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1 Introduction

The FKKM Lemma given in [16] is extensively used to obtain fixed points theorems and
results on the existence of solutions for several problems like variational and quasivariational
inequalities, and nonlinear complementarity problems. These problems belong to a unified
framework given by the generalized equilibrium problem (GEP) considered in [21].
In this work we present a new version of the FKKM Lemma by relaxing closedness and
compactness conditions. There have been numerous generalizations of the Ky Fan property
(see for example, [7, 11, 13, 15, 22, 29, 31] and references therein). We use the new version
of the Ky Fan property to study the existence of solutions for the generalized equilibrium
problem. To illustrate the usefulness of this result, we deduce an existence theorem for the
classical equilibrium problem ([5, 6, 14, 15, 19] and references therein) and we establish the
Fan’s minimax inequality [17].
The outline of this work is as follows. In section 2 we present most of the material used
in this paper. In section 3 we derive a characterization of the finite intersection property
which extends the KKM Principle [16] and establish the generalization of the Fan KKM
Lemma. Several results given in the literature can be considered as particular cases of this
extension. In section 4 we use this version to obtain an existence result for the generalized
equilibrium problem. Finally, as a consequence of this result, we improve some theorems
of existence of solutions for the classical equilibrium problem (EP) and we also obtain the
minimax inequality under weaker conditions showing the power of the formulation (GEP).
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2 Preliminaries

In this section we recall some of the concepts we will use. The first part of this section
is devoted to the KKM theory. In the second part we present the generalized equilibrium
probem (GEP). Denote by P(C) the set of subsets of C.

2.1 KKM Theory

We begin with the well known result of Ky Fan that generalizes the classic theorem of
Knaster-Kuratowski-Mazurkiewicz given in finite dimension, called KKM Theorem. [1, 6,
7, 8, 11, 16, 29].

Lemma 2.1 ([16, Fan KKM Lemma ]). Let A be a nonempty subset of a real Hausdorff
topological vector space X and let G : A → P(X) be a multivalued mapping such that the
following conditions are satisfied:

1. G(a) is a closed subset in X for all a ∈ A;

2. G(a0) is compact for at least one a0 ∈ A;

3. the convex hull of any finte subset {a1, . . . , an} of A is contained in
⋃n

i=1 G(ai).

Then,
⋂

a∈A G(a) 6= ∅
The following notions and properties can be seen with slight differences in [1], [11] and

[31]. The next concept corresponds to condition 3 of the lemma above.

Definition 2.2. Let A be a nonempty subset of a real Hausdorff topological vector space
X. A multivalued mapping F : A → P(X) is said to be a KKM mapping if, for any finite
subset {x1, . . . , xn} ⊂ A it holds

co{xi, . . . , xn} ⊆
n⋃

i=1

F (xi)

where co{xi, . . . , xn} denotes the convex hull of the set {x1, . . . , xn}.
Next we give the classical characterization of the finite intersection property.

Lemma 2.3 ([3, KKM Principle ]). Let A be a nonempty subset in a locally convex
space E and let T : A → P(E) be a multivalued application such that:

(i) T (a) is a closed subset in E for all a ∈ A;

(ii) T is a KKM mapping.

Then, {T (a) : a ∈ A} has the finite intersection property, that is, any finite intersection of
subsets of the family is nonempty.

We consider below an extension of the concept of the KKM mapping that we will use in
our extension of the Fan KKM Lemma.

Definition 2.4. Let A and B be nonempty subsets of two real Hausdorff topological vector
spaces X and Y respectively such that B is convex. A multivalued mapping F : A → P(B)
is said to be a generalized KKM mapping if, for any finite subset {x1, . . . , xn} of A, there
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is a finite subset {y1, . . . , yn} of B such that, for any subset {yi1 , . . . , yik
} ⊆ {y1, . . . , yn} it

holds

co{yi1 , . . . , yik
} ⊆

k⋃

j=1

F (xij
).

It is easy to see that every KKM mapping is a generalized KKM mapping. In [11] there
is a counterexample to illustrate that the converse does not hold. Let us note that, if F is
a multivalued KKM mapping then it must be x ∈ F (x) for all x ∈ A. If F is a generalized
multivalued mapping then F (x) 6= ∅ for all x ∈ A.
We will also consider the folowing notion.

