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Abstract: For a given collection H of subsets of a set X we examin
We use a spec1al type of connectedness of ‘H and X for 1nvest1gat10n

e convexity on X generated by H.
paration of convex sets by elements
presented as the intersection of a
subfamlly of H. As an application, we give a description o x functions and sets. We also

describe the abstract convex hull of a finite union of abstract

Introduction

Recall (see, for example, at 2Qollection G of subsets of a set X is called a convexity
on X if
1), Xeg

g chain with respect to the inclusion.

exity spaces consider also the closure spaces ([11], p. 4). A collection
P of subsets O X is called a protopology (Moore family) on X provided that §, X € P
and P is stable with respect to intersections, that is, [.A € P for every A C P. If P is a
protopology on X then the pair (X, P) is called a closure space. Closure spaces go back to
Moore [6].

Note that each convexity space is also a closure space. In other words, protopology is a
more general notion than convexity. However, in practice we are usually interested in cases,
when protopology is a subset of convexity. For example, in the classical convex case it is
natural to assume that the convexity consists of all convex sets and the protopology consists
of all closed convex sets.

It is easy to see that convexities and protopologies enjoy the property: intersection of
any family of convexities (protopologies) on a set X is also a convexity (protopology) on X.

*This paper is supported by the University of Ballarat Publication Award.
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Thus, a natural way to introduce a convexity and a protopology is the following. Let H be
a collection of subsets of a set X. We say that the convexity (protopology) G is generated
by H if G is the smallest convexity (protopology) on X, which contains H. In the case
of convexity we say also that H is a subbase for G. Note that topologies enjoy the same
property: intersection of any family of topologies on a given set X is also a topology on X.
So we can consider subbases for topologies as well.

Proposition 1.1. Let G, P and T be the convezity, the protopology and the topology on X
respectively, which are generated by H. Then

(i) P consists of the empty set, whole X and all intersections of subfamilies of H.

(ii) T consists of the empty set, whole X and all sets A C X such that for each point
x € A a finite collection {H1,...,H,} CH exists with x € (), H; C A.

(iii) A set A C X belongs to the convexity G if and only if for every finite subset F C A
and for every point y & A a set H € H exists such that ' C H and y & H.

Statements (i) and (ii) are obvious. The characterizatiglif of convex sets via elements of
below.
ets of A.

) be a convexity space. Then

(1.1)

Proposition 1.3 ([11], p. 10, Pro tion W.7.3Y. Let (X, G) be a convezity space. If H
is a subbase for the convexity G th®\ foXevery finite subset FF C X

nv (WHeH: FcH} (1.2)

In the right-hand side ) it 4§ assumed that the intersection over the empty set is
equal to X. I othe S ¢ H for any H € H then we set convgF = X.

Separayfon Prop pf cqvexity and closure spaces are based on separation of compli-
cated setf by suffici8 impl sets. Here we consider a strong version of separability for
disjoint sfks. Let ,H C X. We say that H separates A from B provided that A C H

e are mainly interested in separation of two sets and separation of a
set from a its complement. Of course, it is intended that A, B and H belong to
a convexity (protopology). It is important that the set H, which separates A from B, is
simple enough.

First, consider separation properties of convexity spaces. In the classical convex case
(see [2]) two disjoint convex sets in a real vector space can be separated by a halfspace (i.e,
a convex set with the convex complement). In particular, each convex set and each point in
its complement can be separated by a halfspace.

We can generalize the notion of halfspace in the following natural way: a subset H C X
of a convexity space (X,G) is called a halfspace provided H € G and (X\H) € G. There
are some results related to separation of convex sets by halfspaces. The Polytope Screening
Characterization (see Theorem 3.8 in [11]) states, in particular, that separability of arbitrary
convex sets is equivalent to separability of all polytopes (i.e., convex hulls of finite sets). This
means the following: if any two disjoint polytopes can be separated by a halfspace, then
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the same is valid for any two disjoint convex sets. Unfortunately, this general result is not
suitable for use in practice, because verification of the separability of all polytopes is not
simple. Moreover, it does not imply any description of convex sets. The situation becomes
easier if the convexity is of finite arity. Let N be a positive integer and (X, G) be a convexity
space. Then G is called N-ary (or of arity V) (see [11]) provided that a set A C X is convex if
and only if convg{ai,...,an} C A for all ay,...,an € A. So, if the number N is not large,
there is a sufficiently simple description of convex sets. As it follows from ([5], Theorem
4.2), if the convexity is of arity N, then separability of arbitrary convex sets is equivalent
to separability of all N-polytopes (convex hulls of N-point sets). However, this result (as
well as the Polytope Screening Characterization) does not imply clear description of the
collection of all halfspaces. Thus, there are two main problems concerning separation of
convex sets by halfspaces, namely the description of convex sets and the description of the
collection of all halfspaces.
Consider an interesting example of convexity on I x IR, where I C IR is an interval.

