A NOTE ON THE DUAL OF THE MINKOWSKI-RÅDSTRÖM-HÖRMANDER LATTICE

J. Grzybowski, D. Pallaschke and R. Urbański

Dedicated to Alex Rubinov

Abstract

For a locally convex vector space (X, τ) let $\mathcal{P}(X):=\{p$: be the convex cone of all real valued continuous sublinear functi $p-q \mid p, q \in \mathcal{P}(X)\}$ the real vector space of differences of ntinuous s blinear functions. With respect to the pointwise ordering of functions given by $\varphi \leq \psi$ if and o y $\boldsymbol{A}(x)=(x)$ holds for every $x \in X$, the space $(\mathcal{D}(X), \leq)$ is a vector lattice. If $(X,\| \|)$ is a Banach spa the $\mathcal{T}(X)$ endowed with the norm $$
\|\varphi\|_{\Delta}=\inf _{\substack{p, q \\ \varphi=p-q}}\left\{\max \left\{\| \operatorname{up}_{\| \leq 1}(x), \operatorname{upp}_{\|x\| \leq 1} q(x)\right\}\right\}
$$ where the infimum is taken over all continuous sub ear fu p, q such that $\varphi=p-q$, is also a Banach space. On $\mathcal{D}(X)$ we characterize all continuous nea functilnals of $\left(\mathcal{D}(X),\| \|_{\Delta}\right)$ which are order bounded and vanish on linear functions for finite dim

Key words: Minkowski-Rådström- ärmader attice, mixed volumes, pairs of compact convex sets Mathematics Subject Classi io ion: JJ52, 52A41, $26 A 16$

\section*{1 Intr/ductio}

In 1954 L Hörmander [5] investigated the equivalence classes of pairs of nonempty compact convex set for a cally convex space in terms of their support functions. We summarize his results for ure case of a Banach space.

For a Banach space $X=(X,\| \|)$ let $\mathcal{D}(X)=\{\varphi=p-q \mid p, q \in \mathcal{P}(X)\}$ be the real vector space of differences of continuous sublinear functions. With respect to the pointwise ordering of functions given by $\varphi \leq \psi$ if and only if $\varphi(x) \leq \psi(x)$ holds for every $x \in X$, the space $(\mathcal{D}(X), \leq)$ is a vector lattice. Let us denote for a sublinear function $p: X \longrightarrow \mathbb{R}$ by $\left.\partial p\right|_{0} \subset X^{\prime}$ the subdifferential of p at the origin, which is a nonempty compact convex set in the weak topology of the dual X^{\prime} and let us assign to $\varphi \in \mathcal{D}(X)$ the set $[\varphi]=$ $\left\{\left(\left.\partial p\right|_{0},\left.\partial q\right|_{0}\right) \mid\right.$ with $\left.\varphi=p-q, p, q \in \mathcal{P}(X)\right\}$.

To formalize this assignment more precisely, let us denote by $\mathcal{K}\left(X^{\prime}\right)$ the set of all nonempty weakly compact convex subsets of X^{\prime}. Then introduce on $\mathcal{K}^{2}\left(X^{\prime}\right)=\mathcal{K}\left(X^{\prime}\right) \times$ $\mathcal{K}\left(X^{\prime}\right)$ the equivalence relation $(A, B) \sim(C, D)$ if and only if $A+D=B+C$ holds and
denote by $[A, B] \in \mathcal{K}^{2}\left(X^{\prime}\right) /$ denotes the equivalence class which contains $(A, B) \in \mathcal{K}^{2}\left(X^{\prime}\right)$.
In 1966 A. G. Pinsker [8] introduced the following ordering on $\mathcal{K}^{2}\left(X^{\prime}\right) / \sim$, namely: $[A, B] \preceq$ $[C, D] \Longleftrightarrow A+D \subseteq B+C$, which is independent of the special choice of representatives, because of the order cancellation law (see [12] and [7], Theorem 3.2.1). The space $\left(\mathcal{K}^{2}\left(X^{\prime}\right) / \sim \preceq\right)$ is called the Minkowski-Rådström-Hörmander lattice. It is a complete vector lattice and a direct calculation shows that the assignment:

