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1 Introduction

A recent development of the study of nonadditive measures and discrete convex analysis
exemplifies the affinity of the submodularity of set functions with standard convex analysis.
A prominent result in this respect is that a set function on an algebra is submodular if and
only if its Choquet integral is a convex function on the space of bounded measurable (with
respect to the algebra) functions (see Marinacci and Montrucchio [9]). Since submodular
functions have convex extensions (Lovász extensions in the terminology of discrete convex
analysis) to vector spaces, it is possible to apply concepts and results of duality theory, such
as the Fenchel–Legendre transform, subgradients and separation theorems (see Marinacci
and Montrucchio [8] and Murota [10]).

The main purpose of this paper is to present another convex-like structure of set functions
on σ-algebras of nonatomic finite measure spaces and to illustrate its usefulness in optimiza-
tion. A key notion in our approach to the convexity of families of measurable sets and set
functions is that of convex combinations of measurable sets along the lines of Halmos [6].
This notion, which uses the nonatomicity of measures in an essential way, makes it possible
to introduce a convex subset of a σ-algebra, a µ-convex set, and a convex set function, a µ-
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convex function, in a reasonably standard way and to derive a number of results analogous
to those of standard convex analysis. In particular, in Section 2, we prove Jensen inequality
for µ-convex functions, show that the set of minimizers of µ-convex functions is µ-convex
and demonstrate that the µ-convexity of set functions introduced in this paper inherently
differs from the notion of the supermodularity of set functions on σ-algebras.

In Section 3, we metrize σ-algebras and study the continuity of set functions on σ-algebras
as continuous functions on metric spaces. Specifically, we prove a minimax theorem for set
functions and investigate how the µ-convexity and the absolute continuity of set functions,
and the continuity and the countable additivity of finitely additive set functions, are mutually
related.

Unlike Choquet integrals of submodular functions on a σ-algebra, our notions of the
convexity and the continuity of set functions are insufficient to obtain convex extensions to
the space of bounded measurable functions. Nevertheless, they are useful for investigating
the properties of cores of nonatomic cooperative transferable utility games with an infinite
set of players, as demonstrated in Sagara and Vlach [13] and characterizing solutions to fair
division problems in a measurable space (see Sagara [11]). Another application is presented
in Sagara and Vlach [12], who consider the representability of preference relations on σ-
algebras in terms of the continuous µ-convex functions.

2 Convex Functions on σ-Algebras

2.1 µ-Convex Sets

Let F be a σ-algebra of subsets of Ω. An extended real-valued set function µ : F → R ∪
{+∞} is a signed charge if µ is finitely additive and µ(∅) = 0. A nonnegative signed charge is
called a charge. A countably additive signed charge is called a signed measure. A nonnegative
signed measure is called a measure. A signed charge µ is finite if supA∈F |µ(A)| < +∞. A
measure µ is said to be nonatomic if every set A ∈ F with µ(A) > 0 includes a set E ∈ F
such that 0 < µ(E) < µ(A).

Let (Ω,F , µ) be a nonatomic finite measure space, where F is a σ-algebra of subsets of
a nonempty set Ω and µ is a nonatomic finite measure on F . It follows from the convexity of
the range of a nonatomic finite measure that, for every A ∈ F and α ∈ [0, µ(A)], there exists
some E ∈ F with E ⊂ A satisfying µ(E) = α and, for every B ∈ F and β ∈ [µ(B), µ(Ω)],
there exists some F ∈ F with B ⊂ F such that µ(F ) = β (see Halmos [7, Section 41(2) and
(3)]).

Let A ∈ F and t ∈ [0, 1] be given arbitrarily. We define the family K µ
t (A) of measurable

subsets of A by:
K µ

t (A) = {E ∈ F | µ(E) = tµ(A), E ⊂ A}.
The nonatomicity of µ implies that K µ

t (A) is nonempty for every A ∈ F and t ∈ [0, 1].
Note that E ∈ K µ

t (A) if and only if A \ E ∈ K µ
1−t(A), and that µ(A) = 0 if and only if

K µ
t (A) contains the empty set for every t ∈ [0, 1].
Let ∆n−1 denote the (n− 1)-dimensional unit simplex in Rn; that is:

∆n−1 =

{
(α1, . . . , αn) ∈ Rn |

n∑

i=1

αi = 1 and αi ≥ 0, i = 1, . . . , n

}
.

For arbitrarily given A1, . . . , An ∈ F and (t1, . . . , tn) ∈ ∆n−1, we denote by
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K µ
t1,...,tn

(A1, . . . , An) the family of sets E ∈ F such that E is the union of some pairwise dis-
joint sets E1 ∈ K µ

t1 (A1), . . . , En ∈ K µ
tn

(An). When n = 2, we shall simply write K µ
t (A,B)

instead of K µ
t,1−t(A,B).

Theorem 2.1. For each n ≥ 2, K µ
t1,...,tn

(A1, . . . , An) is nonempty for every finite sequence
of sets A1, . . . , An in F and every element (t1, . . . , tn) in ∆n−1.

Proof. Let A1, . . . , An ∈ F and (t1, . . . , tn) ∈ ∆n be given arbitrarily. Choose any Ei ∈
K µ

ti
(Ai \

⋃n
j 6=i Aj) and Fi ∈ K µ

ti
(Ai ∩

⋃n
j 6=i Aj) for each i = 1, . . . , n. By construction, the

sets E1, . . . , En, F1, . . . , Fn are pairwise disjoint and

µ(Ei ∪ Fi) = tiµ


Ai \

n⋃

j 6=i

Aj


 + tiµ


Ai ∩

n⋃

j 6=i

Aj


 = tiµ(Ai),

and hence Ei ∪ Fi ∈ K µ
ti

(Ai) for each i. Therefore, we obtain
⋃n

i=1(Ei ∪ Fi) ∈
K µ

t1,...,tn
(A1, . . . , An).

