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1 Introduction

Recall (see, for example, [11]) that a collection G of subsets of a set X is called a convexity
on X if
(1) ∅, X ∈ G
(2)

⋂A ∈ G for every A ⊂ G
(3)

⋃A ∈ G whenever A ⊂ G is a chain with respect to the inclusion.
Members of G are called convex sets and the pair (X,G) is called a convexity space. For any
subset A ⊂ X its convex hull convGA is defined by convGA =

⋂{G ∈ G : A ⊂ G}.
Along with convexity spaces consider also the closure spaces ([11], p. 4). A collection

P of subsets of X is called a protopology (Moore family) on X provided that ∅, X ∈ P
and P is stable with respect to intersections, that is,

⋂A ∈ P for every A ⊂ P. If P is a
protopology on X then the pair (X,P) is called a closure space. Closure spaces go back to
Moore [6].

Note that each convexity space is also a closure space. In other words, protopology is a
more general notion than convexity. However, in practice we are usually interested in cases,
when protopology is a subset of convexity. For example, in the classical convex case it is
natural to assume that the convexity consists of all convex sets and the protopology consists
of all closed convex sets.

It is easy to see that convexities and protopologies enjoy the property: intersection of
any family of convexities (protopologies) on a set X is also a convexity (protopology) on X.

∗This paper is supported by the University of Ballarat Publication Award.
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Thus, a natural way to introduce a convexity and a protopology is the following. Let H be
a collection of subsets of a set X. We say that the convexity (protopology) G is generated
by H if G is the smallest convexity (protopology) on X, which contains H. In the case
of convexity we say also that H is a subbase for G. Note that topologies enjoy the same
property: intersection of any family of topologies on a given set X is also a topology on X.
So we can consider subbases for topologies as well.

Proposition 1.1. Let G, P and T be the convexity, the protopology and the topology on X
respectively, which are generated by H. Then

(i) P consists of the empty set, whole X and all intersections of subfamilies of H.

(ii) T consists of the empty set, whole X and all sets A ⊂ X such that for each point
x ∈ A a finite collection {H1, . . . , Hn} ⊂ H exists with x ∈ ⋂

i Hi ⊂ A.

(iii) A set A ⊂ X belongs to the convexity G if and only if for every finite subset F ⊂ A
and for every point y 6∈ A a set H ∈ H exists such that F ⊂ H and y 6∈ H.

Statements (i) and (ii) are obvious. The characterization of convex sets via elements of
a subbase stated in (iii) follows from Propositions 1.2 and 1.3 below.

For any set A let [A]<ω denote the collection of all finite subsets of A.

Proposition 1.2 ([11], p. 31, Proposition 2.1). Let (X,G) be a convexity space. Then
for every subset A ⊂ X

convGA =
⋃

F∈[A]<ω

convGF. (1.1)

Proposition 1.3 ([11], p. 10, Proposition 1.7.3). Let (X,G) be a convexity space. If H
is a subbase for the convexity G then for every finite subset F ⊂ X

convGF =
⋂
{H ∈ H : F ⊂ H}. (1.2)

In the right-hand side of (1.2) it is assumed that the intersection over the empty set is
equal to X. In other words, if F 6⊂ H for any H ∈ H then we set convGF = X.

Separation properties of convexity and closure spaces are based on separation of compli-
cated sets by sufficiently simple sets. Here we consider a strong version of separability for
disjoint sets. Let A,B, H ⊂ X. We say that H separates A from B provided that A ⊂ H
and B ⊂ X\H. We are mainly interested in separation of two sets and separation of a
set from a point in its complement. Of course, it is intended that A, B and H belong to
a convexity (protopology). It is important that the set H, which separates A from B, is
simple enough.

First, consider separation properties of convexity spaces. In the classical convex case
(see [2]) two disjoint convex sets in a real vector space can be separated by a halfspace (i.e,
a convex set with the convex complement). In particular, each convex set and each point in
its complement can be separated by a halfspace.

We can generalize the notion of halfspace in the following natural way: a subset H ⊂ X
of a convexity space (X,G) is called a halfspace provided H ∈ G and (X\H) ∈ G. There
are some results related to separation of convex sets by halfspaces. The Polytope Screening
Characterization (see Theorem 3.8 in [11]) states, in particular, that separability of arbitrary
convex sets is equivalent to separability of all polytopes (i.e., convex hulls of finite sets). This
means the following: if any two disjoint polytopes can be separated by a halfspace, then
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the same is valid for any two disjoint convex sets. Unfortunately, this general result is not
suitable for use in practice, because verification of the separability of all polytopes is not
simple. Moreover, it does not imply any description of convex sets. The situation becomes
easier if the convexity is of finite arity. Let N be a positive integer and (X,G) be a convexity
space. Then G is called N -ary (or of arity N) (see [11]) provided that a set A ⊂ X is convex if
and only if convG{a1, . . . , aN} ⊂ A for all a1, . . . , aN ∈ A. So, if the number N is not large,
there is a sufficiently simple description of convex sets. As it follows from ([5], Theorem
4.2), if the convexity is of arity N , then separability of arbitrary convex sets is equivalent
to separability of all N -polytopes (convex hulls of N -point sets). However, this result (as
well as the Polytope Screening Characterization) does not imply clear description of the
collection of all halfspaces. Thus, there are two main problems concerning separation of
convex sets by halfspaces, namely the description of convex sets and the description of the
collection of all halfspaces.

Consider an interesting example of convexity on I × IR, where I ⊂ IR is an interval.

Example 1.4. Let F be a family of continuous functions ϕ : I → IR. Assume that F is a
two-parameter family (see [1]). It means that for any two points (x1, y1), (x2, y2) ∈ I × IR
with x1 6= x2 there exists exactly one ϕ ∈ F such that ϕ(x1) = y1 and ϕ(x2) = y2. Let
ϕ(x1,y1)(x2,y2) be the function determined by (x1, y1) and (x2, y2).

