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1 Introduction

For several minimization problems over a feasible set F , the global minimizer of the objective
function f over the whole space X containing F is known. For instance, if X is a normed
vector space (n.v.s.) and if f is the norm of X, 0 is the global minimizer of f. Such a fact
does not yield any information about the location of the solutions of the constrained problem
over F, nor about the value inf f(F ). However, a knowledge of the value inf f(F ) can be
used to get duality relationships under weak convexity assumptions. The needs of relaxed
convexity assumptions in several fields, in particular in mathematical economics, incite to
push further the results obtained so far in this direction (see [1], [3], [5], [6], for instance).
Quasiconcavity is often considered as an admissible assumption when dealing with an utility
function u because the preference sets which are its superlevel sets have a concrete content
while u itself is usually out of reach.

In [40], [41], [42], P.T. Thach gets optimality conditions for constrained problems under
even convexity assumptions. The concept of even convexity introduced by Fenchel ([7]) has
been studied by several authors ([4], [12], [18], [29], [30]....). A recent comprehensive study
has appeared in [9]. Here, we rather focus on more classical topological assumptions such
as closedness and semicontinuity. Thus, our results rely on classical separation theorems
and complete the ones in [42]. We take advantage of the viewpoint of abstract convexity
(see [25], [34], [37] for example), but our methods are close to the ones of familiar convex
programming, albeit the functions we deal with are quasiconvex and not convex. Bringing
the viewpoint of polarities enables to consider a whole range of possible dual problems; we
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give a short account of these possibilities. We also reveal the case of radiant functions and
sets which is not treated in [42]. We endeavour to give a unified presentation.

Recall that a subset C of X is said to be radiant if it is starshaped and convex, i.e. if it is
convex and tx ∈ C for all t ∈ [0, 1] and x ∈ C; in particular, the empty set is radiant. Thus,
our definition differs from the ones in [15], [34], [35] and [46], [47], [48] in which C is just
starshaped; it also differs from the terminology used in [38], [40], [41]; here we incorporate
convexity as it is a crucial assumption for our methods which essentially rely on separation
properties. A nonconvex duality theory could be obtained in the line of [46], [47], but the
conjugate would not be defined in the usual dual space. A subset C of X is evenly radiant
if it is the intersection of a family of open half-spaces containing 0 or if C = X. A subset C
of X is said to be coradiant if either C = X or it is convex and costarshaped (or starshaped
at infinity) with 0 /∈ C, i.e. if it is convex, if 0 /∈ C and if for all x ∈ C, t ∈ (1,+∞) one
has tx ∈ C. It is evenly coradiant if either C = X or it is the intersection of a family of
open half-spaces whose closures do not contain 0; such a set is also called R-evenly convex
(e.g. in Thach [42]). Such a set is coradiant and evenly convex but the converse is known
to be untrue ([42, p. 724]), as reminded to us by A. Zaffaroni. A function f : X → R is
said to be (quasi-)radiant if its sublevel sets are radiant, i.e. if for every x, x′ ∈ X, t ∈ [0, 1],
one has f(tx) ≤ f(x), f(tx + (1− t)x′) ≤ max(f(x), f(x′)). Equivalently, f is radiant if its
strict sublevel sets are radiant. The function f is said to be (quasi)coradiant if its sublevel
sets are coradiant, i.e. if f(0) = sup f(X) and for every x, x′ ∈ X, t ∈ [1,+∞) one has
f(tx) ≤ f(x), f((1/t)x + (1 − (1/t))x′) ≤ max(f(x), f(x′)). Equivalently, f is coradiant
if its strict sublevel sets are coradiant. It is evenly (quasi-)coradiant if its strict sublevel
sets are evenly coradiant. Such functions are useful in mathematical economics (see [5], [6],
[42, Section 4] and the references in [3], [24], [27]). Here, for the sake of brevity, we omit
“quasi” because there is no risk of confusion with the corresponding concepts of radiant (or
coradiant) functions which involve the epigraphs (resp. the hypographs) of the functions.
(see [15], [20], [23]).

A remarkable fact about these classes of functions is that a conjugate can be defined on
the dual space. For general quasiconvex functions, conjugacies are not as simple, since they
involve an extra parameter (see [1], [13], [18], [21], [27], [30], [32] for instance).

In the following two sections we focus the attention on two dual problems. In section 4
we relate these problems to the general scheme of dual problems associated with polarities.
We devote section 5 to some remarks about variants of the two problems we considered in
sections 2 and 3. We conclude with a study of the relationships with Lagrangian theory.

2 An Adapted Framework

Given a function f : X → R := R∪{−∞,+∞} and a nonempty subset F of X, let us
consider the constrained optimization problem

(P ) minimize f(x) x ∈ F.

In the sequel, for r ∈ R, we set S<
f (r) = {x ∈ X : f(x) < r} and $ := inf(P ). We also write

[f < r] for S<
f (r) and [f = r] for {x ∈ X : f(x) = r}. Throughout we suppose f assumes at

least one finite value on the feasible set F, so that $ < +∞.
We introduce the dual problems

(D∇) maximize − f∇(x∗) x∗ ∈ F∇,

(D∆) maximize − f∆(x∗) x∗ ∈ F∆
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where

f∇(x∗) := − inf{f(x) : x ∈ X, 〈x, x∗〉 ≥ 1}, F∇ := {x∗ ∈ X∗ : ∀x ∈ F 〈x, x∗〉 ≥ 1},
f∆(x∗) := − inf{f(x) : x ∈ X, 〈x, x∗〉 ≤ 1}, F∆ := {x∗ ∈ X∗ : ∀x ∈ F 〈x, x∗〉 ≤ 1}.

The conjugate f∆ is related to the conjugate fR considered in [42] through the equality
f∆(x∗) = fR(−x∗) for all x∗ ∈ X∗. The conjugate f∇ is not considered in [42], but it is used
in [20], [21], [24], [25], [38], [39], [43], [44] and elsewhere under different guises. In particular,
on X∗\{0} it coincides with the conjugate fH used in [38], [39] for the maximization of f
on F. Note that setting fH(0) = inf f(X) instead of f∇(0) := −∞ is also natural if one
considers that f takes its values in some interval [α, ω] with α := inf f(X). In the mentioned
references, some properties of these conjugates are established; see also Section 4 below in
which the relationships with polarities are studied.