Definition 2.2. A subset X of F is µ-convex if K µ
t (A,B) ⊂ X for every A,B ∈ X and

t ∈ [0, 1].

It is easy to verify that the intersection of an arbitrary family of µ-convex sets is µ-
convex.

Lemma 2.3. Let A1, . . . , An be a finite sequence of sets in F and t1, . . . , tn be nonnegative
real numbers satisfying

∑n
i=1 ti ≤ 1 with n ≥ 2. If E1 ∈ K µ

t1 (A1), . . . , En ∈ K µ
tn

(An) are
pairwise disjoint, then for every real number s1, . . . , sn satisfying

∑n
i=1 si ≤ 1 and ti ≤ si

for each i = 1, . . . , n, there exist pairwise disjoint sets F1 ∈ K µ
s1

(A1), . . . , Fn ∈ K µ
sn

(An)
such that

⋃n
i=1 Ei ⊂

⋃n
i=1 Fi.

Proof. The argument is based on induction. Let A1 and A2 be sets in F , let t1 and t2 be
nonnegative real numbers with t1 + t2 ≤ 1, let E1 ∈ K µ

t1 (A1) and E2 ∈ K µ
t2 (A2) be disjoint

sets and let s1 and s2 be real numbers with s1 + s2 ≤ 1, t1 ≤ s1 and t2 ≤ s2. Without loss
of generality, we assume that µ(A1) ≤ µ(A2). By the nonatomicity of µ, there exists some
F1 ∈ K µ

s1
(A1) such that E1 ⊂ F1. We then have:

µ(A2 \ F1) ≥ µ(A2)− µ(F1) = µ(A2)− s1µ(A1)
≥ µ(A2)− s1µ(A2) ≥ s2µ(A2).

By the nonatomicity of µ, there exists some F2 ∈ K µ
s2

(A2) such that E2 \F1 ⊂ F2 ⊂ A2 \F1.
By construction, we have F1 ∩ F2 = ∅ and E1 ∪ E2 ⊂ F1 ∪ F2. Thus, the result is true for
n = 2.

Suppose that the result is true for n ≥ 2. Let A1, . . . , An+1 be sets in F , let t1, . . . , tn+1

be nonnegative real numbers satisfying
∑n+1

i=1 ti ≤ 1, let E1 ∈ K µ
t1 (A1), . . . , En+1 ∈

K µ
tn+1

(An+1) be disjoint sets and let s1, . . . , sn+1 be real numbers with
∑n+1

i=1 si ≤ 1 and ti ≤
si for each i = 1, . . . , n+1. Without loss of generality, we assume that µ(Ai) ≤ µ(An+1) for
each i = 1, . . . , n. By the induction hypothesis, there exist pairwise disjoint sets F1, . . . , Fn

in F such that Fi ∈ K µ
si

(Ai) for each i = 1, . . . , n and
⋃n

i=1 Ei ⊂
⋃n

i=1 Fi. It follows that
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µ(En+1) ≤ sn+1µ(An+1) and

µ

(
An+1 \

n⋃

i=1

Fi

)
≥ µ(An+1)− µ

(
n⋃

i=1

Fi

)
= µ(An+1)−

n∑

i=1

µ(Fi)

= µ(An+1)−
n∑

i=1

siµ(Ai) ≥ µ(An+1)−
n∑

i=1

siµ(An+1)

≥ sn+1µ(An+1).

Therefore, the nonatomicity of µ guarantees the existence of a set Fn+1 ∈ K µ
sn+1

(An+1) such
that En+1 \

⋃n
i=1 Fi ⊂ Fn+1 ⊂ An+1 \

⋃n
i=1 Fi. Then, the sets F1 ∈ K µ

s1
(A1), . . . , Fn+1 ∈

K µ
sn+1

(An+1) are pairwise disjoint and satisfy
⋃n+1

i=1 Ei ⊂
⋃n+1

i=1 Fi by construction. There-
fore, the result is true for n + 1 and the proof is complete.

Theorem 2.4. A subset X of F is µ-convex if and only if, for each n ≥ 2,
K µ

t1,...,tn
(A1, . . . , An) ⊂ X for every finite sequence of sets A1, . . . , An in X and every

element (t1, . . . , tn) in ∆n−1.

Proof. The sufficient condition is clearly satisfied. Thus, we need only dem-onstrate the nec-
essary condition, for which we use induction on n. Suppose that X is µ-convex. According
to the definition of µ-convexity, the result is true for n = 2. Now, suppose that the result is
true for n ≥ 2. Let A1, . . . , An+1 ∈ X and let (t1, . . . , tn+1) ∈ ∆n. Without loss of gener-
ality, we assume that tn+1 < 1. Arbitrarily choose Ei ∈ K µ

ti
(Ai) for each i = 1, . . . , n + 1

satisfying Ei ∩Ej = ∅ for i 6= j. This is allowed by Theorem 2.1. Define si = (1− tn+1)−1ti
for i = 1, . . . , n. We then have

∑n
i=1 si = 1 and ti ≤ si for i = 1, . . . , n. By Lemma 2.3, there

exist pairwise disjoint sets F1 ∈ K µ
s1

(A1), . . . , Fn ∈ K µ
sn

(An) such that
⋃n

i=1 Ei ⊂
⋃n

i=1 Fi.
It follows from the induction hypothesis that

⋃n
i=1 Fi ∈ K µ

s1,...,sn
(A1, . . . , An) ⊂ X . We

then have

µ

(
n⋃

i=1

Ei

)
=

n∑

i=1

µ(Ei) =
n∑

i=1

tiµ(Ai) =
n∑

i=1

(1− tn+1)siµ(Ai)

= (1− tn+1)
n∑

i=1

µ(Fi) = (1− tn+1)µ

(
n⋃

i=1

Fi

)
.

