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Abstract: We provide simple necessary, and sufficient conditions for a local minimizer to be a global
minimizer of quadratic functions with mixed variables. We fully distinguish global minimizers from local
minimizers in the case when the quadratic function is a sum of squares by providing a necessary and
sufficient global optimality condition. We discuss examples to illustrate the significance of our conditions for
identifying a global minimizer among local minimizers. Finally we apply our criteria for identifying global
minimizers of a class of fractional programming problems.
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1 Introduction

A common optimization problem in many real-world applications is to identify and locate a
global minimizer of functions of several variables with bounds on the variables [6, 14]. Yet,
identifying a global minimizer of a function of several variables, which may have several
local minimizers that are not global, is inherently difficult [5, 9, 16]. The larger the number
of local minimizers the more difficult the task of locating a global minimizer becomes.

On the other hand, locating a local minimizer of functions of several variables with
bounds on the variables is well understood (see for instance [1]). In particular, complete
characterizations of a minimizer are well known for a convex function with bounds on the
variables, where a local minimizer is global. So, the question naturally arises: when is a
local minimizer of a non-convex function of several variables with bounds on the variables a
global minimizer? Answering this question is of significant practical value as our ability to
distinguish local and global minimizers will lead to efficient methods for locating global min-
imizers. However, the development of mathematical criteria which completely characterize
a local minimizer as global is known to be difficult even for a quadratic non-convex func-
tion. For recent developments of identifying global minimizers of quadratic minimization
problems, see [2, 7, 8, 11, 12, 15].

In this paper, we provide simple necessary, and sufficient conditions for a local minimizer
to be a global minimizer of quadratic functions with bounds on the mixed variables. These
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necessary conditions, and sufficient conditions coincide for the weighted sum of squares
function subject to bounds on the mixed variables.

Recent research saw the development of conditions necessary or sufficient for character-
izing global minimizers of smooth functions with bounded mixed variables (see [10, 13] and
other references therein). However, a drawback of this development is that the conditions
were neither based on local optimality conditions nor expressed in terms of local minimizers.
We provide an elementary proof for the necessary, and sufficient conditions by refining the
method of proof, developed in [13], and by incorporating the local optimality conditions.
We also obtain corresponding results for a unique global minimizer. We discuss examples to
illustrate the significance of our conditions for identifying a global minimizer from the set
of local minimizers. We apply our conditions for distinguishing local and global minimizers
of fractional quadratic programs.

2 Characterizing Global Minimizers

In this section, we provide methods to characterize the global minimizers from the local
minimizers of the following quadratic minimization problem over a box with mixed variables.

(P ) min
x∈Rn

1
2xT Ax + aT x

subject to xi ∈ [ui, vi], if i ∈ I
xi ∈ {ui, vi}, if i ∈ J

where I ∩ J = ∅, I ∪ J = {1, 2, . . . , n}, A = (aij) ∈ Sn, the set of all n × n sym-
metric matrices, a = (ai) ∈ Rn and ui, vi ∈ Rn and ui < vi, i = 1, 2, . . . , n. Let
D = {(x1, . . . , xn)T ∈ Rn

∣∣ xi ∈ [ui, vi], for i ∈ I and xi ∈ {ui, vi}, for i ∈ J}. First
we begin with the necessary conditions for local optimality. For i = 1, 2, . . . , n define

χi(x̄) :=




−1 if x̄i = ui

1 if x̄i = vi

(Ax̄ + a)i if x̄i ∈ (ui, vi).

Lemma 2.1. If x̄ ∈ D is a local minimizer of (P ) then the following optimality condition
holds:

χi(x̄)(Ax̄ + a)i ≤ 0, ∀i ∈ I. (2.1)

Proof. First we rewrite the problem (P ) as follows,

(RP ) min
x∈Rn

1
2xT Ax + aT x

subject to (xi − ui)(xi − vi) = 0, if i ∈ J,
xi ∈ [ui, vi], if i ∈ I.

Let ∆ = {(x1, x2, . . . , xn) ∈ IRn
∣∣ xi ∈ [ui, vi], i ∈ I}. For λ ∈ IR|J|, define the Lagrangian

L(·, λ) by

L(x, λ) =
1
2
xT Ax + aT x +

∑

i∈J

λi(xi − ui)(xi − vi).

