SECOND-ORDER CONE REFORMULATION AND THE PRICE OF ANARCHY OF A ROBUST NASH-COURNOT GAME

Deren Han*, Hong K. Lo, Jie Sun ${ }^{\dagger}$ and Hai Yang

Abstract

We study an n-person Nash-Cournot game with incomplete information, in which the opponents' strategies are only known in a perturbed set and the players try to minimize their worst-case costs, which can vary due to data uncertainty. We show that in several interesting cases, this game can be reformulated as second-order cone optimization problems. We also derive a bound the price of anarchy for this game, which is a bound on the ratio between the cost at the robyst Nash-C rnot equilibria and the cost at the system optima.

Key words: price of anarchy, robust Nash-Cournot eqvibr sed $h d$ order cone optimization, system optimal Mathematics Subject Classification: 90B18, 80C GKKO5 47 N 10 Dedication: This paper is dedicated to Profe Dr A xy Rubinoy. Alex has made profound contribution in the development of optimization research, ta dhing, ad apprication in Asia-Pacific region. He will live in our hearts as a beloved friend and a respeq ed plleague.

\section*{1 Introduction}

Suppose that con mon lodity is distributed by n Nash players over a network with a single or gin-dest atio par and m identical, nonintersecting, parallel links L_{1}, \ldots, L_{m}. Let $\mathcal{M}=\{1, \ldots, m\}$ sume that the demand d is fixed and $\mathcal{N}=\{1, \ldots, n\}$. Then the feasible s of flows is given by $$
\Omega=\left\{v \mid v=\sum_{k \in \mathcal{N}} v^{k}, e^{\top} v=d, v^{k} \geq 0, \quad \forall k=1, \ldots, n\right\}
$$

where e is the m dimensional vector of ones. $v^{k}=\left(v_{1}^{k}, \ldots, v_{m}^{k}\right) \in R_{+}^{m}$ is the vector of flows selected by the k th Nash player, $k \in \mathcal{N}$. Each player treats the other players' route strategies as fixed when routing his own flows. We assume that each player can split flow along the given links. Mathematically, for player $k \in \mathcal{N}$, the optimization problem to be solved is

$$
\begin{equation*}
\min _{v \in \Omega} \sum_{a \in \mathcal{M}} t_{a}(v) v_{a}^{k} \equiv \sum_{a \in \mathcal{M}} t_{a}\left(v^{k}+v^{-k}\right) v_{a}^{k} \tag{1.1}
\end{equation*}
$$

[^0]where $t_{a}(\cdot)$ is a certain cost function on L_{a}, and
\[

v^{-k}=\left($$
\begin{array}{c}
v_{1}^{-k} \\
\vdots \\
v_{m}^{-k}
\end{array}
$$\right) with v_{a}^{-k}=\sum_{i \in \mathcal{N}, i \neq k} v_{a}^{i}=v_{a}-v_{a}^{k} \quad \forall a \in \mathcal{M}
\]

Note that we particularly write v as $v^{k}+v^{-k}$ to show that Problem (1.1) is an optimization problem with respect to v^{k}, while all other $v^{j}, j \neq k$ are taken as fixed. A point $\left(v^{1 *}, \ldots, v^{n *}\right)$ satisfying

$$
v^{k *} \in \underset{v^{k}+v^{-k *} \in \Omega}{\arg \min } \sum_{a \in \mathcal{M}} t_{a}\left(v^{k}+v^{-k *}\right) v_{a}^{k}
$$

is called a Nash-Cournot equilibrium [2]. Generally speaking, finding a Nash-Cournot equilibrium is very difficult, for example, see [16].

In this paper, we consider the case that each player knows neither his/her opponents' exact strategies nor the probability distribution of their strategies. All the information about his/her opponents is that their strategies are in a given bounded set. We introduce the concept of robust Nash-Cournot equilibrium for an n - ayer game with quadratic cost functions by using some ideas from robust optim ation 44 This part can be viewed as a direct extension of the work of Hayashi, Yamas to d \mathbf{J} ushima [12] on two-player bimatrix games. We consider the case that both od function and the opponents' strategies can be uncertain in the same time (P/r [1] ony studied the cases that either the cost function or the opponents' straies wer undrtain). We then show in Section 3 that for some interesting cases, the robust problem can be reformulated or relaxed as a second-or or one mentarity problem, which can be solved efficiently by modern optimiza ion me ds $[1,15]$.

Define the system equilibrium rabd as

be the total cost at a robust Nash-Cournot equilibrium, where v^{*} is a robust Nash-Cournot equilibrium (also called the user optimum). Then the price of anarchy (PA) is defined as the ratio Z_{u} / Z_{s}, which was introduced by Koutsoupias and Papadimitriou [14] and has been studied extensively in $[6,7,10,14,17,18]$ for nonatomic games and in $[19,20]$ for atomic games.

Most of the present works on the PA $[6,7,10,14,17,18,19,20]$ implicitly assume that each player knows the opponents' strategies exactly and can evaluate the cost function exactly. This assumption restricts the applicability of the model to real world networks since in many cases the information is incomplete or is subject to errors. To deal with such situations, recently, Garg and Narahari [8] analyzed the PA by using a Bayesian game under the assumption that each player only knows the probability distribution of the other players'
strategies. They prove that the PA is the same as that each player knows the opponents' complete strategies. We treat this problem in a different way. Same as in our reformulation scheme, by specifying data uncertainty sets, we derive some worst-case bounds for the PA, which is the topic of Section 4. Finally, we make some concluding remarks in Section 5.