Hence,
⋃n

i=1 Ei ∈ K µ
1−tn+1

(
⋃n

i=1 Fi). Thus, by the µ-convexity of X , we obtain

n+1⋃

i=1

Ei ∈ K µ
tn+1

(
An+1,

n⋃

i=1

Fi

)
⊂ X .

Therefore, we have K µ
t1,...,tn+1

(A1, . . . , An+1) ⊂ X for every (t1, . . . , tn+1) ∈ ∆n.

2.2 µ-Convex Functions

Let X be a subset of F . The effective domain of a set function f : X → R ∪ {+∞} is
defined by

dom f = {A ∈ X | f(A) < +∞}.
The set function f is proper if dom f is nonempty. The epigraph of f is the set defined by

epi f = {(A,α) ∈ X × R | f(A) ≤ α}.
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Then, dom f is the projection of epi f into X . The level set of f at α ∈ R is the α-section
of epi f ; that is,

levα f = {A ∈ X | f(A) ≤ α}.
Recall that the symmetric difference, A 4 B, of sets A and B is given by A 4 B =

(A ∪B) \ (A ∩B).

Definition 2.5. Let X be a µ-convex subset of F . A set function f : X → R ∪ {+∞} is:

(i) µ-convex if A,B ∈ X and t ∈ [0, 1] imply

f(C) ≤ tf(A) + (1− t)f(B) for every C ∈ K µ
t (A,B);

(ii) strictly µ-convex if A,B ∈ X with µ(A4B) > 0 and t ∈ (0, 1) imply

f(C) < tf(A) + (1− t)f(B) for every C ∈ K µ
t (A,B).

A set function f : X → R ∪ {−∞} is (strictly) µ-concave if −f is (strictly) µ-convex. A
real-valued function on F is µ-additive if it is both µ-convex and µ-concave on F .

The following properties of µ-convex functions are similar to those of convex functions
on vector spaces (see Attouch et al. [1, Section 3.3]; Ekeland and Témam [5, Section 1.2]).

• The indicator function δX : F → R ∪ {+∞} of a subset X of F defined by

δX (A) =

{
0 if A ∈ X

+∞ otherwise

is µ-convex if and only if X is µ-convex.

• If f and g are µ-convex functions on X into R∪ {+∞} and α ≥ 0, then αf and f + g
defined by

(αf)(A) = αf(A), (f + g)(A) = f(A) + g(A)

are µ-convex functions.

• If {fi}i∈I is a family of µ-convex functions on X into R∪ {+∞}, then their pointwise
supremum f = supi∈I fi is a µ-convex function.

If f is a µ-convex function on X into R ∪ {+∞}, then levα f is µ-convex for every
α ∈ R.

• The effective domain of a µ-convex function is µ-convex.

A subset X of F ×R is µ-convex if (A,α) and (B, β) in X and t ∈ [0, 1] imply (C, tα +
(1− t)β) ∈ X for every C ∈ K µ

t (A,B).

Theorem 2.6. A set function f : X → R ∪ {+∞} is µ-convex if and only if its epigraph
is µ-convex.

Proof. Let f be µ-convex, and then take (A,α) and (B, β) in epi f arbitrarily. Then, it
necessarily follows that f(A) ≤ α < +∞ and f(B) ≤ β < +∞, and for every t ∈ [0, 1], from
the µ-convexity of f , we have

f(C) ≤ tf(A) + (1− t)f(B) ≤ tα + (1− t)β
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for every C ∈ K µ
t (A,B). This means that (C, tα + (1− t)β) ∈ epi f .

Conversely, let epi f be µ-convex. Its projection dom f is therefore µ-convex and it is
sufficient to verify the inequality in Definition 2.5 over dom f . Take A and B in dom f , and
α and β in R satisfying f(A) ≤ α and f(B) ≤ β. By hypothesis, (C, tα + (1− t)β) ∈ epi f
for every C ∈ K µ

t (A,B) and t ∈ [0, 1] so that f(C) ≤ tα + (1 − t)β. Given that f(A) and
f(B) are finite, it is sufficient to take α = f(A) and β = f(B).

Theorem 2.7 (Jensen inequality). A set function f : X → R ∪ {+∞} is µ-convex if
and only if, for each n ≥ 2, for every finite sequence of sets A1, . . . , An in X and for every
element (t1, . . . , tn) in ∆n−1,

f(C) ≤
n∑

i=1

tif(Ai) for every C ∈ K µ
t1,...,tn

(A1, . . . , An).

Proof. Because the sufficient condition is clearly satisfied, we need only prove the necessary
condition, for which we use induction on n. Let f be µ-convex. For n = 2, the result clearly
follows from Definition 2.5. Suppose that the result is true for n ≥ 2. Let A1, . . . , An+1 ∈
F and let (t1, . . . , tn+1) ∈ ∆n. Choose C ∈ K µ

t1,...,tn+1
(A1, . . . , An+1) arbitrarily. Then,

C =
⋃n+1

i=1 Ei is the union of pairwise disjoint sets E1 ∈ K µ
t1 (A1), . . . , En+1 ∈ K µ

tn+1
(An+1).