$$
\mathcal{D}(X) \longrightarrow \mathcal{K}^{2}\left(X^{\prime}\right) /{ }_{\sim} \quad \text { with } \varphi \mapsto[\varphi]=\left\{\left(\left.\partial p\right|_{0},\left.\partial q\right|_{0}\right) \mid \text { with } \varphi=p-q, p, q \in \mathcal{P}(X)\right\}
$$

is a lattice isomorphism, called Minkowski duality (see [7], Theorem 3.4.3).
By $\|\varphi\|_{\infty}=\sup _{\|x\| \leq 1}|\varphi(x)|$ we denote the supremum norm for $\mathcal{D}(X)$. It is shown in [2] (see the remark after $[2]$ Lemma 6.1), that the normed space $\left(\mathcal{D}(X),\| \|_{\infty}\right)$ is not complete. A more detailed investigation of $\left(\mathcal{D}(X),\| \|_{\infty}\right)$ can be found in the recent paper of J. Grzybowski and R. Urbański [4].

A norm under which the linear space $\mathcal{D}(X)$ is complete given in [7]. Some preliminary results in this direction are proved in [1] and [2]. Ww we st e (see [7], Theorem 8.1.26):
Theorem 1.1. Let $(X,\|\cdot\|)$ be a Banach space. T

$$
\mathcal{D}(X)=\{\varphi=p-q \mid p, q \text { are ned and continuous }\}
$$

endowed with the norm $\|\cdot\|_{\Delta}$ given by

where the infimum is taken over cpntinuous sublinear functions p, q such that $\varphi=p-q$, is a Banach space.

O

In this se tion we a call ome fasic facts about vector lattices which will be used in this paper.

Let (E) be 2 vector lattice and let us denote by E^{*} the algebraic dual, that is the set of all linear hroppings from E to \mathbb{R}. For two elements $x, y \in E$ we denote by $[x, y]=\{z \in$ $E \mid x \leq z \leq y\}$ the order interval and we call a linear functional $f \in E^{*}$ order bounded if the set $f([x, y]) \subset \mathbb{R}$ is bounded for every order interval $[x, y]$. Moreover we call a linear functional $f \in E^{*}$ positive if for every element $x \in E_{+}=\{z \in E \mid z \geq 0\}$ of the positive cone we have $f(x) \geq 0$.

Note that every order bounded linear functional on the vector lattice ($\mathcal{D}(X), \leq$) is continuous with respect to the supremum norm $\left\|\|_{\infty}\right.$. Now the following result holds (see [11] Chapt. II, §4, Corollary 2):

Proposition 2.1. Let (E, \leq) a vector lattice. Then $f \in E^{*}$ is order bounded if and only if it is the difference of two positive linear functionals.

Now we prove the following auxiliary statements:

Proposition 2.2. For a real Banach space $(X,\| \|)$ let $\mathcal{P}(X):=\{p: X \rightarrow \mathbb{R} \mid p$ is sublinear and continuous $\}$ be the convex cone of all real valued continuous sublinear functions defined on X. If $\mathcal{D}(X)=\{\varphi=p-q \mid p, q \in \mathcal{P}(X)\}$ is endowed with the norm $\|\varphi\|_{\Delta}=$ $\inf _{\substack{p, q \\ \varphi=p-q}}\left\{\max \left\{\sup _{\|x\| \leq 1} p(x), \sup _{\|x\| \leq 1} q(x)\right\}\right\}$, then for every $\varphi \in \mathcal{D}(X)$ holds

$$
\|\varphi\|_{\infty}=\sup _{\|x\| \leq 1}|\varphi(x)| \leq 2\|\varphi\|_{\Delta}
$$

Proof. First note, that for every $\varphi \in \mathcal{D}(X)$ there exists a representation $\varphi=p-q$ with $\min \{p(x), q(x)\} \geq 0$ for all $x \in X$ (see [7], Proposition 10.2.3). Now the assertion follows immediately from:

$$
\|\varphi\|_{\infty}=\sup _{\|x\| \leq 1}|\varphi(x)| \leq \sup _{\|x\| \leq 1} p(x)+\sup _{\|x\| \leq 1} q(x) \leq 2\left\{\sup _{\|x\| \leq 1} p(x), \sup _{\|x\| \leq 1} q(x)\right\}
$$

