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1 Introduction

The classical Minty variational principle (MVP, for short) established in [20] asserts that if
x0 is a solution of the scalar (and smooth) differentiable Minty variational inequality (VI,
for short) i.e.

f ′(x)(x0 − x) ≤ 0 ∀x ∈ K,

then x0 is a global minimizer of the lower semicontinuous function f : K → R (here K is a
convex subset of Rn). This remarkable result is a subject to various generalizations.

Let X be a linear space and K be a convex subset of X. In [4] and [6] we studied the
nonsmooth Minty-type VI of differential type

f ′−(x, x0 − x) ≤ 0, x ∈ K . (1.1)

Here f ′−(x, u) denotes the lower Dini directional derivative of f : X → R in the direction
u ∈ X defined for x ∈ X as an element of R = R ∪ {±∞} by

f ′−(x, u) = lim inf
t→0+

1
t
(f(x + tu)− f(x)) .

∗This work has been partially supported by Fondazione Cariplo Grant # 2006.1601/11.0556 by University
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It has been shown in [4], [6] that, under certain regularity assumptions on f , if x0 is a
solution of (1.1), then it is also a solution of the minimization problem

min f(x) , x ∈ K . (1.2)

In [15] smooth Minty vector VI of differential type is introduced in the form

〈∇f (x) , x+ − x〉 6∈ intC.

Its solutions are related to those of a vector optimization problem, when f : X → Rm and
Rm is ordered by the cone Rm

+ . Under convexity of f , any solution x0 of the VI is also a
weak efficient solution of the primitive vector minimization problem. This result is extended
to pseudoconvex vector functions in [22].

The MVP has been in the focus of the investigation of several publications of the present
authors. Scalar VI have been considered in [4] and [6]. Various aspects of vector VI ap-
proached through scalarization are investigated in [8], [5], [7], [9] and [10]. The scalarization
technique is generalized from vector to set-valued VI in [11]. Such a generalization cannot be
considered as straightforward and leads to new concepts. In particular, motivated by pos-
sible generalizations of the MVP, we discover that the underlying set-valued optimization
problems reveals two types of solutions, called in [11] point minimizers and set minimizers.
In [12] we investigate the MVP for vector VI generalizing the results of [22]. The present pa-
per continues this investigation with respect to set-valued VI. We make use of the extension
of the image space with infinite elements introduced in [7] and the concepts for set-valued
VI developed in [11].

Roughly speaking, we distinguish between two types of set-valued VI, namely a-VI and
w-VI. The MVP relates to the a-VI the so called a-minimizers (absolutely efficient points)
and to the w-VI the so called w-minimizers (weakly efficient points). In addition, we state
that the solutions of the VI obey also appropriate increasing along rays (IAR, for short)
property. We investigate for each of the considered type VI also two other type of results,
namely when the IAR property with respect to x0 implies that x0 is a solution of the VI,
and when the given set-valued function (svf, for short) obeys the IAR property with respect
to each of its minimizers. In particular, dealing with w-VI, we show that the mentioned
result in [22] is a simple corollary of our results (see Corollary 4.16). This is the general
picture of the research in the paper. Let us still underline, that the type of the investigated
VI and the type of the considered minimizers undergo more precise specifications during the
discussion.

2 Preliminaries

In the sequel X denotes a real linear space and K is a convex subset of X. A direction
u ∈ X is said feasible for K at x ∈ X, if the set Rx,u = {t ∈ R+ | x + tu ∈ K} has t = 0
as an accumulating point. The set of the feasible directions of K at x is denoted by K(x).
Further Y is a finite-dimensional normed space and C ⊂ Y is a closed convex cone with
nonempty interior. We denote by Y ∗ the topological dual of Y , by S the unit sphere in Y ∗,
and by 〈·, ·〉 the dual paring on Y ∗ × Y . Further C ′ = {ξ ∈ Y ∗ | 〈ξ, y〉 ≥ 0, ∀y ∈ C} is the
positive polar cone of C. Recall that a vector ξ ∈ C ′ is said to be an extreme direction of C ′

when ξ ∈ C ′ \ {0} and ξ = ξ1 + ξ2, ξ1, ξ2 ∈ C ′, implies ξ1 = λ1ξ, ξ2 = λ2ξ for some positive
reals λ1, λ2. We denote by extdC ′ the set of extreme directions of C ′.