In order to deal simultaneously with the two dual problems (D∇) and (D∆), we introduce
the following notation. For ♦ =: ∇, we set ε♦ := 1, while for ♦ =: ∆, we set ε♦ := −1.
Then, we can gather the two dual problems into the single one

(D♦) maximize − f♦(x∗) x∗ ∈ F♦,

where

F♦ := {x∗ ∈ X∗ : ∀x ∈ F 〈x, ε♦x∗〉 ≥ ε♦},
f♦(x∗) := − inf{f(x) : x ∈ X, 〈x, ε♦x∗〉 ≥ ε♦}.

Note that we can rewrite (D♦) as the equivalent adjoint problem

(P♦) minimize f♦(x∗) x∗ ∈ F♦

which has a form similar to the one of (P ). The adjoint problem of (P♦) is

(P♦♦) minimize f♦♦(x∗∗) x∗∗ ∈ F♦♦.

Its restriction to X ⊂ X∗∗ coincides with (P ) when ♦ = ∆, F is closed and radiant and f is
evenly coradiant by [42, Thm 2.3] and the bipolar theorem. When ♦ = ∇, F is closed and
coradiant and f is evenly radiant with f(0) = −∞, one can also show that the restriction
of (P♦♦) to X ⊂ X∗∗ coincides with (P ); see Lemmas 4.3, 4.4 below.

We first observe that we have the weak duality inequality

− inf(P♦) = sup(D♦) ≤ inf(P ), (2.1)

since for all x∗ ∈ F♦, we have F ⊂ [ε♦x∗ ≥ ε♦] := {x ∈ X : 〈ε♦x∗, x〉 ≥ ε♦}, hence
−f♦(x∗) = inf f([ε♦x∗ ≥ ε♦]) ≤ inf f(F ).

Let us give some examples. The first one illustrates the fact that the dual problem may
be potentially simpler.
Example 1. Let X := R, F := [−a, a] for some a > 0 and let f be given by f(x) := 0
for x ≤ 0, f(x) := −x2 for x > 0. Then F∆ = [−a−1, a−1] and f∆(y) = +∞ for y ≤ 0,
f∆(y) = y−2 for y > 0. Clearly (P ) has a unique solution a and (D∆) has a unique solution
a−1. Both values are −a2. Note that (P ) is a nonconvex minimization problem while (P∆)
is a convex minimization problem.
Example 2. Let X := Rd, endowed with its Euclidean scalar product (.|.), X+ := Rd

+,
c ∈ X+\{0} and let f and F be given by f(x) := −‖x‖−2 for x ∈ X\{0}, f(0) = −∞ and

F := {x ∈ X+ : (c | x) ≥ 1}.
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Then one has f∇(y) = ‖y‖2 for y ∈ X\{0}, f∇(0) = −∞ and F∇ = c + X+. Thus the dual
problem has a (unique) solution y := c and its value is −‖c‖2. Taking x := ‖c‖−2

c, one has
x ∈ F, f(x) = −‖c‖2 = f∇(y), so that x is a solution to (P ) and there is no duality gap.
Note that (P ) is a quasiconvex mathematical programming problem while (P∇) is a convex
problem.
Example 3. Let X := Rd, X+ := Rd

+, c, c′ ∈ X+\{0}. Consider problem (P ) with f and F

given by f(x) := −‖x‖−2 for x ∈ X\{0}, f(0) = −∞ and

F := {x ∈ X+ : (c | x) ≥ 1} ∪ {x ∈ X+ : (c′ | x) ≥ 1}.

Then one has f∇(y) = ‖y‖2 for y ∈ X\{0}, f∇(0) = −∞ and F∇ = (c + X+) ∩ (c′ +
X+) = c′′ + X+, where c′′ := max(c, c′) (componentwise). Thus the dual problem has a
(unique) solution y := c′′ and its value is −‖c′′‖2. Taking d = 2, c := (a, 0), c′ := (0, b′)
with a > b′ > 0, we see that x := (a−1, 0) ∈ F is a solution to (P ) f(x) = −a2 while
f∇(y) = a2 + b′2 and there is a duality gap. Note that F is nonconvex and that the estimate
we get for the value $ of (P ) corresponds to the change of F into F∇∇ := (F∇)∇.
Example 4. Let X := Rd, X+ := Rd

+. Let A be a linear symmetric definite positive
operator on X. Consider problem (P ) with f and F given by f(x) := (x1 + ... + xd)−1 for
x ∈ intX+, f(x) = +∞ otherwise and

F := {x ∈ X : (Ax | x) ≤ 1}.
Then F∆ = {y ∈ X : (A−1y | y) ≤ 1} and f∆(y) = −1/ min(y1, ..., yd) for y := (y1, ..., yd)
with yi > 0 for i ∈ Nd := {1, ..., d} (as seen by picking some K ⊂ {k ∈ Nd : yk ≤ yi ∀i ∈ Nd}
and taking x = (x1, ..., xd) with xk = (1/]K)(1/yk) for k ∈ K, xj = 0 for j /∈ K), f∆(y) = 0
otherwise. Corollary 3.5 below ensures that there is no duality gap, f being u.s.c. and
coradiant and F being convex and absorbent.

3 Criteria for Strong Duality

Let us give conditions ensuring strong duality, i.e. that there is no duality gap and that
(D♦) has solutions when the value $ of (P ) is finite. As in [42, Thm 3.2] for the case
of problem (D∆), we shall show that a separation property entails such a result. We first
observe that, conversely, strong duality implies a separation property.

Proposition 3.1. Suppose $ is finite, there is no duality gap between (P ) and (D♦) and
(D♦) has a solution x∗. Then the hyperplane [ε♦x∗ = ε♦] separates F and S<

f ($):

∀u ∈ F, x ∈ S<
f ($) 〈x, ε♦x∗〉 < ε♦ ≤ 〈u, ε♦x∗〉.

Proof. Since x∗ ∈ F♦, we have ε♦ ≤ 〈u, ε♦x∗〉 for all u ∈ F. Now $ = −f♦(x∗) since there
is no duality gap, so that $ ≤ f(x) for all x ∈ X satisfying 〈x, ε♦x∗〉 ≥ ε♦. Equivalently,
for all x ∈ S<

f ($) we have 〈x, ε♦x∗〉 < ε♦.