If x̄ ∈ D is a local minimizer of (P ) then obviously x̄ is a local minimizer of (RP ). Then,
by the necessary local optimality conditions [3] for (RP ), there exists λ ∈ IR|J| such that
∇xL(x, λ)(x− x̄) ≥ 0, ∀x ∈ ∆. This indeed implies that, for each i ∈ I,

(Ax̄ + a)i(y − x̄i) ≥ 0, ∀y ∈ [ui, vi]. (2.2)

This is equivalent to χi(x̄)(Ax̄ + a)i ≤ 0, i ∈ I. Hence the conclusion follows.
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For a matrix A ∈ Sn, A º 0, means that A is positive semidefinite and A Â 0, means
that A is positive definite. We now provide necessary condition and sufficient condition for
a local minimizer to be a global minimizer of (P ).

Theorem 2.2. Let x̄ ∈ D be a local minimizer of (P ).
(i) If for some i0 ∈ {1, 2, . . . , n}

ai0i0 <
2χi0(x̄)(Ax̄ + a)i0

(vi0 − ui0)
(2.3)

then x̄ can not be a global minimizer of (P ).
(ii) If

A− diag

(
2χ1(x̄)(Ax̄ + a)1

v1 − u1
, . . . ,

2χn(x̄)(Ax̄ + a)n

vn − un

)
º 0, (2.4)

then x̄ is a global minimizer of (P ).
(iii) If

A− diag

(
2χ1(x̄)(Ax̄ + a)1

v1 − u1
, . . . ,

2χn(x̄)(Ax̄ + a)n

vn − un

)
Â 0, (2.5)

then x̄ is a unique global minimizer of (P ).

Proof. Suppose that x̄ is a global minimizer of (P ). Then

1
2
xT Ax + aT x− 1

2
x̄T Ax̄− aT x̄ ≥ 0, ∀x ∈ D.

So,
1
2
(x− x̄)T A(x− x̄) + (Ax̄ + a)T (x− x̄) ≥ 0, ∀x ∈ D.

Hence,
n∑

i=1

n∑

j=1

1
2
aij(xi − x̄i)(xj − x̄j) +

n∑

i=1

(Ax̄ + a)i(xi − x̄i) ≥ 0, ∀x ∈ D,

which, in turn, implies that, for each, i = 1, 2, . . . , n,

1
2
aii(xi − x̄i)2 + (Ax̄ + a)i(xi − x̄i) ≥ 0, (x1, x2, . . . , xn) ∈ D. (2.6)

To see this implication suppose that

1
2
ai0i0(xi0 − x̄i0)

2 + (Ax̄ + a)i0(xi0 − x̄i0) < 0,

for some i0 ∈ {1, 2, . . . , n}. Then by taking
x̃ = (x̄1, . . . , x̄i0−1, xi0 , x̄i0+1, . . . , x̄n), we see that x̃ ∈ D and

1
2
x̃T Ax̃ + aT x̃− 1

2
x̄T Ax̄− aT x̄ =

1
2
ai0i0(xi0 − x̄i0)

2 + (Ax̄ + a)i0(xi0 − x̄i0) < 0.

This contradicts that x̄ is a global minimizer.
We now show that (2.6) holds if and only if

aii ≥ 2χi(x̄)(Ax̄ + a)i

(vi − ui)
, i = 1, 2, . . . , n, (2.7)
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holds, by considering the following three cases.
Case–1. Let x̄i = ui. If i ∈ I local optimality condition (2.1) implies (Ax̄ + a)i ≥ 0, and
(2.6) is equivalent to

aii(xi − ui) + 2(Ax̄ + a)i ≥ 0, ∀ xi ∈ (ui, vi]. (2.8)

By taking xi = vi, we see that (2.8) readily implies (2.7). Conversely, if (2.7) holds then,
aii(vi − ui) + 2(Ax̄ + a)i ≥ 0. Thus, if aii < 0 then, for each, xi ∈ (ui, vi],

aii(xi − ui) + 2(Ax̄ + a)i ≥ aii(vi − ui) + 2(Ax̄ + a)i ≥ 0.

Hence, (2.8) holds. On the other hand, if aii ≥ 0 then (2.8) holds as (Ax̄ + a)i ≥ 0,. So,
(2.7) is equivalent to (2.8).
If i ∈ J then (2.6) is equivalent to

aii(xi − ui) + 2(Ax̄ + a)i ≥ 0, ∀ xi 6= ui.

i.e., (2.6) holds if and only if

aii(vi − ui) + 2(Ax̄ + a)i ≥ 0.