For each a = (x1, y1), b = (x2, y2) ∈ I × IR define the generalized segment [a, b] ⊂ I × IR:

[a, b] = {(x, ϕ(x1,y1)(x2,y2)(x)) : min{x1, x2} ≤ x ≤ max{x1, x2}}, if x1 6= x2

and
[a, b] = {(x1, y) : min{y1, y2} ≤ y ≤ max{y1, y2}}, if x1 = x2.

Then a set A ⊂ I × IR is said to be F-convex (see [4]) if for any a, b ∈ A we have [a, b] ⊂ A.
It is easy to check that the collection of all F-convex sets is a convexity on I × IR.
Such type of generalized convex sets possesses strong separation properties. The following
result was proved in [7]. Let A,B ⊂ I × IR be disjoint F-convex sets. Then there exists an
F-convex set H which separates A from B and such that its complement (I × IR)\H is also
F-convex.

In this paper we use elements of a subbase instead of halfspaces. More precisely, for
a given collection H of subsets of a set X we introduce the convexity on X generated by
H and investigate separation of convex sets by elements of H. Unlike the separation by
halfspaces, this approach, as a rule, cannot give separability for all convex sets. Hence we
need to describe convex sets, which can be separated by elements of H. Nevertheless, the
collection H in this case, unlike the collection of all halfspaces, is initially given.

Similar problems arise for closure spaces. Here we are interested in the cases, when the
protopology is generated by a given collection of sets. Namely, we consider the case, when
the protopology and the convexity on X are generated by the same collection H. Then the
main problem is the description of elements of protopology. In other words, we need to
describe the subsets of X, which can be represented as the intersection of a subfamily of H.

Obviously, there is no solution of these problems in the general case. Hence we need to
apply a restriction on the choice of the collection H. Here, as a sort of such restriction, we
choose a special type of connectedness of a topological space with respect to a convexity on
this space. This type of connectedness was used in [10] in conditions, which guarantee that
the convexity generated by H is of arity N . The present paper is a continuation of [10] and
aims mainly at applications in abstract convex analysis.
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Recall some definitions related to abstract convexity (see, for example, [8]). Let L be a
set of functions l : Y → IR defined on a set Y . A function f : Y → IR+∞ = IR ∪ {+∞} is
called abstract convex with respect to L (shortly L-convex) if there exists a set U ⊂ L such
that f is the upper envelope of this set:

f(y) = sup{l(y) : l ∈ U} for all y ∈ Y.

The set
supp (f, L) = {l ∈ L : l(y) ≤ f(y) ∀ y ∈ Y }

of all L-minorants of f is called the support set of the function f with respect to L.
A set U ⊂ L is called abstract convex with respect to Y (or (L, Y )-convex) if l ∈ U
whenever l ∈ L and l(y) ≤ supu∈U u(y) for all y ∈ Y . The intersection of all (L, Y )-convex
sets containing a set U ⊂ L is called the abstract convex hull or (L, Y )-convex hull of the
set U . This set is denoted by coL,Y U (or shortly coLU). We have

coLU =
{

l ∈ L : l(y) ≤ sup
u∈U

u(y) ∀ y ∈ Y

}
.

It is easy to see that abstract convex analysis deals with closure spaces. Indeed, the family
of all epigraphs epi f = {(y, c) ∈ Y × IR : f(y) ≤ c} of L-convex functions f is stable
with respect to intersections. So, this family is a protopology on Y × IR generated by the
collection of all epigraphs epi l of functions l ∈ L. The family of all (L, Y )-convex sets is
also a protopology on L. It is generated by the collection of all sets H = {l ∈ L : l(y) ≤ c}
with (y, c) ∈ Y × IR.
Thus, if we know how to describe elements of protopologies, then the results can be applied
to the description of abstract convex functions and sets.

Section 2 contains main contributions of the paper. We investigate separability of a
convex set from a point in its complement, and also separability of two disjoint convex
sets. In Section 3 we describe convex hull of a finite union of convex sets. In Sections 4
and 5 we examine description of abstract convex functions and sets. An important issue
is the description of the abstract convex hull of a finite union of abstract convex sets (see
Proposition 5.4).

2 Separation Theorems

Let us consider the notion of N -connectedness of a topological space with respect to a
convexity on this space (see [10]). Let (X, T ) be a topological space and G be a convexity
on X. For any points x, y ∈ X denote by [x, y]G their convex hull convG{x, y}.
Definition 2.1. A set H ⊂ X is called 1-connected (briefly, connected) with respect to G
if, for all x, y ∈ H, the interval [x, y]G is connected in topology T . The topological space
(X, T ) is called N -connected with respect to G if X is the union of N 1-connected sets.

Remark 2.2. N -connectedness in the sense of Definition 2.1 remains valid if the topology
decreases. This means that (X, T1) is N -connected with respect to G whenever T1 ⊂ T and
(X, T ) is N -connected with respect to G.

Let H be a collection of subsets of a set X. We need the following notations:

• H′ = {X\H : H ∈ H} is the collection of all complements of sets H ∈ H;
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• Hx = {H ∈ H : x ∈ H} for every x ∈ X;

• H∗ is the collection of all sets Hx with x ∈ X;

• H∗′ = {H\Hx : x ∈ X} is the collection of all complements of sets Hx ∈ H∗;
• G is the convexity on X generated by H;

• Ḡ is the convexity on X generated by the union H ∪H′;
• Ḡ∗ is the convexity on H generated by the union H∗ ∪H∗′;
• TX is the topology on X generated by H;

• T ′X is the topology on X generated by H′;
• TH is the topology on H generated by H∗;
• T ′H is the topology on H generated by H∗′.

Consider a description of convex hulls convḠ and convḠ∗ of finite subsets of X and H
respectively (see [10]).

Proposition 2.3. Let F ∈ [X]<ω and E ∈ [H]<ω. Then

(i) The set convḠF consists of all points x ∈ X such that for every H ∈ H the following
implications hold

F ⊂ H =⇒ x ∈ H,

x ∈ H =⇒ F ∩H 6= ∅.

(ii)

convḠ∗E =

{
H ∈ H :

⋂

E∈E
E ⊂ H ⊂

⋃

E∈E
E

}
.

