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Abstract: For a locally convex vector space (X, 7) let P(X) := {p:
be the convex cone of all real valued continuous sublinear functi

R | p is sublinear and continuous}
defined on X and D(X) = {p =
linear functions. With respect to
(z) holds for every x € X, the
endowed with the norm

the pointwise ordering of functions given by ¢ < ¢ if and o
space (D(X), <) is a vector lattice. If (X, || ||) is a Banach sp

lella = inf {msc {I

Y=pP—q

where the infimum is taken over all continuous s car fupd p, q such that ¢ = p —q, is also a Banach
f (D(X),|| |la) which are order bounded

space. On D(X) we characterize all continuou ea@fujict]
and vanish on linear functions for finite di ional

his results case of a Banach space.

For a Banach space X = (X,| ||) let D(X) = {¢p =p—q | p,q € P(X)} be the real
vector space of differences of continuous sublinear functions. With respect to the pointwise
ordering of functions given by ¢ < ¢ if and only if p(z) < ¥(x) holds for every z € X,
the space (D(X), <) is a vector lattice. Let us denote for a sublinear function p: X — R
by 0 p| C X' the subdifferential of p at the origin, which is a nonempty compact convex

0
set in the weak topology of the dual X’ and let us assign to ¢ € D(X) the set [¢] =

{(@plo,0qlo) | with ¢ =p—gq, p,qe P(X)}.

To formalize this assignment more precisely, let us denote by K(X’) the set of all
nonempty weakly compact convex subsets of X’. Then introduce on K?(X') = K(X') x
K(X') the equivalence relation (A, B) ~ (C, D) if and only if A + D = B + C holds and
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denote by [A, B] € K2 (X’)/ denotes the equivalence class which contains (4, B) € K2(X').

In 1966 A. G. Pinsker [8] introduced the following ordering on K2 (X’)/ ,namely: [A, B] <

[C,D] < A + D C B + C, which is independent of the sp:ecial choice of rep-
resentatives, because of the order cancellation law (see [12] and [7], Theorem 3.2.1). The

space <IC2(X o) / , j> is called the Minkowski-Radstrom-Hormander lattice. It is a complete

vector lattice and a direct calculation shows that the assignment:

D(X) — ’CQ(X’)/ with ¢ — [¢] = {(9plo,dglo) | with ¢ =p—gq, p,q € P(X)}

is a lattice isomorphism, called Minkowski duality (see [7], Theorem 3.4.3).

By [[¢lloc = supy, <1 [¢(x)] we denote the supremum norm for D(X). It is shown in [2]
(see the remark after [2] Lemma 6.1), that the normed space (D(X), || ||oo) is not complete.
A more detailed investigation of (D(X), || |le) can be found in the recent paper of J. Grzy-
bowski and R. Urbariski [4].

A norm under which the linear space D(X) is complete Jegiven in [7]. Some preliminary
results in this direction are proved in [1] and [2]. Jgw v st see [7], Theorem 8.1.26):

Theorem 1.1. Let (X, -||) be a Banach space. TIRgAt/RQspa
DX)={¢=p—0q|p,q are (nedand continuous}
[

endowed with the norm || - ||a given by
lella = p M), sup q(z) ¢ o,
llzll<1 llzll<1

chntinuous sublinear functions p,q such that ¢ = p —q,

where the infimum is taken ovér
is a Banach space.

of all linear ings from E to R. For two elements z,y € E we denote by [z,y] = {z €
E | x <z <y} the order interval and we call a linear functional f € E* order bounded
if the set f([z,y]) C R is bounded for every order interval [z,y]. Moreover we call a linear
functional f € E* positive if for every element € E; = {z € E | 2 > 0 } of the positive
cone we have f(z) > 0.

Note that every order bounded linear functional on the vector lattice (D(X), <) is con-
tinuous with respect to the supremum norm || ||o. Now the following result holds (see [11]
Chapt. II, §4, Corollary 2):

Proposition 2.1. Let (E, <) a vector lattice. Then f € E* is order bounded if and only if
it is the difference of two positive linear functionals.