Proposition 3.2. Suppose that for some x∗ ∈ X∗ and some ρ ∈ R, the hyperplane [ε♦x∗ =
ε♦] separates F and S<

f (ρ) in the sense that

∀u ∈ F, x ∈ S<
f (ρ) 〈x, ε♦x∗〉 < ε♦ ≤ 〈u, ε♦x∗〉. (3.1)

Then ρ ≤ $, the value of (P ), and ρ ≤ −f♦(x∗) ≤ sup(D♦). If ρ = $ there is no duality
gap and x∗ is a solution to (D♦).
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Proof. By assumption (3.1), for all u ∈ F we have 〈u, ε♦x∗〉 ≥ ε♦, so that x∗ ∈ F
♦
. Let

us show that f(x) ≥ ρ for every x ∈ [ε♦x∗ ≥ ε♦]; that will ensure that ρ ≤ −f♦(x∗) ≤
sup(D♦) ≤ $ and that x∗ is a solution to (D♦) when ρ = $. Suppose on the contrary that
there exists some x ∈ [ε♦x∗ ≥ ε♦] such that f(x) < ρ. Then x ∈ S<

f (ρ), hence, by the first
inequality in (3.1), 〈x, ε♦x∗〉 < ε♦, a contradiction.

Let us observe that the preceding result does not require the knowledge of $ but, on the
contrary, that it provides an estimate of it. Moreover, it shows that $ is a threshold for the
considered separation property. For the next corollaries, it suffices to know a minorant of
f(F ) and a value of f less than this minorant.

Corollary 3.3. Suppose f is radiant and upper semicontinuous, F is convex and $ >
inf f(X). Then there is no duality gap between (P ) and (D∇) and (D∇) has a solution.

Proof. As we suppose $ > inf f(X) and f(F ) ∩ R 6= ∅, $ is finite. Since S<
f ($) is a

nonempty open convex subset disjoint from F , the Hahn-Banach separation theorem ensures
that one can find x∗0 ∈ X∗, r ∈ R such that S<

f ($) ⊂ [x∗0 < r] and F ⊂ [x∗0 ≥ r]. As f is
radiant and S<

f ($) is nonempty, S<
f ($) contains 0, so that we have r > 0 and (3.1) holds

with ε♦ = 1, x∗ := r−1x∗0, so that the preceding proposition applies.

A variant of this result can be given when X is finite dimensional. Here we say that f
is upper semicontinuous along rays if its restriction to any line passing through 0 is upper
semicontinuous. This mild condition can be further weakened. Let us say that a function
g : R+→R is quasi-nonincreasing (resp. quasi-nondecreasing) if for all r ∈ R+ one has
g(r) ≥ infs>r g(s) (resp. g(r) ≥ infs<r g(s)). We say that f : X → R is quasi-nonincreasing
(resp. quasi-nondecreasing) along rays if for all x ∈ X\{0} the function t 7→ f(tx) on R+

is quasi-nonincreasing (resp. quasi-nondecreasing). Let us note that g : R+→R is quasi-
nonincreasing whenever g is right upper regular in the sense that g(r) ≥ lim infs→r+ g(s)
for all r ∈ R+, in particular whenever g is right upper semicontinuous. Thus, if f is
upper semicontinuous along rays, then f is quasi-nonincreasing along rays. If f is radiant
(or just nondecreasing along rays), the converse holds. Similar assertions hold for quasi-
nondecreasing functions in terms of left lower regularity.

Corollary 3.4. Suppose X is finite dimensional, F is convex, $ > inf f(X) and f is
radiant and upper semicontinuous along rays or just radiant and quasi-nonincreasing along
rays. Then, there is no duality gap between (P ) and (D∇) and (D∇) has a solution.

Proof. Again, $ is finite since $ > inf f(X) and we have 0 ∈ S<
f ($) since S<

f ($) is radiant
and nonempty. Since f is quasi-nonincreasing along rays, S<

f ($) is absorbent: for all x ∈ X

we have $ > f(0) ≥ inft>0 f(tx), so that there exists some t > 0 such that tx ∈ S<
f ($). Now

0 /∈ S<
f ($)−F which is convex. Since X is finite dimensional, we can find some x∗0 ∈ X∗\{0}

such that r := supx∗0(S
<
f ($)) ≤ inf x∗0(F ). Taking x0 ∈ X such that x∗0(x0) > 0 and using

the fact that S<
f ($) is absorbent, we get r > 0. Now, for all x ∈ S<

f ($), since f is quasi-
nonincreasing along rays, we have f(tx) < $ for some t > 1. Thus x∗0(tx) ≤ r and x∗0(x) < r
and we can apply the proposition with ε♦ = 1, x∗ := r−1x∗0.

Corollary 3.5. Suppose f is coradiant (or just quasiconvex) and upper semicontinuous,
and F is convex and absorbent. Then there is no duality gap and, if $ > inf f(X), the dual
problem (D∆) has a solution.
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Proof. By weak duality, the first assertion is obvious when $ = −∞. Thus we may suppose
$ is finite and we apply the Hahn-Banach separation theorem since S<

f ($) is a nonempty
open convex subset disjoint from F , so that one can find x∗0 ∈ X∗\{0}, r ∈ R such that
S<

f ($) ⊂ [x∗0 > r] and F ⊂ [x∗0 ≤ r]. As F is absorbent, we have r > 0 and we can apply
the proposition with ε♦ = −1, x∗ := r−1x∗0.

Note that since 0 ∈ F which is disjoint from S<
f ($), we necessarily have 0 /∈ S<

f ($), so
that the result does not apply to radiant functions.

Combining the techniques of the proofs of the two preceding corollaries we get the fol-
lowing variant.

Corollary 3.6. Suppose X is finite dimensional, f is quasiconvex, quasi-nondecreasing
along rays, and F is convex and absorbent. Then there is no duality gap and if $ > inf f(X),
the dual problem(D∆) has a solution.

