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Abstract: In this paper, we present a new generalization KKM Lemma. We also introduce
an extension of the KKM Principle related to the finite int Finallly, we apply these results
to establish the existence of solutions for the generalized equili (i obIqgl. As a consequence, we improve
existence results for the equilibrium problem and for the Fap’s\@ini inequality given in the literature.
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Introduction

The FKKM Lemma
results on thegxiste ons for several problems like variational and quasivariational
inequalitie ementarity problems. These problems belong to a unified

(see for exa , 11, 13, 15, 22, 29, 31] and references therein). We use the new version
of the Ky Fan property to study the existence of solutions for the generalized equilibrium
problem. To illustrate the usefulness of this result, we deduce an existence theorem for the
classical equilibrium problem ([5, 6, 14, 15, 19] and references therein) and we establish the
Fan’s minimax inequality [17].

The outline of this work is as follows. In section 2 we present most of the material used
in this paper. In section 3 we derive a characterization of the finite intersection property
which extends the KKM Principle [16] and establish the generalization of the Fan KKM
Lemma. Several results given in the literature can be considered as particular cases of this
extension. In section 4 we use this version to obtain an existence result for the generalized
equilibrium problem. Finally, as a consequence of this result, we improve some theorems
of existence of solutions for the classical equilibrium problem (EP) and we also obtain the
minimax inequality under weaker conditions showing the power of the formulation (GEP).

Copyright © 2010 Yokohama Publishers  http://www.ybook.co.jp



244 S. SCHEIMBERG AND F.M. JACINTO

Preliminaries

In this section we recall some of the concepts we will use. The first part of this section
is devoted to the KKM theory. In the second part we present the generalized equilibrium
probem (GEP). Denote by P(C) the set of subsets of C.

KKM Theory

We begin with the well known result of Ky Fan that generalizes the classic theorem of
Knaster-Kuratowski-Mazurkiewicz given in finite dimension, called KKM Theorem. [1, 6,
7,8, 11, 16, 29].

Lemma 2.1 ([16, Fan KKM Lemma |). Let A be a nonempty subset of a real Hausdorff
topological vector space X and let G : A — P(X) be a multivalued mapping such that the
following conditions are satisfied:

1. G(a) is a closed subset in X for all a € A;

2. G(ap) is compact for at least one ag € A;

3. the convex hull of any finte subset {a1,...,an s Wtained in |J;_; G(a;).
Then, N,ea G(a) #0

The following notions and properties.c n with slight differences in [1], [11] and
[31]. The next concept corresponds to ¢ jon lemma above.
Definition 2.2. Let A be a nonem ubseWghf al Hausdorff topological vector space

X. A multivalued mapping F' : A @WPRK ) is said to be a KKM mapping if, for any finite
subset {z1,...,z,} C A it hol

enOWs the convex hull of the set {z1,...,z,}.
chaylicterization of the finite intersection property.

(i) T'(a) is a closed subset in E for all a € A;
(ii) T is a KKM mapping.

Then, {T(a) : a € A} has the finite intersection property, that is, any finite intersection of
subsets of the family is nonempty.

We consider below an extension of the concept of the KKM mapping that we will use in
our extension of the Fan KKM Lemma.

Definition 2.4. Let A and B be nonempty subsets of two real Hausdorff topological vector
spaces X and Y respectively such that B is convex. A multivalued mapping F' : A — P(B)
is said to be a generalized KKM mapping if, for any finite subset {z1,...,2,} of A, there
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is a finite subset {y1,...,yn} of B such that, for any subset {v:,,..., ¥, } C {y1,...,yn} it
holds

k
CO{yil,.. '7yik} g U F(xZJ)

j=1

It is easy to see that every KKM mapping is a generalized KKM mapping. In [11] there
is a counterexample to illustrate that the converse does not hold. Let us note that, if F is
a multivalued KKM mapping then it must be x € F(x) for all x € A. If F' is a generalized
multivalued mapping then F(z) # 0 for all z € A.

