
CHARACTERIZING LOCALLY EFFICIENT SOLUTIONS OF
FUZZY MULTICRITERIA LOCATION PROBLEMS WITH

RECTILINEAR NORM

Masamichi Kon

Abstract: A fuzzy multicriteria location problem with rectilinear norm on the plane is considered. We give
some properties of efficient and locally efficient solutions of the problem, and give characterizations of locally
efficient solutions of the problem. Such characterizations are then used to readily find all locally efficient
solutions of the problem.

Key words: fuzzy location problem, multicriteria problem, rectilinear norm, efficiency

Mathematics Subject Classification: 90B85

1 Preliminaries

In a general continuous location model, finitely many points called demand points in R2,
modeling existing facilities or customers, are given. Let di ≡ (ai, bi) ∈ R2, i = 1, 2, · · · ,
n(≥ 2) be distinct demand points. We put I ≡ {1, 2, · · · , n} and D ≡ {di: i ∈ I}. Then
a problem to locate a new facility in R2 is called a single facility location problem. If one
prefers the location of the facility near demand points, then the problem is formulated as
follows:

min
x∈R2

g(γ1(x− d1), γ2(x− d2), · · · , γn(x− dn))

where x ∈ R2 is the variable location of the facility. It is often assumed that g: Rn → R
is non-decreasing and convex or that g: Rn → Rn satisfies g(z) = z for all z ∈ Rn. It is
also often assumed that γi: R2 → R, i ∈ I are norms or gauges, and each γi(x − di), i ∈
I represents the distance from di to x. In this paper, it is assumed that all γi, i ∈ I are
the same rectilinear norm ‖ · ‖1. See [2, 5] for gauges. Then a multicriteria location problem
(MCP) is formulated as follows:

min
x∈R2

f(x) ≡ (‖x− d1‖1, ‖x− d2‖1, · · · , ‖x− dn‖1).

For example, MCP is considered in [1, 4, 6].

Definition 1.1. (i) A point x0 ∈ R2 is called an efficient solution of MCP if there is no x
∈ R2 such that f(x) ≤ f(x0) and f(x) 6= f(x0), and is called a locally efficient solution of
MCP if for some ε > 0, there is no x ∈ Nε(x0) such that f(x) ≤ f(x0) and f(x) 6= f(x0),
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where Nε(x0) ≡ {y ∈ R2: ‖y − x0‖2 < ε} and ‖ · ‖2 is Euclidean norm. Let E(D) and
LE(D) be sets of all efficient and locally efficient solutions of MCP, respectively.

(ii) A point x0 ∈ R2 is called a strictly efficient solution of MCP if there is no x ∈ R2 such
that x 6= x0 and f(x) ≤ f(x0), and is called a locally strictly efficient solution of MCP if
for some ε > 0, there is no x ∈ Nε(x0) such that x 6= x0 and f(x) ≤ f(x0). Let SE(D) and
LSE(D) be sets of all strictly and locally strictly efficient solutions of MCP, respectively.

(iii) A point x0 ∈ E(D) \ SE(D) is called an alternately efficient solution of MCP, and x0 ∈
LE(D) \ LSE(D) is called a locally alternately efficient solution of MCP. We put AE(D) ≡
E(D) \ SE(D) and LAE(D) ≡ LE(D) \ LSE(D).

(iv) A point x0 ∈ R2 is called a quasiefficient solution of MCP if there is no x ∈ R2 such
that f(x) < f(x0), and is called a locally quasiefficient solution of MCP if for some ε > 0,
there is no x ∈ Nε(x0) such that f(x) < f(x0). Let QE(D) and LQE(D) be sets of all
quasiefficient and locally quasiefficient solutions of MCP, respectively.

From Definition 1.1 and the definition of f , D ⊆ SE(D) ⊆ E(D) ⊆ QE(D). Since each
‖x − di‖1, i ∈ I is convex in x ∈ R2, SE(D) = LSE(D), AE(D) = LAE(D), E(D) = LE(D)
and QE(D) = LQE(D).