0 Preliminaries

2.1 Robust Nash-Cournot Equilibria

Recall that a Nash-Cournot equilibrium is the equilibrium solution of the n-person game, in which the k-th player's problem is

$$
\min _{v \in \Omega} \sum_{a \in \mathcal{M}} t_{a}\left(v^{k}+v^{-k}\right) v_{a}^{k}
$$

where $t_{a}(\cdot)$ is a certain cost function on a; particularly in this paper, t_{a} is defined so that

$$
\sum_{a \in \mathcal{M}} t_{a}\left(v^{k}+v^{-k}\right) v_{a}^{k}=\left(v^{k}\right)^{\top} A\left(v^{k} \not v^{-k}\right)
$$

with a certain square matrix A.
In many applications, a player can not estimata the gponents' strategies accurately and evaluate the cost function exactly. To deal th ich ituations, Hayashi, Yamashita and Fukushima [12] introduced the concert of obv $\mathrm{ta} h$ equilibrium by using the idea of robust optimization $[4,9]$. Their definition is tondayer bimatrix game and is assumed that the following statements hold for play s 1 a
(i) Player 1 can not estimate Planr 2 strategy z exactly, but can estimate that it belongs to a set $Z(z) \subseteq R^{m}$ containin z. Similarly, Player 2 can not estimate Player 1's strategy y accurately, bul ca e timate that it belongs to a set $Y(y) \subseteq R^{n}$ containing y;
(ii) Player 1 can notesti. ate nis/br cost matrix exactly, but can estimate that it belongs to a non mpty set $1_{1}=h^{n \times m}$. Player 2 can not estimate his/her cost matrix exactly, but c estim - e th th it elongs to a nonempty set $D_{2} \subseteq R^{n \times m}$.
(iii) Ed h player tru minimize his/her worst cost under (i) and (ii). That is, the cost func ons are efined respectively as follows:

$$
\begin{aligned}
& \tilde{f}_{1}(y, z):=\max \left\{y^{\top} \hat{A} \hat{z} \mid \hat{A} \in D_{1}, \hat{z} \in Z(z)\right\}, \\
& \tilde{f}_{2}(y, z):=\max \left\{\hat{y}^{\top} \hat{B} z \mid \hat{B} \in D_{2}, \hat{y} \in Y(y)\right\} .
\end{aligned}
$$

A point (\bar{y}, \bar{z}) satisfying $\bar{y} \in \arg \min _{y \in S_{1}} \tilde{f}_{1}(y, \bar{z})$ and $\bar{z} \in \arg \min _{z \in S_{2}} \tilde{f}_{2}(\bar{y}, z)$ is called a robust Nash equilibrium [12], where S_{1} and S_{2} are strategy sets of Player 1 and Player 2, respectively. Furthermore, they proved that whenever either the opponent's strategies or the cost matrices can be estimate exactly, a robust Nash equilibrium can be obtained as a solution of a second order cone complementarity problem.

We now extend the robust Nash equilibrium to the n-player Nash-Cournot game. Suppose that
(i). Each player k assumes that the opponents' strategies v^{-k} belongs to a set $V_{k}\left(v^{-k}\right) \subseteq$ R_{+}^{m} containing v^{-k}.
(ii). Each player k assumes that the cost matrix belongs to a nonempty set D_{A} containing A.
(iii). Each player tries to minimize his/her worst-case cost under (i) and (ii). That is, the cost function for player k is defined as follows:

$$
\tilde{f}_{k}\left(v^{k}, v^{-k}\right):=\max \left\{v^{k^{\top}} \hat{A} \hat{v}^{-k} \mid \hat{A} \in D_{A}, \hat{v}^{-k} \in V_{k}\left(v^{-k}\right)\right\} .
$$

A point $\left(v^{1 *}, \ldots, v^{n *}\right)$ satisfying $v^{k *} \in \arg \min \left\{\tilde{f}_{k}\left(v^{k}, v^{-k *}\right) \mid v^{k}+v^{-k *} \in \Omega\right\}$ is then defined as a robust Nash-Cournot equilibrium of this game.

2.2 The Second-order Cone Optimization Problems

Since we will reformulate the game under consideration to second-order cone optimization problem, we list some useful notations and concepts in thi egard.

Let \mathcal{Q}_{n} denote the second-order cone of dimeno

$$
\mathcal{Q}_{n}=\left\{x=\left(x_{1}, x^{n-1}\right) \in R^{n} \mid \geq v^{n-1} \|\right\}
$$

where $\|\cdot\|$ denotes the standard Euclidea nor $I t$ is well known that \mathcal{Q}_{n} induces a partial order on R^{n}

If n is evident from the context dre it from the subscript. A second-order cone programming problem is a convex artimzat n problem in which a linear function is minimized over the intersection of an affine ty and the Cartesian product of second-order cones. It includes linear programs, cnv qua ratic programs and quadratically constrained convex quadratic programs as sp ial ofes. Hathematically, a second-order cone program has the following form

where r is the number of blocks, $n=\sum_{i=1}^{r} n_{i}, c_{i} \in R^{n_{i}}, x_{i} \in R^{n_{i}}, A_{i} \in R^{m \times n_{i}}$ and $b \in R^{m}$.
The KKT system of the above second-order cone program is a second-order cone complementarity problem (SOCCP), which has the following format:

$$
\begin{equation*}
\text { Find an } z \in \mathcal{Q}_{p} \text {, such that } F(z) \in \mathcal{Q}_{p} \text { and } z^{T} F(z)=0 \text {, } \tag{2.2}
\end{equation*}
$$

where \mathcal{Q}_{p} is a second-order cone of certain dimension p (usually $p \geq n+m+r$), and $F: R^{p} \rightarrow R^{p}$ is a given mapping. The SOCCP can be efficiently solved by a smoothing Newton method, see Chen, Sun, Sun [5] for details.

3 The Parametric SOCP Reformulation

In this section, we will show that for some interesting cases, the robust Nash-Cournot problem can either be reformulated as a parametric second-order cone program or be relaxed to this type of problems. The exact meaning of "parametric second-order cone program" will be made clear in the sequel.

