
A NOTE ON THE DUAL OF THE
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Abstract: For a locally convex vector space (X, τ) let P(X) := {p : X → R | p is sublinear and continuous}
be the convex cone of all real valued continuous sublinear functions defined on X and D(X) = {ϕ =
p − q | p, q ∈ P(X)} the real vector space of differences of continuous sublinear functions. With respect to
the pointwise ordering of functions given by ϕ ≤ ψ if and only if ϕ(x) ≤ ψ(x) holds for every x ∈ X, the
space (D(X),≤) is a vector lattice. If (X, ‖ ‖) is a Banach space then D(X) endowed with the norm

‖ϕ‖∆ = inf
p,q

ϕ=p−q

(
max

(
sup
‖x‖≤1

p(x), sup
‖x‖≤1

q(x)

))
,

where the infimum is taken over all continuous sublinear functions p, q such that ϕ = p− q, is also a Banach
space. On D(X) we characterize all continuous linear functionals of (D(X),‖ ‖∆) which are order bounded
and vanish on linear functions for finite dimensional X.
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1 Introduction

In 1954 L. Hörmander [5] investigated the equivalence classes of pairs of nonempty compact
convex sets for a locally convex space in terms of their support functions. We summarize
his results for the case of a Banach space.

For a Banach space X = (X, ‖ ‖) let D(X) = {ϕ = p − q | p, q ∈ P(X)} be the real
vector space of differences of continuous sublinear functions. With respect to the pointwise
ordering of functions given by ϕ ≤ ψ if and only if ϕ(x) ≤ ψ(x) holds for every x ∈ X,
the space (D(X),≤) is a vector lattice. Let us denote for a sublinear function p : X −→ R
by ∂ p

∣∣∣
0
⊂ X ′ the subdifferential of p at the origin, which is a nonempty compact convex

set in the weak topology of the dual X ′ and let us assign to ϕ ∈ D(X) the set [ϕ] =
{(∂p|0, ∂q|0) | with ϕ = p− q, p, q ∈ P(X)}.

To formalize this assignment more precisely, let us denote by K(X ′) the set of all
nonempty weakly compact convex subsets of X ′. Then introduce on K2(X ′) = K(X ′) ×
K(X ′) the equivalence relation (A,B) ∼ (C, D) if and only if A + D = B + C holds and
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denote by [A,B] ∈ K2(X ′)/
∼

denotes the equivalence class which contains (A,B) ∈ K2(X ′).

In 1966 A. G. Pinsker [8] introduced the following ordering onK2(X ′)/
∼
, namely: [A,B] ¹

[C, D] ⇐⇒ A + D ⊆ B + C, which is independent of the special choice of rep-
resentatives, because of the order cancellation law (see [12] and [7], Theorem 3.2.1). The

space
(
K2(X ′)/

∼
,¹

)
is called the Minkowski-R̊adström-Hörmander lattice. It is a complete

vector lattice and a direct calculation shows that the assignment:

D(X) −→ K2(X ′)/
∼

with ϕ 7→ [ϕ] = {(∂p|0, ∂q|0) | with ϕ = p− q, p, q ∈ P(X)}

is a lattice isomorphism, called Minkowski duality (see [7], Theorem 3.4.3).

By ‖ϕ‖∞ = sup‖x‖≤1 |ϕ(x)| we denote the supremum norm for D(X). It is shown in [2]
(see the remark after [2] Lemma 6.1), that the normed space (D(X), ‖ ‖∞) is not complete.
A more detailed investigation of (D(X), ‖ ‖∞) can be found in the recent paper of J. Grzy-
bowski and R. Urbański [4].

A norm under which the linear space D(X) is complete is given in [7]. Some preliminary
results in this direction are proved in [1] and [2]. Now we state (see [7], Theorem 8.1.26):

Theorem 1.1. Let (X, ‖ · ‖) be a Banach space. Then the space

D(X) = {ϕ = p− q | p, q are sublinear and continuous}
endowed with the norm ‖ · ‖∆ given by

‖ϕ‖∆ = inf
p,q

ϕ=p−q

{
max

{
sup
‖x‖≤1

p(x), sup
‖x‖≤1

q(x)

}}
,

where the infimum is taken over all continuous sublinear functions p, q such that ϕ = p− q,
is a Banach space.