We will also consider the folowing notion.

Definition 2.5. Let A and B be nonempty subsets of two real Hausdorff topological vector
spaces X and Y respectively. The multivalued mapping F : A — P(B) is said to be
transfer closed-valued if for every x € A, y ¢ F(x), there exists an element 2’ € A such that
y ¢ clpF(2'), where clg denotes the closure relative to B, clp(.) = cly(.) N B.

The next characterization of the definition above will be useful.

Lemma 2.6 ([29]). A multivalued mapping G : A — P(BWgs transfer closed-valued if, and

only if,
(G =¢ (2.1)
acA acA
Let us observe that a multivalued applicatio A Q P(B) with closed values is transfer
closed-valued. o
In proving our main results we need the foffow eorems.

Theorem 2.7 ([4, VII,Theore
finite intersection axiom is verifie
which any finite intersection i

A top®logical space X is compact if and only if the
alQs, if {F; :i € I} is a family of closed sets in X for
Wiy, then (N, Fi # 0.

Theorem 2.8 ([28, T
Hausdorff topological ve
that:

ord Let K be a nonempty compact convex subset of a
e X ] Let F : K — P(X) be a multivalued mapping such

(a) forfeach x € ) isH nonempty convex subset of K ;

, the set F~'(y) = {z € K : y € F(z)} contains an open subset O, of
e empty);

Then, there exists a point xo € K such that xo € F(xg).

The Generalized Equilibrium Problem

We consider the following Generalized Equilibrium Problem (GEP) introduced in [21]:
(GEP) Find Z € D such that
f(@,y) + (@, y) + h(y) = ¢(,7) + h(z) forally € X,

where X is a real Hausdorff topological vector space, D is a nonempty subset of X and
fro: X x X — (—o00,4+00] and h : X — (—o0, +00] are functions satisfying:

(2.2)
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1. f(z,xz) =0 for all x € D;
2. his a convex function;
3. dom f(x,-) Ndom ¢(z,-) Ndom h # @ for all z € D.

Let us observe that our scheme contains other equilibrium problems given in the liter-
ature. For example, if we consider in (2.2), h = §x the indicator function of a nonempty,
convex and closed subset K of X, then we get the scheme given in [18]. If h = dx and
p(z,y) = ¢(y) is a real function on K, for all z € X, the scheme (GEP) becomes the mixed
equilibrium problem ( [9] and reference therein) . If we take in (GEP) ¢ =0 and h = 0k , we
obtain the classical equilibrium problem (see for example [5, 6, 13, 15, 19, 22] and references
therein):

Find z € K such that

(EP) { f(Z,y) >0 forally € K, (2:3)

We illustrate the flexibility of formulation (2.2) with the following examples. When
=0, o(z,y) = ¢(y) for all z € X and h = Ik, (2.2) omes a convex nonlinear pro-
gramming. Also, the generalized quasivariational mequal' considered in [24] and in [25]
defined by multivalued applications A : X — . X — P(X), where X*
is the dual of a Banach space X such that G(z) et for all z € X, follows
the scheme (2.2). In fact, take Q@ = X x X*, Dg= €Q:xz e Gx) e Alx)},
f(2,8),(y,p) =< &y —2 >, o((x,8), (y,0)) and h = 0.
Finally, we note that numerical methods@br s equilibrium problems have been exten-
sively studied recently (see for example, [0, and references therein).