So, (2.6) holds if and only if (2.7) holds.
Case–2. Let x̄i = vi. If i ∈ I local optimality condition (2.1) implies (Ax̄ + a)i ≤ 0, and
(2.6) is equivalent to

aii(xi − vi) + 2(Ax̄ + a)i ≤ 0, ∀ xi ∈ [ui, vi). (2.9)

By taking xi = ui, (2.9) implies (2.7).
Conversely, if (2.7) holds then in this case aii(vi − ui) − 2(Ax̄ + a)i ≥ 0. Thus, if aii < 0
then, for each, xi ∈ (ui, vi],

aii(xi − vi) + 2(Ax̄ + a)i ≤ aii(ui − vi) + 2(Ax̄ + a)i ≤ 0.

Hence, (2.9) holds. On the other hand, if aii ≥ 0 then trivially, (2.9) holds. So, (2.7) is
equivalent to (2.9).
If i ∈ J then (2.6) is equivalent to

aii(xi − vi) + 2(Ax̄ + a)i ≤ 0, ∀ xi 6= vi.

i.e., (2.6) holds if and only if

aii(vi − ui)− 2(Ax̄ + a)i ≥ 0.

So, (2.6) holds if and only if (2.7) holds.

Case–3. Let x̄i ∈ (ui, vi). In this case, i ∈ I and local optimality condition (2.1) implies,
(Ax̄ + a)i = 0 and (2.6) holds if and only if aii ≥ 0. Also, aii ≥ 0 if and only if (2.7) holds.
Therefore, the conclusion of (i) follows from the above three cases.



QUADRATIC MINIMIZATION 69

We now prove (ii). Let, x ∈ D and qi =
2χi(x̄)(Ax̄ + a)i

(vi − ui)
, i = 1, 2, . . . , n. Then,

1
2
xT Ax + aT x− 1

2
x̄T Ax̄− aT x̄ =

1
2
(x− x̄)T A(x− x̄) + (Ax̄ + a)T (x− x̄)

=
1
2
(x− x̄)T (A− diag(q1, . . . , qn))(x− x̄)

+
1
2
(x− x̄)T diag(q1, . . . , qn)(x− x̄) + (Ax̄ + a)T (x− x̄)

=
1
2
(x− x̄)T (A− diag(q1, . . . , qn))(x− x̄)

+
n∑

i=1

1
2
qi(xi − x̄i)2 + (Ax̄ + a)i(xi − x̄i).

Condition (2.4) means that A− diag(q1, . . . , qn) º 0 and so,

1
2
(x− x̄)T (A− diag(q1, . . . , qn))(x− x̄) ≥ 0, ∀x ∈ D.

We now claim that local optimality condition (2): χi(x̄)(Ax̄ + a)i ≤ 0, i ∈ I implies that,

n∑

i=1

1
2
qi(xi − x̄i)2 + (Ax̄ + a)i(xi − x̄i) ≥ 0, ∀(x1, x2, . . . , xn) ∈ D. (2.10)

To see this , we consider the following cases.
Case 1: Let x̄i = ui. If i ∈ I then (2) implies (Ax̄ + a)i ≥ 0. So, (x1, x2, . . . , xn) ∈ D,

1
2
qi(xi − x̄i)2 + (Ax̄ + a)i(xi − x̄i) = (xi − ui)(Ax̄ + a)i

(
1− xi − ui

vi − ui

)

≥ 0.

If i ∈ J then

1
2
qi(xi − x̄i)2 + (Ax̄ + a)i(xi − x̄i) = (xi − ui)(Ax̄ + a)i

(
1− xi − ui

vi − ui

)

= 0, as xi ∈ {ui, vi}.
Case 2: Let xi = vi. Then (2) implies (Ax̄ + a)i ≤ 0. So, (x1, x2, . . . , xn) ∈ D,

1
2
qi(xi − x̄i)2 + (Ax̄ + a)i(xi − x̄i) = (xi − vi)(Ax̄ + a)i

(
1− vi − xi

vi − ui

)

≥ 0.