Formulation of MCP is natural if one prefers the location of the facility near demand
points. However, for the location of the facility, degrees of satisfaction with respect to
demand points may be different even if distances from demand points to the facility are the
same. Furthermore, for example, if the facility is an airport, then one may not prefer the
location of the facility near demand points because of the noise. In order to deal with such
situations, we consider membership functions, which represent degrees of satisfaction for the
location of the facility with respect to demand points, and a maximization problem with an
objective function involving membership functions. Membership functions come from fuzzy
set theory which was first proposed in [7]. It is assumed that membership functions µi: R
→ [0, 1] ≡ {x ∈ R: 0 ≤ x ≤ 1}, i ∈ I are given. For each x ∈ R2 and i ∈ I, µi(‖x −
di‖1) represents the degree of satisfaction for the location x with respect to the demand
point di. Throughout this paper, it is assumed that for each µi, i ∈ I, (i) µi(x) = 0 for x <
0, (ii) µi(mi) = 1 for some mi ≥ 0 and (iii) µi is strictly increasing on [0, mi] and strictly
decreasing on [mi,∞) ≡ {x ∈ R : x ≥ mi}. Then a fuzzy multicriteria location problem
(FMCP) is formulated as follows:

max
x∈R2

µ(x) ≡ (µ1(‖x− d1‖1), µ2(‖x− d2‖1), · · · , µn(‖x− dn‖1)).

For example, FMCP is considered in [3].

Definition 1.2. (i) A point x0 ∈ R2 is called an efficient solution of FMCP if there is no
x ∈ R2 such that µ(x) ≥ µ(x0) and µ(x) 6= µ(x0), and is called a locally efficient solution
of FMCP if for some ε > 0, there is no x ∈ Nε(x0) such that µ(x) ≥ µ(x0) and µ(x)
6= µ(x0). Let FE(D) and FLE(D) be sets of all efficient and locally efficient solutions of
FMCP, respectively.

(ii) A point x0 ∈ R2 is called a strictly efficient solution of FMCP if there is no x ∈ R2

such that x 6= x0 and µ(x) ≥ µ(x0), and is called a locally strictly efficient solution of
FMCP if for some ε > 0, there is no x ∈ Nε(x0) such that x 6= x0 and µ(x) ≥ µ(x0). Let
FSE(D) and FLSE(D) be sets of all strictly and locally strictly efficient solutions of FMCP,
respectively.

(iii) A point x0 ∈ FE(D) \ FSE(D) is called an alternately efficient solution of FMCP, and
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x0 ∈ FLE(D) \ FLSE(D) is called a locally alternately efficient solution of FMCP. We put
FAE(D) ≡ FE(D) \ FSE(D) and FLAE(D) ≡ FLE(D) \ FLSE(D).

(iv) A point x0 ∈ R2 is called a quasiefficient solution of FMCP if there is no x ∈ R2 such
that µ(x) > µ(x0), and is called a locally quasiefficient solution of FMCP if for some ε > 0,
there is no x ∈ Nε(x0) such that µ(x) > µ(x0). Let FQE(D) and FLQE(D) be sets of all
quasiefficient and locally quasiefficient solutions of FMCP, respectively.

From Definition 1.2, FSE(D)⊆ FE(D)⊆ FQE(D) and FLSE(D)⊆ FLE(D)⊆ FLQE(D).
In this paper, the fuzzy multicriteria location problem with rectilinear norm on the

plane is considered. We give some properties of efficient and locally efficient solutions of
the problem, and give characterizations of locally efficient solutions of the problem. Such
characterizations are then used to readily find all locally efficient solutions of the problem.

2 Efficiency and Local Efficiency for FMCP

In this section, we give some properties of efficient and locally efficient solutions of FMCP.
We put

Bi(r) ≡ {x ∈ R2 : ‖x− di‖1 ≤ r}
for r ≥ 0 and i ∈ I, and put

B ≡
⋃

i∈I

Bi(mi)

where mi, i ∈ I are the same as the ones used in membership functions µi, i ∈ I. Let B0
i (r)

and ∂Bi(r) be the interior and the boundary of Bi(r), respectively. For i ∈ I, we define
µi : R2 → [0, 1] as follows:

µi(x) ≡ µi(‖x− di‖1), x ∈ R2.