3.1 Uncertainty in the Opponents Strategies

We first clarify the meaning of the uncertainty in the opponents strategies.

Assumption 3.1.

(a) $V_{k}\left(v^{-k}\right):=\left\{v^{-k}+\delta v^{-k} \mid\left\|\delta v^{-k}\right\| \leq \rho_{k}, e^{\top} \delta v^{-k}=0\right\}, \forall k \in \mathcal{N}$ where $\rho_{1}, \ldots, \rho_{n}$ are given nonnegative constants;
(b) $D_{A}=\{A\}$.

Here, δv^{-k} represents a perturbation vector. 1 ditio $e^{\top} \delta v^{-k}=0$ is for guaranteeing $e^{\top}\left(v+\delta v^{-k}\right)=d$.

Under Assumption 3.1, Player k solves the foll in oro em to determine his/her strategy:

where \tilde{A}
 $A^{\top} v^{k}$ onto the hyperplane $\left\{v \mid e^{\top} v=0\right\}$ can be represted as ($\left.I_{-1}-e^{\top}\right) A^{\top} v^{k} I_{m}$ is the m dimensional unit matrix. By introducing an auxiliary variable $v_{0} \in R_{+}$, Problem (3.3) can be reduced to the following optimization problem

$$
\begin{array}{cl}
\min & v^{k^{\top}} A v+\rho_{k} v_{0} \\
\text { s.t. } & \left\|\tilde{A}^{\top} v^{k}\right\| \leq v_{0}, v \in \Omega \tag{3.4}
\end{array}
$$

Property 3.2. Suppose that the matrix A in (3.4) is positive definite. Then, under Assumption 3.1, the user equilibrium is equivalent to a parametric second-order cone program with parameter v^{-k}.

Proof. Since A is positive definite, $B:=\frac{A+A^{\top}}{2}$ is symmetric and positive definite. Let

$$
u=B^{\frac{1}{2}} v^{k}+\frac{1}{2} B^{-\frac{1}{2}} A v^{-k}
$$

Then (3.4) can be reformulated as

$$
\begin{array}{ll}
\min & u_{0} \\
\text { s.t. } & B^{\frac{1}{2}} v^{k}+\frac{1}{2} B^{-\frac{1}{2}} A v^{-k}=u \\
& \tilde{A}^{\top} v^{k}=w, \\
& \left(v_{0}, w\right) \succeq_{\mathcal{Q}} 0,\left(u_{0}-\rho_{k} v_{0}, u\right) \succeq_{\mathcal{Q}} 0 \\
& v \in \Omega
\end{array}
$$

which is a second-order cone program parametrically depending on v^{-k}.

3.2 Entry-wise Uncertainty in the Cost M trix

In this subsection, we consider the case that the fer inty in the cost matrix occurs independently from entry to entry; that is,

Assumption 3.3.

(a) $V_{k}\left(v^{-k}\right):=\left\{v^{-k}\right\}$.
(b) $D_{A}:=\left\{A+\delta A \in R^{m \times m} \mid \delta \Gamma_{i j}(i, j=1, \ldots, m)\right\}$, where A and Γ are given matrices with $\Gamma_{i j} \geq 0, i=$. m. as

Under Assumption 3 d die cadion that $v \in \Omega$, the cost function \tilde{f}_{k} can be written

$$
\begin{aligned}
& =\max \left\{v^{k^{\top}} \hat{A} v \mid \hat{A} \in D_{A}\right\} \\
& =v^{k^{\top}} A v+\max \left\{v^{k^{\top}} \delta A v \mid A+\delta A \in D_{A}\right\} \\
& =v^{k^{\top}} A v+\max \left\{v^{k^{\top}} \delta A v| | \delta A_{i j} \mid \leq \Gamma_{i j}\right\} \\
& =v^{k^{\top}} A v+v^{k^{\top}} \Gamma v,
\end{aligned}
$$

where the last equality follows from the fact that $v^{k} \geq 0$ and $v \geq 0$. Thus, the robust Nash-Cournot problem solved by Player k is

$$
\begin{array}{ll}
\min & \tilde{f}_{k}\left(v^{k}, v^{-k}\right):=v^{k^{\top}} A v+v^{k^{\top}} \Gamma v \\
\text { s.t. } & v \in \Omega, \tag{3.5}
\end{array}
$$

where v^{-k} is taken as fixed parameter. Therefore we have

Property 3.4. Suppose that the matrix A and Γ are such that $A+\Gamma$ is positive definite. Then, under Assumption 3.3, the user equilibrium is equivalent to the following parametric second-order cone program with parameter v^{-k}

$$
\begin{array}{ll}
\min & u_{0} \\
\text { s.t. } & B^{\frac{1}{2}} v^{k}+\frac{1}{2} B^{-\frac{1}{2}}(A+\Gamma) v^{-k}=u, \\
& \left(u_{0}, u\right) \succeq_{\mathcal{Q}} 0 \tag{3.6}\\
& v \in \Omega
\end{array}
$$

where $B=\frac{A+A^{\top}+\Gamma+\Gamma^{\top}}{2}$.
Proof. Since $A+\Gamma$ is positive definite, $B:=\frac{A+A^{\top}+\Gamma+\Gamma^{\top}}{2}$ is symmetric and positive definite. It follows from (3.5)

$$
\begin{aligned}
\tilde{f}_{k}\left(v^{k}, v^{-k}\right) & =v^{k^{\top}} A v+v^{k^{\top}} \Gamma v \\
& =\left(B^{\frac{1}{2}} v^{k}\right)^{\top} B^{\frac{1}{2}} v^{k}+v^{k^{\top}}(A+\Gamma) v^{-k} \\
& \left.=\| B^{\frac{1}{2}} v^{k}+\frac{1}{2} B^{-\frac{1}{2}}(A+\Gamma)\right)^{-k} B^{-\frac{1}{2}}(A+\Gamma) v^{-k} \|^{2}
\end{aligned}
$$

Let $u:=B^{\frac{1}{2}} v^{k}+\frac{1}{2} B^{-\frac{1}{2}}(A+\Gamma) v^{-k}$, then problem (3,5) dad doblem (3.6) have same optimal solutions and their optimal objective values wi> er $\frac{1}{4}\left\|B^{-\frac{1}{2}}(A+\Gamma) v^{-k}\right\|^{2}$.