Let us also show that a sufficient optimality condition ensures strong duality. For such
a purpose, we introduce the subdifferential ∂♦ by

∂♦f(x) := {x∗ ∈ X∗ : 〈x, ε♦x∗〉 ≥ ε♦, f(x) ≥ f(x) ∀x ∈ [ε♦x∗ ≥ ε♦]}
which encompasses the subdifferentials ∂∧ and ∂∨ defined in [21] along a general line intro-
duced by Mart́ınez-Legaz and Singer [16] (see also [42] for a related definition) in view of
the following equivalence akin to the Young-Fenchel equality: for x ∈ f−1(R) one has

x∗ ∈ ∂♦f(x) ⇐⇒ f♦(x∗) + f(x) = c♦(x, x∗) > −∞,

where c♦(x, x∗) = 0 if 〈x, ε♦x∗〉 ≥ ε♦, c♦(x, x∗) = −∞ otherwise. Denoting by ∂=
♦f(x)

the set of x∗ ∈ ∂♦f(x) such that 〈x, x∗〉 = 1, one observes that x∗ ∈ ∂=
♦f(x) if, and only

if, ε♦x∗ belongs to the Greenberg-Pierskalla subdifferential ∂GP f(x) := {x∗ ∈ X∗ : ∀x ∈
Sf (f(x)) 〈x− x, x∗〉 < 0} [8] and 〈x, ε♦x∗〉 = ε♦. Moreover,

∂=
∇f(x) ⊂ ∂∇f(x) ⊂ [1,+∞)∂=

∇f(x).

The following result completes [42, Thm 3.3], as it also deals with the case of problem
(D∇); moreover, here ∂=

♦f(x) is replaced with the larger set ∂♦f(x). Since the Plastria
subdifferential

∂<f(x) := {x∗ ∈ X∗ : ∀x ∈ S<
f (f(x)) f(x)− f(x) ≥ 〈x− x, x∗〉}

is contained in ∂GP f(x), this result also implies [10, Prop. 5] by taking ε♦ = 1. Here, even
if F in nonconvex, we set

N(F, x) := {x∗ ∈ X∗ : ∀x ∈ F 〈x− x, x∗〉 ≤ 0}.
Proposition 3.7. Let x ∈ F and x∗ ∈ X∗ be such that ε♦x∗ ∈ ∂♦f(x)∩ (−N(F, x)). Then
the hyperplane {x : 〈x, ε♦x∗〉 = ε♦} separates F and S<

f ($), x is a solution of (P ), x∗ is a
solution of (D♦) and there is no duality gap.

Proof. Since −ε♦x∗ ∈ N(F, x), for all x ∈ F we have 〈x− x, ε♦x∗〉 ≥ 0, hence 〈x, ε♦x∗〉 ≥
〈x, ε♦x∗〉 ≥ ε♦ by the first condition in the definition of ∂♦f(x). Thus F ⊂ [ε♦x∗ ≥ ε♦]
and we have x∗ ∈ F♦. The second condition in the definition of ∂♦f(x) yields f(x) ≥ f(x)
for all x ∈ [ε♦x∗ ≥ ε♦], hence for all x ∈ F and x is a solution of (P ). Moreover, since
f(x) ≥ f(x) for all x ∈ [ε♦x∗ ≥ ε♦] and x ∈ [ε♦x∗ ≥ ε♦], we get −f♦(x∗) = f(x). It follows
that x∗ is a solution of (D♦) and sup(D♦) = inf(P ). The separation property stems from
Proposition 3.1.
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One may wonder whether conversely the separation property assumed in Proposition 3.2
implies the condition ε♦x∗ ∈ ∂♦f(x) ∩ (−N(F, x)) assumed in the preceding result. The
next proposition gives a partial answer to that question.

Proposition 3.8. Suppose that for some x∗ ∈ X∗\{0} the hyperplane [ε♦x∗ = ε♦] separates
F and S<

f ($) in the sense of relation (3.1). If a solution x of (P ) is not a local minimizer
of f, then x∗ is a solution to (D♦) and there is no duality gap.

Proof. For x∗ := r−1x∗0, we have 〈x, ε♦x∗〉 ≥ ε♦ as x ∈ F. Since x is not a local minimizer
of f, x belongs to the closure of S<

f ($), hence 〈x, ε♦x∗〉 = ε♦. Since 〈u, ε♦x∗〉 ≥ ε♦ for
all u ∈ F, we get −ε♦x∗ ∈ N(F, x). It remains to show that f(x) ≥ f(x) for every x ∈
[ε♦x∗ ≥ ε♦] to ensure that ε♦x∗ ∈ ∂♦f(x). Suppose there exists some x ∈ [ε♦x∗ ≥ ε♦]
such that f(x) < f(x). Then, since f(x) = $, we would have x ∈ S<

f ($), hence 〈x, ε♦x∗〉 <
ε♦, a contradiction. Thus ε♦x∗ ∈ ∂♦f(x) and the conclusion follows from the preceding
proposition.

Corollary 3.9. Suppose f is upper semicontinuous and radiant and F is convex. Then, for
every solution x of (P ) which is not a local minimizer of f , there exists some solution x∗

of (D∇) which satisfies the optimality conditions x∗ ∈ ∂=
∇f(x)∩ (−N(F, x)) and there is no

duality gap.

Proof. This follows from the preceding proposition and from the Hahn-Banach separation
theorem since S<

f ($) is an open convex subset disjoint from F.

A variant of this result can be given when X is finite dimensional.

Corollary 3.10. Suppose X is finite dimensional, f is radiant and upper semicontinuous
along rays and F is convex. Then, for every solution x of (P ) which is not a local minimizer
of f , there exists some solution x∗ of (D∇) which satisfies the optimality conditions x∗ ∈
∂∇f(x) ∩ (−N(F, x)), 〈x, x∗〉 = 1 and there is no duality gap.

Proof. Again, we have 0 ∈ S<
f ($) and f(0) < $ since f(0) = inf f(X) < f(x), as x is not a

minimizer of f. Since f is upper semicontinuous along rays at 0, S<
f ($) is absorbent. Now

0 /∈ S<
f ($)−F which is convex. Since X is finite dimensional, one can find some x∗0 ∈ X∗\{0}

such that r := supx∗0(S
<
f ($)) ≤ inf x∗0(F ). Taking x0 ∈ X such that x∗0(x0) > 0 and using

the fact that S<
f ($) is absorbing, we get r > 0. Since x is not a local minimizer of f, x

is in the closure of S<
f ($), so that r := 〈x, x∗0〉. Let x∗ := r−1x∗0, so that 〈x, x∗〉 = 1 and

−x∗ ∈ N(F, x). Since f is upper semicontinuous along rays, for every x ∈ S<
f ($) we have

tx ∈ S<
f ($) for some t > 1, hence 〈x, x∗〉 < 1. Thus we can apply the proposition.

The assumption that X is finite dimensional is eliminated in the next corollary, but the
substituted assumption is more difficult to check. We keep the preceding notation and we say
that a subset C of X is evenly convex if it is the intersection of a family of open half-spaces.
Obviously, open or closed convex subsets of a normed vector space are evenly convex, but
the class of evenly convex subsets is larger than the union of these two subclasses.