Proposition 2.3. Let $(X,\| \|)$ be a real Banach space dod $C \subset X$ a generating closed convex cone, i.e. $X=C-C$. Moreover let us assume the there exists a real $K>0$ such that $\overline{\mathbb{B}}(0,1) \subseteq K(\overline{\mathbb{B}}(0,1) \cap C-\overline{\mathbb{B}}(0,1) \cap C)$ hota ure 01$)$ denotes the closed unit ball. If $f \in E^{*}$ and if for every $x \in C$ holds $f(x) \geq$ he f continuous.
Proof. Let us assume that the assertion is not try The there exists a noncontinuous linear functional $f \in X^{*}$, which assumes only n neg tive values on the closed cone $C \subset X$. Hence there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of elemen on ball $\overline{\mathbb{B}}(0,1)$ such that the sequence $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ is unbounded. Nov ve rgcequ as ollows. Since $\overline{\mathbb{B}}(0,1) \subseteq K(\overline{\mathbb{B}}(0,1) \cap$ $C-\overline{\mathbb{B}}(0,1) \cap C)$ we can find a sequen $\left.x_{n}\right)_{n \in}$ of drents of the closed set $\overline{\mathbb{B}}(0,1) \cap C$ with $f\left(x_{n}\right) \geq n^{3}$. Let us now consider the seq ence $\left(\frac{1}{n^{2}} x_{n}\right)_{n \in \mathbb{N}}$. Since $\sum_{n=1}^{\infty}\left\|\frac{1}{n^{2}} x_{n}\right\|$ is convergent and $\overline{\mathbb{B}}(0,1) \cap C$ is closed herc exists an element $z_{0} \in \overline{\mathbb{B}}(0,1) \cap C$ with $z_{0}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} x_{n}$. Analogously se th fo every $k \in \mathbb{N}$ holds $\sum_{n=k+1}^{\infty} \frac{1}{n^{2}} x_{n} \in \overline{\mathbb{B}}(0,1) \cap C \subset C$. Hence $\left.z_{0}-\sum=1 \frac{1}{n^{2}} x_{n}\right) \in C$ for every $k \in \mathbb{N}$, which implies $f\left(z_{0}\right) \geq \sum_{n=1}^{k} \frac{1}{n^{2}} f\left(x_{n}\right) \geq \frac{k(k+1)}{2}$,
and this lead contradiction.

3 Representation Theorems

From now on we consider only the finite-dimensional case. Note that $\mathcal{D}(X)=\mathcal{P}(X)-\mathcal{P}(X)$ and that $\left\|\|_{\Delta}\right.$ satisfies the assumption of Proposition 2.3. Furthermore note that in the finite dimensional case the norm $\left\|\|_{\Delta}\right.$ does not depend on the particular choice of the norm for $X=\mathbb{R}^{n}$.

Theorem 3.1. Let $\left(\mathcal{D}\left(\mathbb{R}^{n}\right),\| \|_{\Delta}\right)$ be given. Then every linear functional $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)^{\prime}$ which is order bounded with respect to the pointwise ordering of functions and vanishes on the linear functions is continuous with respect to the norm $\left\|\|_{\Delta}\right.$ and is the difference of two continuous linear functionals $f_{1}, f_{2} \in \mathcal{D}\left(\mathbb{R}^{n}\right)^{\prime}$ which vanish also on the linear functions and
are nonnegative on the convex cone $\mathcal{P}\left(\mathbb{R}^{n}\right)$ of all continuous sublinear functions.
Moreover both functionals $f_{1}, f_{2} \in \mathcal{D}\left(\mathbb{R}^{n}\right)^{\prime}$ are also monotone on the convex cone $\mathcal{P}\left(\mathbb{R}^{n}\right)$ of all continuous sublinear functions, i.e. for every $p, q \in \mathcal{P}\left(\mathbb{R}^{n}\right)$ with $p \geq q$ holds $f_{1}(p) \geq$ $f_{1}(q)$ and $f_{2}(p) \geq f_{2}(q)$.