Example 1.4. Let F be a family of continuous functions ¢ : I — IR. Assume that F is a
two-parameter family (see [1]). It means that for any two points (z1, 1), (z2,y2) € I X IR
with x1 # xo there exists exactly one ¢ € F such that 1) = y1 and p(z2) = yo. Let
©O(z1,51)(w2,y2) D€ the function determined by (z1, and (
For each a = (z1,¥1),b = (22,92) € I x IR defin®gh

iked segment [a,b] C I x R:

[a,b] = {(z, 0(a1,y1)(@2,y0) () : min{z1, 2o a®x1,Ta}}, if x1 # a9

o
and
[a7b] = {(xlay) : min{ylay = 7:(/2}}’ if Tl = T2
Then a set A C I x IR is said to be vex if for any a,b € A we have [a,b] C A.
It is easy to check that the collectiBN oM@l F-convex sets is a convexity on I x IR.
Such type of generalized conv s\pos¥esses strong separation properties. The following
result was proved in [7]. Lg x IR be disjoint F-convex sets. Then there exists an

collection H in this case, unlike the collection of all halfspaces, is initially given.

Similar problems arise for closure spaces. Here we are interested in the cases, when the
protopology is generated by a given collection of sets. Namely, we consider the case, when
the protopology and the convexity on X are generated by the same collection H. Then the
main problem is the description of elements of protopology. In other words, we need to
describe the subsets of X, which can be represented as the intersection of a subfamily of H.

Obviously, there is no solution of these problems in the general case. Hence we need to
apply a restriction on the choice of the collection H. Here, as a sort of such restriction, we
choose a special type of connectedness of a topological space with respect to a convexity on
this space. This type of connectedness was used in [10] in conditions, which guarantee that
the convexity generated by H is of arity N. The present paper is a continuation of [10] and
aims mainly at applications in abstract convex analysis.
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Recall some definitions related to abstract convexity (see, for example, [8]). Let L be a
set of functions [ : Y — IR defined on a set Y. A function f: Y — Rio = RU {+00} is
called abstract convex with respect to L (shortly L-convex) if there exists a set U C L such
that f is the upper envelope of this set:

fly)=sup{l(y): €U} foralyeyY.

The set
supp (f, L) ={le€ L: l(y) < f(y) VyeY}

of all L-minorants of f is called the support set of the function f with respect to L.

A set U C L is called abstract convex with respect to Y (or (L,Y)-convex) if [ € U
whenever | € L and l(y) < sup,c;y u(y) for all y € Y. The intersection of all (L,Y")-convex
sets containing a set U C L is called the abstract convex hull or (L, Y )-convex hull of the
set U. This set is denoted by coy, yU (or shortly cor,U). We have

coLU = {l eL: l(y) <supu(y) Yy € Y}.
uelU

It is easy to see that abstract convex analysis deaJ@with clofre spaces. Indeed, the family
of all epigraphs epi f = {(y,¢) € Y xR : f(y nvex functions f is stable
with respect to intersections. So, this family is a pr v on Y x IR generated by the

also a protopology on L. It is generated {gy thg tioWof all sets H ={l € L: l(y) <c}
with (y,¢) € Y x R.
Thus, if we know how to describe elemegts . W
to the description of abstract convex ctio ndgseS.
Section 2 contains main contriguitNhis of the paper. We investigate separability of a
convex set from a point in itsgcomplerqent, and also separability of two disjoint convex
sets. In Section 3 we describe ¢ hull of a finite union of convex sets. In Sections 4
and 5 we examine descriptf ract convex functions and sets. An important issue
is the description of the
Proposition 5.4).

convexity pace (see [10]). Let (X,7) be a topological space and G be a convexity
on X. For any points z,y € X denote by [z, y]g their convex hull convg{z,y}.

Definition 2.1. A set H C X is called 1-connected (briefly, connected) with respect to G
if, for all z,y € H, the interval [z, y]g is connected in topology 7. The topological space
(X, T) is called N-connected with respect to G if X is the union of N 1-connected sets.

Remark 2.2. N-connectedness in the sense of Definition 2.1 remains valid if the topology
decreases. This means that (X, 7;7) is N-connected with respect to G whenever 7; C 7 and
(X,T) is N-connected with respect to G.