Definition 2.5. Let A and B be nonempty subsets of two real Hausdorff topological vector
spaces X and Y respectively. The multivalued mapping F : A → P(B) is said to be
transfer closed-valued if for every x ∈ A, y /∈ F (x), there exists an element x′ ∈ A such that
y /∈ clBF (x′), where clB denotes the closure relative to B, clB(.) = clY (.) ∩B.

The next characterization of the definition above will be useful.

Lemma 2.6 ([29]). A multivalued mapping G : A → P(B) is transfer closed-valued if, and
only if, ⋂

a∈A

G(a) =
⋂

a∈A

clBG(a) (2.1)

Let us observe that a multivalued application G : A → P(B) with closed values is transfer
closed-valued.
In proving our main results we need the following two theorems.

Theorem 2.7 ([4, VII,Theorem 6]). A topological space X is compact if and only if the
finite intersection axiom is verified, that is, if {Fi : i ∈ I} is a family of closed sets in X for
which any finite intersection is non empty, then

⋂
i∈I Fi 6= ∅.

Theorem 2.8 ([28, Theorem 1]). Let K be a nonempty compact convex subset of a
Hausdorff topological vector space X. Let F : K → P(X) be a multivalued mapping such
that:

(a) for each x ∈ K, F (x) is a nonempty convex subset of K;

(b) for each y ∈ K, the set F−1(y) = {x ∈ K : y ∈ F (x)} contains an open subset Oy of
K (that may be empty);

(c)
⋃

y∈K Oy = K.

Then, there exists a point x0 ∈ K such that x0 ∈ F (x0).

2.2 The Generalized Equilibrium Problem

We consider the following Generalized Equilibrium Problem (GEP) introduced in [21]:

(GEP)
{

Find x̄ ∈ D such that
f(x̄, y) + ϕ(x̄, y) + h(y) ≥ ϕ(x̄, x̄) + h(x̄) for all y ∈ X,

(2.2)

where X is a real Hausdorff topological vector space, D is a nonempty subset of X and
f, ϕ : X ×X → (−∞,+∞] and h : X → (−∞,+∞] are functions satisfying:
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1. f(x, x) = 0 for all x ∈ D;

2. h is a convex function;

3. dom f(x, ·) ∩ dom ϕ(x, ·) ∩ domh 6= ∅ for all x ∈ D.

Let us observe that our scheme contains other equilibrium problems given in the liter-
ature. For example, if we consider in (2.2), h = δK the indicator function of a nonempty,
convex and closed subset K of X, then we get the scheme given in [18]. If h = δK and
ϕ(x, y) = φ(y) is a real function on K, for all x ∈ X, the scheme (GEP) becomes the mixed
equilibrium problem ( [9] and reference therein) . If we take in (GEP) ϕ ≡ 0 and h = δK , we
obtain the classical equilibrium problem (see for example [5, 6, 13, 15, 19, 22] and references
therein):

(EP)
{

Find x̄ ∈ K such that
f(x̄, y) ≥ 0 for all y ∈ K,

(2.3)

We illustrate the flexibility of formulation (2.2) with the following examples. When
f ≡ 0, ϕ(x, y) = φ(y) for all x ∈ X and h = δK , (2.2) becomes a convex nonlinear pro-
gramming. Also, the generalized quasivariational inequality considered in [24] and in [25]
defined by multivalued applications A : X → P(X∗) and G : X → P(X), where X∗

is the dual of a Banach space X such that G(x) is a convex set for all x ∈ X, follows
the scheme (2.2). In fact, take Ω = X × X∗, D = {(x, ξ) ∈ Ω : x ∈ G(x), ξ ∈ A(x)},
f((x, ξ), (y, ρ)) = < ξ, y − x >, ϕ((x, ξ), (y, ρ)) = δG(x)(y) and h ≡ 0.
Finally, we note that numerical methods for solving equilibrium problems have been exten-
sively studied recently (see for example, [9, 10, 20, 26, 30] and references therein).