Without loss of generality, one may assume that tn+1 < 1. Define si = (1 − tn+1)−1ti for
each i = 1, . . . , n. By Lemma 2.3, there exists a set F ∈ K µ

s1,...,sn
(A1, . . . , An) containing⋃n

i=1 Ei such that
⋃n+1

i=1 Ei ∈ K µ
tn+1

(An+1, F ). Because of the µ-convexity of f and given
the induction hypothesis, we have:

f(C) = f

(
n+1⋃

i=1

Ei

)
≤ tn+1f(An+1) + (1− tn+1)f(F )

≤ tn+1f(An+1) + (1− tn+1)
n∑

i=1

sif(Ai) =
n+1∑

i=1

tif(Ai).

Hence, the result is true for n + 1.

Example 2.8. Let ϕ be a real-valued function on the closed interval [0, µ(Ω)]. Define the set
function fϕ on F by fϕ = ϕ◦µ. Because C ∈ K µ

t (A,B) implies µ(C) = tµ(A)+(1−t)µ(B),
if ϕ is convex, then, for every C ∈ K µ

t (A,B) and t ∈ [0, 1], we have:

fϕ(C) = ϕ(tµ(A) + (1− t)µ(B)) ≤ tϕ(µ(A)) + (1− t)ϕ(µ(B))
= tfϕ(A) + (1− t)fϕ(B).

Hence, fϕ is µ-convex on F .
Conversely, suppose that ϕ is such that fϕ is µ-convex on F . Choose x, y ∈ [0, µ(Ω)]

and t ∈ [0, 1] arbitrarily. By the nonatomicity of µ, there exist A and B in F such that
µ(A) = x and µ(B) = y. Then, by Theorem 2.1, there exist E ∈ K µ

t (A) and F ∈ K µ
1−t(B)

such that E ∩ F = ∅. We then have:

ϕ(tx + (1− t)y) = ϕ(tµ(A) + (1− t)µ(B)) = ϕ(µ(E) + µ(F )) = fϕ(E ∪ F )
≤ tfϕ(A) + (1− t)fϕ(B) = tϕ(x) + (1− t)ϕ(y).

Hence, ϕ is convex on [0, µ(Ω)].
Consequently, fϕ is (strictly) µ-convex on F if and only if ϕ is (strictly) convex on

[0, µ(Ω)].
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2.3 Minimization of µ-Convex Functions

Sets A and B in F are µ-equivalent if µ(A4B) = 0. The µ-equivalence defines an equiva-
lence relation (reflexive, symmetric, transitive binary relation) on F .

Theorem 2.9. (i) For every µ-convex function on a µ-convex set, the set of its minimiz-
ers is µ-convex.

(ii) For every strictly µ-convex function on a µ-convex set, its minimizer is unique up to
µ-equivalence.

Proof. (i) Let A and B be minimizers of a µ-convex function f defined on a µ-convex set.
Denote its minimum value by α. Then, for every t ∈ [0, 1] and C ∈ K µ

t (A,B), we have
f(C) ≤ tf(A) + (1− t)f(B) = α, and hence f(C) = α. Therefore, C is a minimizer of f .

(ii) Assume in the above that f is strictly µ-convex. If µ(A 4 B) > 0, then for every
t ∈ (0, 1) and C ∈ K µ

t (A,B), we have f(C) < tf(A) + (1 − t)f(B) = α, which is a
contradiction. Therefore, we obtain µ(A4B) = 0.

Definition 2.10. Let (Ω,F , µ) and (Ω′,F ′, µ′) be nonatomic finite measure spaces, let
X be a µ-convex subset of F and let X ′ be a µ′-convex subset of F ′. A set function
L : X ×X ′ → R∪ {+∞} is (µ, µ′)-convex if for every (A,A′) and (B,B′) in X ×X ′ and
t ∈ [0, 1],

L(C, C ′) ≤ tL(A,A′) + (1− t)L(B,B′)

for every (C, C ′) ∈ K µ
t (A,B)×K µ′

t (A′, B′).

Definition 2.11. A subset G of F ×F ′ is (µ, µ′)-convex if K µ
t (A,B)×K µ′

t (A′, B′) ⊂ G
for every (A,A′), (B,B′) ∈ G and t ∈ [0, 1].

Definition 2.12. Let P(X ′) be the family of all subsets of X ′. A set-valued mapping
Γ : X → P(X ′) is (µ, µ′)-convex if the graph of Γ is a (µ, µ′)-convex subset of F ×F ′.

Theorem 2.13. Let X be a µ-convex subset of F and let X ′ be a µ′-convex subset of F ′.
If L : X ×X ′ → R∪ {+∞} is a (µ, µ′)-convex function and Γ : X → P(X ′) is a (µ, µ′)-
convex set-valued mapping, then the marginal function f : X → R ∪ {+∞} defined by

f(A) = inf
A′∈Γ(A)

L(A,A′)

is µ-convex and the set of minimizers defined by

arg minL(A) = {A′ ∈ Γ(A) | L(A,A′) = f(A)}
is µ′-convex in F ′ for every A ∈ X .

Proof. Let A,B ∈ X , t ∈ [0, 1] and C ∈ K µ
t (A,B) be arbitrary. Choose any A′ ∈ Γ(A) and

B′ ∈ Γ(B). Because Γ is (µ, µ′)-convex, every C ′ ∈ K µ′
t (A′, B′) belongs to Γ(C). Given

the (µ, µ′)-convexity of L, we have

f(C) ≤ L(C,C ′) ≤ tL(A,A′) + (1− t)L(B,B′).