KM Principle given in [16]. We use this result
Lemma. We relax the closedness condition and we

Proof. Assume that clg G : A — P(B) is a generalized KKM mapping. For purpose of
contradiction we suppose that there is a finite subset A = {a1,...,a,} of A verifying

n

mclB G(al) = @ (31)

=1

Since clp G(.) is a generalized KKM multivalued mapping, there is a finite subset B4 =
{b1,...,b,} of B such that for any subset {b;,,...,b; } of {b1,...,b,}, with k € I :=
{1,...,n} it holds
k
co{bi,..., by} C U clp G(ai; ). (3.2)

j=1
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From (3.1) we have that for each point b € co B 4 there is ¢ € I such that b ¢ clg G(a;). So,
for each b € co B4 we consider the following nonempty set:

I = {Z el:b ¢ clp G(al)} (33)
Let us define T : co B4 — P(co By) by
T(b) :=co{b; € Ba:i€ I} (3.4)

Since B4 is a nonempty finite set we have that co B4 is nonempty and compact. Further-
more, it is convex. We will show that T verifies all the conditions of Theorem 2.8.

(a) From (3.4) and (3.3) we obtain that T'(b) is a nonempty and convex subset of co B4 for
all b € co By4.

(b) We claim that for each w € co B4, there is a relative open subset O,, of co B4 such that
Oy C T7Hw). Indeed, if T~ (w) = 0, we take O, = 0. Otherwise, let v € T~!(w).
We consider

O, :=coBy \ ( (3.5)

By the definition of T'(v) we have that v . Qurthermore, O, is relative open in
co B 4. In fact, since co B4y C B wdan

Io) (3.6)

The set B\ (U relative open in B, that is, there is an open set V of

icl, clp oA
X such that: Q

0 B\ (U clp G(ai)> =v(\B (3.7)
(3.5)

i€l
Th&efore, fr -(3.7) we deduce that O, is relative open in co B4. Finally, we
defi
Owi= |J O (3.8)
ve T~ (w)

which is relative open in co B4. Now, we prove that O, C T~ !(w). Indeed, if z € O,
then z € O, for some v € T (w). Hence, by (3.5) it results that z € co B4 and
z ¢ clp G(a;) for all 4 € I,. So, I, C I,, that is, T(v) C T(z) and together with
v € T (w) we deduce that z € T~!(w). So, it follows that O, C T~ (w).

(c) We show that coBa = U,eccop, Ow- Indeed, from (3.5) and (3.8) we have that
UweCoBA Oy C coBy. On the other hand, let 2 € coBy. So, by (a) there is
w € T(z) C co By, that is, 2 € T~ (w). Replacing v by z in (3.5) and (3.8) we deduce
that z € 0, C O, C U O,. Then, we obtain that coB4 C |J Oy

u€ coBy we co By
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Hence, by Theorem 2.8 we conclude that the operator T has a fixed point b*. Therefore,
(3.4) and (3.2) imply
b* € T(b*) =co{b; € Ba:i€ L} C | clpGla) (3.9)
i€l
Using the definition of I+ it results that b* ¢ clg G(a;) for all i € I;-. Then,
v ¢ | cpGlai),
i€l

which is in contradiction with (3.9). Thus, for any finite subset A = {ay,...,a,} of A
it holds that N, clp G(a;) # 0, that is, the family {clp G(a) : a € A} has the finite
intersection property.

Conversely, assume that {clg G(a) : a € A} has the finite intersection property. Consider a
finite subset {a1,...,a,} of A. Therefore,

() cls Glai) # 0. (3.10)

Hence, there exists b € (), clp G(a;) € B. Takgh, = bIXall i = 1,2,...,n. Then, for
each {b;,...,b;,} C{b1,...,bn}, with k € I it hol

is a family of nonempty sets and it verifies the finite intersection property. Moreover, for
each a € A we have that clg G(a) NC = clx G(a)NBNC = clx G(a) N C is a closed subset
of C which is compact. Hence, by considering on C' the induced topology of X and Theorem
2.7 we get that

N {dB G(a) ﬂc} £ 0. (3.12)

acA
On the other hand, using the definition of C' and Lemma 2.6 it results that:

N {dB G(a)ﬂc} = () esCla) = ) Gla). (3.13)

acA a€A a€A

Thus, the conclusion follows from(3.12) and (3.13). O
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Let us note that Fan’s Lemma [16] can be obtained from the property above. Fur-
thermore, the following results given in the literature are also immediate consequences of
Theorem 3.2.