For α ∈ [0, 1] and i ∈ I, we put

[µi]≥ (α) ≡ {x ∈ R : µi(x) ≥ α}, [µi]> (α) ≡ {x ∈ R : µi(x) > α},
[µi]≥ (α) ≡ {x ∈ R2 : µi(x) ≥ α}, [µi]> (α) ≡ {x ∈ R2 : µi(x) > α}.

Proposition 2.1. Assume that all µi, i ∈ I are upper semicontinuous on [0,∞). Then there
exists an efficient solution of FMCP, namely, FE(D) 6= ∅.
Proof. For each i ∈ I, since µi is upper semicontinuous on [0,∞) and ‖x−di‖1 is continuous
in x ∈ R2, µi is upper semicontinuous on R2. Put S1 ≡ ∂B1(m1). Since S1 is a nonempty
compact set, we can define nonempty compact sets S2, · · · , Sn such that S1 ⊇ S2 ⊇ · · · ⊇ Sn

as

Si ≡
{

x ∈ Si−1 : µi(x) = max
y∈Si−1

µi(y)
}

, i = 2, · · · , n

from Weierstrass’s theorem.
For x0 ∈ Sn, suppose that x0 /∈ FE(D) in order to show that x0 ∈ FE(D). Then there

exists x ∈ R2 such that µ(x) ≥ µ(x0) and µ(x) 6= µ(x0). Put

i0 ≡ min{i ∈ I : µi(x) > µi(x0)}.

Since
1 ≥ µ1(x) ≥ µ1(x0) = 1,
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i0 ≥ 2. Since
µi(x) = µi(x0), i = 1, 2, · · · , i0 − 1,

x ∈ Si0−1 from the definition of Si0−1. In this case, x0 ∈ Si0−1. Since µi0(x) > µi0(x0),
x0 /∈ Si0 from the definition of Si0 . This contradicts that x0 ∈ Sn ⊆ Si0 . Therefore,
x0 ∈ FE(D).

The following proposition shows that FMCP is reduced to MCP when mi = 0, i ∈ I.

Proposition 2.2. If mi = 0, i ∈ I, then the following statements hold.

(i) FLE(D) = FE(D) = E(D).

(ii) FLSE(D) = FSE(D) = SE(D).

(iii) FLAE(D) = FAE(D) = AE(D).

(iv) FLQE(D) = FQE(D) = QE(D).

Proof. Since each µi, i ∈ I is strictly decreasing on [0,∞), for each i ∈ I and x, y ∈ R2,
‖x− di‖1 ≤ ‖y − di‖1 if and only if µi(x) ≥ µi(y), and ‖x− di‖1 < ‖y − di‖1 if and only
if µi(x) > µi(y). Thus from Definition 1.1 and 1.2, we have

FE(D) = E(D), FSE(D) = SE(D), FAE(D) = AE(D), FQE(D) = QE(D)

and

FLE(D) = LE(D), FLSE(D) = LSE(D), FLAE(D) = LAE(D), FLQE(D) = LQE(D).

Since

E(D) = LE(D), SE(D) = LSE(D), AE(D) = LAE(D), QE(D) = LQE(D),

we have the conclusion.

Proposition 2.3. For x ∈ R2, if x /∈ B, then the following statements hold.

(i) x ∈ FLE(D) iff⇔ x ∈ FE(D) iff⇔ x ∈ E(D).

(ii) x ∈ FLSE(D) iff⇔ x ∈ FSE(D) iff⇔ x ∈ SE(D).

(iii) x ∈ FLAE(D) iff⇔ x ∈ FAE(D) iff⇔ x ∈ AE(D).

(iv) x ∈ FLQE(D) iff⇔ x ∈ FQE(D) iff⇔ x ∈ QE(D).