Because A′ ∈ Γ(A) and B′ ∈ Γ(B) are arbitrary, we obtain f(C) ≤ tf(A) + (1 − t)f(B).
Therefore, f is µ-convex.

Because A′ 7→ L(A,A′) is µ-convex on the µ-convex set Γ(A), the µ-convexity of
arg minL(A) follows from Theorem 2.9(i).
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3 Continuous Functions on σ-Algebras

We denote the µ-equivalence class of A ∈ F by [A] and denote the set of µ-equivalence
classes in F by Fµ. For any two µ-equivalence classes [A] and [B], we define the metric
dµ on Fµ by dµ([A], [B]) = µ(A4 B). If F is countably generated, then the metric space
(Fµ, dµ) is complete and separable (see Dunford and Schwartz [4, Lemma III.7.1]; Halmos
[7, Theorem 40.B]).

A subset X of F is µ-open in F if Xµ = {[A] ∈ Fµ | A ∈ X } is open in Fµ

and is µ-closed in F if its complement F \ X is µ-open in F . A subset X of F is
µ-compact in F if Xµ is compact in Fµ. A subset X of F × R is µ-open in F × R
if Xµ = {([A], x) ∈ Fµ × R | (A, x) ∈ X} is open in the product topology of Fµ × R.
Similarly, a subset X of F × R is µ-closed in F × R if its complement (F × R) \X is µ-
open in F × R.

3.1 µ-Lower Semicontinuous Functions

Definition 3.1. A set function f : X → R ∪ {+∞} is µ-lower semicontinuous at A ∈ X
if for every real number z < f(A), there exists some δ > 0 such that µ(A4B) < δ implies
z < f(B). If f is µ-lower semicontinuous at every set in X , then it is said to be µ-lower
semicontinuous. A set function f : X → R ∪ {−∞} is µ-upper semicontinuous if −f is
µ-lower semicontinuous.

The following properties are similar to those of lower semicontinuous functions on topo-
logical spaces (see Attouch et al. [1, Section 3.2]; Ekeland and Témam [5, Section 1.2]).

• If f and g are µ-lower semicontinuous functions on X into R∪{+∞} and α ≥ 0, then
αf and f + g defined by

(αf)(A) = αf(A), (f + g)(A) = f(A) + g(A)

are µ-lower semicontinuous functions.

• If {fi}i∈I is a family of µ-lower semicontinuous functions on X into R ∪ {+∞}, then
their pointwise supremum f = supi∈I fi is a µ-lower semicontinuous function.

• The effective domain of a µ-lower semicontinuous function is µ-closed.

• A subset X of F is µ-closed if and only if δX is µ-lower semicontinuous.

Definition 3.2. A set function f : X → R ∪ {+∞} is µ-invariant if A,B ∈ X with
µ(A4B) = 0 implies f(A) = f(B).

Theorem 3.3. Every µ-lower semicontinuous function is µ-invariant.

Proof. Let f : X → R∪{−∞} be a µ-lower semicontinuous function. Suppose that f is not
µ-invariant. Then there exist A,B ∈ X such that µ(A4B) = 0 and f(A) 6= f(B). Without
loss of generality, assume that f(A) > f(B). Because f is µ-lower semicontinuous at A,
there exists some δ > 0 such that, for every A′ ∈ X , µ(A4 A′) < δ implies f(A′) > f(B).
By choosing A′ = B, we have f(B) > f(B), which is a contradiction. Therefore, f is
µ-invariant.

Proposition 3.4. If f : X → R ∪ {+∞} is a µ-lower semicontinuous set function, then
the following equivalent conditions hold:
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(i) epi f is µ-closed;

(ii) levα f is µ-closed for every α ∈ R;

(iii) {A ∈ X | f(A) > α} is µ-open for every x ∈ R;

(iv) f(A) ≤ lim infµ(A4B)→0 f(B) for every A ∈ X .

Proof. It follows from Theorem 3.3 that f ‘induces’ a function fµ on Xµ defined by fµ([A]) =
f(A). Thus, the above conditions correspond exactly to those relating to the lower semicon-
tinuous function fµ on the metric space (Xµ, dµ). The proof is standard; see, for example,
Attouch et al. [1, Proposition 3.2.2].

3.2 The Minimax Theorem for Set Functions

Definition 3.5. Let X and X ′ be subsets of σ-algebras of Ω and Ω′, respectively. A pair
(A0, A

′
0) ∈ X ×X ′ is a saddle point of the set function L : X ×X ′ → R if

L(A0, A
′) ≤ L(A0, A

′
0) ≤ L(A,A′0) for every (A,A′) ∈ X ×X ′.

It is well known that the minimax value of L is attained at its saddle points (see Ekeland
and Témam [5, Proposition VI.1.2]).

Proposition 3.6. A set function L : X ×X ′ → R has a saddle point (A0, A
′
0) ∈ X ×X ′

if and only if
min
A∈X

sup
A′∈X ′

L(A,A′) = max
A′∈X ′

inf
A∈X

L(A,A′).

This value coincides with L(A0, A
′
0).

Theorem 3.7 (Minimax theorem). Let X be a µ-convex, µ-compact subset of F , let
X ′ be a µ′-convex, µ′-compact subset of F ′ and let L : X ×X ′ → R be a set function with
the following properties:

(i) for every A ∈ X , the function A′ 7→ L(A,A′) is µ′-concave and µ′-upper semicontin-
uous;

(ii) for every A′ ∈ X ′, the function A 7→ L(A,A′) is µ-convex and µ-lower semicontinuous.