3 Contributions to the KKM Theory

We begin with a generalization of the KKM Principle given in [16]. We use this result
to obtain a new version of the FKKM Lemma. We relax the closedness condition and we
consider a generalized KKM mapping instead of a KKM mapping.

Theorem 3.1. Let A and B be two nonempty subsets of a real Hausdorff topological vec-
tor space X such that B is convex and let G : A → P(B) be a multivalued application.
Then, clB G : A → P(B) is a generalized KKM mapping if, and only if, the family of sets
{clB G(a) : a ∈ A} has the finite intersection property.

Proof. Assume that clB G : A → P(B) is a generalized KKM mapping. For purpose of
contradiction we suppose that there is a finite subset A = {a1, . . . , an} of A verifying

n⋂

i=1

clB G(ai) = ∅. (3.1)

Since clB G(.) is a generalized KKM multivalued mapping, there is a finite subset BA =
{b1, . . . , bn} of B such that for any subset {bi1 , . . . , bik

} of {b1, . . . , bn}, with k ∈ I :=
{1, . . . , n} it holds

co {bi1 , . . . , bik
} ⊆

k⋃

j=1

clB G(aij
). (3.2)
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From (3.1) we have that for each point b ∈ co BA there is i ∈ I such that b /∈ clB G(ai). So,
for each b ∈ co BA we consider the following nonempty set:

Ib := {i ∈ I : b /∈ clB G(ai)}. (3.3)

Let us define T : co BA → P(co BA) by

T (b) := co {bi ∈ BA : i ∈ Ib}. (3.4)

Since BA is a nonempty finite set we have that coBA is nonempty and compact. Further-
more, it is convex. We will show that T verifies all the conditions of Theorem 2.8.

(a) From (3.4) and (3.3) we obtain that T (b) is a nonempty and convex subset of coBA for
all b ∈ co BA.

(b) We claim that for each w ∈ co BA, there is a relative open subset Ow of co BA such that
Ow ⊆ T−1(w). Indeed, if T−1(w) = ∅, we take Ow = ∅. Otherwise, let v ∈ T−1(w).
We consider

Ov := co BA \
( ⋃

i∈Iv

clB G(ai)

)
(3.5)

By the definition of T (v) we have that v ∈ Ov. Furthermore, Ov is relative open in
co BA. In fact, since co BA ⊆ B we can rewrite Ov as

Ov = co BA
⋂ (

B \
( ⋃

i∈Ib

clB G(ai)

))
. (3.6)

The set B \ (⋃
i∈Ib

clB G(ai)
)

is relative open in B, that is, there is an open set V of
X such that:

B \
( ⋃

i∈Ib

clB G(ai)

)
= V

⋂
B (3.7)

Therefore, from (3.5)-(3.7) we deduce that Ov is relative open in coBA. Finally, we
define

Ow :=
⋃

v∈T−1(w)

Ov (3.8)

which is relative open in coBA. Now, we prove that Ow ⊆ T−1(w). Indeed, if z ∈ Ow

then z ∈ Ov for some v ∈ T−1(w). Hence, by (3.5) it results that z ∈ co BA and
z /∈ clB G(ai) for all i ∈ Iv. So, Iv ⊆ Iz, that is, T (v) ⊆ T (z) and together with
v ∈ T−1(w) we deduce that z ∈ T−1(w). So, it follows that Ow ⊆ T−1(w).

(c) We show that co BA =
⋃

w∈ co BA Ow. Indeed, from (3.5) and (3.8) we have that⋃
w∈ co BA Ow ⊆ co BA. On the other hand, let z ∈ co BA. So, by (a) there is

w ∈ T (z) ⊆ co BA, that is, z ∈ T−1(w). Replacing v by z in (3.5) and (3.8) we deduce
that z ∈ Oz ⊆ Ow ⊆

⋃
u∈ co BA Ou. Then, we obtain that coBA ⊆

⋃
w∈ co BA Ow.
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Hence, by Theorem 2.8 we conclude that the operator T has a fixed point b∗. Therefore,
(3.4) and (3.2) imply

b∗ ∈ T (b∗) = co {bi ∈ BA : i ∈ Ib∗} ⊆
⋃

i∈Ib∗

clB G(ai) (3.9)