3.3 Columnwise Uncertainty in the ost atryes

We now consider the case where the certa y inatrix A occurs columnwise independently. That is,
Assumption 3.5.
(a) $V_{k}\left(v^{-k}\right):=\left\{v^{-k}\right\}$
(b) $D_{A}:=\left\{A+A R R \mid\left\|\delta A_{j}^{c}\right\| \leq \gamma_{j}, j=1, \ldots, m\right\}$, where A is a given matrix and ≥ 0 is a iven vect, and δA_{j}^{c} denotes the j th column of matrix δA.

Property 6. S. ppose that the matrix A in (3.8) is positive definite. Then, under Assumption 3.5, a relaxation of the user equilibrium problem is the following parametric second-order cone program

$$
\begin{array}{ll}
\min & u_{0} \\
\text { s.t. } & B^{\frac{1}{2}} v^{k}+\frac{1}{2} B^{-\frac{1}{2}}\left(A v^{-k}+\gamma t\right)=u, \\
& \left(\left(u_{0}-\left(\gamma^{\top} v^{-k}\right) t+s\right), u\right) \succeq_{\mathcal{Q}} 0, \\
& \left(t, v^{k}\right) \succeq_{\mathcal{Q}} 0, \tag{3.7}\\
& \left(s, B^{-\frac{1}{2}}\left(A v^{-k}+\gamma t\right)\right) \succeq_{\mathcal{Q}} 0, \\
& v \in \Omega,
\end{array}
$$

where $B=\frac{A+A^{\top}}{2}$.

Proof. Under Assumption 3.5, the cost function \tilde{f}_{k} can be written as

$$
\begin{aligned}
\tilde{f}_{k}\left(v^{k}, v^{-k}\right) & =\max \left\{v^{k^{\top}} \hat{A} v \mid \hat{A} \in D_{A}\right\} \\
& =v^{k^{\top}} A v+\max \left\{v^{k^{\top}} \delta A v \mid\left\|\delta A_{j}^{c}\right\| \leq \gamma_{j}\right\} \\
& =v^{k^{\top}} A v+\max _{\left\|\delta A_{j}^{c}\right\| \leq \gamma_{j}} \sum_{j=1}^{m} v_{j} v^{k^{\top}} \delta A_{j}^{c} \\
& =v^{k^{\top}} A v+\sum_{j=1}^{m} v_{j}\left\|v^{k}\right\| \gamma_{j} \\
& =v^{k^{\top}} A v+\gamma^{\top} v\left\|v^{k}\right\|
\end{aligned}
$$

Thus, Player k solves the following problem

$$
\begin{array}{ll}
\min & \tilde{f}_{k}\left(v^{k}, v^{-k}\right):=v^{k^{\top}} A v+v^{\top} \gamma\left\|v^{k}\right\| \\
\text { s.t. } & v \in \Omega . \tag{3.8}
\end{array}
$$

Introducing variables u_{0} and t, we can rewrite he ontimation problem (3.8) as

Let $B=\frac{A+A^{\top}}{2}$. Then (3.9) can beren tten as

Setting
with

$$
s=\frac{1}{4}\left\|B^{-\frac{1}{2}}\left(A v^{-k}+\gamma t\right)\right\|^{2} .
$$

Thus, the optimization problem (3.8) is equivalent to the following problem

$$
\begin{array}{ll}
\min & u_{0} \\
\text { s.t. } & B^{\frac{1}{2}} v^{k}+\frac{1}{2} B^{-\frac{1}{2}}\left(A v^{-k}+\gamma t\right)=u, \\
& \left\|v^{k}\right\|=t, \\
& \|u\|^{2} \leq u_{0}-t \gamma^{\top} v^{-k}+s, \\
& \frac{1}{4}\left\|B^{-\frac{1}{2}}\left(A v^{-k}+\gamma t\right)\right\|^{2}=s, \\
& v \in \Omega .
\end{array}
$$

Relaxing the second and the fourth constraints in the above optimization problem, we get

$$
\begin{array}{ll}
\min & u_{0} \\
\text { s.t. } & B^{\frac{1}{2}} v^{k}+\frac{1}{2} B^{-\frac{1}{2}}\left(A v^{-k}+\gamma t\right)=u \\
& \left\|v^{k}\right\| \leq t \\
& \|u\|^{2} \leq u_{0}-t \gamma^{\top} v^{-k}+s \\
& \frac{1}{4}\left\|B^{-\frac{1}{2}}\left(A v^{-k}+\gamma t\right)\right\|^{2} \leq s \\
& v \in \Omega
\end{array}
$$

which is equivalent to (3.7).

3.4 Uncertainty in Both Opponents' Strategy and the Cost Matrix (Column-

 wise)In this subsection, we consider the case that Player k can estimate neither the cost matrix nor his/her opponents' strategies exactly and the uncertain columns. That is, we make the following assumptign:

Assumption 3.7.