Now we prove the following auxiliary statements:
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Proposition 2.2. For a real Banach space (X, || ||) let P(X) :={p: X — R |p is sublinear
and continuous} be the convex cone of all real valued continuous sublinear functions

defined on X. If D(X) ={¢ =p—4q | p,qg € P(X)} is endowed with the norm |¢||a =
inf¢£;)ziq{max{sup|‘ml‘§1 p(T),sup| <1 q(x)}} , then for every ¢ € D(X) holds

plloo = sup |p()] < 2[¢la-
[l <1

|z

Proof. First note, that for every ¢ € D(X) there exists a representation ¢ = p — ¢ with
min{p(z),q(x)} > 0 for all z € X (see [7], Proposition 10.2.3). Now the assertion follows
immediately from:

lelloo = sup |p(z)] < sup p(z) + sup g(z) <2< sup p(x), sup g(x) p.
l=|<1 lz|<1 lz]|<1 lz]|<1 lz|<1

O

Proposition 2.3. Let (X,|| ||) be a real Banach space C C X a generating closed
convex cone, i.e. X = C — C. Moreover let us asgume t there exists a real K > 0 such
that B(0,1) € K(B(0,1)nC — B(0,1)NC) h re MO0y 1) denotes the closed unit
ball. If f € E* and if for every x € C holds f(x) > 1, Weontinuous.

there exists a noncontinuous linear
alu®s on the closed cone C' C X. Hence
gMycd unit ball B(0,1) such that the
ollows. Since B(0,1) C K (B(0,1)N
fients of the closed set B(0,1)NC with
thelse (an)neN‘ Since Zl ||%xn|| is convergent

Proof. Let us assume that the assertion is not ti
functional f € X*, which assumes only n@neg
there exists a sequence (z,,),cy Of elemeyls o

s &

sequence (f(2n)),cy is unbounded. Novfyvegrace
C — B(0,1)NC) we can find a seque Zn,),, W Of
nce (=

f(x,) > n®. Let us now consid

oo

1

— .
n2

and B(0,1) N C is closegdd

oo

n=k+1
1
n2

Fle) > ML,
n=1

contradiction. O

J€ C for every k € N, which implies f(zg) > Z

Representation Theorems

From now on we consider only the finite-dimensional case. Note that D(X) = P(X) — P(X)
and that || || a satisfies the assumption of Proposition 2.3. Furthermore note that in the finite

dimensional case the norm || ||a does not depend on the particular choice of the norm for
X =R"

Theorem 3.1. Let (D(R"),|| ||a) be given. Then every linear functional f € D(R™)" which
18 order bounded with respect to the pointwise ordering of functions and vanishes on the
linear functions is continuous with respect to the norm || ||a and is the difference of two
continuous linear functionals f1, fa € D(R™)" which vanish also on the linear functions and
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are nonnegative on the conver cone P(R™) of all continuous sublinear functions.

Moreover both functionals fi1, fo € D(R™) are also monotone on the convexr cone P(R™)
of all continuous sublinear functions,i.e. for every p,q € P(R™) with p > q holds f1(p) >

f1(q) and f2(p) > f2(q).

Proof. First let us endow the space D(R™) with the pointwise ordering of functions, i.e.
p < 9 if and only if for every x € R™ holds p(z) < 1(z). Now choose a continuous linear
functional f € D(R™)’. Since by assumption f is order bounded it is the difference of two
positive linear functionals p1, ua € D(R™)* with respect to the pointwise ordering.

Now we define the following 2n linear functional 6;",5; € D(R™)*, i € {1,...,n} by:

177
5 (p) = —p(-e;) and 5 (p) = (i),
where e, ..., e, € R™ are the unit vectors.

Now let p € P(R™) be any continuous sublinear function. Then it follows from a direct
calculation, that for every linear function I(z) = "' | a;,xy which supports p at the origin,

(3.1)
Now we put:
n
and put v = Zul(xi)yi.
i=1
Since f = @1 — o vanis he linear functions, we have pi(x;) = pa(x;) for all

i € {1,...,n}. Hence we ¢ reseWy the functional f € D(R™)" in the form f = (u1 —
V)~ (s — ).

Now we s ' ) { v)(p), (u2—v)(p)} > 0 for every p € P(R™). Since pq(z;) =
o (x;) for ] walligve to give the proof only for p; — v.

R™) be given and choose a linear function I(z) = Y1 | a;z; which
t the ofigin, ie. p(z) —I(z) > 0 for all z € R™. Since p; is nonnegative one has
pi(p—1) N igh cives p1(p) > (). Now let us put I ={i € {1,..,n} | pi(x;) > 0}

(11— v)(p) = wmp) — vip)
> ul(l)—V(p)ZZ(aiﬂl(%) — pi(zi)vi(p))
i=1
= > @) (a = 67 (0) + Y mlw) (a + 67 (p) 20,
iel, iel_

because of equation (3.1).

Analogously it follows that (ua — v)(p) > 0 holds for all p € P(R™). Hence both
functional pq — v and ps — v are nonnegative on P(R™) and therefore by Proposition 2.3
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also continuous.

Now we show that p; — v and ps — v vanish on linear functions. Therefore let a linear
function I(z) = Y., a;z; be given. Then pi(l) = Y1 ajpr(z;) = v(l) and po(l) =
S aipe(z) = Y0 aipa(z;) = v(1), because of p1(z;) = po(z;) which implies that both
functionals ;1 — v and pe — v vanish on the linear functions.