Proof. Suppose that x /∈ B. Since ‖x− di‖1 > mi, i ∈ I, for sufficiently small δ > 0, each
µi, i ∈ I is strictly decreasing on {x ∈ R: ‖x − di‖1 − δ < x < ‖x − di‖1 + δ}. For each
i ∈ I and sufficiently small ε > 0, since ‖y − di‖1 is continuous at y = x, ‖x − di‖1 − δ
< ‖y − di‖1 < ‖x− di‖1 + δ for any y ∈ Nε(x). Thus for each i ∈ I and any y ∈ Nε(x),
‖y − di‖1 ≤ ‖x− di‖1 if and only if µi(y) ≥ µi(x), and ‖y − di‖1 < ‖x− di‖1 if and only
if µi(y) > µi(x). Therefore, from Definition 1.1 and 1.2, we have

x ∈ FLE(D) iff⇔ x ∈ LE(D) = E(D),
x ∈ FLSE(D) iff⇔ x ∈ LSE(D) = SE(D),
x ∈ FLAE(D) iff⇔ x ∈ LAE(D) = AE(D),
x ∈ FLQE(D) iff⇔ x ∈ LQE(D) = QE(D).
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It is trivial that
x ∈ FE(D) ⇒ x ∈ FLE(D),

x ∈ FSE(D) ⇒ x ∈ FLSE(D),
x ∈ FAE(D) ⇒ x ∈ FLAE(D),
x ∈ FQE(D) ⇒ x ∈ FLQE(D).

We shall show that

(a) x ∈ FLE(D) ⇒ x ∈ FE(D),
(b) x ∈ FLSE(D) ⇒ x ∈ FSE(D),
(c) x ∈ FLAE(D) ⇒ x ∈ FAE(D),
(d) x ∈ FLQE(D) ⇒ x ∈ FQE(D).

(a) Suppose that x ∈ FLE(D). In order to show that x ∈ FE(D), suppose that x /∈ FE(D).
Then there exists y ∈ R2 such that µ(y) ≥ µ(x) and µ(y) 6= µ(x). Since

y ∈
⋂

i∈I

[µi]≥ (µi(x)) ⊆
⋂

i∈I

Bi(‖x− di‖1)

and
y ∈ [

µj

]
>

(µj(x)) ⊆ B0
j (‖x− dj‖1)

for some j ∈ I, x /∈ E(D). This contradicts that x ∈ E(D) from the first part of this proof.
Therefore, x ∈ FE(D).

(b) Suppose that x ∈ FLSE(D). In order to show that x ∈ FSE(D), suppose that x /∈
FSE(D). Then there exists y ∈ R2 such that y 6= x and µ(y) ≥ µ(x). Since

y ∈
⋂

i∈I

[µi]≥ (µi(x)) ⊆
⋂

i∈I

Bi(‖x− di‖1),

x /∈ SE(D). This contradicts that x ∈ SE(D) from the first part of this proof. Therefore,
x ∈ FSE(D).

(c) Suppose that x ∈ FLAE(D). In order to show that x ∈ FAE(D), suppose that x /∈
FAE(D). Since x ∈ FLAE(D) ⊆ FLE(D), x ∈ FE(D) from (a). Since x /∈ FAE(D), x ∈
FSE(D) ⊆ FLSE(D) from Definition 1.2 (iii). Again from Definition 1.2 (iii), x /∈ FLAE(D).
This contradicts that x ∈ FLAE(D). Therefore, x ∈ FAE(D).

(d) Suppose that x ∈ FLQE(D). In order to show that x ∈ FQE(D), suppose that x /∈
FQE(D). Then there exists y ∈ R2 such that µ(y) > µ(x). Since

y ∈
⋂

i∈I

[µi]> (µi(x)) ⊆
⋂

i∈I

B0
i (‖x− di‖1),

x /∈ QE(D). This contradicts that x ∈ QE(D) from the first part of this proof. Therefore,
x ∈ FQE(D).

E(D), SE(D) and AE(D) can be determined by using algorithms in [1, 4]. From Propo-
sition 2 in [4], QE(D) = {(x, y) ∈ R2: min{ai: i ∈ I} ≤ x ≤ max{ai: i ∈ I}, min{bi: i ∈ I}
≤ y ≤ max{bi: i ∈ I}}. In the case x ∈ B, even if x ∈ FLE(D) ⊆ FLQE(D), x /∈ FE(D)
and x /∈ FQE(D) generally.
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3 Local Efficiency for FMCP and Summary Diagrams

In this section, we introduce the concept of the summary diagram, and give characterizations
of locally efficient solutions of FMCP. Such characterizations are then used to readily find
all locally efficient solutions of FMCP.