Following [7], the space Y can be extended with infinite elements (this can be done for
an arbitrary linear space Y ). An element v ∈ Y \ {0} generates an infinite element v∞, and
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we identify two infinite elements v1
∞ = v2

∞ if and only if the generating vectors satisfy the
equality v2 = λv1 for some λ > 0. The element v∞ is interpreted as the infinite element in
direction v. The set of the infinite elements of Y is denoted Y∞. We put Ỹ = Y ∪Y∞. Recall
that in the literature on vector optimization, sometimes by analogy with the scalar problems,
one or two-point extensions with infinite elements of the image space Y are considered. Such
extensions are related to the specific cone-ordering of Y . The proposed extension Ỹ has a
reacher structure and we find it more appropriate for building vector analogues of the scalar
optimization theory. It does not depend on the ordering cone. Hence, it appears to be more
natural when introducing concepts, which in principal should not depend on the ordering,
as say Dini-type derivative.

A topology on Ỹ can be introduced in terms of local bases of neighbourhoods (this
can be done for arbitrary topological linear space). If y ∈ Y and B(y) is a local base
of neighbourhoods of y in Y , we accept that B(y) is also a local base of neighbourhoods
of y in Ỹ . The family B(v∞) = {(y + W ) ∪ W∞ | v ∈ W, W open cone in Y, y ∈ Y }
constitutes a local base of neighbourhoods of the infinite point v∞ generated by v. Here
W∞ = {w∞ | w ∈ W \ {0}}. Saying that W is an open cone in Y , we mean that W is an
open set in Y such that λW ⊂ W for all λ > 0. The extended topological space Ỹ has the
following important property.

Theorem 2.1 ([7]). When Y is finite-dimensional, the space Ỹ is compact.

When ξ ∈ Y ∗ and v∞ ∈ Y∞ is an infinite element determined by v ∈ Y , we extend the
dual pairing putting 〈ξ, v∞〉 = +∞ if 〈ξ, v〉 > 0, 〈ξ, v∞〉 = 0 if 〈ξ, v〉 = 0, and 〈ξ, v∞〉 = −∞
if 〈ξ, v〉 < 0.

Since Ỹ is a topological space, we can apply topological operations on Ỹ . Obviously
cl C = C̃ := C ∪ C∞ where C∞ = {v∞ | v ∈ C \ {0}}. We have also int C̃ = intC ∪ C◦∞
where C◦∞ = {v∞ | v ∈ intC}. We can consider also limits in Ỹ , since the limit is a
topological operation.

Let F : K Ã Y be a set-valued function (svf, for short). The Dini derivative of F at the
point (x, y), where x ∈ K and y ∈ F (x), in the feasible direction u ∈ K(x), is defined as

F ′(x, y;u) = Limsup
t → 0+

1
t
(F (x + tu)− y) . (2.1)

The upper set-limit here is taken in Ỹ . In other words ȳ ∈ F ′(x, y;u) if ȳ ∈ Ỹ , and there
exist a sequence tk → 0+ and points yk ∈ F (x+tku) such that ȳ = limk(1/tk)(yk−y), where
the limit is taken in Ỹ . When f : K → Y is a single-valued function, the Dini derivative is
denoted f ′(x, u) instead of f ′(x, f(x);u).

Remark 2.2. Since we restrict to finite dimensional spaces Y , Ỹ is compact. Therefore
F ′ (x, y;u) 6= ∅ for every feasible u and y ∈ F (x).

As in the vector case, we do not have a unique way to extend the inequality sign. In this
paper we focus on the following formulations, in terms of Dini derivatives, referring to these
VI respectively as a-VI, w-VI:

∀ y ∈ F (x) : F ′(x, y;x0 − x) ∩ (−C̃) 6= ∅, x ∈ K , (2.2)

∃ y ∈ F (x) : F ′(x, y;x0 − x) 6⊂ int C̃, x ∈ K , (2.3)

According to a Minty variational principle, a-VI and w-VI, under some continuity and
(generalized) convexity assumptions, should imply some global solution to

minCF (x) , x ∈ K , (2.4)
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Several notions of solution to (2.4) for set-valued optimization problem have been recently
introduced, by using some order definitions among sets (see e.g. [21]). However, usually,
minimizers in a set-valued framework are defined as pairs (x0, y0), x0 ∈ K and y0 ∈ F (x0).
We call these type of minimizers point minimizers, since they are defined through the proper-
ties of the point y0. We distinguish this kind of solution from set minimizers, a notion which
exploit the properties of the set F (x0). The definitions of the point and set a-minimizers
and w-minimizers are given respectively in Sections 3 and 4. Clearly also the solution of the
variational inequality should respect the alternative formulation. Indeed, it is unlikely that
solution such as in (2.2) or (2.3) can be related to some point minimizer.