If i ∈ J then

1
2
qi(xi − x̄i)2 + (Ax̄ + a)i(xi − x̄i) = (xi − vi)(Ax̄ + a)i

(
1 +

xi − vi

vi − ui

)

= 0, as xi ∈ {ui, vi}.
Case 3: Let ui < x̄i < vi. Then i ∈ I and (2) implies (Ax̄+a)i = 0. So, (x1, x2, . . . , xn) ∈ D,

1
2
qi(xi − x̄i)2 + (Ax̄ + a)i(xi − x̄i) = 0.
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by combining the above all three cases, (2.10) holds. Hence the conclusion of (ii) follows.
Moreover, if (2.5) holds then A− diag(q1, . . . , qn) Â 0. So,

1
2
xT Ax + aT x− 1

2
x̄T Ax̄− aT x̄ > 0, for x ∈ D \ {x̄}.

Therefore the uniqueness result follows.

Example 2.3. Consider the following nonconvex minimization problem:

(E1) min
{
−x2

1 − x2
2 − x1x2 + x1

∣∣∣∣
−1 ≤ x1 ≤ 1
x2 ∈ {−1, 1}

}
.

Local minimiers of E(1) are (1,1), (-1,1) and (-1,-1). Direct calculation shows that (2.3)
is satisfied at (−1, 1) with i0 = 2 and not satisfied at (−1,−1) and (1, 1) for i = 1, 2.
Hence, first of all (−1, 1) can not be a global minimizer. Further, among the remaining local
minimizers (1, 1) and (−1,−1), (2.5) holds at (−1,−1). The point (−1,−1) is indeed the
unique global minimizer.

It is noted that if A is a diagonal matrix, that is, in the case of minimization of the
sum of weighted squares, (2.7) and (2.4) coincide with each other and become necessary and
sufficient conditions. The following Corollary provides an answer to the question “When is a
local minimizer of weighted sum of squares with variable bounds to be a global minimizer?”

Corollary 2.4. For (P ), let aij = 0 for all i 6= j and let x̄ ∈ D be a local minimizer. Then,
(i) x̄ is a global minimizer of (P ) if and only if

aii(vi − ui)− 2χi(x̄)(aiix̄i + ai) ≥ 0, ∀i = 1, 2, . . . , n. (2.11)

(ii) x̄ is the unique global minimizer of (P ) if and only if

aii(vi − ui)− 2χi(x̄)(aiix̄i + ai) > 0, ∀i = 1, 2, . . . , n. (2.12)

Proof. The conclusion of (i) immediately follows from Theorem 2.2, as (2.7) and (2.4) col-
lapse to (2.11) when A is a diagonal matrix.
We now prove (ii). The point x̄ is the unique global minimizer of (P ) if and only if
1
2xT Ax + aT x − 1

2 x̄T Ax̄ − aT x̄ > 0, ∀x ∈ D \ {x̄}, which is equivalent to, for each,
i = 1, 2 . . . , n,

1
2
aii(xi − x̄i)2 + (aiix̄i + ai)(xi − x̄i) > 0, ∀(x1, x2, . . . , xn) ∈ D \ {x̄}. (2.13)

Now, by considering the three cases as in the proof of Theorem 2.2, we see that (2.13) holds
if and only if (2.12) holds. Hence the conclusion of (ii) follows,

Example 2.5. Consider the following nonconvex problem:

(E2) min
{
−x2

1 + x2
2 − x1

∣∣∣∣
x1 ∈ {−1, 1}
−1 ≤ x2 ≤ 1

}
.

It is easy to check that both (−1, 0) and (1, 0) are the local minimizers of (E2). The condition
(2.12) is clearly satisfied at x̄ = (1, 0) and x̄ is indeed the unique global minimizer of (E2).

Example 2.6. Consider the problem:

(E3) min
{
−x2

1 + x2
2 − x2

∣∣∣∣
x1 ∈ {−1, 1}
−1 ≤ x2 ≤ 1

}
.

The points (−1, 1
2 ) and (1, 1

2 ) are both local and global minimizers of (E3) and the condition
(2.11) is also satisfied at both points. However, the uniqueness condition (2.12) is not
satisfied.
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3 Fractional Quadratic Programs

In this Section, we apply the results of the previous section to distinguish the local and
global minimizers of the following fractional quadratic minimization model problems:

(FP ) min
x∈Rn

1
2xT A1x + aT

1 x
1
2xT A2x + aT

2 x
subject to xi ∈ [ui, vi], if i ∈ I

xi ∈ {ui, vi}, if i ∈ J,

where I∩J = ∅, I∪J = {1, 2, . . . , n}, A1 = (a1
ij) and A2 = (a2

ij) are in Sn, the set of all n×n

symmetric matrices, a1 = (a1
i ) and a2 = (a2

i ) are in Rn, ui, vi ∈ Rn and ui < vi, i =
1, 2, . . . , n and for each x ∈ D = {(x1, . . . , xn)T ∈ Rn

∣∣ xi ∈ [ui, vi], i ∈ I and xi ∈
{ui, vi}, i ∈ J}, 1

2
xT A2x + aT

2 x > 0. For x ∈ D define

s(x) =
1
2xT A1x + aT

1 x
1
2xT A2x + aT

2 x
.