(a) $\left.V_{k}\left(v^{-k}\right):=\left\{v^{-k}+\delta v^{-k} \mid\left\|\delta v^{-k}\right\| \delta \rho_{k}, \delta\right)^{-k}=v^{-k}+\delta v^{-k} \geq 0\right\}$,
(b) $D_{A}:=\left\{A+\delta A \in R^{m \times m}\left|\| \delta A_{j}^{c}\right|{ }^{2}, \ldots, m\right\}$, where A is a given matrix, $\gamma \geq 0$ is a given vector, and δA^{c} note the olumn of matrix δA.
Under Assumption 3.7, the st functon \tilde{f}_{k} can be written as

$$
\begin{aligned}
& \begin{aligned}
& \tilde{f}_{k}\left(v^{k}, v^{-k}\right) \\
= & \max \left\{v ^ { k ^ { \top } } \hat { A } \left(v^{k}+v\right.\right. \\
& \left.\delta,-k) d \hat{A} \in D_{A}, v^{-k}+\delta v^{-k} \in V_{k}\left(v^{-k}\right)\right\}
\end{aligned} \\
& \begin{array}{l}
=v^{k^{\top}} \boldsymbol{v}+\operatorname{ma}\left\{v^{k} A \delta \gamma^{k}+v^{k^{\top}} \delta A\left(v+\delta v^{-k}\right) \mid A+\delta A \in D_{A}, v^{-k}+\delta v^{-k} \in V_{k}\left(v^{-k}\right)\right\} \\
=v^{k} A v+\operatorname{mat}\left\{v^{k^{\top}} A \delta v^{-k}+\sum_{j=1}^{m}\left(\delta A_{j}^{c}\right)^{\top} v^{k}\left(v+\delta v^{-k}\right)_{j} \mid\right. \\
\left.\left\|\delta A_{j}^{c}\right\| \leq \gamma_{j}, v^{-k}+\delta v^{-k} \in V_{k}\left(v^{-k}\right)\right\}
\end{array} \\
& =v^{k^{\top}} A v+\max \left\{v^{k^{\top}} A \delta v^{-k}+\sum_{j=1}^{m}\left\|v^{k}\right\| \gamma_{j}\left(v+\delta v^{-k}\right)_{j} \mid v^{-k}+\delta v^{-k} \in V_{k}\left(v^{-k}\right)\right\} \\
& \leq v^{k^{\top}} A v+\left\|v^{k}\right\| v^{\top} \gamma+\max \left\{v^{k^{\top}} A \delta v^{-k}+\left\|v^{k}\right\| \delta v^{-k^{\top}} \gamma \mid\left\|\delta v^{-k}\right\| \leq \rho_{k}, e^{\top} \delta v^{-k}=0\right\} \\
& =v^{k^{\top}} A v+\left\|v^{k}\right\| v^{\top} \gamma+\rho_{k}\left\|\left(I_{m}-m^{-1} e e^{\top}\right)\left(A^{\top} v^{k}+\left\|v^{k}\right\| \gamma\right)\right\| .
\end{aligned}
$$

Thus, a relaxation of Player k 's problem is

$$
\begin{array}{ll}
\min & v^{k^{\top}} A v+\left\|v^{k}\right\| v^{\top} \gamma+\rho_{k}\left\|\left(I_{m}-m^{-1} e_{m} e_{m}^{\top}\right)\left(A^{\top} v^{k}+\left\|v^{k}\right\| \gamma\right)\right\| \\
\text { s.t. } & v \in \Omega . \tag{3.10}
\end{array}
$$

By introducing auxiliary variables $t, s \in R$, problem (3.10) can be further relaxed to a second-order cone program with parameter v^{-k} as shown in the following proposition. The proof is omitted since it is very similar to the proof of Proposition 3.6.

Property 3.8. Suppose that the matrix A in (3.10) is positive definite. Then, under Assumption 3.7, the user equilibrium can be relaxed to the following parametric second-order cone program

$$
\begin{array}{ll}
\min & u_{0} \\
\text { s.t. } & B^{\frac{1}{2}} v^{k}+\frac{1}{2} B^{-\frac{1}{2}}\left(A v^{-k}+\gamma t\right)=u, \\
& {\left[I_{m}-m^{-1} e e^{\top}\right]\left(A^{\top} v^{k}+t \gamma\right)=r,} \\
& \left(u_{0}-\left(\gamma^{\top} v^{-k}\right) t-\rho_{k} s, u\right) \succeq_{\mathcal{Q}} 0, \\
& \left(t, v^{k}\right) \succeq_{\mathcal{Q}} 0, \\
& (s, r) \succeq_{\mathcal{Q}} 0, \\
& v \in \Omega,
\end{array}
$$

where $B=\frac{A+A^{\top}}{2}$.

3.5 Uncertainty in Both Opponents' Strategy ha yfe Cost Matrix (Entrywise)

In this subsection, we consider the case that P ay $k \mathrm{c}$ estimate neither the cost matrix nor his/her opponents' strategies exactly and tho uncertainty in the cost matrix occurs entrywise independently; that is,
Assumption 3.9.
(a) $V_{k}\left(v^{-k}\right):=\left\{v^{-k}+\delta v^{-k} \sim \delta v \int^{k} \|, e^{\top} \delta v^{-k}=0 v^{-k}+\delta v^{-k} \geq 0\right\}$,
(b) $\left.D_{A}:=\left\{A+\delta A \in R{ }^{n} \mid \leq \Gamma_{i j}, j=1, \ldots, m\right)\right\}$ where Γ is a given matrix with $\Gamma_{i j} \geq 0$.
$\left.=\mathrm{m}_{k}\left\{v^{k^{\top}} \hat{A} \mid v+\delta v^{-k}\right) \mid \hat{A} \in D_{A}, v^{-k}+\delta v^{-k} \in V_{k}\left(v^{-k}\right)\right\}$
$=v^{k^{\top}} A v$
$+\max \left\{v^{k^{\top}} A \delta v^{-k}+v^{k^{\top}} \delta A\left(v+\delta v^{-k}\right) \mid A+\delta A \in D_{A}, v^{-k}+\delta v^{-k} \in V_{k}\left(v^{-k}\right)\right\}$
$=v^{k^{\top}} A v+\max \left\{v^{k^{\top}} A \delta v^{-k}+\sum_{j=1}^{m}\left(\delta A_{i j} v_{i}^{k}\left(v+\delta v^{-k}\right)_{j} \mid\right.\right.$
$\left.\left|\delta A_{i j}\right| \leq \Gamma_{i j}, v^{-k}+\delta v^{-k} \in V_{k}\left(v^{-k}\right)\right\}$
$=v^{k^{\top}} A v+v^{k^{\top}} \Gamma v+\max \left\{v^{k^{\top}}(A+\Gamma) \delta v^{-k} \mid\left(v^{-k}+\delta v^{-k}\right) \in V_{k}\left(v^{-k}\right)\right\}$
$\leq v^{k^{\top}} A v+v^{k^{\top}} \Gamma v+\max \left\{v^{k^{\top}}(A+\Gamma) \delta v^{-k} \mid\left\|\delta v^{-k}\right\| \leq \rho_{k}, e_{m}^{\top} \delta v^{-k}=0\right\}$
$=v^{k^{\top}}(A+\Gamma) v+\rho_{k}\left\|\left[I_{m}-m^{-1} e_{m} e_{m}^{\top}\right](A+\Gamma)^{\top} v^{k}\right\|$.