Corollary 3.11. Suppose f is radiant and S<
f ($) − F is evenly convex. Then, for every

solution x of (P ) which is not a local minimizer of f , there exists some solution x∗ of (D∇)
which satisfies the optimality conditions x∗ ∈ ∂∇f(x) ∩ (−N(F, x)) and 〈x, x∗〉 = 1.
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The proof is similar to the preceding one after using the fact that, since 0 /∈ S<
f ($)−F,

one can find some x∗0 ∈ X∗ such that 〈x − u, x∗0〉 < 0 for all x ∈ S<
f ($), u ∈ F. Since

0 ∈ S<
f ($), we have r := 〈x, x∗0〉 > 0 and, for x∗ := r−1x∗0, we get 〈x, x∗〉 < 〈x, x∗〉 = 1 for

all x ∈ S<
f ($). ¤

Now let us turn to the coradiant case. In such a case we write ∂∆f(x) instead of ∂♦f(x)
with ε♦ = −1.

Corollary 3.12. Suppose f is coradiant and upper semicontinuous and F is convex and
absorbent. Then, there is no duality gap and (D∆) has a solution. Moreover, for every
solution x of (P ) which is not a local minimizer of f , there exists some solution x∗ of (D∆)
which satisfies the optimality conditions −x∗ ∈ ∂∆f(x) ∩ (−N(F, x)) and 〈x, x∗〉 = 1.

Proof. Since F and S<
f ($) are convex and disjoint, and S<

f ($) is open while F is absorbent,
there exist x∗0 ∈ X∗ and r > 0 such that

∀u ∈ F, ∀x ∈ S<
f ($) 〈x, x∗0〉 > r ≥ 〈u, x∗0〉.

Taking ε♦ = −1 in Proposition 3.2 we get that relation (3.1) is satisfied, hence the first
assertion holds. Let x be a solution of (P ) which is not a local minimizer of f. Then, by
Proposition 3.8, ε♦x∗ := r−1ε♦x∗0 ∈ ∂∆f(x) ∩ (−N(F, x)), 〈x, ε♦x∗〉 = ε♦, and x∗ is a
solution of (D∆).

Corollary 3.13. Suppose f is coradiant and upper semicontinuous along rays and F is
convex and contains 0 in its interior. Then, for every solution x of (P ) which is not a
local minimizer of f , there exists some solution x∗ of (D∆) which satisfies the optimality
conditions −x∗ ∈ ∂∆f(x) ∩ (−N(F, x)), 〈x, x∗〉 = 1 and there is no duality gap.

Proof. Since intF and S<
f ($) are convex and disjoint, there exist x∗0 ∈ X∗ and r ∈ R such

that
∀u ∈ intF, x ∈ S<

f ($) 〈x, x∗0〉 ≥ r > 〈u, x∗0〉.
Since 0 ∈intF, we have r > 0. Since F is contained in the closure of intF , for all u ∈ F, we
have 〈u, x∗0〉 ≤ r. Since x is not a local minimizer of f, x is in the closure of S<

f ($). Thus
〈x, x∗0〉 = r. Let x∗ := r−1x∗0. Then 〈x, x∗〉 = 1 ≥ 〈u, x∗〉 for all u ∈ F , hence x∗ ∈ N(F, x).
Moreover, if x ∈ S<

f ($), we have 〈x, x∗〉 ≥ 1. Since f is upper semicontinuous along rays,
we have tx ∈ S<

f ($) for t < 1 close enough to 1; thus we have 〈x, x∗〉 > 1. Therefore
−x∗ ∈ ∂∆f(x).

4 Links with Polarities

The conjugates we considered are particular instances of conjugates associated with a polar-
ity. Recall that a polarity between two sets X, Y is a map P : 2X → 2Y between the power
sets of X and Y which satisfies the relation

P (
⋃

i∈I

Ai) =
⋂

i∈I

P (Ai) (4.1)

for every family (Ai)i∈I of subsets of X. We also denote P (A) by AP for A ⊂ X. The
preceding relation yields, for any A ⊂ X

P (A) =
⋂

a∈A

P ({a}) = {y ∈ Y : A ⊂ D(y)}, (4.2)
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where D(y) := P−1(y) := {x ∈ X : y ∈ P ({x})}. Conversely, given a family (D(y))y∈Y of
subsets of X, one gets a polarity by setting, for A ⊂ X, P (A) = {y ∈ Y : A ⊂ D(y)}. When
X and Y are topological vector spaces in duality, it is natural to take for family (D(y))y∈Y

a family of half-spaces. In [20], [21], we detected four families of such half-spaces of special
interest. They give rise to four polar sets:

A∆ := {y ∈ Y : A ⊂ [y ≤ 1]}, A∧ := {y ∈ Y : A ⊂ [y < 1]},
A∇ := {y ∈ Y : A ⊂ [y ≥ 1]}, A∨ := {y ∈ Y : A ⊂ [y > 1]};

here we change the notation for the first one, which is the usual polar set often denoted by
A0; we do that in order to remind that one passes from A∧ to A∆ by adding a bar to the
symbol <, changing it into ≤ . In this way, we provide an unified notation for these four
conjugacies.

We note the following observation which is an immediate consequence of the definitions.

Lemma 4.1. For any subset A of X, the sets A∧ and A∆ are radiant; A∆ is weak∗ closed and
A∧ is evenly convex. For any nonempty subset A of X, the sets A∨ and A∇ are coradiant;
A∇ is weak∗ closed and A∨ is evenly coradiant.

Now, for any function f on X, it is classical to define a conjugate function fP associated
with a polarity P by setting:

fP (y) := sup{−f(x) : x ∈ X\D(y)},

where D(y) := P−1(y). Taking for P one of the preceding four polarities, besides the conju-
gates f∆ and f∇ we have already used, we get two other conjugates:

f∧(y) := − inf{f(x) : x ∈ X, 〈x, y〉 ≥ 1}, f∨(y) := − inf{f(x) : x ∈ X, 〈x, y〉 ≤ 1}
f∆(y) := − inf{f(x) : x ∈ X, 〈x, y〉 > 1}, f∇(y) := − inf{f(x) : x ∈ X, 〈x, y〉 < 1}.