Let x̄ ∈ D. For x ∈ D define,

f(x) =
1
2
xT A1x + aT

1 x− s(x̄)
(

1
2
xT A2x + aT

2 x

)
.

Then we note that f(x̄) = 0 and

f(x)− f(x̄) =
(

1
2
xT A2x + aT

2 x

)
(s(x)− s(x̄)), ∀x ∈ D.

Hence x̄ is a (local) global minimizer of (FP ) if and only if x̄ is a (local) global minimizer
of the following quadratic minimization problem:

(FQP ) min
x∈Rn

f(x) :=
1
2
xT A1x + aT

1 x− s(x̄)
(

1
2
xT A2x + aT

2 x

)

subject to xi ∈ [ui, vi], if i ∈ I
xi ∈ {ui, vi}, if i ∈ J.

By employing the approach developed in the previous section to (FQP ), we distinguish the
local and global minimizers of (FP ).

Theorem 3.1. Let x̄ ∈ D be a local minimizer of (FP ).
(i) If for some i0 ∈ {1, 2, . . . , n}

a1
i0i0 − s(x̄)a2

i0i0 <
2χi0(x̄)((A1 − s(x̄)A2)x̄ + a1 − s(x̄)a2)i0

(vi0 − ui0)
(3.1)

then x̄ can not be a global minimizer of (FP ).
(ii) If

A1−s(x̄)A2−

diag( 2χ1(x̄)((A1−s(x̄)A2)x̄+a1−s(x̄)a2)1
v1−u1

, . . . , 2χn(x̄)((A1−s(x̄)A2)x̄+a1−s(x̄)a2)n

vn−un
) º 0,



72 V. JEYAKUMAR, G.M. LEE AND S. SRISATKUNARAJAH

then x̄ is a global minimizer of (FP ).
(iii) If

A1−s(x̄)A2−

diag( 2χ1(x̄)((A1−s(x̄)A2)x̄+a1−s(x̄)a2)1
v1−u1

, . . . , 2χn(x̄)((A1−s(x̄)A2)x̄+a1−s(x̄)a2)n

vn−un
) Â 0,

then x̄ is a unique global minimizer of (FP ).

Proof. The conclusion follows from applying Theorem 2.2 to (FQP ).

Now, consider a special case of (FP ) which has the form:

(FPS) min
x∈Rn

1
2

n∑

i=1

αix
2
i +

n∑

i=1

rixi

1
2

n∑

i=1

βix
2
i +

n∑

i=1

tixi

subject to xi ∈ [ui, vi], if i ∈ I
xi ∈ {ui, vi}, if i ∈ J,

where αi, ri, βi, ti, ui, vi ∈ Rn, i = 1, 2, . . . , n, and, for each x ∈ D,
1
2

n∑

i=1

βix
2
i +

n∑

i=1

tixi > 0. For x ∈ D, define

p(x) =

1
2

n∑

i=1

αix
2
i +

n∑

i=1

rixi

1
2

n∑

i=1

βix
2
i +

n∑

i=1

tixi

.

Theorem 3.2. For (FPS), let x̄ ∈ D be a local minimizer. Then,
(i) x̄ is a global minimizer of (FPS) if and only if

(αi − p(x̄)βi)(vi − ui)− 2χi(x̄)(αi − p(x̄)βi)x̄i + ri − p(x̄)ti) ≥ 0, ∀i = 1, 2, . . . , n.

(ii) x̄ is the unique global minimizer of (FPS) if and only if

(αi − p(x̄)βi)(vi − ui)− 2χi(x̄)(αi − p(x̄)βi)x̄i + ri − p(x̄)ti) > 0, ∀i = 1, 2, . . . , n.

Proof. The conclusion follows from applying Corollary 2.4 to the corresponding quadratic
minimization problem analogous to (FPS).
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