Let us begin with the following lemma.

Lemma 2.4. Assume that (X, T ′X) is connected with respect to Ḡ. Let x, y ∈ X and H1,H2 ∈
H.

(i) If x ∈ H1, y ∈ H2 and [x, y]Ḡ ⊂ H1 ∪H2 then [x, y]Ḡ ∩H1 ∩H2 6= ∅.
(ii) If x 6∈ H1, y 6∈ H2 and [x, y]Ḡ ∩H1 ∩H2 = ∅ then [x, y]Ḡ 6⊂ H1 ∪H2.

Proof. Let x, y ∈ X. Since (X, T ′X) is connected with respect to Ḡ then the interval [x, y]Ḡ
is connected in topology T ′X .

(i) Let H1,H2 ∈ H be such that x ∈ H1, y ∈ H2 and [x, y]Ḡ ⊂ H1 ∪H2. Since [x, y]Ḡ is
connected in T ′X and both H1 and H2 are closed in T ′X then the intersection [x, y]Ḡ∩H1∩H2

is not empty.
(ii) Let H1,H2 ∈ H be such that x 6∈ H1, y 6∈ H2 and [x, y]Ḡ ∩H1 ∩H2 = ∅. If either

x 6∈ H2 or y 6∈ H1 then [x, y]Ḡ 6⊂ H1 ∪ H2, because either x 6∈ H1 ∪ H2 or y 6∈ H1 ∪ H2.
So, assume that x ∈ H2 and y ∈ H1. Equality [x, y]Ḡ ∩ H1 ∩ H2 = ∅ implies inclusion
[x, y]Ḡ ⊂ (X\H1)∪(X\H2). Note that (X\H1) and (X\H2) are open in topology T ′X . Since
[x, y]Ḡ is connected in T ′X then the intersection [x, y]Ḡ ∩ (X\H1) ∩ (X\H2) is not empty. It
means that [x, y]Ḡ 6⊂ H1 ∪H2.
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For any G ⊂ X let co(X,H)G denote the set defined by:

co(X,H)G =
⋂
{H ∈ H : G ⊂ H}. (2.1)

If G 6⊂ H for all H ∈ H then we set co(X,H)G = X.
Due to Proposition 1.3, we have co(X,H)G = convGG whenever G ⊂ X is finite. Notice

that, in general, this equality is not valid for arbitrary subsets G ⊂ X. We only have the
inclusion convGG ⊂ co(X,H)G.

The following separation theorem gives a description of sets G ⊂ X, which can be
represented as the intersection of a subfamily of H. In other words, we describe elements of
the protopology on X generated by H.

Theorem 2.5. Assume that (H, T ′H) is connected with respect to Ḡ∗ and (X, T ′X) is connected
with respect to Ḡ. Let G ⊂ X.

1. The following conditions are equivalent:

(i) For every g ∈ X\G a set H ∈ H exists such that G ⊂ H and g 6∈ H.

(ii) G is closed in topology T ′X and convex in convexity G.

(iii) G is closed in topology T ′X and [x, y]G ⊂ G for all x, y ∈ G.

(iv) G is closed in topology T ′X and [x, y]Ḡ ⊂ G for all x, y ∈ G.

2. If [x, y]Ḡ ⊂ G for all x, y ∈ G then

co(X,H)G = cl T ′X G, (2.2)

where cl T ′X G is the closure of G in topology T ′X .

Proof. We first prove (2.2). Since each set H ∈ H is closed in topology T ′X then cl T ′X G ⊂
co(X,H)G. In order to prove the inclusion co(X,H)G ⊂ cl T ′X G we will check that g 6∈ co(X,H)G
whenever g 6∈ cl T ′X G. Note that g 6∈ co(X,H)G if and only if a set H ∈ H exists with g 6∈ H
and G ⊂ H. So let g 6∈ cl T ′X G.

Since the topology T ′X is generated by H′ = {X\H : H ∈ H} then a finite collection
{H1, . . . , Hn} ⊂ H exists such that g ∈ ⋂

i(X\Hi) ⊂ X\G. In other words, g 6∈ ⋃
i Hi and

G ⊂ ⋃
i Hi. If n = 1 then the set H1 possesses required properties: G ⊂ H1 and g 6∈ H1.

Let n > 1.
We will prove that a set H0 ∈ convḠ∗{H1,H2} exists such that G ⊂ ⋃

i≥3 Hi∪H0. Then,
by induction, there is a set H ∈ convḠ∗{H1, . . . , Hn} with G ⊂ H. Moreover, g 6∈ H because
g 6∈ ⋃

i Hi and H ⊂ ⋃
i Hi (see Proposition 2.3), hence g 6∈ co(X,H)G.

Consider two sets:

Z1 =



H ∈ H : G ⊂

⋃

i≥3

Hi ∪H ∪H2



 ,

Z2 =



H ∈ H : G ⊂

⋃

i≥3

Hi ∪H ∪H1



 .

Prove that Z1 and Z2 cover the interval [H1,H2]Ḡ∗ . Assume it is not true. Then a set
H ∈ [H1,H2]Ḡ∗ exists such that H 6∈ Z1 ∪Z2. In other words, there are two points x, y ∈ G
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with x 6∈ H1, y 6∈ H2 and x, y 6∈ ⋃
i≥3 Hi ∪ H. Since x, y 6∈ H then, by Proposition 2.3,

[x, y]Ḡ ∩H = ∅. Proposition 2.3 implies also that H1 ∩H2 ⊂ H, because H ∈ [H1,H2]Ḡ∗ .
Hence [x, y]Ḡ ∩H1∩H2 = ∅. Due to Lemma 2.4, [x, y]Ḡ 6⊂ H1∪H2. Then a point z ∈ [x, y]Ḡ
exists with z 6∈ H1 ∪H2. Since x, y 6∈ ⋃

i≥3 Hi then, by Proposition 2.3, z 6∈ ⋃
i≥3 Hi. Thus,

the point z does not belong to the union
⋃

i≥1 Hi, which contradicts the assumption that
[x, y]Ḡ ⊂ G, because z ∈ [x, y]Ḡ and G ⊂ ⋃

i≥1 Hi. Therefore we conclude that [H1,H2]Ḡ∗ ⊂
Z1 ∪ Z2.