Proof. First let us endow the space $\mathcal{D}\left(\mathbb{R}^{n}\right)$ with the pointwise ordering of functions, i.e. $\varphi \leq \psi$ if and only if for every $x \in \mathbb{R}^{n}$ holds $\varphi(x) \leq \psi(x)$. Now choose a continuous linear functional $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)^{\prime}$. Since by assumption f is order bounded it is the difference of two positive linear functionals $\mu_{1}, \mu_{2} \in \mathcal{D}\left(\mathbb{R}^{n}\right)^{*}$ with respect to the pointwise ordering.

Now we define the following $2 n$ linear functional $\delta_{i}^{+}, \delta_{i}^{-} \in \mathcal{D}\left(\mathbb{R}^{n}\right)^{*}, i \in\{1, \ldots, n\}$ by:

$$
\delta_{i}^{-}(\varphi)=-\varphi\left(-e_{i}\right) \quad \text { and } \quad \delta_{i}^{+}(\varphi)=\varphi\left(e_{i}\right)
$$

where $e_{1}, \ldots, e_{n} \in \mathbb{R}^{n}$ are the unit vectors.
Now let $p \in \mathcal{P}\left(\mathbb{R}^{n}\right)$ be any continuous sublinear function. Then it follows from a direct calculation, that for every linear function $l(x)=\sum_{i=1}^{n} a_{i} x$ which supports p at the origin, i,e. $p(x)-l(x) \geq 0$ for all $x \in \mathbb{R}^{n}$, the following inequality , 1 lds:

Now we put:

and put $\nu=\sum_{i=1}^{n} \mu_{1}\left(x_{i}\right) \nu_{i}$.
Since $f=\mu_{1}-\mu_{2}$ vanishes he linear functions, we have $\mu_{1}\left(x_{i}\right)=\mu_{2}\left(x_{i}\right)$ for all $i \in\{1, \ldots, n\}$. Hence we ca \cap rese the functional $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)^{\prime}$ in the form $f=\left(\mu_{1}-\right.$ $\nu)-\left(\mu_{2}-\nu\right)$.

Now we show th $\left\{\left(\mathcal{D}^{2}\right)(p),\left(\mu_{2}-\nu\right)(p)\right\} \geq 0$ for every $p \in \mathcal{P}\left(\mathbb{R}^{n}\right)$. Since $\mu_{1}\left(x_{i}\right)=$ $\mu_{2}\left(x_{i}\right)$ for II $\left\{1 \ldots, n\right.$, we bave to give the proof only for $\mu_{1}-\nu$.

There ore let $p \in \mathbb{R}^{n}$) be given and choose a linear function $l(x)=\sum_{i=1}^{n} a_{i} x_{i}$ which supports at the ofigin, i,e. $p(x)-l(x) \geq 0$ for all $x \in \mathbb{R}^{n}$. Since μ_{1} is nonnegative one has $\mu_{1}(p-l) \geq$ whi gives $\mu_{1}(p) \geq \mu_{1}(l)$. Now let us put $I_{+}=\left\{i \in\{1, \ldots, n\} \mid \mu_{1}\left(x_{i}\right) \geq 0\right\}$ and $I_{-}=\left\{i \in\{1, \ldots, n\} \mid \mu_{1}\left(x_{i}\right)<0\right\}$. Then:

$$
\begin{aligned}
\left(\mu_{1}-\nu\right)(p) & =\mu_{1}(p)-\nu(p) \\
& \geq \mu_{1}(l)-\nu(p)=\sum_{i=1}^{n}\left(a_{i} \mu_{1}\left(x_{i}\right)-\mu_{1}\left(x_{i}\right) \nu_{i}(p)\right) \\
& =\sum_{i \in I_{+}} \mu_{1}\left(x_{i}\right)\left(a_{i}-\delta_{i}^{-}(p)\right)+\sum_{i \in I_{-}} \mu_{1}\left(x_{i}\right)\left(a_{i}+\delta_{i}^{+}(p)\right) \geq 0
\end{aligned}
$$