When F is single-valued function f : K → Y , (2.2) and (2.3) reduce to the following
vector VI (respectively a-vi and w-vi)

f ′(x, x0 − x) ∩ (−C̃) 6= ∅, x ∈ K , (2.5)

f ′(x, x0 − x) 6⊂ int C̃, x ∈ K , (2.6)

According to MVP, solutions of (2.5) and (2.5) should imply some global solution of the
vector optimization problem

minCf(x) , x ∈ K . (2.7)

We distinguish the following kinds of solutions:

Definition 2.3. The point x0 ∈ K is said an a-minimizer (absolute, or ideal, efficient point)
for problem (2.7) if f(x) ∈ f(x0) + C for all x ∈ K.

Definition 2.4. The point x0 ∈ K is said a w-minimizer (weakly efficient point) for problem
(2.7) if f(x0) /∈ f(x) + intC for all x ∈ K.

In the sequel C-convex and C-quasiconvex set-valued functions play an important role.
We recall after [2] some basic definitions and characterizations.

The definition and characterization of C-convex svf in Theorem 2.6 generalizes that of
Luc [19] for vector C-convex functions. The definition and characterization of C-quasiconvex
svf in Theorem 2.8 generalizes that of Benoist, Borwein, Popovici [1] for vector C-quasiconvex
functions. We adapt these results to a finite dimensional space Y (the result in Benoist,
Borwein, Popovici [1] for instance is formulated for a Banach space Y ).

Here and further to a given svf F : K Ã Y and ξ ∈ Y ∗ we associate the scalar function
φξ : K → R defined by φξ(x) = infy∈F (x)〈ξ, y〉. We put also Fξ(x) = {y ∈ F (x) | 〈ξ, y〉 =
φξ(x)} (possibly empty).

Definition 2.5. The svf F : K Ã Y is said to be C-convex if for every x1 , x2 ∈ K and
t ∈ [0, 1] it holds (1− t)F (x1) + tF (x2) ⊆ F ((1− t)x1 + tF (x2)) + C.

Theorem 2.6 ([2]). The svf F : K Ã Y is C-convex, with the assumption that C is closed
and convex cone with possibly empty interior, if and only if the function φξ is convex for
every ξ ∈ C ′.

Definition 2.7. The svf F : K Ã Y is said to be C-quasiconvex if for every y ∈ Y the level
set levyF = {x ∈ K | F (x) ∩ (y − C) 6= ∅} is convex.

Theorem 2.8 ([2]). The svf F : K Ã Y is C-quasiconvex, with the assumption that C is
closed and convex cone with nonempty interior, if and only if the function φξ is quasiconvex
for every ξ ∈ extdC ′.
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Remark 2.9. Theorem 2.8 is not true if the quasiconvexity of φξ is required for all ξ ∈ C ′

instead of ξ ∈ extdC ′. In opposite, when the cone C has nonempty interior, Theorem 2.6
remains true requiring the convexity of φξ only to ξ ∈ extdC ′ instead of ξ ∈ C ′.

The following example may be useful.

Example 2.10. Let F : [0, 1] Ã R2, with F (x) =
[
x, x2

]× [−x3, x3
]
. The ordering cone is

C = R2
+. Functions φ(0,1) and φ(1,0) are quasiconvex, but φ(1,1) is not quasiconvex.

We say that some property holds radially at x0 ∈ K, if the property is satisfied along
every feasible ray starting at x0. The ray starting at x0 with direction u ∈ K(x0) is denoted
by Rx0,u = {x ∈ K | x = x0 + tu for some t ∈ R+}. For instance, we say that the svf
F : K Ã Y is radially C-quasiconvex at x0 ∈ K, and write F ∈ C-RQC(K, x0), if the
function F restricted to any ray Rx0,u, u ∈ K(x0), is C-quasiconvex. Obviously, the svf
F : K Ã Y is C-quasiconvex if and only if F ∈ C-RQC(K, x) for all x ∈ K. The radial
notions can be used to relax some hypotheses. Similarly we state the following radial notion
of semicontinuity.

Definition 2.11. The scalar function φ : K → R is said to be radially lower semicontinuous
along the rays starting at x0 ∈ K, denoted by φ ∈ RLSC(K, x0), if for every x ∈ K the
function ψ : [0, 1] → Y , ψ(t) = φ(x0 + t(x− x0)) is lower semicontinuous.

The following proposition has an immediate proof and we omit it.

Proposition 2.12. Given the svf F : K Ã Y , if intC ′ 6= ∅, φξ ∈ RLSC(K, x0) for all
ξ ∈ C ′ if and only if φξ ∈ RLSC(K, x0) for all ξ ∈ extdC ′.

3 Set-valued VI and a-minimizers

In this section we deal with the solutions of the a-VI (2.2) and relate them to the set
a-minimizers of the set-valued minimization problem (2.4).

Definition 3.1. The pair (x0, y0), x0 ∈ K and y0 ∈ F (x0), is said a point a-minimizer of
(2.4) if F (x) ⊂ y0 + C for all x ∈ K.