We observe that f∧ = f∇ and f∨ = f∆. In the sequel, we set similarly f∨ := f∆, f∧ := f∇.
Such a choice of notation is reminiscent to the notation f∗ for the concave conjugate of a
function f , in contrast with the notation for the convex conjugate f∗. An interpretation of
these equalities can be given as follows. Whenever a polarity P is given, one can associate
to it another polarity P ′ given by P ′(x) = (D′)−1(x) where D′(y) := X\D(y), D : 2Y → 2X

being the inverse of P. In analogy with an usual notation for the concave conjugate of
a function, we have chosen to write fP instead of fP ′ . With such a convention, the dual
problems (D∇) and (D∆) considered in the preceding sections can be given a simple notation
instead of a notation which would reflect the composite character of these dual problems.
Note that the conjugacy f 7→ fP enters the general framework of the Fenchel-Moreau duality
scheme (see [17], [21], [34] and [37]) associated with a coupling function cP .

Since we have four polars and conjugates, we can also introduce the dual problems (DP )
for P = ∧ and P = ∨ in which the inequalities are replaced with strict inequalities. However,
the separation techniques devised in section 3 do not seem to be as adapted to these two
supplementary dual problems. We will make some further comments in the next section.

Let us first note a general weak duality inequality.

Proposition 4.2. Given a polarity P : 2X → 2Y and the associated polarity P ′ : 2X → 2Y

defined above, one has the weak duality relation

sup(DP ) ≤ inf(P ) := inf f(F ),
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where the dual problem (DP ) is the maximization over the set FP := P (F ) of the function
−fP where fP is given by

fP (y) := sup{−f(x) : x ∈ P−1(y)} := − inf f(P−1(y)).

Proof. For every y ∈ FP one has F ⊂ P−1(y) by (4.2) and the definition of FP := P (F ).
Thus −fP (y) = inf f(P−1(y)) ≤ inf f(F ). It follows that sup(DP ) := supy∈P (F )−fP (y) ≤
inf f(F ) = inf(P ).

Some properties of these conjugates are presented in [20], [22], [24], [38], [39], [43]. Let
us note some of them which have some bearing to our study.

Lemma 4.3. For any function f on X, the functions f∧ = f∇ and f∆ = f∨ are radiant
and the functions f∨ = f∆ and f∇ = f∧ are coradiant. Moreover, f∆ and f∇ are lower
semicontinuous while f∧ and f∨ are evenly quasiconvex; in fact f∨ is evenly coradiant.
Furthermore, f∧(0) = f∆(0) = −∞ and f∨(0) = f∇(0) = − inf f(X).

Proof. These assertions are consequence of the preceding lemma and of the following relation,
valid for every r ∈ R, any function f and any polarity P :

[
fP ≤ r

]
= [f < −r]P . (4.3)

This relation, established in [43], [24], follows from the equivalences:
(
y ∈ [

fP ≤ r
]) ⇔ (−r ≤ f(x) ∀x ∈ X\D(y))
⇔ (−r > f(x) ⇒ x ∈ D(y))

⇔ ([f < −r] ⊂ D(y)) ⇔ (y ∈ [f < −r]P ).

The following result is useful when interchanging the role of the primal and dual problems.

Lemma 4.4. ([24, Cor. 7]) For on∈ {∧,∆,∨,∇}, a function f on X is the conjugate of
some function g on Y := X∗ if, and only if for all r ∈ R the sublevel set [f ≤ r] is equal to
its bipolar set for on . In such a case on can take g = fon.

5 Some Variants

Since we have four different sorts of polar sets and four different sorts of conjugate functions,
it is tempting to study other combinations. Such a temptation is increased by the fact that
the combinations we have selected above are mixed, as we have just observed. Let us see
whether it is sensible to resist to such a temptation.

Choosing the two symbols on, G among the sequence (∧,∆,∨,∇) identified with the
sequence (<,≤, >,≥), one gets 16 instances of dual problems by setting

(DonG ) maximize− fG(x∗) := inf f([x∗ G 1]) over Fon := {x∗ ∈ X∗ : F ⊂ [x∗ on 1]}.

As noted in the preceding section, we have weak duality when on=G . When on∈ {∧,∆}
and G∈ {∨,∇} we have 0 ∈ Fon and −fG(0) = +∞, so that weak duality is excluded by
our assumption that inf f(F ) < +∞. When on∈ {∨,∇} = {>,≥}, and G∈ {∧,∆}, Fon is
coradiant and fG is coradiant, so that the set of solutions of (DonG ) is either empty or an
union of half lines. These observations reduce the number of interesting dual problems.
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Furthermore, the inequalities f∧ ≥ f∆, f∨ ≥ f∇ and the inclusions F∧ ⊂ F∆, F∨ ⊂ F∇

entail the obvious relationships

sup(D∨
∇) := sup−f∧(F∨) ≤ sup−f∧(F∇) =: sup(D∇) ≤ sup−f∆(F∇) =: sup(D∇

∨ ),

sup(D∧
∆) := sup−f∨(F∧) ≤ sup−f∨(F∆) =: sup(D∆) ≤ sup−f∇(F∆) =: sup(D∆

∧ ),

Although the estimates provided by the dual problems (D∨
∇) and (D∧

∆) may be useful, the
duality gaps between these problems and the primal one (P ) are always larger than the
duality gaps for the dual problems we have chosen. Thus, strong duality would be more
difficult to get with the dual problems (D∨

∇) and (D∧
∆). The following examples show that

the problems (D∇
∨ ) and (D∆

∧ ) do not satisfy the weak duality property and thus should be
excluded.
Example 5. Let X := R, F := [1,+∞), f(r) = 0 for r ∈ (−∞, 1], f(r) := 1 for r ∈ (1,+∞).
Then F∇ = [1,+∞) and −f∨(1) := −f∆(1) = 1. Thus sup(D∇

∨ ) ≥ 1 > 0 = inf(P ).
Example 6. Let X := R, F := (−∞, 1], f(r) := 1 for r ∈ (−∞, 1), f(r) = 0 for r ∈ [1,+∞).
Then F∆ = [0, 1] and −f∧(1) := −f∇(1) = 1. Thus sup(D∆

∧ ) ≥ 1 > 0 = inf(P ).
These facts explain why we focused our attention on the dual problems (D∇) := (D∇

∇)
and (D∆) := (D∆

∆) rather than on (D∇
∨ ), (D∆

∧ ), or, in view of the beginning of our discussion,
on (D∧

∇), (D∧
∨), (D∆

∨ ), (D∆
∇). Under some semicontinuity assumptions, equalities hold in the

inequalities sup(D∇) ≤ sup(D∇
∨ ) and sup(D∆) ≤ sup(D∆

∧ ) in view of the following result.
In fact a mild monotonicity assumption suffices.