Corollary 3.3 ([11, Theorem 3.2]). Let X be a nonempty convex subset of a real Haus-
dorff topological vector space E. Let F : X — P(E) be a multivalued application where F(x)
is closed for all x € X and such that F(xq) is compact for at least one xy € X. Then,
Neex F(x) # 0 if and only if F' is a generalized KKM application.

Corollary 3.4 ([1, Theorem 2.1]). Let X be a nonempty convexr subset of a Hausdorff
topological vector space E. Let F : X — P(E) be a transfer closed-valued mapping such
that clg F(xg) = K is compact for at least one xo € X and let clg F be a generalized KKM

mapping. Then, (,cx F(x) # 0.

Generalized Equilibrium Problems

We begin this section with an existence theorem for solutions to problem (GEP).

Theorem 4.1. Let D be a nonempty convex subset of a kgul Hausdorff topological vector
space X, and let f,o: X x X — (—o00,400] and hg X — ,+oo] be functions such that
they verify all requirements of problem (GEP). A conditions below hold:

at

(A1) For any finite subset {y1,...,ym} C X ¢
that, for any subset {x;,,...,z; } o,
there are j € {1,...,k} and a filtergk fa
point such that

nite subset {x1,...,xm} of D such
) } a®d for any point x € co{z;,, ...,z }
A\ € A} C D having = as a limit

f(zn,vi;) + o2 h(y @ >"o(2a,2x) +h(za) VA €A (4.1)
(A2) If, for some x € D and it 1Wds that

+ h(y) < o(z,z)+ h(z) (4.2)
then, there are gpot d a neighbourhood U(x) of x such that:

f W)+ R < o(z,2)+h(z) Vze U(x)ND. (4.3)

(A3) ThHRre exist q empty and compact subset B of D and a finite subset {y1,...,yi}

F(zy5) +0(z,05) + My;) < ¢(z,2) +h(z) Vze V(w)n(D\B). (4.4)

Then, there ezists a solution T to problem (GEP). In addition, the following minimax in-
equality holds:

supsepinfyex{f(z,y) + (z,y) + h(y)} = infoep{f(z,2) + ¢(z,2) + h(x)}  (4.5)
Proof. We define the multivalued mapping T : X — P(D) by
T(y) :={z € D: f(z,y) + ¢(z,y) + h(y) = o(z,z) + h(z) } (4.6)

Observe that z is a solution of problem (GEP) if and only if 2 € (1, cx T'(y). So, we will
deduce that this last intersection is nonempty by proving that 7" satisfies all conditions of
Theorem 3.2.
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(i) clp T is a generalized KKM mapping. Indeed, consider a finite set {y1,...,ym} of X.
By assumption (Al) there is a finite subset {x1,...,2,,} C D such that, for any
subset {z;,,...,x;,} of {z,,...,z,} and for any point « € co{x;,,...,x;,} there are
j€{1,...,k} and a filtered family {z) : A € A} C D having = as a limit point such
that (4.1) is verified. Therefore, zx € T'(y;;) for all A € A. Since z is a limit point of
this filtered family it follows that = € clp T'(y;;) C Ulzzl clp T(y;,). Hence, clp T is
a generalized KKM mapping.

(ii) T is a transfer closed-valued mapping. In fact, consider y € X and z € D such that
x ¢ T(y). So, by assumptiom (A2) there are y’ € X and a neighbourhood U(z) of =
such that (4.3) is verified. Thus, z ¢ clp T'(y'). Our claim is valid.