Definition 3.2. The point x0 ∈ K is said a set a-minimizer of (2.4) if F (x) ⊂ F (x0) + C
for all x ∈ K.

One can easily notice that, if
(
x0, y0

)
is a point a-minimizer, then x0 is a set a-minimizer.

However the converse is not necessarily true.

Example 3.3. Let F : [0, 1] → R2 be such that F (x) = [0, x] × [0, x]. The ordering cone
is C =

{
y ∈ R2

+ : y2 ≤ 2y1

} ∩ {
y ∈ R2

+ : y2 ≥ 1
2y1

}
, which is closed, convex, pointed and

with not-empty interior.
It can be proved that x0 = 1 is a set a-minimizer, although there is no y0 ∈ F

(
x0

)
such

that
(
x0, y0

)
is a point a-minimizer.

In the case of a single-valued function F = f the set a-minimizer coincides with the
a-minimizer from Definition 2.3. The property F (x) ⊂ F (x0)+C from Definition 3.2 shows
a similarity with the property f(x) ∈ f(x0)+C from Definition 2.3. Therefore it seems that
the set a-minimizer is a good candidate as a generalization of the notion of a-minimizer from
vector to set-valued problems. Nevertheless, the following notion of a minimizer, given in
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Definition 3.4 and referred as set A-minimizer, is more appropriate to relate to the set-valued
VI considered in this paper.

Given ξ ∈ Y ∗ \ {0} and α ∈ R we will denote by H+(ξ, α) the set H+(ξ, α) = {y ∈ Y |
〈ξ, y〉 ≥ α}.

Definition 3.4. We say that the point x0 ∈ K is a set A-minimizer of the set-valued
minimization problem (2.4) if

F (x) ⊂
⋂ {

H+(ξ, φξ(x0)) | ξ ∈ extdC ′ ∩ Γ
}

for all x ∈ K \ {
x0

}
. (3.1)

Here Γ is a base of C ′. Since H+(ξ, α) = H+(λξ, λα) for λ > 0, condition (3.1) does not
depend on the choice of Γ.

Theorem 3.5. For the set-valued minimization problem (2.4) every set a-minimizer is also
a set A-minimizer.

Proof. Let x0 ∈ K be a set a-minimizer of (2.4). Fix x ∈ K and y ∈ F (x). Since y ∈ F (x) ⊂
F (x0) + C, we have 〈ξ, y〉 ≥ φξ(x0) and hence y ∈ H+(ξ, φξ(x0)) for all ξ ∈ extdC ′ ∩ Γ.
Therefore it holds (3.1). ¤

The next example shows that in Theorem 3.5 the converse is not true.

Example 3.6. Let X = K = R, Y = R2, C = R2
+ and let the svf F : K Ã Y be given by

F (x) =
{

[(1, 0), (0, 1)] , x = 0 ,
{(0, 0)} , x ∈ R \ {0} .

Then x0 = 0 is a set A-minimizer but not a set a-minimizer.

In the sequel we will consider the following VI referred as A-VI:

∀ ξ ∈ extdC ′ : ∀y ∈ Fξ(x) : 〈ξ, F ′(x, y;x0 − x)〉 ∩ (−R+) 6= ∅ , x ∈ K . (3.2)

Obviously, the validity of (3.2) does not change if we confine the choice of ξ to ξ ∈ extdC ′∩Γ
where Γ is a base of C ′.

When F = f is single-valued, the A-VI (3.2) as the a-VI (2.2) coincides with a-vi (2.5).

Theorem 3.7. Let the svf F : K Ã Y be compact-valued. Then any solution x0 of the a-VI
(2.2) is also a solution of the A-VI (3.2).

Proof. Fix x ∈ K. Take ξ ∈ extdC ′ and let y ∈ Fξ. Since x0 is a solution of (2.2), there
exists z ∈ F ′(x, y;x0 − x) such that z ∈ −C̃. The latter gives 〈ξ, z〉 ≤ 0 which shows that
〈ξ, F ′(x, y;x0 − x)〉 ∩ (−R+) 6= ∅. ¤

The following example shows that the solutions of A-VI (3.2) need not be solutions of
a-VI (2.2).

Example 3.8. Let X = R, K = [0, 1/2], Y = R2, C = R2
+. Define the svf F : K Ã Y by

F (x) = {(1− x, −1 + x), (−1 + x, 1− x)} . Then x0 = 0 is a solution of A-VI (3.2) but is
not so for a-VI (2.2).
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To show in this example that x0 = 0 is a solution of A-VI (3.2) it is enough to check
it for ξ1 = (1, 0) and ξ2 = (0, 1). Fix x ∈ K. Now Fξ1(x) = {(−1 + x, 1 − x)} and
Fξ2(x) = {(1− x,−1 + x)}.