2 Some Basic Facts

In this section we recall some basic facts about vector lattices which will be used in this
paper.

Let (E,≤) be a vector lattice and let us denote by E∗ the algebraic dual, that is the set
of all linear mappings from E to R. For two elements x, y ∈ E we denote by [x, y] = {z ∈
E | x ≤ z ≤ y } the order interval and we call a linear functional f ∈ E∗ order bounded
if the set f([x, y]) ⊂ R is bounded for every order interval [x, y]. Moreover we call a linear
functional f ∈ E∗ positive if for every element x ∈ E+ = {z ∈ E | z ≥ 0 } of the positive
cone we have f(x) ≥ 0.

Note that every order bounded linear functional on the vector lattice (D(X),≤) is con-
tinuous with respect to the supremum norm ‖ ‖∞. Now the following result holds (see [11]
Chapt. II, §4, Corollary 2):

Proposition 2.1. Let (E,≤) a vector lattice. Then f ∈ E∗ is order bounded if and only if
it is the difference of two positive linear functionals.

Now we prove the following auxiliary statements:
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Proposition 2.2. For a real Banach space (X, ‖ ‖) let P(X) := {p : X → R | p is sublinear
and continuous} be the convex cone of all real valued continuous sublinear functions
defined on X. If D(X) = {ϕ = p − q | p, q ∈ P(X)} is endowed with the norm ‖ϕ‖∆ =
inf p,q

ϕ=p−q

{
max

{
sup‖x‖≤1 p(x), sup‖x‖≤1 q(x)

}}
, then for every ϕ ∈ D(X) holds

‖ϕ‖∞ = sup
‖x‖≤1

|ϕ(x)| ≤ 2‖ϕ‖∆.

Proof. First note, that for every ϕ ∈ D(X) there exists a representation ϕ = p − q with
min{p(x), q(x)} ≥ 0 for all x ∈ X (see [7], Proposition 10.2.3). Now the assertion follows
immediately from:

‖ϕ‖∞ = sup
‖x‖≤1

|ϕ(x)| ≤ sup
‖x‖≤1

p(x) + sup
‖x‖≤1

q(x) ≤ 2

{
sup
‖x‖≤1

p(x), sup
‖x‖≤1

q(x)

}
.

Proposition 2.3. Let (X, ‖ ‖) be a real Banach space and C ⊂ X a generating closed
convex cone, i.e. X = C − C. Moreover let us assume that there exists a real K > 0 such
that B̄(0, 1) ⊆ K

(
B̄(0, 1) ∩ C − B̄(0, 1) ∩ C

)
holds, where B̄(0, 1) denotes the closed unit

ball. If f ∈ E∗ and if for every x ∈ C holds f(x) ≥ 0, then f is continuous.

Proof. Let us assume that the assertion is not true. Then there exists a noncontinuous linear
functional f ∈ X∗, which assumes only nonnegative values on the closed cone C ⊂ X. Hence
there exists a sequence (xn)n∈N of elements of the closed unit ball B̄(0, 1) such that the
sequence (f(xn))n∈N is unbounded. Now we proceed as follows. Since B̄(0, 1) ⊆ K

(
B̄(0, 1)∩

C − B̄(0, 1)∩C
)

we can find a sequence (xn)n∈N of elements of the closed set B̄(0, 1)∩C with

f(xn) ≥ n3. Let us now consider the sequence
(

1
n2 xn

)
n∈N . Since

∞∑
n=1

‖ 1
n2

xn‖ is convergent

and B̄(0, 1) ∩ C is closed there exists an element z0 ∈ B̄(0, 1) ∩ C with z0 =
∞∑

n=1

1
n2

xn.