Let H be a collection of subsets of a set X. We need the following notations:

e H'={X\H: H € H} is the collection of all complements of sets H € H;
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e Hyo={He€H: zec H} for every z € X;

e H* is the collection of all sets H, with x € X;

o H*' = {H\H,: x € X} is the collection of all complements of sets H, € H*;
e G is the convexity on X generated by H;

e G is the convexity on X generated by the union H U H/;

e G* is the convexity on H generated by the union H* U H*';

e 7Tx is the topology on X generated by H;

e T is the topology on X generated by H';

e 73 is the topology on ‘H generated by H*;

e T}, is the topology on ‘H generated by H*'.

Consider a description of convex hulls convg and convg. of finite subsets of X and H
respectively (see [10]).

Proposition 2.3. Let F € [X|<% and £ € [H]|<%.gThen

(i) The set convgF' consists of all points x € X s t or every H € H the following
implications hold

FcH® €H,

T € ﬁ £ ().
(ii)

conv = H: ﬂECHC UE}
EcE EcE
Let us begin with thé X @ g lethma.

+) is connected with respect to G. Letx,y € X and Hy, Hy €

Proof. Let z,y € X. Since (X, T%) is connected with respect to G then the interval [z,y]g
is connected in topology 7.

(i) Let Hy, Hy € H be such that x € Hy, y € Hy and [z,y]g C Hy U Hy. Since [z,y]g is
connected in 7y, and both H; and Hy are closed in 7y then the intersection [z, y]g N H1 N H;
is not empty.

(ii) Let Hy, Hy € H be such that « ¢ Hq, y ¢ Hy and [z,y]g N Hy N Hy = (. If either
x & Hy or y ¢ Hy then [z,ylg ¢ Hi U Ha, because either x ¢ Hy U Hy or y ¢ Hy U Hs.
So, assume that € Hy and y € H;. Equality [z,y]g N Hy N Hy = () implies inclusion
[z,y]lg C (X\H1)U(X\Hz). Note that (X\H;) and (X\Hz) are open in topology 7. Since
[x,y]g is connected in Ty then the intersection [z,y]g N (X\H1) N (X\Hz) is not empty. It
means that [z,y]lg ¢ H U Hs. O
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For any G C X let co(x )G denote the set defined by:
coxG=(|{HeH: GCH}. (2.1)

If G ¢ H for all H € 'H then we set cox, )G = X.

Due to Proposition 1.3, we have co(x )G = convgG whenever G C X is finite. Notice
that, in general, this equality is not valid for arbitrary subsets G C X. We only have the
inclusion convgG C co(x 1)G.

The following separation theorem gives a description of sets G C X, which can be
represented as the intersection of a subfamily of H. In other words, we describe elements of
the protopology on X generated by H.

Theorem 2.5. Assume that (H,T},) is connected with respect to G* and (X, T ) is connected
with respect to G. Let G C X.

1. The following conditions are equivalent:

(i) For every g € X\G a set H € H exists such th CHandg¢ H.
(ii) G is closed in topology Ty and convergn conve g.

(i) G is closed in topology Ty, and [x,y]g a yeGq.

(iv) G is closed in topology T and [z,y] ol x,y € G.

2. If [x,ylg C G for all x,y € G then

topology T .

Proof. We first prove (2.2).

h set H € 'H is closed in topology 7% then cl 7,G C
co(x,n)G. In order to proyg

n co(x,1)G C cl 7, G we will check that g ¢ co(x )G

whenever g € cl7; G. Néb W9 & px )G if and only if a set H € H exists with g ¢ H
and G C H. So let g og

Since t 3 isQenerated by H' = {X\H : H € H} then a finite collection
{Hy,.. at g € (),(X\H;) C X\G. In other words, g ¢ |J; H; and
G c Y, én thé set Hy possesses required properties: G C Hy and g € H;.
Let n >

We wi at a set Hy € convg.{H;, Ha} exists such that G C |J;~4 H;UHy. Then,

by induction, there is a set H € convg.{H,..., H,} with G C H. Moreover, g ¢ H because
g ¢ U, H; and H C |J; H; (see Proposition 2.3), hence g ¢ co(x 1)G.
Consider two sets:

Z, = {HeH: GCUHiUHUHQ ,
i>3
Zy = {HEH: GCUHiUHUHl

i>3

Prove that Z; and Z5 cover the interval [Hl,Hg]gu. Assume it is not true. Then a set
H € [Hy, Hyg- exists such that H ¢ Z; U Z,. In other words, there are two points z,y € G
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with ¢ & Hy, y ¢ Hy and z,y & |J,~5 H; U H. Since z,y ¢ H then, by Proposition 2.3,
[z,y]g N H = (0. Proposition 2.3 implies also that Hy N Hy C H, because H € [Hy, H|g..
Hence [z,y]g N Hy N Hy = (). Due to Lemma 2.4, [z,y]g ¢ Hy UH,. Then a point z € [z,y]g
exists with z ¢ H; U Hy. Since x,y & J;~5 H; then, by Proposition 2.3, z ¢ J;~4 H;. Thus,
the point z does not belong to the union | J;~; H;, which contradicts the assumption that
[z,y]g C G, because z € [x,y]g and G C |J;», H;. Therefore we conclude that [Hy, Ha|g- C
Zy U Z. B

It is easy to see that both Z; and Z, are closed in topology 7},. For example, the set
Zy can be represented as the intersection of sets {H € H: z € J;», H; UH} with z € G.
Each of them is closed in 7}, because it is either H, (if ¢ & (J,~o Hi) or H (if z € ;54 H;).

So, we have: Hy € Z1, Hy € Zy, [Hy,Hs|g- C Z1 U Zs. Moreover, Z; and Z, are closed
in 7,. Since (H,T},) is connected with respect to G* then a set Hy € [Hy, Hp]g- exists such
that Hy € Z1 N Zs.

At last, we need to check the inclusion G' C |J;~4 H; U Hy. Since Hy € Z; N Z and
Hi N Hy C Hy then

Ge||JHuvHUH || |JHUuHUN| c | H U H,.

>3 >3 >3

Thus, (2.2) is valid. Now prove the equivalence
that G = ({H € H: G C H} = cox3)G.

(i) = (ii) Since all sets H € H areelose opoRgy 7% and convex in convexity G
then condition (ii) holds true.

(ii) = (iii) It is obvious because [z

(iii) = (iv) It is sufficient to not,

(iv) = (i) Since G is closed g
co(x,n)G = cl 7, G because [z,

learly condition (i) means

,y € G whenever G € G.

ylg for all x,y € X.

ology? 73 then cl7;G = G. Moreover, by (2.2),
all z,y € G. Hence cox )G = G. O

Remark 2.6. If (H, 7)) i
respect to G then for an

with respect to G* and (X,7%) is connected with

co(x,1)G = cl g convgG. (2.3)
Indeed, e nvg @ = cl 7, convgG follows from (2.2) because [z,y]g C convgG
for all x, . At the same time, since for every H € H inclusions G C H and

ivalent, then co(x 1convgG = co(x 1)G.

The next theorem states that, under some conditions, two convex sets, one of which is
closed in 73 and the other one is compact in 73, can be separated by a set H € H.

Theorem 2.7. Let T be a topology on H such that {H € H: KNH =0} is open in T
whenever K is compact in the topology T},. Assume that (H,T) is connected with respect
to G* and (X, T%) is connected with respect to G. Let G, K C X be such that GNK = {.
Assume that [z,ylg C G Va,y € G and [x,y]lg C K Va,y € K. If G is closed in topology
Ty and K is compact in Ty then a set H € H exists with G C H and K C X\H.

Proof. 1t is easy to see that 7/, C 7. Indeed, the collection H*' consists of sets H\H, =
{H € H: {z}NH = (0}, which are open in 7. Since 7, is generated by H*' then 7}, C 7.

So, the space (H, 7},) is connected with respect to G* (see Remark 2.2). Since G and K
are disjoint then, by Theorem 2.5, for every g € K a set H € H exists such that G C H and
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g ¢ H. Hence K C |J{X\H € H': G C H}. Since K is compact in topology Ty and all
sets X\H € H’ are open in 73 then there exists a finite collection {Hy,..., H,} C H such
that G C (), H; and

K C | J(X\H;). (2.4)

i>1

Let n > 1.
We need to find a set Hy € convg. {H;, Ho}, which satisfies inclusion

K c | J(X\H;) U (X\H). (2.5)

i>3

Due to Proposition 2.3, H; N Hy C Hy whenever Hy € convg.{H;, H>}, therefore G C
Ni>3 Hi N Hy. Then, by induction, there is a set H € H with G C H and K C X\H.
Consider the following sets:

Zy = SHeM: Kc|JX\H U(X\Hs) ¢,

Zy

I
=
m
X
=
N

-
>

First, prove that [Hy, Ha]g. C Z1 U ﬁ not true. Let H € [Hy, Hs|g be
such that H ¢ Z; and H € Zs. In vi W”exist z,y € K such that
x,y € H, Vi>3, z€Hi, yé&EH.