because of equation (3.1).
Analogously it follows that $\left(\mu_{2}-\nu\right)(p) \geq 0$ holds for all $p \in \mathcal{P}\left(\mathbb{R}^{n}\right)$. Hence both functional $\mu_{1}-\nu$ and $\mu_{2}-\nu$ are nonnegative on $\mathcal{P}\left(\mathbb{R}^{n}\right)$ and therefore by Proposition 2.3
also continuous.
Now we show that $\mu_{1}-\nu$ and $\mu_{2}-\nu$ vanish on linear functions. Therefore let a linear function $l(x)=\sum_{i=1}^{n} a_{i} x_{i}$ be given. Then $\mu_{1}(l)=\sum_{i=1}^{n} a_{i} \mu_{1}\left(x_{i}\right)=\nu(l)$ and $\mu_{2}(l)=$ $\sum_{i=1}^{n} a_{i} \mu_{2}\left(x_{i}\right)=\sum_{i=1}^{n=1} a_{i} \mu_{1}\left(x_{i}\right)=\nu(l)$, because of $\mu_{1}\left(x_{i}\right)=\mu_{2}\left(x_{i}\right)$ which implies that both functionals $\mu_{1}-\nu$ and $\mu_{2}-\nu$ vanish on the linear functions.

Finally we have to prove the monotonicity:
Let us only consider the functional $\mu_{1}-\nu$. First let us prove that for every nonnegative function $\varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ the inequality $\nu(\varphi) \leq 0$ holds. This can be seen as follows: We have:

$$
\nu(\varphi)=\sum_{i \in A} \mu_{1}\left(x_{i}\right) \delta_{i}^{r}(\varphi)+\sum_{i \in B} \mu_{1}\left(x_{i}\right)\left(-\delta_{i}^{l}\right)(\varphi) .
$$

Since $\varphi \geq 0$ one has for $i \in A$ that $\mu_{1}\left(x_{i}\right) \delta_{i}^{r}(\varphi) \leq 0$ and for $i \in B$ that $\mu_{1}\left(x_{i}\right) \delta_{i}^{l}(\varphi) \geq 0$. Hence $\nu(\varphi) \leq 0$.

Now let $p, q \in \mathcal{P}\left(\mathbb{R}^{n}\right)$ with $p \geq q$ be given. Then $\varphi=p-\geq 0$ and $\nu(p)-\nu(q)=\nu(\varphi) \leq$ 0 . Now choose a linear function $\tilde{l} \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ with $q>\tilde{l}$. The $-\tilde{l} \geq q-\tilde{l} \geq 0$ and therefore $\mu_{1}(p-\tilde{l}) \geq \mu_{1}(q-\tilde{l})$ which implies $\mu_{1}(p)-\mu_{1}(q) \approx 0$. Wnce va have
which gives the monotonicity:

Remark. Let us note that of the monotony.
Corollary 3.2. Eve con nus lear functional $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)^{\prime}$ is the sum of two linear functionals a $e n$ ne tive on the convex cone $\mathcal{P}\left(\mathbb{R}^{n}\right)$ and a linear combination of the functi nals $\delta_{i}^{r}\left(\mathcal{\varphi}=\varphi\left(e_{i}\right), \boldsymbol{\forall} \in\{1, \ldots, n\}\right.$, where e_{1}, \ldots, e_{n} are the unit vectors of \mathbb{R}^{n}.
Proof. T s follows immediately form Theorem 3.1 and the fact that

$$
\delta_{i}^{r}\left(e_{j}\right)=\left\{\begin{array}{lll}
1 & \text { for } & i=j \\
0 & \text { for } & i \neq j
\end{array}\right.
$$

Using a result of W. Firey [3] there exists for every continuous linear functional $\eta \in$ $\mathcal{D}\left(\mathbb{R}^{n}\right)^{\prime}$ which is nonnegative and monotone on the convex cone $\mathcal{P}\left(\mathbb{R}^{n}\right)$ of all continuous sublinear functions and which vanishes on the linear functions a unique compact convex set $\bar{A} \in \mathcal{K}\left(\mathbb{R}^{n}\right)$, such that η can be represented as a mixed volume, which uniquely depends on $\bar{A} \in \mathcal{K}\left(\mathbb{R}^{n}\right)$ as $\eta\left(p_{A}\right)=V\left(A, \bar{A} ; p-1 ; \sigma_{1}, \ldots, \sigma_{n-p}\right)$, where $\sigma_{1}, \ldots, \sigma_{n-p}$ are segments of unit length, whose directions are mutually orthogonal and span the orthogonal complement of the affine hull of \bar{A}.