Thus, a relaxation of Player k 's problem is

$$
\begin{array}{ll}
\min & v^{k^{\top}}(A+\Gamma) v+\rho_{k}\left\|\left[I_{m}-m^{-1} e_{m} e_{m}^{\top}\right](A+\Gamma)^{\top} v^{k}\right\| \\
\text { s.t. } & v \in \Omega .
\end{array}
$$

Based on a similar approach to the proofs of Proposition 3.4 and Proposition 3.8, we can obtain the following result.

Property 3.10. Suppose that the matrix A and Γ are such that $A+\Gamma$ is positive definite. Then, under Assumption 3.9, the user equilibrium can be relaxed to the following parametric second-order cone program

$$
\begin{array}{ll}
\min & u_{0} \\
\text { s.t. } & B^{\frac{1}{2}} v^{k}+\frac{1}{2} B^{-\frac{1}{2}}\left(A+\Gamma v^{-k}\right)=u, \\
& {\left[I_{m}-m^{-1} e e^{\top}\right](A+\Gamma)^{\top} v^{k}=r,} \\
& \left(u_{0}-\rho_{k} s, u\right) \succeq_{\mathcal{Q}} 0, \\
& (s, r) \succeq_{\mathcal{Q}} 0, \\
& v \in \Omega,
\end{array}
$$

where $B=\frac{A+\Gamma+A^{\top}+\Gamma^{\top}}{2}$.
In concluding this section, we explain how he parametric second-order cone programs of the players can be combined into a (non- ram cond-order complementarity problem (SOCCP) \ddagger. Let user $k^{\prime} s$ (robust) primn fion pr lem be denoted by $P_{k}\left(v^{-k}\right)$, which depends on v^{-k}. Then, $P_{k}\left(v^{-k}\right)$ reduc to an OCCP for any fixed v^{-k}. Now, notice that the robust Nash-Cournot equilibriun p blem is to find $\left\{\left(v^{*}\right)^{k}\right\}_{k=1}^{n}$ such that $\left(v^{*}\right)^{k}$ solves $P_{k}\left(v^{-k}\right)$ for all $k \in \mathcal{N}$ simultandy. Since the KKT conditions of $P_{k}\left(v^{-k}\right)$ can be rewritten as an SOCCP, say $\operatorname{KKT}_{k}\left(v\right.$ by abining all users $\operatorname{SOCCPs}_{\operatorname{KKT}}^{1}\left(v^{-1}\right), \ldots, \operatorname{KKT}_{n}\left(v^{-n}\right)$, we can obtain a large SO $\mathrm{P} \quad$ th vafiables $\left(v^{1}, \ldots, v^{n}\right)$. For more detailed discussion in this matter, see [12].

4 The Price ©A, Arory for the Robust Nash-Cournot Equilibria

We now nsider the price of anarchy (PA) for robust Nash-Cournot equilibria and derive several bo ds for t. Recall that the PA is the ratio between the total cost at robust NashCournot equinorrum and the system cost. Let v^{*} denote a robust Nash-Cournot equilibrium and \bar{v} denote the system optimal, then the $\mathrm{PA} \varrho$ is

$$
\varrho:=\frac{Z_{u}}{Z_{s}}=\frac{\sum_{a \in \mathcal{M}} t_{a}\left(v^{*}\right) v_{a}^{*}}{\sum_{a \in \mathcal{M}} t_{a}(\bar{v}) \bar{v}_{a}}=\frac{\left(v^{*}\right)^{\top} A v^{*}}{\bar{v}^{\top} A \bar{v}} .
$$

To derive the bounds, we need to define the degree of asymmetry of a matrix A.
Definition 4.1. The degree of asymmetry of a positive definite matrix A is defined as

$$
c^{2}=\left\|S^{-1} A\right\|_{S}^{2}=\sup _{w \neq 0} \frac{\left\|S^{-1} A w\right\|_{S}^{2}}{\|w\|_{S}^{2}}=\sup _{w \neq 0} \frac{w^{\top} A^{\top} S^{-1} A w}{w^{\top} S w},
$$

[^1]where
$$
S=\frac{A+A^{\top}}{2}
$$
is the symmetrized part of the matrix A and $\|\cdot\|_{S}$ denotes the S-norm of a vector, i.e. $\|x\|_{S}=\sqrt{x^{\top} S x}$ and $\left\|S^{-1} A\right\|_{S}$ is the operator norm of $S^{-1} A$ induced by this vector norm.

It is obvious that $c^{2}=1$ when A is positive definite and symmetric. The constant c^{2} was originally introduced by Hammond [11] and has the following property.

Lemma 4.2. If A^{2} is a positive definite matrix, then $c^{2} \leq 2$.