Since z,y € H and H € {
[:c,y]gﬂHlﬂHg;é[b s

then z € [z,y] .
z € [xay]ga \
Z5 cover i

Now nd Zs are open in the topology 7. We have

en [z,ylg C H C Hy U Hy. Lemma 2.4 implies that
be a point with z € Hy N Hy. Since z,y € (53 H;
N;>1 Hi = 2 ¢ K, which contradicts the inclusion
jons of theorem, [z,y]s C K. Consequently, the sets Z; and

HGH:KlﬁH:@}, ZQZ{HEHZKQQH:@},

where
KlzﬂKmHmHz and KQ:ﬂKﬁHiﬂHl.

i>3 i>3

Since K is compact in the topology 7% and all sets H; are closed in 7y then the sets K
and K are compact in 7% . Therefore, by conditions of theorem, both Z; and Z; are open
in7T.

So, [Hy,Hslg- C Z1 U Zy and Zy,Z3 € T. Moreover, Hy € Z; and Hy € Z,. Since
[H1, Hy)g- is connected in 7 then a set Hy € [Hy, H]g- exists such that Hy € Z; and
Hy € Z5. Then the inclusion (2.5) is valid for Hy, because Hy C H; U Hy. The proof is
completed. O
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Convex Hull of a Finite Union of Convex Sets

Here we give a description of the convex hull convg [J;_; G; and the set cox 1) U;_; Gi,
where {G1,...,G,} is a finite collection of convex sets. Note that the set convg |, G; can
be described via convex hulls of unions of two convex sets, because convg Ji; G; = G",
where G! = G and G* = convg (G 1 UG;) fori =2,...,n.

We need the following result (see [10]).

Theorem 3.1. Assume that one of the spaces (H,Ty) or (H,T;,) is connected with respect
to the convexity G*. Let T be a topology on X such that for any F € [X]<¥ and Z C X
ﬂ convg(F U{z}) = convgF'  whenever Z has a limit point in F. (3.1)
z€Z
Let F' be a finite subset of X and x,y € F. Assume that [x,y]g is connected in T. Then
convgF = | ] convg({z} U (F\{z,y})). (3.2)
z€[z,ylg

It is easy to check that the condition (3.1) is valid for topology 7 = 7x. However,
in this paper we are mainly interested in topologi ch that 7§ C 7.

Proposition 3.2. Assume that one of the space or (H,T},) is connected with

Proof. If F; € [G]=Y for all i
Now we need to check theal

i C U convg 0 F;.

FiE[Gi]SN i=1

Let a € ¢ roposition 1.2, there exists a finite subset F' C |J; G; with
a € conv
If F . € [GiJFY for all i <n then a € convg U; Fi, where F; = FNG,; € [Gi]=N.
Let F G;]=" for some i. In other words, F contains m different points of G;

and m > N. Since (X,7) is N-connected with respect to G then two points x,y € F NG,
exist such that the interval [z, y]s is connected in 7. By Theorem 3.1, the equality (3.2) is
valid. Therefore a € convg({z} U (F\{z,y})) for some z € [z,y]s. Since G; is convex and
x,y € G; then z € [z,y]g C [x,y]g C G;. Hence the set {2z} U (F\{x,y}) contains (m — 1)
points of Gj.

By induction, there is a set F; € [G;]=" such that a € convg(F;U(F\G;)). By repeating
this process for each i = 1,...,n, we will find n sets F; € [G;]=" with a € convg ], F;. O

Remark 3.3. Recall that a convexity space (X, G) is called join-hull commutative (see [3])
provided for each subset F' C X and z € X the following holds

convg(F U{z}) = U [z, y]g-

yECONVGF
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Assume that one of the spaces (H, Ty) or (H, T},) is connected with respect to the convexity
G*. Assume also that (X,7) is connected with respect to G, where 7 is a topology on X,
which enjoys (3.1). Then the convexity space (X, G) is join-hull commutative. Indeed, due
to Proposition 3.2, we have for any FF C X and x € X

convg(FU{z}) = convg(convgF Uconvg{z})
= U{[z,y]g : y € convgF, z € convg{z}} = U [z,9]g.

yECONVGF

Now consider a description of the set co(x 3 U?zl G;, where G; € G.