It is easy to see that both Z1 and Z2 are closed in topology T ′H. For example, the set
Z1 can be represented as the intersection of sets {H ∈ H : x ∈ ⋃

i≥2 Hi ∪H} with x ∈ G.
Each of them is closed in T ′H, because it is either Hx (if x 6∈ ⋃

i≥2 Hi) or H (if x ∈ ⋃
i≥2 Hi).

So, we have: H1 ∈ Z1, H2 ∈ Z2, [H1,H2]Ḡ∗ ⊂ Z1 ∪ Z2. Moreover, Z1 and Z2 are closed
in T ′H. Since (H, T ′H) is connected with respect to Ḡ∗ then a set H0 ∈ [H1,H2]Ḡ∗ exists such
that H0 ∈ Z1 ∩ Z2.

At last, we need to check the inclusion G ⊂ ⋃
i≥3 Hi ∪ H0. Since H0 ∈ Z1 ∩ Z2 and

H1 ∩H2 ⊂ H0 then

G ⊂

⋃

i≥3

Hi ∪H0 ∪H2


 ⋂


⋃

i≥3

Hi ∪H0 ∪H1


 ⊂

⋃

i≥3

Hi ∪H0.

Thus, (2.2) is valid. Now prove the equivalence of (i)–(iv). Clearly condition (i) means
that G =

⋂{H ∈ H : G ⊂ H} = co(X,H)G.
(i) =⇒ (ii) Since all sets H ∈ H are closed in topology T ′X and convex in convexity G

then condition (ii) holds true.
(ii) =⇒ (iii) It is obvious because [x, y]G ⊂ G for all x, y ∈ G whenever G ∈ G.
(iii) =⇒ (iv) It is sufficient to note that [x, y]Ḡ ⊂ [x, y]G for all x, y ∈ X.
(iv) =⇒ (i) Since G is closed in topology T ′X then cl T ′X G = G. Moreover, by (2.2),

co(X,H)G = cl T ′X G because [x, y]Ḡ ⊂ G for all x, y ∈ G. Hence co(X,H)G = G.

Remark 2.6. If (H, T ′H) is connected with respect to Ḡ∗ and (X, T ′X) is connected with
respect to Ḡ then for any G ⊂ X

co(X,H)G = cl T ′X convGG. (2.3)

Indeed, equality co(X,H)convGG = cl T ′X convGG follows from (2.2) because [x, y]Ḡ ⊂ convGG
for all x, y ∈ convGG. At the same time, since for every H ∈ H inclusions G ⊂ H and
convGG ⊂ H are equivalent, then co(X,H)convGG = co(X,H)G.

The next theorem states that, under some conditions, two convex sets, one of which is
closed in T ′X and the other one is compact in T ′X , can be separated by a set H ∈ H.

Theorem 2.7. Let T be a topology on H such that {H ∈ H : K ∩H = ∅} is open in T
whenever K is compact in the topology T ′H. Assume that (H, T ) is connected with respect
to Ḡ∗ and (X, T ′X) is connected with respect to Ḡ. Let G,K ⊂ X be such that G ∩K = ∅.
Assume that [x, y]Ḡ ⊂ G ∀x, y ∈ G and [x, y]Ḡ ⊂ K ∀x, y ∈ K. If G is closed in topology
T ′X and K is compact in T ′X then a set H ∈ H exists with G ⊂ H and K ⊂ X\H.

Proof. It is easy to see that T ′H ⊂ T . Indeed, the collection H∗′ consists of sets H\Hx =
{H ∈ H : {x} ∩H = ∅}, which are open in T . Since T ′H is generated by H∗′ then T ′H ⊂ T .

So, the space (H, T ′H) is connected with respect to Ḡ∗ (see Remark 2.2). Since G and K
are disjoint then, by Theorem 2.5, for every g ∈ K a set H ∈ H exists such that G ⊂ H and



234 EVGENY SHARIKOV

g 6∈ H. Hence K ⊂ ⋃{X\H ∈ H′ : G ⊂ H}. Since K is compact in topology T ′X and all
sets X\H ∈ H′ are open in T ′X then there exists a finite collection {H1, . . . , Hn} ⊂ H such
that G ⊂ ⋂

i Hi and

K ⊂
⋃

i≥1

(X\Hi). (2.4)

Let n > 1.
We need to find a set H0 ∈ convḠ∗{H1,H2}, which satisfies inclusion

K ⊂
⋃

i≥3

(X\Hi) ∪ (X\H0). (2.5)

Due to Proposition 2.3, H1 ∩ H2 ⊂ H0 whenever H0 ∈ convḠ∗{H1,H2}, therefore G ⊂⋂
i≥3 Hi ∩H0. Then, by induction, there is a set H ∈ H with G ⊂ H and K ⊂ X\H.

Consider the following sets:

Z1 =



H ∈ H : K ⊂

⋃

i≥3

(X\Hi) ∪ (X\H) ∪ (X\H2)



 ,

Z2 =



H ∈ H : K ⊂

⋃

i≥3

(X\Hi) ∪ (X\H) ∪ (X\H1)



 .

First, prove that [H1,H2]Ḡ∗ ⊂ Z1 ∪ Z2. Assume it is not true. Let H ∈ [H1,H2]Ḡ∗ be
such that H 6∈ Z1 and H 6∈ Z2. In view of (2.4), there exist x, y ∈ K such that

x, y ∈ H, x, y ∈ Hi ∀ i ≥ 3, x ∈ H1, y ∈ H2.

