given the second order hypodifferential
d?f (x), is it possible to reduce its size computing another second order hypodifferential of
f that is included in the previous one? We will show how to perform this reduction in two
steps.

Let us consider all the matrices A that appear as the thijcomponent of the second order
hypodifferential d?f (z) . We can suppose without |&s of cen®ality that they are symmetric,
and each of them can be represented by elements pJR™("TD/2 in the following
way:

a1 @12 ais
a12  G22

A1n
- A/ = (a117 204127 (175 20,23 2a2n7 a335 .-+, 2a(n—1)(n—1)7 2a(n—1)nv ann) )
in which all off-diagona % s of fhe matrix are multiplied by two. Then, for all w in
the set

Tw= A 1 u, u , A> 0, u = (ug,ug, ..., Up),

=)

2 2 2 2 2
(Ul, ULUZ, +oy UL U, Ug, URUZ, .., U2Up, Uz, «.-y U(n_l), u(n_l)un, U,n) } 5

where the v uu puts together the rows corresponding to the upper triangular part of

the matrix wu”, we can consider the function
p(w) = max (¢ w), (5.5)
with
w = (1, u, uu), u e R™,
and
D @) = {=(a,,A) e ROIOD2 10— o) — f (),

1
l=(li,lay i ln) = ¢ (2y), A= 2<p;’x(x,y)} .
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Thus the description of f given by D?f(x) coincides with the one given by d?f(x) in
(5.1), because writing
p(’w) = p(lvu: ﬂ) = hl(u)v

it holds hy(u) = h(u) for all u € R™, where h is defined in (5.4). But p is defined on a

space of lower dimension than g. Unfortunately we still cannot analyze this problem with

the tools developed in Section 2 because K, despite the reduced dimensionality, is not open.
In any case we can consider the cone (more precisely a halfspace)

K= {w =A1Luv): A>0,ueR” ve R"("H)/Z} c R 2 (n+1)/2

which verifies X C K and satisfies condition (2.6). Then we can apply the previous re-
sults in order to find the unique minimal set equivalent to D?f (x) with respect to K , i.e.
Mz (D?f (x)), which is certainly included in D?f(z).

On the other hand, as K is quite a large set, it may be that the set Mz (sz (x)) is still
too big. To operate a further reduction of this set, we observe that, by the usual meaning
of the remainder function o(u) in (5.1), the quality of thejapproximation of the difference
f(x 4+ u) — f(x) offered by the hypodifferential d?f(z) (orgquivalently, D?f(x)), depends
on the norm of the increment u. For this reason/i 0, we can substitute the
function p(w) given by (5.5), by any other function ples with it on the cone

f(ez{w:/\(l,uv A >0, ueR 2, H(u,v)H<5}CI~(
and obtain a different hypodlfferentlal fo In his case equation (5.1) holds with
a new remainder function o(u) whic o(u) and coincides with it for all
w in an appropriate nelghbourhood e orl hence satisfies (5.2). Since the cone
K. is open, we can find the leabt e t in Clabb Er (D?f(x)), which is a second order
hypodifferential for f smaller se¥ D2 f( obtalned above.

papdr was submitted, we became aware of the article [16],
r togburs, and gives further understanding and source of
reader. The analysis carried out in [16] can be seen as a

Bibliographic Note:
which treats a topic g

applications C
particularflnstance
increasingfunctions @ags#fed orf the nonnegative orthant of L°°, and the possibility to extend

an#is in different respects. The authors study sublinear and
them to t . The analysis is based on some features which are specific of the setting
chosen for' em, but nevertheless some of the concepts developed in the paper have

close relatio ours, as for instance the notion of quasiextremal points for subsets of Ll+7
which takes the place of illuminated points.
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