Proposition 5.1. If f is upper semicontinuous along rays, or, more generally, if f is
quasi-nonincreasing along rays, then f∆ = f∧. Then, for all subsets F, one has sup(D∇

∨ ) =
sup(D∇), sup(D∨

∨) = sup(D∨
∇), sup(D∧

∨) = sup(D∧
∇) (and +∞ = sup(D∆

∨ ) = sup(D∆
∇) =

sup(D∧
∨) = sup(D∧

∇)).
If f is lower semicontinuous along rays, or more generally if f is quasi-nondecreasing

along rays, then f∇ = f∨. Then, for all subsets F, one has sup(D∆
∧ ) = sup(D∆) and

sup(D∇
∧ ) = sup(D∇

∆), sup(D∧
∧) = sup(D∧

∆), sup(D∨
∧) = sup(D∨

∆).

Proof. Since f∆ ≤ f∧, to prove that f∆ = f∧, it suffices to show that for every x∗ ∈ X∗ and
every r ∈ R satisfying r ≥ f∆(x∗) we have r ≥ −f(x) for all x ∈ [x∗ ≥ 1]. The inequality
r ≥ −f(x) holding when x ∈ [x∗ > 1], we may suppose 〈x, x∗〉 = 1. Then, for all t > 1, we
have tx ∈ [x∗ > 1], hence −f(tx) ≤ r. Since f(x) ≥ inft>1 f(tx) we get f(x) ≥ −r.The proof
of the equality f∇ = f∨ is similar.

Proposition 5.2. Let F be an arbitrary nonempty subset of X. If f∧ is upper semicon-
tinuous along rays, or even quasi-nonincreasing along rays, then sup(D∇) = sup(D∨

∇).
If f∨ is lower semicontinuous along rays, or even quasi-nondecreasing along rays, then
sup(D∆) = sup(D∧

∆).

Proof. To prove the first assertion, it suffices to show that sup−f∧(F∨) ≥ sup−f∧(F∇).
Given r < sup−f∧(F∇) one can find some x∗ ∈ F∇ such that −r > f∧(x∗). For t ∈ (1,+∞)
one has tx∗ ∈ F∨ and since f∧ is quasi-nonincreasing along rays, there exists t > 1 such
that −r > f∧(tx∗). Thus sup−f∧(F∨) ≥ −f∧(tx∗) > r and, as r can be arbitrarily close to
sup−f∧(F∇), we get the expected inequality. The proof of the second assertion is similar,
using the fact that tF∆ ⊂ F∧ for t ∈ (0, 1).

The following criteria are taken from [38, Thm 3.3], [20, Prop. 4.8] in the case of
f∧; the proof for f∨ is similar. Note that for a lower semicontinuous function f on a
finite dimensional space, weak inf-compactness ( i.e. weak compactness of sublevel sets) is
equivalent to coercivity (i.e. lim‖x‖→∞ f(x) = +∞).
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Proposition 5.3. If f is inf-compact for the weak topology, then f∧ and f∨ are upper
semicontinuous.

If f is such that limx→0 f(x) = −∞, then f∆ is inf-compact for the weak∗ topology on
X∗.

Corollary 5.4. If f is such that limx→0 f(x) = −∞, then (D∆
∨ ) (resp. (D∇

∨ )) has a solution.
If moreover f is quasi-nonincreasing along rays, then (D∇) has a solution.

Proof. The first assertion is consequence of the fact that the inf-compact function f∆ attains
its infimum over the weak* closed convex set F∆ (resp. F∇). The second assertion is
a consequence of Proposition 5.1 which guarantees that f∇ = f∆ whenever f is quasi-
nonincreasing along rays.

Now let us tackle the question of existence of solutions for the dual problems (D∆
∧ ) and

(D∆). As noted above, such a question is more interesting for the second problem than for the
first one. Since the sublevel sets of f∧ := f∇ are coradiant, f∧ cannot be inf-compact unless
it is identically +∞. The first assertion of the next statement is a partial generalization
of [38, Thm 3.4] since f is not assumed to be continuous and F is not supposed to be
compact. The second assertion is new. Note that considering (P ) as a dual problem (under
appropriate assumptions, c.f. Lemma 4.4) one would deduce existence results for (P ) itself.

Proposition 5.5. Under each of the following assumptions, the problem (D∆
∧ ) has a solu-

tion:
(a) 0 is in the interior of F ;
(b) X is finite dimensional, R+F − R+S<

f ($) is dense in X and S<
f ($)∇ ∩ F∆ is

nonempty.
If moreover f is quasi-nondecreasing along rays, then (D∆) has a solution.

Proof. (a) The sublevel sets of the function f∧ being weak∗ closed convex, f∧ is weak∗ lower
semicontinuous. Now, since F contains the closed ball B with center 0 and radius r for some
r > 0, F∆ is contained in B∆ which is the closed ball with center 0 and radius 1/r. Thus
F∆ is weak∗ compact, nonempty (as 0 ∈ F∆) and f∧ attains its infimum on F∆.

(b) Let us first observe that if A and B are two closed convex subsets of a finite di-
mensional Banach space X and if 0+A ∩ 0+B = {0}, then A ∩ B is bounded because
0+(A∩B) ⊂ 0+A∩0+B; here, for a subset C of X, we denote by 0+C := {v ∈ X : v+C ⊂ C}
the recession cone of C. Now we have

0+(F∆) = Fª := {y ∈ Y : ∀x ∈ F 〈x, y〉 ≤ 0},
0+(F∇) = (−F )ª := {y ∈ Y : ∀x ∈ F 〈x, y〉 ≥ 0},

as easily checked. Let G := S<
f ($). Since G∇ = [f∇ ≤ −$] by relation (4.3), we have

0+([f∇ ≤ −$]) = 0+(G∇) = (−G)ª.

Since H := R+F − R+G is dense in X, its polar cone Hª is {0}, hence

0+(F∆) ∩ 0+([f∇ ≤ −$]) = Fª ∩ (−G)ª = (R+F − R+G)ª = {0}.