Then, L has a saddle point (A0, A
′
0) ∈ X ×X ′ and

min
A∈X

max
A′∈X ′

L(A,A′) = max
A′∈X ′

min
A∈X

L(A,A′) = L(A0, A
′
0).

Proof. We first consider the case in which, for every A′ ∈ X ′, the function A 7→ L(A,A′) is
strictly µ-convex. From condition (i), the function f , defined by f(A′) = minA∈X L(A,A′),
is a µ′-concave, µ′-upper semicontinuous function as the pointwise infimum of a family of
µ′-concave, µ′-upper semicontinuous functions A′ 7→ L(A,A′) with A ∈ X . Given that, for
every A′ ∈ X ′, the minimizer of a µ-lower semicontinuous function A 7→ L(A,A′) is unique
up to µ-equivalence according to Theorem 2.9(ii), there exists a mapping ϕ : X ′ → X such
that f(A′) = L(ϕ(A′), A′) for every A′ ∈ X ′. Because f is µ′-upper semicontinuous on the
µ′-compact set X ′, it attains its maximum value at the set A′0 ∈ X ′:

f(A′0) = max
A′∈X ′

f(A′) = max
A′∈X ′

min
A∈X

L(A,A′). (3.1)
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For A′ ∈ X ′, t ∈ (0, 1) and B′
t ∈ K µ

t (A′, A′0), and given the µ′-concavity described in
condition (i), we have

f(A′0) ≥ f(B′
t) = L(ϕ(B′

t), B
′
t) ≥ tL(ϕ(B′

t), A
′) + (1− t)L(ϕ(B′

t), A
′
0)

≥ tL(ϕ(B′
t), A

′) + (1− t)f(A′0).

Hence,
L(ϕ(B′

t), A
′) ≤ f(A′0) for every A′ ∈ X and t ∈ (0, 1). (3.2)

We show that µ(ϕ(B′
t)4 ϕ(A′0)) → 0 as t → 0. From the definition of ϕ(B′

t), it follows
that L(ϕ(B′

t), B
′
t) ≤ L(A,B′

t) for every A ∈ X and t ∈ (0, 1). Thus, given the µ′-concavity
described in condition (i), we have

tL(ϕ(B′
t), A

′) + (1− t)L(ϕ(B′
t), A

′
0) ≤ L(A,B′

t) (3.3)

for every A ∈ X and t ∈ (0, 1). By Theorem 2.1, there exist E ∈ K µ
t (A′) and F ∈ K µ

1−t(A
′
0)

such that B′
t = E ∪ F and E ∩ F = ∅. Because B′

t 4 A′0 ⊂ E ∪ (A′0 \ F ), we have
µ(B′

t 4 A′0) ≤ t(µ(A′) + µ(A′0)) → 0 as t → 0. Let {tν} be any sequence in (0, 1) with
tν → 0. Given that X is µ-compact and Bν = ϕ(B′

tν ) ∈ X for each ν, there exists a
subsequence {Bνk} of {Bν} such that µ(Bνk 4 B) → 0 for some B ∈ X . The passage to
the limit in the inequality (3.3) with tνk → 0 yields

L(B,A′0) ≤ lim inf
k→+∞

L(Bνk , A′0) ≤ lim sup
k→+∞

L(A,B′
tνk ) ≤ L(A,A′0)

for every A ∈ X given the µ′-upper semicontinuity and the µ-lower semicontinuity described
in conditions (i) and (ii). Thus, minA∈X L(A,A′0) = L(B,A′0). Because the minimizer ϕ(A′0)
is unique up to µ-equivalence by Theorem 2.9(ii), we have µ(ϕ(A′0)4 B) = 0. Therefore,
µ(Bνk 4 ϕ(A′0)) → 0. Given that µ(ϕ(B′

tν )4 ϕ(A′0)) → 0 for every subsequence {ϕ(B′
tν )}

of {ϕ(B′
t)}, it follows that µ(ϕ(B′

t)4 ϕ(A′0)) → 0.
Given the µ-lower semicontinuity described in condition (ii), letting t → 0 in inequality

(3.2) yields

L(ϕ(A′0), A
′) ≤ lim inf

t→0
L(ϕ(B′

t), A
′) ≤ f(A′0) for every A′ ∈ X .

Because the minimax inequality max minL ≤ minmax L is satisfied, we have f(A′0) ≤
L(A,A′0) for every A ∈ X by (3.1). By setting A0 = ϕ(A′0), we obtain

L(A0, A
′) ≤ f(A′0) = L(A0, A

′
0) ≤ L(A,A′0) for every (A,A′) ∈ X ×X ′.

Therefore, (A0, A
′
0) ∈ X ×X ′ is a saddle point of L. The result follows from Proposition

3.6.
Next, we consider the general case. We introduce a perturbation Lε : X ×X ′ → R of

L defined by
Lε(A,A′) = L(A,A′) + εµ(A)2, ε > 0.

Because µ2 is strictly µ-convex (see Example 2.8), for every A′ ∈ X , the function A 7→
Lε(A,A′) is strictly µ-convex given the µ-convexity described in condition (ii). By applying
the above reasoning, we demonstrate the existence for Lε of a saddle point (Aε, A

′
ε) ∈

X ×X ′: for every (A,A′) ∈ X ×X ′,

L(Aε, A
′) + εµ(Aε)2 ≤ L(Aε, A

′
ε) + εµ(Aε)2 ≤ L(A,A′ε) + εµ(A)2. (3.4)
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Because X and X ′ are µ-compact and µ′-compact, respectively, there exists a sequence
{εν} with εν → 0 such that µ(Aεν 4 A0) → 0 for some A0 ∈ X and µ′(A′εν 4 A′0) → 0
for some A′0 ∈ X ′. Because µ2 is µ-continuous (see Example 3.10), passing to the limit
in (3.4) by using the µ′-upper semicontinuity and the µ-lower semicontinuity described in
conditions (i) and (ii) yields L(A0, A

′) ≤ L(A,A′0) for every (A,A′) ∈ X ×X . This proves
that (A0, A

′
0) is a saddle point of L and thus proves the theorem.