Analogously we see, that for every k ∈ N holds
∞∑

n=k+1

1
n2

xn ∈ B̄(0, 1) ∩ C ⊂ C. Hence

z0 − ∑k
n=1

1
n2 xn ∈ C for every k ∈ N, which implies f(z0) ≥

k∑
n=1

1
n2

f(xn) ≥ k(k + 1)
2

,

and this leads to a contradiction.

3 Representation Theorems

From now on we consider only the finite-dimensional case. Note that D(X) = P(X) − P(X)
and that ‖ ‖∆ satisfies the assumption of Proposition 2.3. Furthermore note that in the finite
dimensional case the norm ‖ ‖∆ does not depend on the particular choice of the norm for
X = Rn.

Theorem 3.1. Let (D(Rn), ‖ ‖∆) be given. Then every linear functional f ∈ D(Rn)′ which
is order bounded with respect to the pointwise ordering of functions and vanishes on the
linear functions is continuous with respect to the norm ‖ ‖∆ and is the difference of two
continuous linear functionals f1, f2 ∈ D(Rn)′ which vanish also on the linear functions and
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are nonnegative on the convex cone P(Rn) of all continuous sublinear functions.

Moreover both functionals f1, f2 ∈ D(Rn)′ are also monotone on the convex cone P(Rn)
of all continuous sublinear functions,i.e. for every p, q ∈ P(Rn) with p ≥ q holds f1(p) ≥
f1(q) and f2(p) ≥ f2(q).

Proof. First let us endow the space D(Rn) with the pointwise ordering of functions, i.e.
ϕ ≤ ψ if and only if for every x ∈ Rn holds ϕ(x) ≤ ψ(x). Now choose a continuous linear
functional f ∈ D(Rn)′. Since by assumption f is order bounded it is the difference of two
positive linear functionals µ1, µ2 ∈ D(Rn)∗ with respect to the pointwise ordering.

Now we define the following 2n linear functional δ+
i , δ−i ∈ D(Rn)∗, i ∈ {1, ..., n} by:

δ−i (ϕ) = − ϕ(−ei) and δ+
i (ϕ) = ϕ(ei),

where e1, ..., en ∈ Rn are the unit vectors.

Now let p ∈ P(Rn) be any continuous sublinear function. Then it follows from a direct
calculation, that for every linear function l(x) =

∑n
i=1 aixi which supports p at the origin,

i,e. p(x)− l(x) ≥ 0 for all x ∈ Rn, the following inequality holds:

δ−i (p) ≤ ai ≤ δ+
i (p), i ∈ {1, ..., n}. (3.1)

Now we put:

νi =





δ−i if µ1(xi) ≥ 0

δ+
i if µ1(xi) < 0

and put ν =
n∑

i=1

µ1(xi)νi.

Since f = µ1 − µ2 vanishes on the linear functions, we have µ1(xi) = µ2(xi) for all
i ∈ {1, ..., n}. Hence we can represent the functional f ∈ D(Rn)′ in the form f = (µ1 −
ν) − (µ2 − ν).

Now we show that min{(µ1−ν)(p), (µ2−ν)(p)} ≥ 0 for every p ∈ P(Rn). Since µ1(xi) =
µ2(xi) for all i ∈ {1, ..., n}, we have to give the proof only for µ1 − ν.

Therefore let p ∈ P(Rn) be given and choose a linear function l(x) =
∑n

i=1 aixi which
supports p at the origin, i,e. p(x)− l(x) ≥ 0 for all x ∈ Rn. Since µ1 is nonnegative one has
µ1(p− l) ≥ 0 which gives µ1(p) ≥ µ1(l). Now let us put I+ = {i ∈ {1, ..., n} | µ1(xi) ≥ 0 }
and I− = {i ∈ {1, ..., n} | µ1(xi) < 0 }. Then:

(µ1 − ν)(p) = µ1(p) − ν(p)

≥ µ1(l)− ν(p) =
n∑

i=1

(aiµ1(xi) − µ1(xi)νi(p))

=
∑

i∈I+

µ1(xi)
(
ai − δ−i (p)

)
+

∑

i∈I−

µ1(xi)
(
ai + δ+

i (p)
) ≥ 0,

because of equation (3.1).