Following [6], we introduce the concept of the summary diagram in order to check that a
given point in R2 is locally efficient or strictly efficient or quasiefficient in FMCP or not. In
[6], the summary diagram is introduced for multicriteria location problems with one-infinity
norm in R2. Roughly speaking, the summary diagram represents locations of demand points
from a given point x ∈ R2 (or equivalently the location of x from demand points), and the
summary diagram is very useful because the local efficiency of x can be determined easily
by using the summary diagram as shown later in this section. We put

O1 ≡ {(x, 0) ∈ R2 : x ≥ 0},
O2 ≡ {(x, y) ∈ R2 : x > 0, y > 0},
O3 ≡ {(0, y) ∈ R2 : y ≥ 0},
O4 ≡ {(x, y) ∈ R2 : x < 0, y > 0}

and
O−j ≡ −Oj , j = 1, 2, 3, 4

and
Oj(x) ≡ x + Oj , j = ±1,±2,±3,±4

for x ∈ R2.
For x ∈ R2 with x /∈ D, we put

I1 ≡ {i ∈ I : x ∈ Bi(mi)}, I2 ≡ {i ∈ I : x ∈ (B0
i (mi))c}

and
J1 ≡ {j ∈ {±2,±4} : x ∈ Oj(di) for some i ∈ I1},
J2 ≡ −{j ∈ {±2,±4} : x ∈ Oj(di) for some i ∈ I2},
J3 ≡ −{j ∈ {±1,±3} : x ∈ Oj(di) for some i ∈ I1}

where (B0
i (mi))c is the complement of B0

i (mi) and Oj(di) is the closure of Oj(di). Then
SD(x) ≡ J1∪J2∪J3 is called the summary diagram of x. Conveniently, SD(x) is represented
in diagram form as follows: First, we put v1 ≡ (1, 0), v2 ≡ (1, 1), v3 ≡ (0, 1), v4 ≡ (−1, 1)
and v−j ≡ −vj , j = 1, 2, 3, 4; Next, for each j ∈ {±1, ±2, ±3, ±4}, dot vj if j ∈ SD(x).

Example. We set d1 = (1, 5), d2 = (3, 3), d3 = (4, 0), d4 = (0, 1) x = (0, 3) and m1 = 3,
m2 = 4, m3 = m4 = 2, and consider the summary diagram of x, SD(x). Since ‖x−d1‖1 =
3 = m1 = 3, ‖x− d2‖1 = 3 ≤ m2 = 4, ‖x− d3‖1 = 7 ≥ m3 = 2, ‖x− d4‖1 = 2 = m4 = 2,
we have x ∈ B1(m1) ∩ (B0

1(m1))c, x ∈ B2(m2), x ∈ (B0
3(m3))c, x ∈ B4(m4) ∩ (B0

4(m4))c.
Thus we have I1 = {1, 2, 4}, I2 = {1, 3, 4}. Since 1 ∈ I1, x ∈ O−2(d1), we have J1 = {−2}.
Since 1 ∈ I2, x ∈ O−2(d1), 3 ∈ I2, x ∈ O4(d3), 4 ∈ I2, x ∈ O2(d4) ∩ O4(d4), we have
J2 = {2,−4,−2}. Since 2 ∈ I1, x ∈ O−1(d2), 4 ∈ I1, x ∈ O3(d4), we have J3 = {1,−3}.
Therefore, we have

SD(x) = {−4,−3,−2, 1, 2}.
Fig.1 shows its summary diagram in diagram form. We put

Uε(x) ≡
(⋂

i∈I

[µi]≥ (µi(x))

)
∩Nε(x), Wε(x) ≡

(⋂

i∈I

[µi]> (µi(x))

)
∩Nε(x)
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for ε > 0. The summary diagram of x, SD(x), or the summary diagram of x in diagram
form is closely related with sets Uε(x) and Wε(x) for sufficiently small ε > 0, and the local
efficiency of x can be determined by using these sets. We put