For ξ1 = (1, 0), and y1 = (−1 + x, 1 − x) ∈ Fξ1(x) we have F ′(x, y1;x0 − x) =
{(−x, x), (1,−1)∞}. Now 〈ξ1, F ′(x, y1;x0 − x)〉 = {−x, +∞} has a common point −x
with −R+. At the same time F ′(x, y1;x0 − x) ∩ (−C̃) = ∅.

For ξ2 = (0, 1) and y2 = (1 − x,−1 + x) ∈ Fξ2(x) we have F ′(x, y2;x0 − x) =
{(x,−x), (−1, 1)∞}. Now 〈ξ2, F ′(x, y2;x0 − x)〉 = {−x, +∞} has a common point −x
with −R+. At the same time F ′(x, y2;x0 − x) ∩ (−C̃) = ∅.

The following theorem states the MVP for A-VI and generalizes a similar statement for
vector VI proved in [7]. A simplified set-valued variant of this theorem can be found in [11].

Theorem 3.9 (MVP for A-VI). Let the svf F : K Ã Y be compact-valued, x0 ∈ K,
and φξ ∈ RLSC(K, x0) for all ξ ∈ C ′. Let x0 be a solution of A-VI (3.2) which satisfies
the condition: for ξ ∈ extdC ′ and y ∈ Fξ(x) it holds 〈ξ, F ′(x, y;x0 − x)〉 ∩ (−intR+) 6= ∅
whenever 〈ξ, F ′(x, y;x0 − x)〉 ∩ (−R+) = ∅. Then the following properties have place:

10 (A-IAR property). For u ∈ K(x0) and 0 ≤ t1 < t2 such that x0 + t2u ∈ K it holds

F (x0 + t2u) ⊂
⋂ {

H+(ξ, φξ(x0 + t1u)) | ξ ∈ extdC ′ ∩ Γ
}

. (3.3)

20 (A-MIN property). The point x0 is a set A-minimizer of problem (2.4).

Proof. 10. We obtain the A-IAR property as a consequence of the A-MIN property formu-
lated in point 20 and proved below. Define the svf function F 0 : K0 Ã Y where K0 is the
segment K0 = [x0 + t1u, x0 + t2u] and F 0 is the restriction of F on K0. Consider A-VI
(3.2) with F replaced by F 0 and K replaced by K0. We claim x1 = x0 + t1u is a solution
of this VI. Indeed for any x = x0 + tu, t1 ≤ t ≤ t2, by the positive homogeneity of the Dini
derivative with respect to the direction we have

F ′(x, y;x1 − x) = F ′(x, y; (1− t1
t )(x0 − x)) = (1− t1

t )F ′(x, y;x0 − x) . (3.4)

Let ξ ∈ extdC ′ and y ∈ Fξ(x). Since x0 is a solution of A-VI (3.2), there exists z ∈
F ′(x, y;x0−x) such that 〈ξ, z〉 ≤ 0. Now (1− t1/t)z ∈ F ′(x, y;x1−x) and 〈ξ, (1− t1/t)z〉 =
(1−t1/t)〈ξ, z〉 ≤ 0. Thus, x1 is a solution of the restricted A-VI and the function F 0 satisfies
the hypotheses of the theorem.
According to the A-MIN property x1 is a set A-minimizer of F 0 on K0, which entails (3.3)
when applied to x1 and x2.

20. Let x0 be a solution of A-VI (3.2) and ξ ∈ extdC ′. We claim x0 solves the scalar VI

(φξ)′−(x, x0 − x) ≤ 0 , x ∈ K . (3.5)

Indeed fix x ∈ K and take y ∈ Fξ(x). Since x0 is a solution of A-VI (3.2), there exists
z ∈ F ′(x, y;x0 − x) such that 〈ξ, z〉 ≤ 0. We may assume that z = (1/tk)(yk − y), where
tk → 0+ and yk ∈ F (x + tk(x0 − x)).

The following cases may arise:
a) 〈ξ, F ′(x, y;x0 − x)〉 ∩ (−R+) 6= ∅. Hence we can choose z ∈ Y . Now

(φξ)′−(x, x0 − x) = lim inf
t→0+

1
t

(
φξ(x + t(x0 − x))− φξ(x)

)

≤ lim
k

1
tk

(〈ξ, yk〉 − 〈ξ, y〉) = 〈ξ, z〉 ≤ 0 .
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b) 〈ξ, F ′(x, y;x0 − x)〉 ∩ (−R+) = ∅. Then according to the hypotheses we may take z ∈
Ỹ \Y such that 〈ξ, z〉 < 0, and consequently 〈ξ, z〉 = −∞. In such a case 〈ξ, (1/tk)(yk − y)〉 <
0 for all sufficiently large k. Therefore again

(φξ)′−(x, x0 − x) ≤ lim inf
k

〈ξ, 1
tk

(
zk − y

)〉 ≤ 0 .