3.3 µ-Absolutely Continuous Functions

Definition 3.8. (i) A set function f : X → R is µ-continuous if it is both µ-lower
semicontinuous and µ-upper semicontinuous.

(ii) A set function f : X → R ∪ {+∞} is µ-absolutely continuous if µ(N) = 0 implies
f(A ∪N) = f(A) for every A ∈ X with A ∪N ∈ X .

Theorem 3.9. Let f : F → R be a set function with f(∅) = 0. If f is µ-invariant, then
it is µ-absolutely continuous. If f is a finite measure, then the following conditions are
equivalent:

(i) f is µ-invariant;

(ii) f is µ-continuous;

(iii) f is µ-absolutely continuous.

Proof. Let f be a µ-invariant function with f(∅) = 0. Because µ(N) = 0 yields µ((A∪N)4
A) = 0, we have f(A ∪N) = f(A) for every A ∈ F .

Let f be a finite measure. Implication (ii)⇒ (i) follows from Theorem 3.3 and implication
(i) ⇒ (iii) is immediate from the above argument.

We demonstrate implication (iii) ⇒ (ii). If f is not µ-continuous, then for some ε > 0,
there exist sets Aν and A such that µ(Aν 4 A) < 1

2ν and |f(Aν) − f(A)| ≥ ε for each ν.
Given that |f(Aν)− f(A)| ≤ f(Aν \A) + f(A \Aν) = f(Aν 4A), we have f(Aν 4A) ≥ ε.
If B = lim supν(Aν 4 A), then µ(B) = 0 by the first Borel–Cantelli lemma (see Billingsley
[2, Theorem 4.3]). However, f(B) ≥ ε because lim supν f(Aν 4 A) ≤ f(B) (see Billingsley
[2, Theorem 4.1]). Therefore, f is not µ-absolutely continuous.

Example 3.10. Let µ1, . . . , µn be nonatomic finite measures of a measurable space (Ω,F )
and define the nonatomic finite measure by µ = 1

n

∑n
i=1 µi. Denote by S the range of the

vector measure (µ1, . . . , µn), that is, S = {(µ1(A), . . . , µn(A)) ∈ Rn | A ∈ F}. Let ϕ be a
real-valued function on S. The set function fϕ defined by

fϕ(A) = ϕ(µ1(A), . . . , µn(A)) for A ∈ F

is µ-continuous if ϕ is continuous. To demonstrate this, we let {Aν} be a sequence in F
such that µ(Aν 4 A) → 0. Because µ(Aν 4 A) → 0 implies µi(Aν 4 A) → 0 for each i,
we have µi(Aν) → µi(A) given that |µi(Aν) − µi(A)| ≤ µi(Aν 4 A) for each ν. Therefore,
limν fϕ(Aν) = fϕ(A), and hence fϕ is µ-continuous.

Suppose that ϕ is discontinuous at some point x in S. Because S is convex by the
Lyapunov convexity theorem (see Dubins and Spanier [3] and Halmos [6]) and contains the
origin of Rn, xν = (1 − 1

ν )x ∈ S for each ν. Since xν → x, there exists some ε > 0 such
that |ϕ(xν) − ϕ(x)| ≥ ε for each ν. Let A ∈ F be such that x = (µ1(A), . . . , µn(A)).
Given the nonatomicity of µi, there exist sets Aν ⊂ A such that (µ1(Aν), . . . , µn(Aν)) =
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(1 − 1
ν )(µ1(A), . . . , µn(A)) (see Dubins and Spanier [3, Lemma 5.3]). Since µi(Aν 4 A) =

µi(A \ Aν) = 1
ν µi(A) for each i = 1, . . . , n, we have µ(Aν 4 A) → 0. It follows from

|fϕ(Aν)− fϕ(A)| = |ϕ(xν)− ϕ(x)| ≥ ε for each ν that fϕ is discontinuous at A.
Therefore, fϕ is µ-continuous if and only if ϕ is continuous on S.

Convex functions on normed spaces are locally Lipschitz continuous if they are locally
bounded above (see Ekeland and Témam [5, Corollary I.2.4]). As the following example
demonstrates, this is not the case for µ-convex functions.

Example 3.11. Define the set function f by

f(A) =

{
1 if µ(A) = µ(Ω),
0 otherwise.

Note that f is µ-absolutely continuous. Let A,B ∈ F , t ∈ [0, 1] and C ∈ K µ
t (A,B) be

arbitrary. If µ(C) = µ(Ω), then µ(A) = µ(B) = µ(Ω) whenever t ∈ (0, 1); µ(A) = µ(Ω)
whenever t = 1; µ(B) = µ(Ω) whenever t = 0. Thus, we have f(C) = 1 = tf(A)+(1−t)f(B).
If µ(C) < µ(Ω), then 0 = f(C) ≤ tf(A)+(1− t)f(B) given the nonnegative of f . Therefore,
f is µ-convex. Although f is µ-upper semicontinuous on F , it is not µ-lower semicontinuous
at Ω.