We now analyze the PA under uncertainties. Since the analysis for Assumption 3.1 and the other assumptions is very similar, we just focus on the case where Assumption 3.1 holds.

Theorem 4.3. Suppose that the matrix A in (3.4) is a positive definite matrix and Assumption 3.1 holds. Furthermore, suppose that $A_{i j} \geq 0$ for all $i, j=1, \ldots, m$ and there are two scalers $0 \leq \bar{\alpha}, \underline{\alpha} \leq 1$, such that $\bar{v}^{k} \leq \bar{\alpha} \bar{v}$ and $v^{k *} \geq \underline{\alpha} v$ or all $k \in \mathcal{N}$. Then, the $P A \varrho$ satisfies the following inequality
$\varrho \leq \frac{2 \bar{\alpha}+(1-\underline{\alpha})^{2} c^{2}+(1-\underline{\alpha}) c \sqrt{(1-\underline{\alpha})^{2} c^{2}+4 \overline{0}}}{2}$ where b_{2} is given by (4.15)-(4.16) below
Proof. Since v^{*} is a solution of thod Nash-Cournot equilibrium and $\bar{v} \in \Omega$, it follows from (3.4) that

where th first inequality follows from the fact that $v^{k *}$ is a solution of (3.4) and the last inequality ollows fom the $\bar{v}^{k} \geq 0, v^{*} \geq 0$ and $A_{i j} \geq 0$ for all $i, j=1, \ldots, m$ and the assumption, v^{k}
$\leq \bar{\alpha} \bar{v}$ and $v^{\bar{k} *} \geq \underline{\alpha} v^{*}$. Summing up both sides for all $k \in \mathcal{N}$, we get

$$
\begin{align*}
& \left(v^{*}\right)^{\top} A v^{*}+\sum_{k \in \mathcal{N}} \rho_{k}\left\|\tilde{A} v^{k *}\right\| \\
& \leq \bar{\alpha} \bar{v}^{\top} A \bar{v}+(1-\underline{\alpha}) \bar{v}^{\top} A v^{*}+\sum_{k \in \mathcal{N}} \rho_{k}\left\|\tilde{A} \bar{v}^{k}\right\| \\
& =\bar{\alpha} \bar{v}^{\top} A \bar{v}+(1-\underline{\alpha}) \bar{v}^{\top} A S^{-1} S v^{*}+\sum_{k \in \mathcal{N}} \rho_{k}\left\|\tilde{A} \bar{v}^{k}\right\| \\
& \leq \bar{\alpha} \bar{v}^{\top} A \bar{v}+(1-\underline{\alpha})\left\|\bar{v}^{\top} A S^{-1}\right\|_{S}\left\|v^{*}\right\|_{S}+\sum_{k \in \mathcal{N}} \rho_{k}\left\|\tilde{A} \bar{v}^{k}\right\| \\
& \leq \bar{\alpha} \bar{v}^{\top} A \bar{v}+c(1-\underline{\alpha})\|\bar{v}\|_{S}\left\|v^{*}\right\|_{S}+\sum_{k \in \mathcal{N}} \rho_{k}\left\|\tilde{A} \bar{v}^{k}\right\|, \tag{4.12}
\end{align*}
$$

where the second inequality follows from Cauchy-Schwarz inequality and the last one follows from the norm inequality.

For any two vectors x and y in R^{n}, we have

$$
2 \sqrt{b_{1} b_{2}}\|x\|_{S}\|y\|_{S} \leq b_{1}\|x\|_{S}^{2}+b_{2}\|y\|_{S}^{2}
$$

if $b_{1}, b_{2} \geq 0$. This implies that

$$
\begin{equation*}
c\|x\|_{S}\|y\|_{S} \leq b_{1}\|x\|_{S}^{2}+b_{2}\|y\|_{S}^{2} \tag{4.13}
\end{equation*}
$$

if $b_{1}, b_{2} \geq 0$ and $b_{1} b_{2} \geq c^{2} / 4$. It follows from (4.12) and (4.13) that

$$
\left(1-(1-\underline{\alpha}) b_{2}\right)\left(v^{*}\right)^{\top} A v^{*} \leq\left(\bar{\alpha}+(1-\underline{\alpha}) b_{1}\right) \bar{v}^{\top} A \bar{v}+\sum_{k \in \mathcal{N}} \rho_{k}\left(\left\|\tilde{A} \bar{v}^{k}\right\|-\left\|\tilde{A} v^{k *}\right\|\right) .
$$

If $b_{2} \geq 1 /(1-\underline{\alpha})$, then the above inequality may hold trivially (at least in some cases). Thus, we need to add the constraint that $b_{2}<1 /(1-\underline{\alpha})$. We may find the best upper bound by solving
min

s. t.

Since we just want to find an upper bound the parchy, we can tighten the second constraint in the above optimization pr len

$$
\begin{equation*}
b_{2}=\frac{t-\bar{\alpha}-\sqrt{(t-\bar{\alpha})^{2}-(1-\underline{\alpha})^{2} c^{2} t}}{2} \quad \text { and } \quad b_{1}=\frac{c^{2}}{4 b_{2}} \tag{4.16}
\end{equation*}
$$

This completes the proof.
Remark. Unlike the game with complete information, in our bound, there is a term inherited from the uncertainties of the data (the second term in the right hand of (4.11)). If $\rho_{k}=0$ for all $k \in \mathcal{N}$, the case reduces to the one with complete information and the bound (4.11) reduces to

$$
\begin{equation*}
\varrho \leq \frac{2 \bar{\alpha}+(1-\underline{\alpha})^{2} c^{2}+(1-\underline{\alpha}) c \sqrt{(1-\underline{\alpha})^{2} c^{2}+4 \bar{\alpha}}}{2} \tag{4.17}
\end{equation*}
$$

which appears to be new in the literature. Furthermore, if $n=1$, that is, if there is only a monopoly player controls all users in the network, we have $\bar{\alpha}=\underline{\alpha}=1$ and the bound given in (4.17) is $\varrho=1$, indicating there is no efficiency loss. For $n \geq 2$, it is possible that $\bar{\alpha}=1$ and $\underline{\alpha}=0$. For example, this occurs for the network game with unsplittable flows. For this case, the bound in (4.17) reduces to

$$
\varrho \leq \frac{2+c^{2}+c \sqrt{c^{2}+4}}{2}
$$

Moreover, if the cost matrix is symmetric, i.e., $c=1$, then $\varrho \leq \frac{3+\sqrt{5}}{2}=2.618$, which is just the bound derived by Awerbuch et al. [3].