Vj ≡ {y ∈ R2 : 〈vj ,y〉 ≥ 0}, V 0
j ≡ {y ∈ R2 : 〈vj ,y〉 > 0}

for j ∈ SD(x) ∩ {±2,±4} = {−4,−2, 2}, where 〈·, ·〉 is the standard inner product, and

Vj ≡ {y ∈ R2 : ‖y − vj‖1 ≥ 1}, V 0
j ≡ {y ∈ R2 : ‖y − vj‖1 > 1}

for j ∈ SD(x) ∩ {±1,±3} = {−3, 1}. From SD(x) or SD(x) in diagram form, we have

Uε(x) = x +


 ⋂

j∈SD(x)

Vj


 ∩Nε(0) = x +

{
y ∈ R2 : y =

λ√
2
v−4, λ ∈ [0, ε]

}

and

Wε(x) = x +


 ⋂

j∈SD(x)

V 0
j


 ∩Nε(0) = ∅

for sufficiently small ε > 0. Since Wε(x) = ∅ for sufficiently small ε > 0, we have x ∈
FLQE(D). On the other hand, since Uε(x)∩ ([µ3]> (µ3(x))∩Nε(x)) 6= ∅ for any ε > 0, we
have x /∈ FLE(D).

For x ∈ R2 with x /∈ D, SD(x) in diagram form as in Fig.1 is called the pattern of SD(x),
where we identify patterns if they are the same pattern by rotation. Fig.2 shows important
patterns in order to check that x is locally efficient or strictly efficient or quasiefficient in
FMCP or not.

t

t

ttt

v2

v1

v−4v−3v−2

Figure 1: SD(x) = {−4,−3,−2, 1, 2}.
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Figure 2: Patterns of summary diagrams.

Proposition 3.1. Assume that x ∈ R2 and x /∈ D. Then x ∈ FLQE(D) if and only if the
pattern of SD(x) coincides with one of patterns in Fig.2. If the pattern of SD(x) coincides
with one of patterns in Fig.2, then the following statements hold, where it is assumed that
di, i ∈ I are rotated around x to fit the pattern of SD(x).

(i) x ∈ FLSE(D) if and only if the pattern of SD(x) coincides with one of patterns (3),
(11), (26), (27), (39), (45) in Fig.2.

(ii) If the pattern of SD(x) coincides with the pattern (1) in Fig.2, then x ∈ FLAE(D).

(iii) If the pattern of SD(x) coincides with one of patterns (5)-(8), (12)-(22), (24), (25),
(28)-(38), (40)-(44) in Fig.2, then x ∈ FLQE(D) \ FLE(D).

(iv) Assume that the pattern of SD(x) coincides with one of patterns (2), (10), (23) in Fig.2.
If there exists di, i ∈ I such that x ∈ (O4(di) \ Bi(mi)) ∪ (O−4(di) ∩ B0

i (mi)), then x ∈
FLQE(D) \ FLE(D), otherwise x ∈ FLAE(D).
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(v) Assume that the pattern of SD(x) coincides with the pattern (4) in Fig.2. If there exists
di, i ∈ I such that x ∈ (O4(di) \ Bi(mi)) ∪ (O−4(di) ∩ B0

i (mi)) ∪ (O2(di) \ Bi(mi)) ∪
(O−2(di) ∩B0

i (mi)), then x ∈ FLQE(D) \ FLE(D), otherwise x ∈ FLAE(D).

(vi) Assume that the pattern of SD(x) coincides with the pattern (9) in Fig.2. If there exists
di, i ∈ I such that x ∈ (O2(di)\Bi(mi))∪(O−2(di)∩B0

i (mi)), then x ∈ FLQE(D)\FLE(D),
otherwise x ∈ FLAE(D).

Proof. Suppose that the pattern of SD(x) coincides with one of patterns (3), (11), (26),
(27), (39), (45) in Fig.2. Then for sufficiently small ε > 0, it can be seen easily that

(⋂

i∈I

[µi]≥ (µi(x))

)
∩Nε(x) = {x}.