3.4 Countable Additivity of µ-Convex Charges

Theorem 3.12. Let X be a µ-convex set containing the empty set and let f : X → R be
a set function with f(∅) = 0. If f is µ-convex, then µ(A)f(B) ≤ µ(B)f(A) for every A and
B in X with B ⊂ A.

Proof. Let f be µ-convex and let f(∅) = 0. Choose A and B in X arbitrarily such that
B ⊂ A. If µ(A) = 0, then µ(B) = 0 from the monotonicity of µ. Thus, the above
inequality holds trivially. If µ(A) > 0, we can define t = µ(B)

µ(A) . Because f(∅) = 0 and
B ∈ K µ

t (A, ∅), we have f(B) ≤ tf(A) + (1− t)f(∅) = tf(A) by the µ-convexity of f , which
yields µ(A)f(B) ≤ µ(B)f(A).

Theorem 3.12 implies that every µ-convex function on F with f(∅) = 0 is dominated
by the nonatomic finite measure µf = f(Ω)

µ(Ω)µ; that is, f(A) ≤ µf (A) for every A ∈ F . This
observation enables us to state the following corollaries.

Corollary 3.13. If f : F → R is a monotone µ-convex set function with f(∅) = 0, then
f(N) = 0 for every µ-null set N .

Proof. Let N be a µ-null set. We then have 0 ≤ f(N) ≤ µf (N) = 0.

Corollary 3.14. A set function f : F → R with f(∅) = 0 is µ-additive if and only if
f = µf .

Proof. If f is µ-additive, then f ≤ µf by its µ-convexity and f ≥ µf by its µ-concavity.
Hence, f = µf . The converse implication is obvious.

For a finite charge, the converse of Theorem 3.12 is true.

Theorem 3.15. A finite charge f is µ-convex if and only if µ(A)f(B) ≤ µ(B)f(A) for
every A and B in F with B ⊂ A.
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Proof. Suppose that the inequality given in the theorem is satisfied. Let A,B ∈ F , t ∈ [0, 1]
and C ∈ K µ

t (A,B) be arbitrary. We must show that f(C) ≤ tf(A)+(1− t)f(B). If f(A) =
0, then f(B) = 0 from the monotonicity of f , and hence f(C) = tf(A) + (1 − t)f(B) = 0
given that f(C) ≤ f(A ∪ B) = 0. If µ(A) = 0, then µ(B) = 0 because of the monotonicity
of µ, and hence µ(C) = 0. Given the µ-absolute continuity of f by Corollary 3.13, it follows
that f(A) = f(B) = f(C) = 0. Hence, f(C) = tf(A) + (1 − t)f(B) = 0. Suppose that
µ(A) > 0 and f(A) > 0. By Theorem 2.1, there exist E ∈ K µ

t (A) and F ∈ K µ
1−t(B) such

that C = E ∪ F and E ∩ F = ∅. If f(B) = 0, then f(F ) = 0 given that F ⊂ B. We then
have

f(C) = f(E) =
f(E)
f(A)

f(A) ≤ µ(E)
µ(A)

f(A) = tf(A) + (1− t)f(B),

for which we have used the condition µ(A)f(E) ≤ µ(E)f(A). If f(B) > 0, then we have

f(C) = f(E) + f(F ) =
f(E)
f(A)

f(A) +
f(F )
f(B)

f(B) ≤ µ(E)
µ(A)

f(A) +
µ(F )
µ(B)

f(B)

= tf(A) + (1− t)f(B),

for the second line of which we have used

µ(A)f(E) ≤ µ(E)f(A) and µ(B)f(F ) ≤ µ(F )f(B).

Hence, f is µ-convex.
The converse implication follows from Theorem 3.12.

Recall that if a function on a vector space vanishing at the origin is both convex and
concave, then it is an additive function. A similar property holds for µ-additive set functions.

Theorem 3.16. (i) A finite signed charge f coincides with µf if and only if f is µ-
additive.

(ii) A µ-continuous charge is a measure.

(iii) A µ-convex finite charge is a µ-continuous measure.

Proof. (i) If f = µf , it is clear that f is a µ-additive nonatomic finite signed measure.
Suppose, conversely, that f is a µ-additive finite signed charge. The µ-additivity of f
implies µ(A)f(B) = µ(B)f(A) for every A and B in F with B ⊂ A by Theorem 3.15.
Letting B = Ω in this equality yields f = µf .

(ii) Let f be a µ-continuous charge. It is sufficient to demonstrate its countable additivity.
Let Aν , ν = 1, 2, . . . , be pairwise disjoint sets of F and A =

⋃∞
ν=1 Aν . If f(A) < +∞, let

Ek = A \ ⋃k
ν=1 Aν for each k. Then, Eν ↓ ∅ and µ(Eν 4 ∅) = µ(Eν) → 0. Because f is

µ-continuous, we obtain limν f(Eν) = f(∅) = 0. By letting k → ∞ in both sides of the
equality f(Ek) = f(A)−∑k

ν=1 f(Aν), we obtain f(A) =
∑∞

ν=1 f(Aν). Given f(A) = +∞,
we let Ek =

⋃k
ν=1 Aν for each k. Then, Eν ↑ A and µ(Eν 4 A) = µ(A \ Eν) → 0. Because

f is µ-continuous, we obtain limν f(Eν) = f(A). By letting k → ∞ in both sides of the
equality f(Ek) =

∑k
ν=1 f(Aν), we obtain f(A) =

∑∞
ν=1 f(Aν) = +∞.

(iii) µ-continuity follows from Theorems 3.9 and 3.15 and countable additivity follows
from (ii) above.
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