Since x, y ∈ H and H ∈ [H1,H2]Ḡ∗ then [x, y]Ḡ ⊂ H ⊂ H1 ∪H2. Lemma 2.4 implies that
[x, y]Ḡ ∩H1 ∩H2 6= ∅. Let z ∈ [x, y]Ḡ be a point with z ∈ H1 ∩H2. Since x, y ∈ ⋂

i≥3 Hi

then z ∈ [x, y]Ḡ ⊂
⋂

i≥3 Hi. Hence z ∈ ⋂
i≥1 Hi =⇒ z 6∈ K, which contradicts the inclusion

z ∈ [x, y]Ḡ , because, by conditions of theorem, [x, y]Ḡ ⊂ K. Consequently, the sets Z1 and
Z2 cover the interval [H1,H2]Ḡ∗ .

Now prove that Z1 and Z2 are open in the topology T . We have

Z1 = {H ∈ H : K1 ∩H = ∅} , Z2 = {H ∈ H : K2 ∩H = ∅} ,

where

K1 =
⋂

i≥3

K ∩Hi ∩H2 and K2 =
⋂

i≥3

K ∩Hi ∩H1.

Since K is compact in the topology T ′X and all sets Hi are closed in T ′X then the sets K1

and K2 are compact in T ′X . Therefore, by conditions of theorem, both Z1 and Z2 are open
in T .

So, [H1,H2]Ḡ∗ ⊂ Z1 ∪ Z2 and Z1, Z2 ∈ T . Moreover, H1 ∈ Z1 and H2 ∈ Z2. Since
[H1,H2]Ḡ∗ is connected in T then a set H0 ∈ [H1,H2]Ḡ∗ exists such that H0 ∈ Z1 and
H0 ∈ Z2. Then the inclusion (2.5) is valid for H0, because H0 ⊂ H1 ∪ H2. The proof is
completed.
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3 Convex Hull of a Finite Union of Convex Sets

Here we give a description of the convex hull convG
⋃n

i=1 Gi and the set co(X,H)

⋃n
i=1 Gi,

where {G1, . . . , Gn} is a finite collection of convex sets. Note that the set convG
⋃n

i=1 Gi can
be described via convex hulls of unions of two convex sets, because convG

⋃n
i=1 Gi = Gn,

where G1 = G1 and Gi = convG(Gi−1 ∪Gi) for i = 2, . . . , n.
We need the following result (see [10]).

Theorem 3.1. Assume that one of the spaces (H, TH) or (H, T ′H) is connected with respect
to the convexity Ḡ∗. Let T be a topology on X such that for any F ∈ [X]<ω and Z ⊂ X

⋂

z∈Z

convG(F ∪ {z}) = convGF whenever Z has a limit point in F. (3.1)

Let F be a finite subset of X and x, y ∈ F . Assume that [x, y]Ḡ is connected in T . Then

convGF =
⋃

z∈[x,y]Ḡ

convG({z} ∪ (F\{x, y})). (3.2)

It is easy to check that the condition (3.1) is valid for the topology T = TX . However,
in this paper we are mainly interested in topologies T on X such that T ′X ⊂ T .

Proposition 3.2. Assume that one of the spaces (H, TH) or (H, T ′H) is connected with
respect to the convexity Ḡ∗. Let N ≥ 1. Assume that (X, T ) is N -connected with respect to
Ḡ, where T is a topology on X, which enjoys (3.1). Then for any G1, . . . , Gn ∈ G

convG
n⋃

i=1

Gi =
⋃

Fi∈[Gi]≤N

convG
n⋃

i=1

Fi. (3.3)

Proof. If Fi ∈ [Gi]≤N for all i then
⋃

i Fi ⊂
⋃

i Gi, hence convG
⋃

i Fi ⊂ convG
⋃

i Gi.
Now we need to check the inclusion

convG
n⋃

i=1

Gi ⊂
⋃

Fi∈[Gi]≤N

convG
n⋃

i=1

Fi.

Let a ∈ convG
⋃

i Gi. Then, by Proposition 1.2, there exists a finite subset F ⊂ ⋃
i Gi with

a ∈ convGF .
If F ∩Gi ∈ [Gi]≤N for all i ≤ n then a ∈ convG

⋃
i Fi, where Fi = F ∩Gi ∈ [Gi]≤N .

Let F ∩ Gi 6∈ [Gi]≤N for some i. In other words, F contains m different points of Gi

and m > N . Since (X, T ) is N -connected with respect to Ḡ then two points x, y ∈ F ∩Gi

exist such that the interval [x, y]Ḡ is connected in T . By Theorem 3.1, the equality (3.2) is
valid. Therefore a ∈ convG({z} ∪ (F\{x, y})) for some z ∈ [x, y]Ḡ . Since Gi is convex and
x, y ∈ Gi then z ∈ [x, y]Ḡ ⊂ [x, y]G ⊂ Gi. Hence the set {z} ∪ (F\{x, y}) contains (m − 1)
points of Gi.

By induction, there is a set Fi ∈ [Gi]≤N such that a ∈ convG(Fi∪ (F\Gi)). By repeating
this process for each i = 1, . . . , n, we will find n sets Fi ∈ [Gi]≤N with a ∈ convG

⋃n
i=1 Fi.

Remark 3.3. Recall that a convexity space (X,G) is called join-hull commutative (see [3])
provided for each subset F ⊂ X and x ∈ X the following holds

convG(F ∪ {x}) =
⋃

y∈convGF

[x, y]G .
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Assume that one of the spaces (H, TH) or (H, T ′H) is connected with respect to the convexity
Ḡ∗. Assume also that (X, T ) is connected with respect to Ḡ, where T is a topology on X,
which enjoys (3.1). Then the convexity space (X,G) is join-hull commutative. Indeed, due
to Proposition 3.2, we have for any F ⊂ X and x ∈ X

convG(F ∪ {x}) = convG(convGF ∪ convG{x})
=

⋃
{[z, y]G : y ∈ convGF, z ∈ convG{x}} =

⋃

y∈convGF

[x, y]G .

Now consider a description of the set co(X,H)

⋃n
i=1 Gi, where Gi ∈ G.