Similarly, for the other patterns, investigating
(⋂

i∈I

[µi]≥ (µi(x))

)
∩Nε(x),

(⋂

i∈I

[µi]> (µi(x))

)
∩Nε(x)

and [µi]> (µi(x)) ∩Nε(x), i ∈ I for sufficiently small ε > 0, we have the conclusion.

From Proposition 3.1, we have the following corollary.

Corollary 3.2. For x ∈ R2 with x /∈ D, x ∈ FLSE(D) if and only if {±2,±4} ⊆ SD(x).

Proposition 3.3. For each di, i ∈ I, di ∈ FSE(D) if mi = 0, and the following statements
hold if mi > 0.

(i) di ∈ FLSE(D \ {di}) ⇒ di ∈ FLSE(D).

(ii)di ∈ FLAE(D \ {di}) ⇒ di ∈ FLQE(D) \ FLE(D).

(iii)di ∈ FLQE(D \ {di}) \ FLE(D \ {di}) ⇒ di ∈ FLQE(D) \ FLE(D).

(iv)di /∈ FLQE(D \ {di}) ⇒ di /∈ FLQE(D).

Proof. Suppose that mi = 0 for di, i ∈ I, and we shall show that di ∈ FSE(D). Since

[µi]≥ (µi(di)) = [µi]≥ (µi(0)) = [µi]≥ (1) = {di},

we have ⋂

j∈I

[
µj

]
≥ (µj(di)) = {di}.

This means that there is no x ∈ R2 such that x 6= di and µ(x) ≥ µ(di). Therefore,
di ∈ FSE(D).

(i) Since di ∈ FLSE(D \ {di}), there exists ε > 0 such that

{di} =


 ⋂

j∈I\{i}

[
µj

]
≥ (µj(di))


 ∩Nε(di) ⊇


⋂

j∈I

[
µj

]
≥ (µj(di))


 ∩Nε(di) ⊇ {di}.

Therefore, di ∈ FLSE(D).
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(ii) Fix any ε > 0. Since mi > 0 and µi is strictly increasing on [0,mi],

Nε0(di) \ {di} ⊆ [µi]> (µi(di)) ⊆ [µi]≥ (µi(di))

for sufficiently small ε0 > 0. Since di /∈ FLSE(D \ {di}),

{di} 6=

 ⋂

j∈I\{i}

[
µj

]
≥ (µj(di))


 ∩Nε0(di) ⊇ {di}.

Thus there exists x 6= di such that

x ∈

 ⋂

j∈I\{i}

[
µj

]
≥ (µj(di))


 ∩Nε0(di)

and
x ∈ [µi]> (µi(di)) ⊆ [µi]≥ (µi(di)).

Therefore, µ(x) ≥ µ(di), µ(x) 6= µ(di) and x ∈ Nε0(di) ⊆ Nε(di). By arbitrariness of ε,
di /∈ FLE(D).

On the other hand, since di ∈ FLQE(D \ {di}), there exists ε1 > 0 such that

∅ =


 ⋂

j∈I\{i}

[
µj

]
>

(µj(di))


 ∩Nε1(di) ⊇


⋂

j∈I

[
µj

]
>

(µj(di))


 ∩Nε1(di).

Therefore, di ∈ FLQE(D).

(iii) Fix any ε > 0. Since mi > 0 and µi is strictly increasing on [0,mi],

Nε0(di) ⊆ [µi]≥ (µi(di))

for sufficiently small ε0 > 0. Since di /∈ FLE(D \ {di}), there exists k ∈ I \ {i} such that

 ⋂

j∈I\{i}

[
µj

]
≥ (µj(di))


 ∩Nε0(di) ∩ [µk]> (µk(di)) 6= ∅.

Thus we have

⋂

j∈I

[
µj

]
≥ (µj(di))


 ∩Nε0(di) ∩ [µk]> (µk(di))

=


 ⋂

j∈I\{i}

[
µj

]
≥ (µj(di))


 ∩Nε0(di) ∩ [µk]> (µk(di))

6= ∅.

Therefore, there exists x ∈ Nε0(di) ⊆ Nε(di) such that µ(x) ≥ µ(di) and µ(x) 6= µ(di).
By arbitrariness of ε, di /∈ FLE(D).