Thus, x0 solves the scalar VI (3.5) with φξ : K → R such that φξ ∈ RLSC(K, x0).
According to [4, Theorem 2.2] the point x0, being a solution of the scalar VI (3.5), is a
global minimizer of φξ, that is

φξ(x0) ≤ φξ(x) , ∀x ∈ K . (3.6)

Hence for arbitrary y ∈ F (x) it holds 〈ξ, y〉 ≥ φξ(x) ≥ φξ(x0), whence y ∈ H+(ξ, φξ(x0)).
Consequently we get (3.1) establishing that x0 is a set A-minimizer of problem (2.4). ¤

Theorem 3.9 establishes besides the MVP for A-VI (that is that the hypotheses imply
point 20), but also property (3.3) stating that F increases in some sense along the rays
starting at x0. Usually the MVP, like here, is accompanied by an increasing along rays (IAR,
for short) property. The IAR property is associated to the considered type of minimizers.
Property (3.3) is called A-IAR, since it is associated to the set A-minimizers. The notation
F ∈ A-IAR(K, x0) will denote that the svf F : K → Y has the A-IAR property at the rays
starting at x0.

For short, we call also A-MIN property the statement that x0 is a set A-minimizer of
problem (2.4), and A-VI property the statement that x0 is a solution of the A-VI (3.2).
Similarly, the a-MIN property is the statement that x0 is a set a-minimizer of problem
(2.4), and a-VI property is the statement that x0 is a solution of the a-VI (2.2).

Unfortunately, Theorem 3.9 do not imply x0 is an a−minimizer.

Example 3.10. Let X = R, K = [0, 1], Y = R2, C = R2
+, and let F : K Ã Y be given by

F (x) = [(x, 0), (0, x)]. Then x0 = 1 is a solution of A-VI (3.2), but does not solve the a-VI
(2.2). The point x0 = 1 is a set A-minimizer of (2.4), but not a set a-minimizer.

Generally the IAR property associate to certain type of minimizers can be obtained in
the following way. We say that the IAR property holds at x0 if for any u ∈ K(x0) and
0 ≤ t1 < t2 with x0 + t2u ∈ K, if the point x0 + t1u is the minimal (in sense of the accepted
notion of minimizer) between x0 + t1u and x0 + t2u. For instance, with the notion of a set
a-minimizer we associate the a-IAR property (and write F ∈ a-IAR(K,x0)) determined by

F (x0 + t2u) ⊂ F (x0 + t1u) + C . (3.7)

We, actually, failed to prove a Minty Variational Principle for a-type solutions. We leave
the following conjecture as an open problem.

Conjecture 3.11 (MVP for a-VI). Let the svf F : K Ã Y be compact-valued, x0 ∈ K,
and φξ ∈ RLSC(K, x0) for all ξ ∈ C ′. Let x0 be a solution of a-VI (3.2) which satisfies the
condition: F ′(x, y;x0 − x) ∩ (−int C̃) 6= ∅ whenever F ′(x, y;x0 − x) ∩ (−C) = ∅. Then
x0 is a set a-minimizer of (2.4) (if this is true, then it can be proved easily that also
F ∈ a-IAR(K, x0)).

Still, we can define a suitable IAR property which enhance optimality as well as solution
to the a-VI.
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Theorem 3.12. Let for the svf F : K Ã Y there exists a point x0 ∈ K such that F ∈
a-IAR(K, x0). Then the following properties have place:

10 (a-MIN property). The point x0 is a set a-minimizer of F on K.
20 (a-VI property). The point x0 is a solution of the a-VI (2.2).

Proof. 10. Take x ∈ K arbitrary, and put in (3.7) u = x − x0, t1 = 0 and t1 = 1. We get
F (x) ⊂ F (x0) + C which shows that x0 is a set a-minimizer of F .