Using the definition of Ib∗ it results that b∗ /∈ clB G(ai) for all i ∈ Ib∗ . Then,

b∗ /∈
⋃

i∈Ib∗

clB G(ai),

which is in contradiction with (3.9). Thus, for any finite subset A = {a1, . . . , an} of A
it holds that

⋂n
i=1 clB G(ai) 6= ∅, that is, the family {clB G(a) : a ∈ A} has the finite

intersection property.
Conversely, assume that {clB G(a) : a ∈ A} has the finite intersection property. Consider a
finite subset {a1, . . . , an} of A. Therefore,

n⋂

i=1

clB G(ai) 6= ∅. (3.10)

Hence, there exists b ∈ ⋂n
i=1 clB G(ai) ⊆ B. Take bi = b for all i = 1, 2, . . . , n. Then, for

each {bi1 , . . . , bik
} ⊆ {b1, . . . , bn}, with k ∈ I it holds that

co {bi1 , . . . , bik
} = {b} ⊆

n⋂

i=1

clB G(ai) ⊆
k⋃

j=1

clB G(aij
). (3.11)

Thus, we conclude that clB G : A → P(B) is a generalized KKM mapping. The proof is
complete.

Now we are able to give an extension of the FKKM Lemma.

Theorem 3.2. Let A and B be nonempty subsets of a real Hausdorff topological vector space
X such that B is convex. If G : A → P(B) verifies the following conditions:

(i) clB G : A → P(B) is a generalized KKM-mapping,

(ii) G is a transfer closed-valued mapping,

(iii) there exists a finite subset A0 of A such that C =
⋂

z∈A0
clB G(z) is compact,

then,
⋂

a∈A G(a) 6= ∅.
Proof. Using conditions (i) and (ii) and Theorem 3.1 it follows that {clB G(a) ∩ C : a ∈ A}
is a family of nonempty sets and it verifies the finite intersection property. Moreover, for
each a ∈ A we have that clB G(a)∩C = clX G(a)∩B ∩C = clX G(a)∩C is a closed subset
of C which is compact. Hence, by considering on C the induced topology of X and Theorem
2.7 we get that

⋂

a∈A

{
clB G(a)

⋂
C

}
6= ∅. (3.12)

On the other hand, using the definition of C and Lemma 2.6 it results that:
⋂

a∈A

{
clB G(a)

⋂
C

}
=

⋂

a∈A

clB G(a) =
⋂

a∈A

G(a). (3.13)

Thus, the conclusion follows from(3.12) and (3.13).
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Let us note that Fan’s Lemma [16] can be obtained from the property above. Fur-
thermore, the following results given in the literature are also immediate consequences of
Theorem 3.2.

Corollary 3.3 ([11, Theorem 3.2]). Let X be a nonempty convex subset of a real Haus-
dorff topological vector space E. Let F : X → P(E) be a multivalued application where F (x)
is closed for all x ∈ X and such that F (x0) is compact for at least one x0 ∈ X. Then,⋂

x∈X F (x) 6= ∅ if and only if F is a generalized KKM application.

Corollary 3.4 ([1, Theorem 2.1]). Let X be a nonempty convex subset of a Hausdorff
topological vector space E. Let F : X → P(E) be a transfer closed-valued mapping such
that clE F (x0) = K is compact for at least one x0 ∈ X and let clE F be a generalized KKM
mapping. Then,

⋂
x∈X F (x) 6= ∅.

4 Generalized Equilibrium Problems

We begin this section with an existence theorem for solutions to problem (GEP).

Theorem 4.1. Let D be a nonempty convex subset of a real Hausdorff topological vector
space X, and let f, ϕ : X ×X → (−∞,+∞] and h : X → (−∞,+∞] be functions such that
they verify all requirements of problem (GEP). Assume that the conditions below hold:

(A1) For any finite subset {y1, . . . , ym} ⊂ X there is a finite subset {x1, . . . , xm} of D such
that, for any subset {xi1 , . . . , xik