Analogously it follows that (µ2 − ν)(p) ≥ 0 holds for all p ∈ P(Rn). Hence both
functional µ1 − ν and µ2 − ν are nonnegative on P(Rn) and therefore by Proposition 2.3
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also continuous.

Now we show that µ1 − ν and µ2 − ν vanish on linear functions. Therefore let a linear
function l(x) =

∑n
i=1 aixi be given. Then µ1(l) =

∑n
i=1 aiµ1(xi) = ν(l) and µ2(l) =∑n

i=1 aiµ2(xi) =
∑n

i=1 aiµ1(xi) = ν(l), because of µ1(xi) = µ2(xi) which implies that both
functionals µ1 − ν and µ2 − ν vanish on the linear functions.

Finally we have to prove the monotonicity:

Let us only consider the functional µ1 − ν. First let us prove that for every nonnegative
function ϕ ∈ D(Rn) the inequality ν(ϕ) ≤ 0 holds. This can be seen as follows: We have:

ν(ϕ) =
∑

i∈A

µ1(xi)δr
i (ϕ) +

∑

i∈B

µ1(xi)(−δl
i)(ϕ).

Since ϕ ≥ 0 one has for i ∈ A that µ1(xi)δr
i (ϕ) ≤ 0 and for i ∈ B that µ1(xi)δl

i(ϕ) ≥ 0.
Hence ν(ϕ) ≤ 0.

Now let p, q ∈ P(Rn) with p ≥ q be given. Then ϕ = p−q ≥ 0 and ν(p) − ν(q) = ν(ϕ) ≤
0. Now choose a linear function l̃ ∈ D(Rn) with q ≥ l̃. Then p− l̃ ≥ q − l̃ ≥ 0 and therefore
µ1(p− l̃) ≥ µ1(q − l̃) which implies µ1(p)− µ1(q) ≥ 0. Hence we have

µ1(p)− µ1(q) ≥ 0 ≥ ν(p) − ν(q),

which gives the monotonicity:

(µ1 − ν)(p) ≥ (µ1 − ν)(p).

Remark. Let us note that Theorem 3.1 was first proved by Urban Cegrell (see [1]), except
of the monotony.

Corollary 3.2. Every continuous linear functional f ∈ D(Rn)′ is the sum of two linear
functionals which are nonnegative on the convex cone P(Rn) and a linear combination of
the functionals δr

i (ϕ) = ϕ(ei), i ∈ {1, ..., n}, where e1, ..., en are the unit vectors of Rn.

Proof. This follows immediately form Theorem 3.1 and the fact that

δr
i (ej) =





1 for i = j

0 for i 6= j

Using a result of W. Firey [3] there exists for every continuous linear functional η ∈
D(Rn)′ which is nonnegative and monotone on the convex cone P(Rn) of all continuous
sublinear functions and which vanishes on the linear functions a unique compact convex set
Ā ∈ K(Rn), such that η can be represented as a mixed volume, which uniquely depends on
Ā ∈ K(Rn) as η(pA) = V (A, Ā; p − 1;σ1, ..., σn−p), where σ1, ..., σn−p are segments of unit
length, whose directions are mutually orthogonal and span the orthogonal complement of
the affine hull of Ā.
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4 Non Order Bounded Linear Functionals

Now we give a negative answer to the question whether every continuous linear functional
f ∈ D(Rn)′ with respect to ‖ ‖∆ is also order bounded.

Therefore let us recall the following formula about the addition of faces:

Let (X, τ) be a topological vector space and X ′ its dual space. Then we denote for
A ∈ K(X) and f ∈ X ′ by

Hf (A) =
{

z ∈ A | f(z) = max
y∈A

f(y)
}

the (maximal) face of A with respect to f.