Proposition 3.4. Let T be a topology on X such that T ′X ⊂ T and (3.1) is valid for T .
Assume that (H, T ′H) is connected with respect to Ḡ∗ and (X, T ) is connected with respect to
Ḡ. Then for any G1, . . . , Gn ∈ G

co(X,H)

n⋃

i=1

Gi = cl T ′X

(
convG

n⋃

i=1

Gi

)
= cl T ′X


 ⋃

gi∈Gi

convG{g1, . . . , gn}

 . (3.4)

Proof. Since (X, T ) is connected with respect to Ḡ and T ′X ⊂ T then (X, T ′X) is connected
with respect to Ḡ as well (see Remark 2.2). It follows from (2.3) that

co(X,H)

n⋃

i=1

Gi = cl T ′X

(
convG

n⋃

i=1

Gi

)
,

and, by Proposition 3.2 (with N = 1),

convG
n⋃

i=1

Gi =
⋃

gi∈Gi

convG{g1, . . . , gn}.

4 Description of Abstract Convex Functions

Let L be a set of functions l : Y → IR defined on a set Y . Let X = Y × IR and H be the
collection of all epigraphs epi l = {(y, c) ∈ Y × IR : l(y) ≤ c} with l ∈ L.

First consider segments [(y1, c1), (y2, c2)]Ḡ and [epi l1, epi l2]Ḡ∗ for (y1, c1), (y2, c2) ∈ Y ×IR
and l1, l2 ∈ L.

It is easy to see that the set [(y1, c1), (y2, c2)]Ḡ consists of all points (y, c) ∈ Y × IR such
that for any l ∈ L the following implications hold:

max{l(y1)− c1, l(y2)− c2} ≤ 0 =⇒ l(y) ≤ c,
l(y) ≤ c =⇒ min{l(y1)− c1, l(y2)− c2} ≤ 0.

(4.1)

In particular, [(y1, c1), (y2, c2)]Ḡ contains all (y, c) such that

min{l(y1)− c1, l(y2)− c2} ≤ l(y)− c ≤ max{l(y1)− c1, l(y2)− c2} ∀ l ∈ L.

For every pair l1, l2 ∈ L we have:

[epi l1, epi l2]Ḡ∗ = {epi l : l ∈ L, min{l1(y), l2(y)} ≤ l(y) ≤ max{l1(y), l2(y)} ∀ y ∈ Y }.
(4.2)
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We begin with the description of L-convex functions on finite subsets of Y . Let Z be a
subset of Y . Recall (see [8]) that a function f : Y → IR+∞ = IR ∪ {+∞} is called L-convex
on Z if a subfamily T ⊂ L exists such that f(z) = supl∈T l(z) for all z ∈ Z. The following
proposition holds (see [10]).

Proposition 4.1. Let N ≥ 2 and T be a topology on X, which enjoys (3.1). Assume that
(H, T ′H) is connected with respect to Ḡ∗ and (X, T ) is N -connected with respect to Ḡ. Then
for any function f : Y → IR+∞ the following conditions are equivalent:

(i) For all y, y1, . . . , yN ∈ Y

f(y) ≤ sup{l(y) : l ∈ L, l(yi) ≤ f(yi) ∀ i = 1, . . . , N}. (4.3)

(ii) f is L-convex on every finite subset of Y .

Now consider the case, when (X, T ′X) is connected (one-connected) with respect to Ḡ.
This allows us to give a description of L-convex functions on the whole set Y .

Proposition 4.2. Let L be the collection of all functions `(x) = minl∈T l(x) with T ∈ [L]<ω,
where [L]<ω is the collection of all finite subsets of L. Assume that (H, T ′H) is connected with
respect to Ḡ∗ and (X, T ′X) is connected with respect to Ḡ. Then a function f : Y → IR+∞ is
L-convex if and only if it is L-convex and

f(y) ≤ sup{l(y) : l ∈ L, l(y1) ≤ f(y1), l(y2) ≤ f(y2)} ∀ y, y1, y2 ∈ Y. (4.4)

Proof. If f is L-convex then inequalities (4.4) obviously hold. Moreover, since L ⊂ L then
f is L-convex as well.

Conversely, assume that f is L-convex and enjoys (4.4). It is clear that for every ` ∈ L
its epigraph epi ` is closed in topology T ′X , because it is the union of a finite number of
epigraphs of functions l ∈ L. Since f is L-convex then the epigraph epi f is also closed
in topology T ′X . Moreover, inequalities (4.4) imply that [(y1, c1), (y2, c2)]G ⊂ epi f for any
(y1, c1), (y2, c2) ∈ epi f . Indeed, if (y1, c1), (y2, c2) ∈ epi f and (y, c) ∈ [(y1, c1), (y2, c2)]G
then

f(y) ≤ sup{l(y) : l ∈ L, l(y1) ≤ f(y1), l(y2) ≤ f(y2)}
≤ sup{l(y) : l ∈ L, l(y1) ≤ c1, l(y2) ≤ c2}
≤ sup{l(y) : l ∈ L, l(y) ≤ c} ≤ c.

Due to Theorem 2.5, for each (y, c) 6∈ epi f a set epi l ∈ H exists such that epi f ⊂ epi l and
(y, c) 6∈ epi l. This means that f is L-convex.

Next proposition shows that, in some cases, L-convexity of f can be interchanged with
the lower semicontinuity. Recall that L is said to be closed under vertical shifts if (l−c) ∈ L
for all l ∈ L and c ∈ IR.

Proposition 4.3. Assume that L is closed under vertical shifts. Let Y be equipped with
a topology such that Y is compact and all functions l ∈ L are continuous. Assume that
(H, T ′H) is connected with respect to Ḡ∗ and (X, T ′X) is connected with respect to Ḡ. Then a
function f : Y → IR+∞ is L-convex if and only if it is lower semicontinuous and possesses
(4.4).
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Proof. Since L consists of continuous functions then every L-convex function is lower semi-
continuous. Inequalities (4.4) for L-convex functions f are trivial.

Now assume that f is lower semicontinuous and possesses (4.4). Let us prove that f is
L-convex, where L is the collection of all minimums of finite subfamilies of L. Then, by
Proposition 4.2, f is L-convex.