4 Non Order Bounded Linear Functionals

Now we give a negative answer to the question whether every continuous linear functional $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)^{\prime}$ with respect to $\left\|\|_{\Delta}\right.$ is also order bounded.

Therefore let us recall the following formula about the addition of faces:
Let (X, τ) be a topological vector space and X^{\prime} its dual space. Then we denote for $A \in \mathcal{K}(X)$ and $f \in X^{\prime}$ by

$$
H_{f}(A)=\left\{z \in A \mid f(z)=\max _{y \in A} f(y)\right\}
$$

the (maximal) face of A with respect to f.
For the sum of the faces of $A, B \in \mathcal{K}(X)$ holds:
Proposition 4.1. Let X be a topological vector space, $f \in X^{\prime}$ and $A, B \in \mathcal{K}(X)$. Then

$$
\begin{aligned}
& H_{f}(A+B)=H_{f}(A)+H_{f}(R) ; \\
& \text { ed by W. Weil [13], sep also [7], Proposition 3.3.1. }
\end{aligned}
$$

This result was first proved by W. Weil [13], se also [7], Proposition 3.3.1.
We will construct an example for $\mathcal{D}\left(\mathbb{R}^{2}\right)$. There rf $\eta\left(R^{2}\right)^{\prime} \backslash\{0\}$ be a nontrivial linear functional. Then we define

$$
\begin{equation*}
\left.f: \mathcal{D}\left(\mathbb{R}^{2}\right) \longrightarrow \mathbb{R} \text { by } f(\varphi)=\text { leng } h\left(f_{1}\right)\left(\left.\partial p\right|_{\mid}\right)\right)-\operatorname{length}\left(H_{\eta}\left(\left.\partial q\right|_{0}\right)\right) \tag{4.1}
\end{equation*}
$$

where $\varphi=p-q \in \mathcal{D}\left(\mathbb{R}^{2}\right)$ and length $\left(H_{\eta}(\mathcal{A})\right)$ d . sel length of the interval $H_{\eta}\left(\left.\partial p\right|_{0}\right)$. It follows from Proposition 4.1 that the rea funtional f is well defined, i.e. independent of the special choice of p and q for $-q$ ard that f is linear.

Now the following statemen bolds

is continuous, where $\varphi=p-q \in \mathcal{D}\left(\mathbb{R}^{2}\right)$. Therefore we show that in the Euclidean norm for every $A \in \mathcal{K}\left(\mathbb{R}^{n}\right)$ holds:

$$
\operatorname{diam}(A)=\sup _{x, y \in A}\|x-y\| \leq 2 \sup _{\|x\| \leq 1} p_{A}(x)
$$

with $p_{A}(x)=\sup _{v \in A}\langle v, x\rangle$.
This can be seen as follows:

$$
\begin{aligned}
\operatorname{diam}(A) & =\sup _{x, y \in A}\|x-y\|=\sup _{w \in A-A}\|w\| \\
& =\sup _{\|x\| \leq 1} \sup _{w \in A-A}\langle w, x\rangle=\sup _{\|x\| \leq 1} p_{A-A}(x) \leq 2 \sup _{\|x\| \leq 1} p_{A}(x) .
\end{aligned}
$$

The last inequality follows from the equation

$$
p_{-A}(x)=\sup _{v \in-A}\langle v, x\rangle=\sup _{v \in A}\langle-v, x\rangle=p_{A}(-x)
$$

Now let $\varphi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$ and $\varepsilon>0$ be given. Choose a representation $\varphi=p-q$ such that

$$
\max \left(\sup _{\|x\| \leq 1} p(x), \sup _{\|x\| \leq 1} q(x)\right) \leq \inf _{\substack{p, q \\ \varphi=p-q}}\left\{\max \left\{\sup _{\|x\| \leq 1} p(x), \sup _{\|x\| \leq 1} q(x)\right\}\right\}+\varepsilon=\|\varphi\|_{\Delta}+\varepsilon
$$

holds. Then:

$$
\begin{aligned}
|f(\varphi)| & =\left|\operatorname{length}\left(H_{\eta}\left(\left.\partial p\right|_{0}\right)\right)-\operatorname{length}\left(H_{\eta}\left(\left.\partial q\right|_{0}\right)\right)\right| \\
& \leq\left|\operatorname{length}\left(H_{\eta}\left(\left.\partial p\right|_{0}\right)\right)\right|+\left|\operatorname{length}\left(H_{\eta}\left(\left.\partial q\right|_{0}\right)\right)\right| \\
& \leq \operatorname{diam}\left(\left.\partial p\right|_{0}\right)+\operatorname{diam}\left(\left.\partial q\right|_{0}\right) \\
& \leq 2\left(\sup _{\|x\| \leq 1} p(x)+\sup _{\|x\| \leq 1} q(x)\right) \leq 4\left(\|\varphi\|_{\Delta}+\varepsilon\right),
\end{aligned}
$$

which gives the continuity of f.
Now we show that the functional is not order u d. y a linear coordinate transformation in \mathbb{R}^{2} we can assume that in suitable coor at the functional η is of the type: $\eta\left(x_{1}, x_{2}\right)=x_{2}$. Now define for $a>1$ the following am on unctions:
with

$$
{ }^{\varphi} \cdot \mathbb{R}^{2} \Omega x_{1}, \max \left\{0, a x_{1}\right\} .
$$

Now it follows from a straightforward plcu tion that for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ the following inequality holds:

$$
0 \leq \varphi_{a}\left(x_{1}, x_{2} \leq 2\left\|\left(x_{1}, x_{2}\right)\right\|=2 \sqrt{x_{1}^{2}+x_{2}^{2}}\right.
$$

Hence φ_{a} is contained in
aterval bounded by 0 and twice the Euclidean norm. But $f\left(\varphi_{a}\right)=-a$ and therfore is not order bounded.

Referenced

[1] U. C grell, On e pace delta-convex functions and its dual, Bul. Mat. de la Soc. Mat de la R.f. de Roumanie 22 (1978) 133-139.
[2] Ph. D. aond P. Kloeden, A. Rubinov and A. Vladimirov, Comparative properties of three metrics in the space of compact convex sets, Set-Valued Anal. 5 (1997) 267-289.
[3] W.J. Firey, A functional characterization of certain mixed volumes, Israel Journ. of Mathematics 4 (1976) 274-281.
[4] J. Grzybowski and R. Urbański, Extreme points of lattice intervals in the Minkowski-Rådström-Hörmander lattice, Proc. Amer. Math. Soc. 136 (2008) 3957-3962.
[5] L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Ark. Math. 3 (1954) 181-186.
[6] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization - Convex Analysis without Linearity, Mathematics and its Applications, Vol. 388, Kluwer Acad. Publ. Dordrecht, 1997.
[7] D. Pallaschke and R. Urbański, Pairs of Compact Convex Sets -Fractional Arithmetic with Convex Sets, Mathematics and its Applications, Vol. 548, Kluwer Acad. Publ. Dordrecht, 2002.
[8] A.G. Pinsker, The space of convex sets of a locally convex space, Trudy Leningrad Engineering-Economic Institute 63 (1966) 13-17.
[9] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952) 165-169.
[10] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
[11] H.H. Schäfer, Banach Lattices and Positive Operators, Grundlehren der mathematischen Wissenschaften, Band 215, Springer Verlag, Berlin, Heidelberg, New York, 1974.
[12] R. Urbański, A generalization of the Minkowski-Rådström-Hörmander theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 24 (1976) 709-715.
[13] W. Weil, Eine Charakterisierung von Summanden koy exer Körper, Archiv der Mathematik 34 (1980) 283-288.

Manuscript received 30 May 2008 revised 16 October 2008
for publication 16 December 2008
J. Grzybowski

Faculty of Mathematics, and Comp Adam Mickiewicz University, multo ika 87, PL-61-614 Poznań, Poland
E-mail address: e-mail:

D. Pallasd yke

Institut für stat ndik M then tische Wirtschaftstheorie
Universit/ Karlsruhe Kais fstr. (, D-76128 Karlsruhe, Germany
E-mail an lress: lh09@r mani-kar1sruhe.de
R. Urb

Faculty of Matnematics, and Computer Science
Adam Mickiewicz University, ul. Umultowska 87, PL-61-614 Poznań, Poland
E-mail address: rich@amu.edu.pl