For the sum of the faces of A,B ∈ K(X) holds:

Proposition 4.1. Let X be a topological vector space, f ∈ X ′ and A,B ∈ K(X). Then

Hf (A + B) = Hf (A) + Hf (B).

This result was first proved by W. Weil [13], see also [7], Proposition 3.3.1.

We will construct an example for D(R2). Therefore let η ∈ (R2)′ \ {0} be a nontrivial
linear functional. Then we define

f : D(R2) −→ R by f(ϕ) = length(Hη(∂p|0))− length(Hη(∂q|0)), (4.1)

where ϕ = p− q ∈ D(R2) and length(Hη(∂p|0)) denotes the length of the interval Hη(∂p|0).
It follows from Proposition 4.1 that the linear functional f is well defined, i.e. independent
of the special choice of p and q for ϕ = p− q and that f is linear.

Now the following statement holds:

Proposition 4.2. Let η ∈ (R2)′ \ {0} be a nontrivial linear functional and

f : D(R2) −→ R with f(ϕ) = length(Hη(∂p|0))− length(Hη(∂q|0))
the linear functional defined by equation (4.1), where ϕ = p − q ∈ D(R2). Then f is a
continuous linear functional on D(Rn) with respect to ‖ ‖∆ which is not order bounded.

Proof. Let us first prove that

f : D(R2) −→ R with f(ϕ) = length(Hη(∂p|0))− length(Hη(∂q|0))
is continuous, where ϕ = p− q ∈ D(R2). Therefore we show that in the Euclidean norm for
every A ∈ K(Rn) holds:

diam(A) = sup
x,y∈A

‖x− y‖ ≤ 2 sup
‖x‖≤1

pA(x)

with pA(x) = sup
v∈A

〈v, x〉.
This can be seen as follows:

diam(A) = sup
x,y∈A

‖x− y‖ = sup
w∈A−A

‖w‖

= sup
‖x‖≤1

sup
w∈A−A

〈w, x〉 = sup
‖x‖≤1

pA−A(x) ≤ 2 sup
‖x‖≤1

pA(x).



A NOTE ON THE DUAL OF THE MINKOWSKI-RÅDSTRÖM-HÖRMANDER LATTICE 261

The last inequality follows from the equation

p−A(x) = sup
v∈−A

〈v, x〉 = sup
v∈A

〈−v, x〉 = pA(−x).

Now let ϕ ∈ D(R2) and ε > 0 be given. Choose a representation ϕ = p− q such that

max

 
sup
‖x‖≤1

p(x), sup
‖x‖≤1

q(x)

!
≤ inf

p,q
ϕ=p−q

(
max

(
sup
‖x‖≤1

p(x), sup
‖x‖≤1

q(x)

))
+ ε = ‖ϕ‖∆ + ε

holds. Then:

|f(ϕ)| = |length(Hη(∂p|0))− length(Hη(∂q|0))|
≤ |length(Hη(∂p|0))|+ |length(Hη(∂q|0))|
≤ diam(∂p|0) + diam(∂q|0)

≤ 2

(
sup
‖x‖≤1

p(x) + sup
‖x‖≤1

q(x)

)
≤ 4 (‖ϕ‖∆ + ε) ,

which gives the continuity of f.

Now we show that the functional is not order bounded. By a linear coordinate trans-
formation in R2 we can assume that in suitable coordinates the functional η is of the type:
η(x1, x2) = x2. Now define for a > 1 the following family of functions:

ϕa : R2 −→ R
with ϕa(x1, x2) = max{0, ax1, (a− 1)x1 + x2} −max{0, ax1}.
Now it follows from a straightforward calculation that for all (x1, x2) ∈ R2 the following
inequality holds:

0 ≤ ϕa(x1, x2) ≤ 2‖(x1, x2)‖ = 2
√

x2
1 + x2

2.

Hence ϕa is contained in the order interval bounded by 0 and twice the Euclidean norm.
But f(ϕa) = −a and therefore f is not order bounded.
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