Take an arbitrary y ∈ Y . It follows from (4.4) that

f(y) ≤ sup{l(y) : l ∈ L, l(y) ≤ f(y), l(z) ≤ f(z)} ∀ z ∈ Y,

hence
f(y) = sup{l(y) : l ∈ L, l(y) ≤ f(y), l(z) ≤ f(z)} ∀ z ∈ Y. (4.5)

Let ε > 0. If f(y) < +∞ then, by (4.5), for each z ∈ Y a function lz ∈ L exists such that
lz(z) ≤ f(z) and f(y) − ε/2 ≤ lz(y) ≤ f(y). If f(y) = +∞ then for each z ∈ Y a function
lz ∈ L exists such that lz(z) ≤ f(z) and 1/ε ≤ lz(y) ≤ f(y). Since L is closed under vertical
shifts then every function hz(x) = lz(x)− ε/2 belongs to L. We have:

hz(y) ≤ f(y)− ε/2, hz(z) ≤ f(z)− ε/2

and
f(y)− ε ≤ hz(y) if f(y) < +∞, 1/ε− ε/2 ≤ hz(y) if f(y) = +∞.

Since f is lower semicontinuous, hz is continuous and hz(z) < f(z) then for each z ∈ Y a
neighbourhood Uz of z exists such that hz(x) < f(x) for all x ∈ Uz. Due to compactness
of Y , there is a finite collection {z1, . . . , zm} ⊂ Y with Uz1 ∪ . . . ∪ Uzm = Y . Consider
the function `(x) = mini hzi(x). Then ` ∈ L and `(x) < f(x) for all x ∈ Y . Moreover,
f(y)− ε ≤ `(y) if f(y) < +∞ and 1/ε− ε/2 ≤ `(y) if f(y) = +∞.

Thus, we have proved that, for any y ∈ Y and ε > 0, a function ` ∈ supp (f,L) exists
such that f(y)− ε ≤ `(y) for f(y) < +∞ and 1/ε− ε/2 ≤ `(y) for f(y) = +∞. This means
that f is L-convex.

5 Description of Abstract Convex Sets

Let L be a set of functions defined on a set Y . Let X = L and H be the collection of all
subsets {l ∈ L : l(y) ≤ c} ⊂ X, where (y, c) ∈ Y × IR.

Then for any l1, l2 ∈ L

[l1, l2]G =
⋂
{H ∈ H : l1, l2 ∈ H}

= {l ∈ L : l(y) ≤ c whenever max{l1(y), l2(y)} ≤ c}
= {l ∈ L : l(y) ≤ max{l1(y), l2(y)} ∀ y ∈ Y }.

Similarly,

[l1, l2]Ḡ = {l ∈ L : min{l1(y), l2(y)} ≤ l(y) ≤ max{l1(y), l2(y)} ∀ y ∈ Y }.
Let (y1, c1), (y2, c2) ∈ Y × IR and Hi = {l ∈ L : l(yi) ≤ ci} (i = 1, 2). Then, by

Proposition 2.3, [H1,H2]Ḡ∗ = {H ∈ H : H1 ∩H2 ⊂ H ⊂ H1 ∪H2}. In other words, a set
H = {l ∈ L : l(y) ≤ c} belongs to [H1,H2]Ḡ∗ if and only if for each l ∈ L the following
implications hold:

max{l(y1)− c1, l(y2)− c2} ≤ 0 =⇒ l(y) ≤ c,
l(y) ≤ c =⇒ min{l(y1)− c1, l(y2)− c2} ≤ 0.
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Thus, our formulas for [l1, l2]Ḡ and [H1,H2]Ḡ∗ coincide with the corresponding formulas
for [epi l1, epi l2]Ḡ∗ and [(y1, c1), (y2, c2)]Ḡ in the case, when X = Y × IR and H = {epi l :
l ∈ L} (see (4.1) and (4.2)).

Recall that a set U ⊂ L is called (L, Y )-convex if U = coLU , where coLU = {l ∈ L :
l(y) ≤ supu∈U u(y) ∀ y ∈ Y }. Then we have coLU = co(X,H)U , where co(X,H)U is defined
by (2.1). Indeed,

co(X,H)U =
⋂
{H ∈ H : U ⊂ H}

= {l ∈ L : l(y) ≤ c whenever u(y) ≤ c ∀u ∈ U}
=

{
l ∈ L : l(y) ≤ sup

u∈U
u(y) ∀ y ∈ Y

}
= coLU.

Proposition 5.1. Assume that (H, T ′H) is connected with respect to Ḡ∗ and (X, T ′X) is
connected with respect to Ḡ. Then a set U ⊂ L is (L, Y )-convex if and only if it is closed in
the topology T ′X and

{l ∈ L : min{l1(y), l2(y)} ≤ l(y) ≤ max{l1(y), l2(y)} ∀ y ∈ Y } ⊂ U ∀ l1, l2 ∈ U. (5.1)

Proof. Let U ⊂ L = X. Theorem 2.5 states that U = co(X,H)U if and only if U is closed
in topology T ′X and [l1, l2]Ḡ ⊂ U for all l1, l2 ∈ U . Since coLU = co(X,H)U then U is
(L, Y )-convex if and only if it is closed in topology T ′X and possesses (5.1).

A set U ⊂ L is closed if and only if it contains each l ∈ L such that every neighbourhood
of l contains an element of U . Since the topology T ′X is generated by the collection of all
sets {l ∈ L : l(y) > c} with (y, c) ∈ Y × IR, then U is closed in topology T ′X if and only if
it contains all l ∈ L such that for every finite subset F ⊂ Y and for every ε > 0 a function
u ∈ U exists with u(y) > l(y)− ε ∀ y ∈ F .