(iii) There is a finite subset Ay of X such that (.4, clp T(y) is compact. In fact, we
consider the compact subset B of D and the finite subset Ay = {y1,¥2,..., 5} of
X of assumption (A3). We will prove that this Ay satisfies our assertion. First, we
show that (,c 4, clpT(y) € B. In fact, assume that there is w € [, ., clp T(y)
such that w ¢ B. Since, w € D \ B by condition (A3) there exist j € {1,2,...,1}
and a neighbourhood V(w) of w such that (4.4) s. Therefore z ¢ T(y;) for
all z € V(w)n (D \ B). Since B is a compact se follows that its complement
W = X \ B is an open set. So, V(w) N ( NW)N D. Then we get
that w ¢ clp T'(y;) which is in contradiction mption. Thus, we deduce
that ﬂyer clp T'(y) C B. Finally, we provgt intersection is a compact set.
In fact, we have that

o
() T =) )«%m () (T nD)|NB=
yE€Ap yE€Ap y€Ap

= ((clx T(y) N B))

ce, assertion is valid since a closed subset of a compact

set is also a comp/AM see [4]). Therefore, by applying Theorem 3.2 to A = X,
B =D and G ludgfthat (), x T(y) # 0. Hence, there is z € T'(y) for all
yeX T P of problem (GEP). Moreover, using (2.2) and the notions
of ipfimum a e derive inequality (4.5). The proof is complete. O

As a
problem

nsequenge of this theorem we establish an existence result for the equilibrium
e obtain the Fan’s minimax inequality.

Corollary 4.2. Let K be a nonempty closed convexr subset of a real Hausdorff topological
vector space X, and let f : K x K — (—00,+00] be a function such that f(x,x) =0 for all
x € K. Assume that the conditions below hold:

(E1) For any finite subset {y1,...,ym} C K there is a finite subset {x1,...,zn} of K such
that, for any subset {z;,,...,x;.} of {z,,...,x, } and for any point x € co{x;,, ..., 2}
there are j € {1,...,k} and a filtered family {z\ : A € A} C K having x as a limit
point such that p(2x,yi;)) > 0 for all X € A.

(E2) For every y € K, the function f(.,y) is transfer upper semicontinuous in x € K, that
is, for all x,y € K with f(x,y) < 0 there are a point y' € K and a neighbourhood
U(z) of x such that f(z,y') < 0 forallz € U(z)NK.
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(E3) There exist a nonempty compact subset B of K and a finite subset W of K such that
for each w € K\ B there are a point w € W and a neighbourhood V (u) of u such that
f(z,w) < 0 forallze V(u)n (K \ B).

Then, there exists T € K such that f(Z,y) >0 for ally € K.

Corollary 4.3. Let K be a nonempty closed convezr subset of a real Hausdorff topological
vector space X and let ¢ : K X K — (—00,400] be a function such that the conditions below
hold:

(M1) For any finite subset {y1,...,ym} C K exists a finite subset {z1,...,2m} of K such
that, for any subset {x;,,...,z;. } of {x,,...,x, } and for any point x € co{x;,,...,x; }

there are j € {1,...,k} and a filtered family {z\ : A € A} C K having x as a limit
point such that p(2x,yi;) > @(2x,2x) for all X € A.

(M2) For every z,y € K, such that p(x,y) < ¢(x,z) then there are a point y' € K and a
neighbourhood U(x) of x such that (z,y") < @(z,z)\for all z € U(z)N K.

(M3) There exist a nonempty compact subset B ofK an nite subset W of K such that
for each w € K\ B there are a point w € eig rhood V (u) of u such that
o(z,w) < @(z,2) forall z€ V(u)n(K\ B).

Then, it holds

Remark 4.4. 1. The following con
18, 27]), 0-diagonally quasico ([5, O-generalized quasiconvex ([11]). In
[29] is assumed that cly {x x,y) > 0} is a generalized KKM mapping.

d for example, in [1, 2, 22, 29]. In [5, 11, 13, 18, 27]

E3 and M3 are given in [15] and [22]. A similar
[23] for Minty variational inequalities. In [11] it is assumed

7(y) = {v € K : p(x,y) > infoer (e, )} is compact.
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