On the other hand, since di ∈ FLQE(D \ {di}), it can be seen that di ∈ FLQE(D)
similarly as the last part of (ii) of this proof.
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(iv) Fix any ε > 0. Since mi > 0 and µi is strictly increasing on [0,mi],

Nε0(di) \ {di} ⊆ [µi]> (µi(di))

for sufficiently small ε0 > 0. Since di /∈ FLQE(D \ {di}),

 ⋂

j∈I\{i}

[
µj

]
>

(µj(di))


 ∩Nε0(di) 6= ∅.

Thus we have

⋂

j∈I

[
µj

]
>

(µj(di))


 ∩Nε0(di) ⊇


 ⋂

j∈I\{i}

[
µj

]
>

(µj(di))


 ∩ (Nε0(di) \ {di})

=


 ⋂

j∈I\{i}

[
µj

]
>

(µj(di))


 ∩Nε0(di)

6= ∅.
Therefore, there exists x ∈ Nε0(di) ⊆ Nε(di) such that µ(x) > µ(di). By arbitrariness of
ε, di /∈ FLQE(D).

For each demand point di, i ∈ I, we draw 0 and π
2 -oriented lines passing through the

demand point di and ∂Bi(mi) which consists of four line segments (see Fig.3). Then the
plane is divided into subregions and edges and corners, where each subregion does not
contain its boundary and each edge does not contain its end point(s) and each corner is
an intersection point of some of drawn lines and ∂Bi(mi), i ∈ I.
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Figure 3: Subregions, edges and corners. (•: demand points)

Proposition 3.4. Let S ⊆ R2 be a subregion or an edge. For x ∈ S, the following statements
hold.

(i) x ∈ FLE(D) ⇒ S ⊆ FLE(D).

(ii) x ∈ FLSE(D) ⇒ S ⊆ FLSE(D).

(iii) x ∈ FLAE(D) ⇒ S ⊆ FLAE(D).

(iv) x ∈ FLQE(D) ⇒ S ⊆ FLQE(D).
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Proof. Let S ⊆ R2 be a subregion or an edge. Suppose that x ∈ S. From the definition of
the summary diagram, SD(x) = SD(y) for any y ∈ S. Therefore, we have the conclusion
from Proposition 3.1.

Numerical example. We set d1 = (1, 5), d2 = (3, 3), d3 = (4, 0), d4 = (0, 1) and m1 =
3, m2 = 4, m3 = m4 = 2, and consider the following FMCP:

max
x∈R2

(µ1(‖x− d1‖1), µ2(‖x− d2‖1), µ3(‖x− d3‖1), µ4(‖x− d4‖1))

where each µi, i ∈ I is any function defined on R satisfying that µi(x) = 0 for x ∈ (−∞, 0]
and µi(mi) = 1 and that µi is strictly increasing on [0,mi] and strictly decreasing on [mi,∞).
Checking all subregions, edges and corners by using Proposition 3.1, 3.3 and 3.4, we have all
locally strictly efficient, alternately efficient and quasiefficient solutions of FMCP illustrated
in Fig.4.
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Figure 4-1: FLSE(D).
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Figure 4-2: FLAE(D).
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Figure 4-3: FLQE(D).

s

s

s
s

s

s

s

s

s

s s

�
�
�
��@

@@ qqqqqqqqq@
@
@
@
@
@
�
�
�
@@
�

�
�@

@
@��@

@
@
�
��
@
@
@

�
�
�

@
@@

��

@@��

�
�
�

Figure 4: Locally strictly efficient, alternately efficient and quasiefficient solutions of
FMCP.

4 Conclusions

We dealt with a fuzzy multicriteria location problem (FMCP) with rectilinear norm on
the plane. First, as Proposition 2.1-2.3, we gave some properties of efficient and locally
efficient solutions of FMCP. Next, we introduced the concept of the summary diagram,
and gave characterizations of locally efficient solutions of FMCP as Proposition 3.1. Such
characterizations were then used to readily find all locally efficient solutions of FMCP by
Proposition 3.3 and 3.4.
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