Proposition 3.4. Let T be a topology on X such that Ty C T and (3.1) is valid for T.
Assume that (H,T},) is connected with respect to G* and (X,T) is connected with respect to

G. Then for any G1,...,G, € G

CO(X,H) U G =clg, <C0an U Gi> =clgy U convg{gi,...,gn} | - (3.4)

i=1 i=1 9:€G

T then (X, 7y) is connected
that

Proof. Since (X, T) is connected with respect to
with respect to G as well (see Remark 2.2). It follo

and 7y

coxny | Gi = el

s

U convg{gi,--.,gn}

i €Gi

and, by Proposition 3.2 (with N = 1),

onvex Functions

¥ — IR defined on a set Y. Let X =Y x IR and H be the

S epil'={(y,c) €Y xIR: Il(y) <c} withl e L.

First [(y1,¢1), (Y2, c2)]g and [epily, epils]g« for (y1,c1), (y2,c2) € Y XIR

and ll, lg
It is easy vO see that the set [(y1,c1), (y2,c2)]g consists of all points (y,c) € Y x R such

that for any [ € L the following implications hold:

max{l(yl) - cl?l(yQ) - 02} <0 = l(y) <cg (4 1)
l(y) <c - mln{l(yl) — Cl,l(yg) — CQ} <0. )

In particular, [(y1,c1), (Y2, c2)]g contains all (y,c) such that
min{l(y1) — c1,1(y2) — c2} < U(y) — ¢ <max{i(y1) — c1,U(y2) — 2} VIE L.

For every pair l1,ls € L we have:

lepily, epila]g- = {epil: I € L, min{li(y),l2(y)} < (y) < max{li(y),l2(y)} Yy € Y(}- :
4.2



SEPARATION PROPERTIES 237

We begin with the description of L-convex functions on finite subsets of Y. Let Z be a
subset of Y. Recall (see [8]) that a function f:Y — Ris = RU {400} is called L-convex
on Z if a subfamily T' C L exists such that f(z) = sup,c{(z) for all z € Z. The following
proposition holds (see [10]).

Proposition 4.1. Let N > 2 and T be a topology on X, which enjoys (3.1). Assume that
(H,T,) is connected with respect to G* and (X, T) is N-connected with respect to G. Then
for any function f:Y — IRy the following conditions are equivalent:

(i) For ally,y1,...,yn €Y
fy) <sup{l(y) : LeL, ly) < fly:;) Vi=1,...,N}. (4.3)
(ii) f is L-convex on every finite subset of Y.
Now consider the case, when (X,7%) is connected (one-connected) with respect to G.

This allows us to give a description of L-convex functions gn the whole set Y.

Proposition 4.2. Let L be the collection of all fungions ¢(x
where [L]<% is the collection of all finite subsets o
respect to G* and (X, T%) is connected with respect
L-convez if and only if it is L-convex and

minger I(z) with T € [L]<,
eQdt (H, T,) is connected with
n a function f:Y — Ry is

fw) <supli(y): Le L, 1) < M) Qe <o)} VounmeY.  (44)

Proof. If f is L-convex then inequalitjef® 4.2 qbv hold. Moreover, since L C L then
f is L-convex as well.
Conversely, assume that f is L=

nk and enjoys (4.4). It is clear that for every £ € £
its epigraph epi/ is closed in loby P%, because it is the union of a finite number of
epigraphs of functions [ € is L-convex then the epigraph epi f is also closed
in topology T3. Moreovg Mualitigs (4.4) imply that [(y1,c¢1), (y2,c2)]g C epi f for any

(y17cl)7(y2762) S epl 1701)7(?/2,02) S eplf and (y7c) S [(y17cl)ﬂ(y2762)]g
then

)i Le L, lyi) < f(y1), Uy2) < fly2)}
< sup{l(y): L€ L, l(y1) <c1, Uy2) < 2}
< sup{l(y): 1€L, l(y) <c}<ec.

Due to Theorem 2.5, for each (y,c) € epi f a set epil € H exists such that epi f C epil and
(y,c) € epil. This means that f is L-convex. O

Next proposition shows that, in some cases, L£-convexity of f can be interchanged with
the lower semicontinuity. Recall that L is said to be closed under vertical shifts if (I —¢) € L
foralll € L and c € R.

Proposition 4.3. Assume that L is closed under vertical shifts. Let Y be equipped with
a topology such that Y is compact and all functions | € L are continuous. Assume that
(H,T},) is connected with respect to G* and (X, T5;) is connected with respect to G. Then a
function f:Y — Rieo @s L-convez if and only if it is lower semicontinuous and possesses

(4-4)-
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Proof. Since L consists of continuous functions then every L-convex function is lower semi-
continuous. Inequalities (4.4) for L-convex functions f are trivial.