20. Let x ∈ K and y ∈ F (x). Put in (3.7) u = x−x0, t1 = 1−t with 0 < t ≤ 1, and t2 = 1.
We get y ∈ F (x) ⊂ F (x + t(x0 − x)), and consequently 1

t

(
F (x + t(x0 − x))− y

) ∩ (−C) 6=
∅. Since F ′(x, y;x0 − x) 6= ∅ in Ỹ , and C̃ is the closure in Ỹ of C, we get from here
F ′(x, y;x0 − x) ∩ C̃ 6= ∅. ¤

Theorem 3.9 remains true, if instead of the a-VI (2.2) we consider the finite a-VI, that
is the VI

F ′(x, y;x0 − x) ∩ (−C) 6= ∅ . (3.8)

The statement even simplifies, since the requirements on the infinite points are dropped: the
existence of a solution x0 of (3.8) implies that F ∈ a-IAR(K, x0), and x0 is a set a-minimizer
of F . Theorem 3.12 however fails with respect to point 20 when we confine to finite a-VI. In
other words, F ∈ a-IAR(K, x0) does not imply that x0 is a solution of VI (3.8). This remark
underlines the advantage to deal with the a-VI (2.2) instead with the finite a-VI (3.8), and
hence the advantage to have extended the space Y with infinite elements to Ỹ . Within the
a-VI we may say (provided Conjecture 3.11 is true) that the property F ∈ a-IAR(K, x0)
is (nearly) equivalent to the property that x0 is a solution of the a-VI. Similar equivalence
within the finite a-VI does not have place.

Theorem 3.13. Let the svf F : K Ã Y be compact-valued and there exists a point x0 ∈ K
such that F ∈ A-IAR(K, x0). Then the following properties have place:

10 (A-MIN property). The point x0 is a set A-minimizer of F on K.
20 (A-VI property). The point x0 is a solution of the A-VI (3.2).

Proof. 10. Take x ∈ K arbitrary, and put in (3.3) u = x − x0, t1 = 0 and t1 = 1. We get
(3.1)which shows that x0 is a set A-minimizer of F .

20. Let x ∈ K and ξ ∈ extdC ′. Put in (3.3) u = x − x0, t1 = 1 − t with 0 < t ≤ 1,
and t2 = 1. We get F (x) ⊂ H+(ξ, φξ(x + t(x0 − x))). Therefore for y ∈ Fξ(x) we have
〈ξ, y〉 ≥ φξ(x+t(x0−x)). Let tk → 0+ and yk ∈ Fξ(x+tk(x0−x)). Passing to a subsequence,
we may assume that (1/tk)(yk − y) → z ∈ F ′(x, y;x0 − x) (here the compactness of Ỹ is
used). Now

〈ξ, z〉 = lim
k
〈ξ, 1

tk

(
yk − y

)〉 = lim
k

1
tk

(
φξ(x + tk(x0 − x))− 〈ξ, y〉) ≤ 0 .

Therefore x0 is a solution of A-VI (3.2). ¤

Remark 3.14. Theorem 3.9 remains true, if instead of the A-VI (3.2) we consider the finite
A-VI, that is the VI

∀ ξ ∈ extdC ′ : ∀y ∈ Fξ(x) : 〈ξ, F ′(x, y;x0 − x)〉 ∩ (−R+) 6= ∅ , x ∈ K . (3.9)

The statement even simplifies, since the requirements on the infinite points are dropped.
Theorem 3.13 however fails with respect to point 20 when we confine to the finite A-VI
(3.9), since the compactness of Ỹ is essential.
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Remark 3.15. Without the assumption F ∈ RLSC(K,x0), Theorem 3.9 and Conjecture
3.11 are not true. Compare for instance with [4, Example 2.1]. However Theorems 3.12 and
3.13 hold true without assuming the RLSC property on F .

Theorem 3.9 cannot be reverted without further assumptions (see e.g. [4, Example 4.1]).
As in the scalar case, we need to assume some convexity on F .

Theorem 3.16. Let the point x0 ∈ K be a set A-minimizer of problem (2.4) with a svf
F : K Ã Y . Suppose that F is C-quasiconvex. Then the following properties have place:

10 (A-IAR property). For u ∈ K(x0) and 0 ≤ t1 < t2 such that x0 + t2u ∈ K the
inclusion (3.3) holds.

20 (A-VI property). The point x0 is a solution of the A-VI (3.2).

Proof. 10. Since x0 is a set A-minimizer, for x ∈ K and ξ ∈ extdC ′ we have F (x) ⊂
H+(ξ, φξ(x0)), which gives φξ(x0) ≤ φξ(x). The function φξ is quasiconvex on the base
of Theorem 2.8 and attains its minimum at x0. Therefore it is increasing along the rays
starting at x0. This gives that for u ∈ K(x0) and 0 ≤ t1 < t2 with x0 + t2u ∈ K it holds
φξ(x0 + t1u) ≤ φξ(x0 + t2u), whence F (x0 + t2u) ⊂ H+(ξ, φξ(x0 + t1u)). Since this is true
for all ξ ∈ extdC ′, we get (3.3).

20. It follows from 10 and Theorem 3.13. ¤

Remark 3.17. Theorem 3.16 remains true, if the hypothesis that F is C-quasiconvex is
relaxed to F ∈ C-RCQ(K, x0).

4 Set-valued VI and w-minimizers

Now we consider other kind of solutions to (2.4).