Let T be the topology of pointwise convergence on L. It is clear that condition (3.1) is
valid for T . Indeed, let U be a finite subset of L and a set Z ⊂ L be such that u′ ∈ U is a
limit point of Z. Then infz∈Z z(y) ≤ u′(y) ≤ maxu∈U u(y) for all y ∈ Y , and we have

⋂

z∈Z

convG(U ∪ {z}) =
{

l ∈ L : l(y) ≤ max
{

z(y),max
u∈U

u(y)
}
∀ y ∈ Y, z ∈ Z

}

=
{

l ∈ L : l(y) ≤ max
{

inf
z∈Z

z(y),max
u∈U

u(y)
}
∀ y ∈ Y

}

=
{

l ∈ L : l(y) ≤ max
u∈U

u(y) ∀ y ∈ Y

}
= convGU.

Moreover, since every set H = {l ∈ L : l(y) ≤ c} ∈ H is closed in topology T then
T ′X ⊂ T .

Proposition 5.2. Assume that (H, T ′H) is connected with respect to Ḡ∗ and (X, T ′X) is
connected with respect to Ḡ. If L is compact in the topology of pointwise convergence then a
set U ⊂ L is (L, Y )-convex if and only if it is closed in T and

{l ∈ L : l(y) ≤ max{l1(y), l2(y)} ∀ y ∈ Y } ⊂ U ∀ l1, l2 ∈ U. (5.2)

Proof. By Theorem 2.5, U is (L, Y )-convex if and only if it is closed in topology T ′X and
[l1, l2]G ⊂ U for all l1, l2 ∈ U .
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Inclusions [l1, l2]G ⊂ U for l1, l2 ∈ U are equivalent to (5.2). If U is closed in topology
T ′X then it is closed in T as well, because T ′X ⊂ T .

Conversely, let U ⊂ L be closed in the topology of pointwise convergence and enjoy
(5.2). Assume that L is compact in T . Then U is also compact in T . We need to check
that U is closed in the topology T ′X . Let l ∈ L\U . It follows from (5.2) that for every
u ∈ U a point yu ∈ Y exists with l(yu) > u(yu). Let cu = (u(yu) + l(yu))/2. Then for each
u ∈ U the set {l′ ∈ L : l′(yu) < cu} is a neighbourhood of u (i.e. it is open in topology
T and contains u), and l(yu) > cu. Since U is compact then there is a finite collection
{(y1, c1), . . . , (yn, cn)} ⊂ Y × IR such that mini(u(yi) − ci) < 0 < mini(l(yi) − ci) for all
u ∈ U . Hence l 6∈ ⋃

i Hi and U ⊂ ⋃
i Hi, where Hi = {l′ ∈ L : l′(yi) ≤ ci} ∈ H. This means

that l does not belong to the closure cl T ′X U , because
⋃

i Hi is closed in topology T ′X . Thus,
U is closed in T ′X .

Proposition 5.3. Assume that L is closed under vertical shifts. Let Y be equipped with a
topology such that Y is compact and all functions l ∈ L are continuous on Y . Assume that
(H, T ′H) is connected with respect to Ḡ∗ and (X, T ) is connected with respect to Ḡ. Then a
set U ⊂ L is (L, Y )-convex if and only if (5.2) holds and U contains every l ∈ L such that
(l − ε) ∈ U for any ε > 0.

Proof. If U is (L, Y )-convex then (5.2) is valid. Moreover, since l(y) = supε>0(l(y)−ε) then
U contains every l ∈ L such that (l − ε) ∈ U for all ε > 0.

Conversely, assume that U ⊂ L possesses (5.2) and l ∈ U whenever (l − ε) ∈ U for all
ε > 0. Let l ∈ L be such that l(y) ≤ supu∈U u(y) for all y ∈ Y . We show that (l − ε) ∈ U
for any positive ε. Then l belongs to U as well, and therefore U is (L, Y )-convex.

So let ε > 0. Since l(y)−ε < supu∈U u(y) ∀ y ∈ Y then for each y ∈ Y a function uy ∈ U
exists with l(y)− ε < uy(y). Due to continuity of l and uy, the inequality l(z)− ε < uy(z)
holds for all z from a neighbourhood of y. Then, by compactness of Y , a finite collection
{u1, . . . , un} ⊂ U exists such that l(y)− ε < maxi ui(y) for all y ∈ Y .

Since the topology T enjoys condition (3.1) then (see [10]) the convexity G is of arity 2.
It follows from (5.2) that [l1, l2]G ⊂ U for any l1, l2 ∈ U . Hence U is convex. This implies
that convG{u1, . . . , un} ⊂ U . In other words,

{
u ∈ L : u(y) ≤ max

i
ui(y) ∀ y ∈ Y

}
⊂ U.

In particular, U contains the function h(y) = l(y)− ε.

At last, we derive a formula for the (L, Y )-convex hull of a finite union of (L, Y )-convex
sets. This is important for the description of the support set and the subdifferential of the
maximum of a finite collection of abstract convex functions. Indeed, for every L-convex
functions f1, . . . , fn we have

supp
(

max
i=1,...,n

fi, L

)
= coL

n⋃

i=1

supp (fi, L).

The subdifferential of the maximum of a finite collection of abstract convex functions have
been considered in ([9], Corollary 4.1).

Proposition 5.4. Assume that (H, T ′H) is connected with respect to Ḡ∗ and (X, T ) is con-
nected with respect to Ḡ. Then for any (L, Y )-convex sets U1, . . . , Un

coL

n⋃

i=1

Ui = cl T ′X

( ⋃

ui∈Ui

{
l ∈ L : l(y) ≤ max

i=1,...,n
ui(y) ∀ y ∈ Y

})
. (5.3)
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Proof. Since T ′X ⊂ T and condition (3.1) is valid for T then we can apply Proposition 3.4.
Let U1, . . . , Un ⊂ L be (L, Y )-convex. Then U1, . . . , Un ∈ G and, by (3.4),

coL

n⋃

i=1

Ui = co(X,H)

n⋃

i=1

Ui = cl T ′X

( ⋃

ui∈Ui

convG{u1, . . . , un}
)

= cl T ′X

( ⋃

ui∈Ui

{l ∈ L : l(y) ≤ max
i=1,...,n

ui(y) ∀ y ∈ Y }
)

.
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