Now assume that f is lower semicontinuous and possesses (4.4). Let us prove that f is
L-convex, where L is the collection of all minimums of finite subfamilies of L. Then, by
Proposition 4.2, f is L-convex.

Take an arbitrary y € Y. It follows from (4.4) that

fly) <sup{l(y): 1e€L, l(y) < fly), l(z) < f(z)} VzeY,
hence
fly)=sup{i(y): 1L, l(y) < f(y), l(z) < f(2)} VzeY. (4.5)

Let ¢ > 0. If f(y) < 400 then, by (4.5), for each z € Y a function [, € L exists such that
1.(2) < f(z) and f(y) —e/2 <l.(y) < f(y). If f(y) = +oo then for each z € Y a function
I, € L exists such that [,(z) < f(z) and 1/e < 1.(y) < f(y). Since L is closed under vertical
shifts then every function h,(z) = I,(z) — /2 belongs to L. We have:

h.(y) < fly) —¢e/2, h.(z) < f(z) —€/2

and

fly) —e <h(y) if fly) <+oo, 1/ if f(y) = +oo.

Since f is lower semicontinuous, h, is continuous an < f(2) then for each z € Y a
neighbourhood U, of z exists such that h,(z)
of Y, there is a finite collection {z1,.. @zm} U,U...UU, =Y. Consider
the function ¢(x) = min; h,,(z). Then £ < f(z) for all x € Y. Moreover,
fly) —e <{(y) if f(y) < o0 and 1/ - ) = +o0.

0, a function ¢ € supp (f, L) exists
such that f(y) —e < {(y) for f(y) and I'/e —e/2 < {(y) for f(y) = 4+oo. This means

that f is L-convex.

Description of 4

Let L be a se} of
subsets {I
Then

= ({HeH: L,l,cH}
= {leL: l(y) <cwhenever max{li(y),l2(y)} < c}
= {lel: l(y) <max{li(y),l2(y)} Yy Y}

Similarly,

l,le)g ={l € L: min{l1(y),l2(y)} < (y) < max{l1(y),l2(y)} VyeY}.

Let (y1,¢1),(y2,¢2) € Y xR and H; = {l € L : l(y;) < ¢;} (i = 1,2). Then, by
Proposition 2.3, [Hy, Holg» = {H € H: HyNHy C H C H; UH,}. In other words, a set
H={leL: I(y) <c} belongs to [H, Ha]g- if and only if for each I € L the following
implications hold:

max{l(y1) —c1,l(y2) —c2} <0 = ly) <ec,
ly)<e = min{i(y1) — c1,l(y2) — c2} <0.
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Thus, our formulas for [I1,l2]g and [Hi, Ha]g- coincide with the corresponding formulas
for [epily,epils]g- and [(y1,c1), (y2,c2)]g in the case, when X =Y x R and H = {epil :
l e L} (see (4.1) and (4.2)).

Recall that a set U C L is called (L,Y)-convex if U = corU, where cofU = {l € L :
I(y) < sup,epu(y) Yy € Y} Then we have coLU = co(x 1)U, where cox 1)U is defined
by (2.1). Indeed,

cox,U = ﬂ{HEH: UcCH}
{le L: l(y) <c whenever u(y) <c¢ VueU}

{l eL: l(y) <supu(y) Vy € Y} = corU.
uclU

Proposition 5.1. Assume that (H,T};) is connected with respect to G* and (X, T) is
connected with respect to G. Then a set U C L is (L,Y)-convez if and only if it is closed in
the topology T and

{le L: min{li(y),l2(y)} <Uy) <max{l1(y),l2(y)} VRg Y} CU Vi,loeU. (51)

Proof. Let U C L = X. Theorem 2.5 states tha
in topology 7x and [l1,ls]g C U for all 11,1y €
(L,Y)-convex if and only if it is closed in topolog

if and only if U is closed
U = co(x,n)U then U is
ossesses (5.1). O

L such that every neighbourhood
} generated by the collection of all

A set U C L is closed if and only if it @nta: %
of [ contains an element of U. Since the o[
sets {{ € L: Il(y) > ¢} with (y,¢) € Y %n @ osed in topology 7% if and only if
it contains all [ € L such that for evﬁte bs@F C Y and for every € > 0 a function

u € U exists with u(y) > I(y) — ¢

Let 7 be the topology of pgh
valid for 7. Indeed, let U b
limit point of Z. Then i

twike cavergence on L. It is clear that condition (3.1) is
subset of L and a set Z C L be such that v’ € U is a
"(y) < max,ep u(y) for all y € Y, and we have

ﬂ conv XU U

W : l(y)émax{z(y),maxu(y)} Vy ey, ZGZ}

uelU

: 1(y) < max {;ggZ(y)JgeagU(y)} Yy € Y}

{l eL: I(y) < ma[}(u(y) Vy e Y} = convgU.
ue

Moreover, since every set H = {l € L : I(y) < ¢} € H is closed in topology 7 then
Ty CT.