Thus [f∇ ≤ −$] ∩ F∆ is nonempty, bounded, hence weak∗ compact and since f∇ is weak∗

lower semicontinuous, f∇ attains its infimum over F∆ : (D∆
∧ ) has a solution. The last

assertion is a consequence of the equality f∇ = f∨ when f is quasi-nondecreasing along
rays.
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Note that the assumption S<
f ($)∇ ∩ F∆ 6= ∅ amounts to the existence of some y ∈ Y

such that
∀u ∈ F, x ∈ S<

f ($) 〈x, y〉 ≥ 1 ≥ 〈u, y〉,
a weak separation property.

6 Mathematical Programming Problems

Now, let us try to answer to the natural question: does the preceding results enter a general
theory of duality? In fact, we even consider a more general problem written under the form
of a mathematical programming problem.

Suppose Z is another Banach space, g : X → Z is a map, C is a closed convex subset of Z,
and Y is the dual space of Z. Let F := {x ∈ X : g(x) ∈ C}. Given f : X → R∞ := R∪{+∞},
problem (P ) turns into the problem

(M) minimize f(x) : x ∈ X, g(x) ∈ C

which can be rewritten as the minimization of f(·) + ιC(g(·)), where ιC is the indicator
function of C given by ιC(z) := 0 if z ∈ C, ιC(z) = +∞ otherwise. Again, we denote by $
the value of this problem.

We can introduce the perturbation P : X × Z → R∞ given by

P (x, z) := f(x) + ιC(g(x) + z)

and its associated performance function p given by

p(z) := inf{f(x) : x ∈ X, g(x) + z ∈ C}.

We observe that Y and Z can be coupled with the coupling function c∨ : Y × Z → R given
by

c∨(y, z) = −ι[y≤1](z).

Since c∨(y, 0) = 0 for all y ∈ Y, the perturbational dual problem of (M) (see [25], [28]) is
the problem

(D∨) maximize − p∨(y) y ∈ Y,

of computing p∨∨(0) := (p∨)∨(0), where p∨ is the conjugate of p for the coupling function
c∨ :

p∨(y) := − inf{p(z)− c∨(y, z) : z ∈ Z}
:= − inf{f(x) : z ∈ Z, 〈y, z〉 ≤ 1, g(x) + z ∈ C}
= − inf{fg(w − z) : z ∈ Z, 〈y, z〉 ≤ 1, w ∈ C}
= − inf{fg,C(z) : z ∈ Z, 〈y, z〉 ≤ 1} = (fg,C)∨ (y),

where

fg(v) := inf{f(x) : x ∈ g−1(v)}, fg,C(z) := inf{fg(w − z) : w ∈ C}.

Similarly, we can use the coupling function c∇ given by c∇(y, z) = −ι[y<1](z). However,
this process cannot be applied with the coupling function c∧ given by c∧(y, z) = −ι[y≥1](z)
nor with the coupling function c∆ given by c∆(y, z) = −ι[y>1](z). Thus, we take a direct
Lagrangian approach rather than a perturbational approach.



276 JEAN-PAUL PENOT

We use the simple observation that since C is included in C∆∆ := (C∆)∆ (and in the
three other bipolar sets of C), we have ιC ≥ ιC∆∆ . Now

ιC∆∆ = sup
y∈C∆

ι[y≤1],

as easily checked. It follows that we can introduce the sub-Lagrangian function L∆ given by

L∆(x, y) := f(x) + ι[y≤1](g(x)) for (x, y) ∈ X × C∆,

L∆(x, y) := −∞ for (x, y) ∈ X × (Y \C∆).

Here we use the terminology of [25]: L∆ is a sub-Lagrangian means that

f(x) + ιC(g(x)) ≥ sup
y∈Y

L∆(x, y) for all x ∈ X,

L∆ being called a Lagrangian when equality holds for all x ∈ X (which is the case when C
is closed and radiant). The Lagrangian dual function d∆ is given by

d∆(y) := inf
x∈X

L∆(x, y).

In order to express it, we use again the function fg : Z → R given by fg(z) := inf{f(x) :
x ∈ g−1(z)}, with the usual convention that fg(z) := +∞ when g−1(z) is empty. Then

d∆(y) = inf
z∈Z

(fg(z) + ι[y≤1](z)) = −(fg)∆(y) for y ∈ C∆

d∆(y) = −∞ for y ∈ Y \C∆.

Thus, the dual problem can be written

(D∆) maximize − (fg)∆(y) for y ∈ C∆.

When Z = X and g is the identity mapping IX , we recover the dual problem we have
considered in Section 2. A similar approach can be given for the dual problem (D∇). We
also notice that using the inclusions C ⊂ C∧∧ and C ⊂ C∨∨ we can obtain new dual
problems. These problems provide new estimates as weak duality holds; but strong duality
results are not at hand.

When C is a convex cone or is costarshaped, in particular when C is coradiant, we have
C∆ = Cª := {y ∈ Y : ∀z ∈ C 〈y, z〉 ≤ 0}, the usual polar cone. Then, for y ∈ C∆, we have

L∆(x, y) := f(x) + ι[y≤1](g(x)) ≤ L<(x, y) := f(x) + ι[y≤0](g(x))

where L< is the surrogate Lagrangian considered in [10], [31]. Thus, if y ∈ C∆ is a multiplier
for the Lagrangian L∆, it is also a multiplier for the Lagrangian L<. Recall that y is a
multiplier for a sub-Lagrangian L if infx∈X L(x, y) = infx∈F f(x).

The advantage of strong duality is reminded in the following statement which relies on
[25, Prop. 1.2] and uses the fact that L∆(x, y) = f(x) when 〈g(x), y〉 ≤ 1 and L∆(x, y) = +∞
otherwise.

Proposition 6.1. Let y be a multiplier for the Lagrangian L∆, i.e. a solution to the dual
problem (D∆) such that (fg)∆(y) = $. Then x is a solution to (P ) if, and only if, x is a
solution to the simplified problem

(Qy) minimize f(x) subject to the constraint 〈g(x), y〉 ≤ 1.

When g is a continuous affine map, in particular, when Z = X and g = IX , the feasible
set of (Qy) is simply a half-space. Clearly, one has a similar result for the Lagrangian L∇.
When g is an affine map from Rn to Rm, with m < n, the dual problem is set in a lower
dimensional space and may be more tractable.
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Laboratoire de Mathématiques appliquées, CNRS UMR 5142,
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