5 Conclusions

We considered a traffic game with incomplete information. We proved that in some interesting cases, the robust Nash-Cournot equilibrium problem can be reformulated as a secondorder cone program. We also gave some bounds of the $\mathbf{P A}$ of the robust Nash-Cournot equilibria, which appears not to have been considered in th literature.

Acknowledgment

The authors would like to thank Professor Fuk ish a o Kyoto University and a referee for their very constructive comments, which lead manyimprovements of this paper.

References

[1] F. Alizadeh and D. Goldfarb, pec d order cone programming, Math. Program. 95 (2003) 3-51.
[2] J.P. Aubin, Mathem cal rethods of Game and Economic Theory, North-Holland Publishing Company 4 ms erd $\mathrm{m},{ }_{79}$.
[3] B. Ayerbuch, Azr ald. Epstein, The price of routing unsplittable flow, in Proceedi ggs of the th nnud ACM Symposium on Theory of Computing, Baltimore, H.N. Gab v and R.JFagin (eds.), MD, USA, May 22-24, 2005, pp. 57-66.
[4] A. Ben A. Nemirovski, Robust convex optimization, Math. Oper. Res. 23 (1998) 769-805.
[5] X. Chen, D. Sun and J. Sun, Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems, Comput. Optim. Appl. 25 (2003) 39-56.
[6] J. Correa, A. Schulz and N. Stier Moses, Selfish routing in capacitated networks, Math. Oper. Res. 29 (2004) 961-976.
[7] J. Correa, A. Schulz and N. Stier Moses, Computational complexity, fairness, and the price of anarchy of the maximum latency problem, in Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, D. Bienstock and G. Nemhauser (eds.), 3064, Springer, Berlin, 2004, pp. 59-73.
[8] D. Garg and Y. Narahari, Price of anarchy for routing games with incomplete information, in Internet and Network Economics, Lecture Notes in Computer Science, X.T. Deng and Y.Y. Ye (eds.), 3828, Springer, Berlin, 2005, pp. 1066-1075.
[9] D. Goldfarb and G. Iyengar, Robust convex quadratically constrained programs, Math. Program. 97 (2003) 495-515.
[10] D. Han, Hong K. Lo, J. Sun and H. Yang, The toll effect on price of anarchy when costs are nonlinear and asymmetric, European J. Oper. Res. 186 (2008) 310-316.
[11] J.H. Hammond, Solving asymmetric variational inequalities and system of equations with generalized nonlinear programming algorithms, PhD Thesis, MIT, 1984.
[12] S. Hayashi, N. Yamashita and M. Fukushima, Robust Nash equilibria and second-order cone complementarity problems, J. Nonlinear Convex Anal. 6 (2005) 283-296.
[13] R. Jahari and J.N. Tsitsiklis, Efficiency loss in a network resource allocation game, Math. Oper. Res. 29 (2004) 407-435.
[14] E. Koutsoupias and C.H. Papadimitriou, Worst-case Juilibria, Symposium on Theoretical Aspects of Computer Science, 1999.
[15] M.S. Lobo, L. Vandenberghe, S. Boyd and H. Le ft, pplreations of second order cone programming, Linear Algebra Appl. 284 (199) 1s 22
[16] J.-S. Pang and J. Sun, Nash Equiliba wi Pi cewise Quadratic Costs, Pac. J. Optim. 2 (2006) 679-692.
[17] G. Perakis, The "price of anarchy finder onl and asymmetric costs, Math. Oper. Res. 32 (2007) 614-628.
[18] T. Roughgarden and E. las How bad is selfish routing, Journal of the ACM 49 (2002) 236-259.
[19] T. Roughgarden, Sel h r uting with atomic players, Symposium on Discrete Algorithms, Proceedng of eSixteenth Annual ACM-SIAM Symposium on Discrete Algorithm. Bintish Colu ibia 2005, pp. 1184-1185.
[20] H. Y ng, D. Harna Hong K. Lo, On the price of anarchy for Nash-Cournot equilibria with olynomi hl cost, Netw. Spat. Econ. 8 (2008) 443-451.

Manuscript received 20 March 2008 revised 18 August 2008, 4 October 2008 accepted for publication 6 October 2008

Deren Han
School of Mathematical Sciences
Nanjing Normal University, Nanjing 210046, PRC
E-mail address: handeren@njnu.edu.cn

Hong K. Lo
Department of Civil Engineering
The Hong Kong University of Science and Technology, PRC
E-mail address: cehklo@ust.hk
Jie Sun
Department of Decision Sciences and Singapore-MIT Alliance
National University of Singapore, Republic of Singapore
E-mail address: jsun@nus.edu.sg

Hai Yang
Department of Civil Engineering
The Hong Kong University of Science and Technology, PRC
E-mail address: cehyang@ust.hk

[^0]: ${ }^{*}$ His research is supported by NSFC grant 10871098 and NSF of Jiangsu Province at Grant No. BK2009397.
 ${ }^{\dagger}$ His research is partially supported by grants RP312-000-042/057-112 of National University of Singapore.

[^1]: \ddagger This paragraph is cited from a referee’s comments.