} of {x1 , . . . , xm
} and for any point x ∈ co{xi1 , . . . , xik

}
there are j ∈ {1, . . . , k} and a filtered family {zλ : λ ∈ Λ} ⊆ D having x as a limit
point such that

f(zλ, yij
) + ϕ(zλ, yij

) + h(yij
) ≥ ϕ(zλ, zλ) + h(zλ) ∀λ ∈ Λ. (4.1)

(A2) If, for some x ∈ D and y ∈ X it holds that

f(x, y) + ϕ(x, y) + h(y) < ϕ(x, x) + h(x) (4.2)

then, there are a point y′ ∈ X and a neighbourhood U(x) of x such that:

f(z, y′) + ϕ(z, y′) + h(y′) < ϕ(z, z) + h(z) ∀z ∈ U(x) ∩D. (4.3)

(A3) There exist a nonempty and compact subset B of D and a finite subset {y1, . . . , yl}
of X such that for each w ∈ D \ B there are a neighbourhood V (w) of w and j ∈
{1, 2, . . . , l} satisfying:

f(z, yj) + ϕ(z, yj) + h(yj) < ϕ(z, z) + h(z) ∀z ∈ V (w) ∩ (D \B). (4.4)

Then, there exists a solution x̄ to problem (GEP). In addition, the following minimax in-
equality holds:

supx∈Dinfy∈X{f(x, y) + ϕ(x, y) + h(y)} ≥ infx∈D{f(x, x) + ϕ(x, x) + h(x)} (4.5)

Proof. We define the multivalued mapping T : X → P(D) by

T (y) := {x ∈ D : f(x, y) + ϕ(x, y) + h(y) ≥ ϕ(x, x) + h(x) } (4.6)

Observe that x is a solution of problem (GEP) if and only if x ∈ ⋂
y∈X T (y). So, we will

deduce that this last intersection is nonempty by proving that T satisfies all conditions of
Theorem 3.2.
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(i) clD T is a generalized KKM mapping. Indeed, consider a finite set {y1, . . . , ym} of X.
By assumption (A1) there is a finite subset {x1, . . . , xm} ⊂ D such that, for any
subset {xi1 , . . . , xik

} of {x1 , . . . , xm
} and for any point x ∈ co{xi1 , . . . , xik

} there are
j ∈ {1, . . . , k} and a filtered family {zλ : λ ∈ Λ} ⊆ D having x as a limit point such
that (4.1) is verified. Therefore, zλ ∈ T (yij ) for all λ ∈ Λ. Since x is a limit point of
this filtered family it follows that x ∈ clD T (yij

) ⊆ ⋃k
s=1 clD T (yis

). Hence, clD T is
a generalized KKM mapping.

(ii) T is a transfer closed-valued mapping. In fact, consider y ∈ X and x ∈ D such that
x /∈ T (y). So, by assumptiom (A2) there are y′ ∈ X and a neighbourhood U(x) of x
such that (4.3) is verified. Thus, x /∈ clD T (y′). Our claim is valid.

(iii) There is a finite subset A0 of X such that
⋂

y∈A0
clD T (y) is compact. In fact, we

consider the compact subset B of D and the finite subset A0 = {y1, y2, . . . , yl} of
X of assumption (A3). We will prove that this A0 satisfies our assertion. First, we
show that

⋂
y∈A0

clD T (y) ⊆ B. In fact, assume that there is w ∈ ⋂
y∈A0

clD T (y)
such that w /∈ B. Since, w ∈ D \ B by condition (A3) there exist j ∈ {1, 2, . . . , l}
and a neighbourhood V (w) of w such that (4.4) holds. Therefore z /∈ T (yj) for
all z ∈ V (w) ∩ (D \ B). Since B is a compact set it follows that its complement
W = X \ B is an open set. So, V (w) ∩ (D \ B) = (V (w) ∩ W ) ∩ D. Then we get
that w /∈ clD T (yj) which is in contradiction with our assumption. Thus, we deduce
that

⋂
y∈A0

clD T (y) ⊆ B. Finally, we prove that this intersection is a compact set.
In fact, we have that

⋂

y∈A0

clD T (y) =


 ⋂

y∈A0

clD T (y)


 ∩B =


 ⋂

y∈A0

(cl T (y) ∩D)


 ∩B =

=
⋂

(clX T (y) ∩B))

which is a closed set. Hence, the assertion is valid since a closed subset of a compact
set is also a compact set (see [4]). Therefore, by applying Theorem 3.2 to A = X,
B = D and G = T we conclude that

⋂
y∈X T (y) 6= ∅. Hence, there is x̄ ∈ T (y) for all

y ∈ X. So, x̄ is a solution of problem (GEP). Moreover, using (2.2) and the notions
of infimum and supremum we derive inequality (4.5). The proof is complete.