Proposition 5.2. Assume that (H,T},) is connected with respect to G* and (X, Ty) is
connected with respect to G. If L is compact in the topology of pointwise convergence then a
set U C L is (L,Y)-convex if and only if it is closed in T and

{teL: I(y) <max{li(y),l2(y)} VyeY}CcU Vi,lyeUl. (5.2)

Proof. By Theorem 2.5, U is (L,Y)-convex if and only if it is closed in topology 74 and
[ll,lg]g c U for all l1,1, € U.
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Inclusions [l1,l2]g C U for ly,ly € U are equivalent to (5.2). If U is closed in topology
Ty then it is closed in 7 as well, because Ty C 7.

Conversely, let U C L be closed in the topology of pointwise convergence and enjoy
(5.2). Assume that L is compact in 7. Then U is also compact in 7. We need to check
that U is closed in the topology Ty. Let I € L\U. It follows from (5.2) that for every
u € U a point y, € Y exists with I(y,) > u(yy). Let ¢, = (u(yy) + 1(yy))/2. Then for each
w € U theset {I" € L: U'(y,) < ¢y} is a neighbourhood of w (i.e. it is open in topology
7 and contains u), and [(y,) > ¢,. Since U is compact then there is a finite collection
{(y1,¢1),--+y WUn,cn)} C Y x IR such that min;(u(y;) — ¢;) < 0 < min;(I(y;) — ¢;) for all
uweU. Hencel ¢ |J, H; and U C |J, H;, where H; = {l' € L : '(y;) < ¢;} € H. This means
that [ does not belong to the closure cl 7, U, because \J; Hi is closed in topology Ty . Thus,
U is closed in T%. O

Proposition 5.3. Assume that L is closed under vertical shifts. Let Y be equipped with a
topology such that'Y is compact and all functions | € L are continuous on Y. Assume that
(H,T},) is connected with respect to G* and (X,T) is connected with respect to G. Then a
set U C L is (L,Y)-convex if and only if (5.2) holds and U contains every l € L such that
(l—¢) €U for any e > 0.
Proof. It U is (L, Y )-convex then (5.2) is valid. M
U contains every | € L such that (I —¢) € U for all
Conversely, assume that U C L possesses (5.2)
€ > 0. Let [ € L be such that I(y) < sup,cy u(9@
for any positive e. Then [ belongs to U ag wel
So let € > 0. Since I(y) —¢ < sup, ¢y u g for each y € Y a function u, € U
uy, the inequality [(2) — e < uy(2)

exists with I(y) — e < uy(y). Due to coggin®gty o @
holds for all z from a neighbourhoo&. n, @#lompactness of Y, a finite collection
)

the®fore U is (L, Y)-convex.

{u1,...,u,} C U exists such that s < max; u;(y) for ally € Y.

Since the topology 7 enjoysgcond§tioqy(3.1) then (see [10]) the convexity G is of arity 2.
It follows from (5.2) that [I10%]g for any l;,lo € U. Hence U is convex. This implies
that convg{us,...,u,} C oth® words,

u(
he tion h(y) =1(y) —e. O

<maxu;(y) Vy € Y} cU.
7

In particujfr,

maximum te collection of abstract convex functions. Indeed, for every L-convex
functions fi,..., f, we have

.....

supp < max fi,L) = cor, U supp (fi, L).
1= n e}

The subdifferential of the maximum of a finite collection of abstract convex functions have
been considered in ([9], Corollary 4.1).

Proposition 5.4. Assume that (H,Ty;) is connected with respect to G* and (X,T) is con-
nected with respect to G. Then for any (L,Y)-convex sets Uy, ..., U,

cor, LnJ Ui=clg, ( U {l eL: l(y) < max u;(y) Yy € Y}) . (5.3)

. i=1,...,n
=1 u;, €U;
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Proof. Since T} C 7 and condition (3.1) is valid for 7 then we can apply Proposition 3.4.
Let Uy,...,U, C L be (L,Y)-convex. Then Uy,...,U, € G and, by (3.4),

cor, LnJUi = CO(XH) LnJUi =clgy ( U COHVg{u1,...,un}>
i=1

i=1 u; €U;

clry < U {teL: I(y) < Z:nllaxnuz(y) Yy € Y}) .

u; €U;
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