Finally we have to prove the monotonicity:

Let us only consider the functional p; — v. First let us prove that for every nonnegative
function ¢ € D(R™) the inequality v(¢) < 0 holds. This can be seen as follows: We have:

D (@87 (@) + D (@) (=) (p)-
€A i€EB

Since ¢ > 0 one has for i € A that ui(z;)67(¢) < 0 and for i € B that py(x;)d(p) > 0.
Hence v(p) <0.

Now let p, ¢ € P(R") with p > ¢ be given. Then ¢ = p—¥ 2 0and v(p) — v(q) = v(p) <

0. Now choose a linear function [ € D(R™) with ¢ > I. Th —1>¢q—1>0 and therefore
p1(p — 1) > py(q — 1) which implies 1 (p) — p1(q) . ceqyg have

p(p) — pa(q) = 0 = 1hp) ),
which gives the monotonicity: [ ]

) 1 (p)-
L]

.,n}, where eq, ..., e, are the unit vectors of R™.

0 for i#j

O

Using a result of W. Firey [3] there exists for every continuous linear functional n €
D(R™)" which is nonnegative and monotone on the convex cone P(R™) of all continuous
sublinear functions and which vanishes on the linear functions a unique compact convex set
A € K(R™), such that 1 can be represented as a mixed volume, which uniquely depends on
A € K(R") as n(pa) = V(A, A;p — 1,01, ...,0n—p), Where 071, ...,0,_, are segments of unit
length, whose directions are mutually orthogonal and span the orthogonal complement of
the affine hull of A.
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Non Order Bounded Linear Functionals

Now we give a negative answer to the question whether every continuous linear functional
f € D(R™)" with respect to || ||a is also order bounded.

Therefore let us recall the following formula about the addition of faces:
Let (X,7) be a topological vector space and X’ its dual space. Then we denote for

AeK(X)and f € X' by

i) = {ze a1 76) = max )}

the (maximal) face of A with respect to f.
For the sum of the faces of A, B € K(X) holds:
Proposition 4.1. Let X be a topological vector space, f € X' and A, B € K(X). Then
Hp(A+ B) = Hy(A) + Hy(
This result was first proved by W. Weil [13], s

also [7]Qroposition 3.3.1.

(R?)"\ {0} be a nontrivial

We will construct an example for D(R?). There
linear functional. Then we define

f:D®R*) —R by f(p)

where ¢ = p — ¢ € D(R?) and length(
It follows from Proposition 4.1 that the

) — length(H,(9go)), (4.1)
he length of the interval H,(dplo).

T

be a nontrivial linear functional and

) = length(H, (dplo)) — length(H,(dqlo))

) — R with f(p) = length(H,(dplo)) — length(H,(9qlo))

is continuous, where ¢ = p — ¢ € D(R?). Therefore we show that in the Euclidean norm for
every A € K(R™) holds:

diam(A) = sup [lr —y| <2 sup pa(x)

z,y€A |z]|<1
with pa(z) = sup(v, z).
vEA
This can be seen as follows:
diam(4) = sup [lz—yll= sup [w]
T, yeA weA—A
= sup sup (w,x) = sup pa_a(x) <2 sup pa(x).

lzll<1weA-A llzll<1 llzll<1
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The last inequality follows from the equation

p_a(x) = sup (v,z) = sup(—v,z) = pa(—x).
vE—A vEA

Now let ¢ € D(R?) and & > 0 be given. Choose a representation ¢ = p — ¢ such that

max( sup p(z), sup q(az)) < 1pan {max{ sup p(z), sup q(az)}} +e=l¢lla+e

llzl<1 llzll<1 e=p—q llzl<1 llzll<1

holds. Then:

£ ()] [length(H, (dplo)) — length(H,(Dqlo))]
[length(H, (9plo))| + [length(H,(9glo))|

diam(dp|) + diam(dq|o)

IAIA

A\

< 2 ( sup p(r) + sup Q(w)> <4(llella +¢),

llzll<1 llzll<1

which gives the continuity of f.

d. a linear coordinate trans-
L the functional 7 is of the type:
nctions:

Now we show that the functional is not order
formation in R? we can assume that in suitable coorg
n(z1,22) = x2. Now define for a > 1 the followinggam

O R2
.
with va(21,22) = max{0, axi, Mg — 1 } — max{0, az; }.

Now it follows from a straightforwar lcR&tjon for all (z1,22) € R? the following

inequality holds:
N1, z2)| = 2y/21 + 23.

ihterval bounded by 0 and twice the Euclidean norm.
order bounded. O
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