As a consequence of this theorem we establish an existence result for the equilibrium
problem (EP) and we obtain the Fan’s minimax inequality.

Corollary 4.2. Let K be a nonempty closed convex subset of a real Hausdorff topological
vector space X, and let f : K ×K → (−∞,+∞] be a function such that f(x, x) = 0 for all
x ∈ K. Assume that the conditions below hold:

(E1) For any finite subset {y1, . . . , ym} ⊂ K there is a finite subset {x1, . . . , xm} of K such
that, for any subset {xi1 , . . . , xik

} of {x1 , . . . , xm
} and for any point x ∈ co{xi1 , . . . , xik

}
there are j ∈ {1, . . . , k} and a filtered family {zλ : λ ∈ Λ} ⊆ K having x as a limit
point such that ϕ(zλ, yij )) ≥ 0 for all λ ∈ Λ.

(E2) For every y ∈ K, the function f(., y) is transfer upper semicontinuous in x ∈ K, that
is, for all x, y ∈ K with f(x, y) < 0 there are a point y′ ∈ K and a neighbourhood
U(x) of x such that f(z, y′) < 0 for all z ∈ U(x) ∩K.
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(E3) There exist a nonempty compact subset B of K and a finite subset W of K such that
for each u ∈ K \B there are a point w ∈ W and a neighbourhood V (u) of u such that
f(z, w) < 0 for all z ∈ V (u) ∩ (K \B).

Then, there exists x̄ ∈ K such that f(x̄, y) ≥ 0 for all y ∈ K.

Corollary 4.3. Let K be a nonempty closed convex subset of a real Hausdorff topological
vector space X and let ϕ : K ×K → (−∞,+∞] be a function such that the conditions below
hold:

(M1) For any finite subset {y1, . . . , ym} ⊂ K exists a finite subset {x1, . . . , xm} of K such
that, for any subset {xi1 , . . . , xik

} of {x1 , . . . , xm} and for any point x ∈ co{xi1 , . . . , xik
}

there are j ∈ {1, . . . , k} and a filtered family {zλ : λ ∈ Λ} ⊆ K having x as a limit
point such that ϕ(zλ, yij

) ≥ ϕ(zλ, zλ) for all λ ∈ Λ.

(M2) For every x, y ∈ K, such that ϕ(x, y) < ϕ(x, x) then there are a point y′ ∈ K and a
neighbourhood U(x) of x such that ϕ(z, y′) < ϕ(z, z) for all z ∈ U(x) ∩K.

(M3) There exist a nonempty compact subset B of K and a finite subset W of K such that
for each u ∈ K \B there are a point w ∈ W and a neighbourhood V (u) of u such that
ϕ(z, w) < ϕ(z, z) for all z ∈ V (u) ∩ (K \B).

Then, it holds
supx∈K infy∈K ϕ(x, y) ≥ infx∈K ϕ(x, x).

Remark 4.4. 1. The following conditions imply (E1)or (M1): f(., y) is quasiconvex ([2,
18, 27]), 0-diagonally quasiconvex ([5, 13, 15]), 0-generalized quasiconvex ([11]). In
[29] is assumed that clX {x ∈ K : f(x, y) ≥ 0} is a generalized KKM mapping.

2. Condition E2 or M2 is considered for example, in [1, 2, 22, 29]. In [5, 11, 13, 18, 27]
is assumed that the function is semicontinuous in x which implies E2.

3. More restrictive conditions than E3 and M3 are given in [15] and [22]. A similar
condition to E3 is used in [23] for Minty variational inequalities. In [11] it is assumed
that there is y0 such that T (y) = {x ∈ K : ϕ(x, y) ≥ infx∈k ϕ(x, x)} is compact.
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