Definition 4.1. The pair (x0, y0), x0 ∈ K and y0 ∈ F (x0), is said a point w-minimizer of
(2.4) if F (x) ∩ (y0 − intC) = ∅ for all x ∈ K.

Definition 4.2. The point x0 ∈ K is said a set w-minimizer of (2.4) if for each x ∈ K there
exists y0 ∈ F (x0) such that F (x) ∩ (y0 − intC) = ∅. Equivalently, x0 is a set w-minimizer
if for each x ∈ K it holds F (x0) 6⊂ F (x) + intC.

When F = f single valued, both definitions collapse onto Definition 2.3. However, as
the variational inequality implies a singleton as its solution, we prefer to focus on Definition
4.2.
Nevertheless, the following notion of a minimizer, given in Definition 4.3 and referred as set
W -minimizer, is more appropriate to relate to the set-valued VI considered in this paper.

Given ξ ∈ Y ∗ \ {0} and α ∈ R we will denote by H◦
+(ξ, α) the half-space H◦

+(ξ, α) =
{y ∈ Y | 〈ξ, y〉 > α}.
Definition 4.3. We say that the point x0 ∈ K is a set W -minimizer of the set-valued
minimization problem (2.4) if

F (x0) 6⊂
⋂ {

H◦
+(ξ, φξ(x)) | ξ ∈ extdC ′ ∩ Γ

}
for all x ∈ K \ {

x0
}

. (4.1)

Here Γ is a base of C ′. Since H◦
+(ξ, α) = H◦

+(λξ, λα) for λ > 0, condition (4.1) does not
depend on the choice of Γ.
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Theorem 4.4. For the set-valued minimization problem (2.4) every set W -minimizer is
also a set w-minimizer.

Proof. Let x0 ∈ K be a set W -minimizer of (2.4). Fix x ∈ K. Then there exists y0 ∈ F (x0)
and ξ ∈ extdC ′ ∩ Γ such that y0 /∈ H◦

+(ξ, φξ(x)). Then also y0 /∈ F (x) + intC, since
otherwise we would have y0 = y + c for some y ∈ F (x) and c ∈ intC, and in consequence
〈ξ, y0〉 = 〈ξ, y〉+ 〈ξ, c〉 > 〈ξ, y〉 ≥ φξ(x). Therefore it holds F

(
x0

) 6⊂ F (x) + C. ¤

The next example shows that in Theorem 4.4 the converse is not true.

Example 4.5. Let X = K = R, Y = R2, C = R2
+ and let the svf F : K Ã Y be given by

F (x) =
{ {(1/3, 1/3)} , x = 0 ,

[(1, 0), (0, 1)] , x ∈ R \ {0} .

Then x0 = 0 is a set w-minimizer but not a set W -minimizer.

Investigating the MVP for w-VI we adopt an approach similar to the one for A-VI from
the previous section. However, while the A-VI show similarities with the scalar case, the
w-VI mark differences. In general the MVP for w-VI can be established only for special
classes of functions. The following example shows that the MVP for w-VI is not valid even
for vector VI with C-quasiconvex functions.

Example 4.6 ([12]). Let X = R, K = [0, 2], Y = R2, C = R2
+, and f : K → Y given by

f(x) =
{ (

0, (x− 1)2 − 1
)

, x ∈ [0, 1] ,(−(x− 1)2, −1
)

, x ∈ (1, 2] .

The function f is C-quasiconvex and the point x0 = 0 is a solution of the vector VI (2.6),
but it is not a w-minimizer of problem (2.7).

As it was pointed out, the MVP for special vector VI is proved in Giannessi [15] un-
der C-convexity hypotheses and is generalized in [22] under C-pseudoconvexity hypotheses.
Since the class of C-pseudoconvex functions is intermediate between the classes of C-convex
and C-quasiconvex functions, and Example 4.6 shows that the MVP for w-VI fails for C-
quasiconvex functions, we will work under hypotheses of pseudoconvexity.

Recall that the scalar function φ : K → R is said pseudoconvex if for all x1, x2 ∈ K,
the inequality φ(x1) > ϕ(x2) implies φ′−(x1, x2 − x1) < 0. We propose the following of
pseudoconvexity for set-valued functions

Definition 4.7. We say that the svf F : K Ã Y is C-pseudoconvex if all the scalar functions
φξ, ξ ∈ extdC ′, are pseudoconvex.

Remark 4.8. As a possibility for further generalization, let us do the following remark. The
class of the (scalar) higher-order pseudoconvex functions introduced in [17] is more general
than the class of pseudoconvex functions and less general than the class of quasiconvex
functions. Therefore, it remains an open problem, whether the MVP proved in Theorem
4.12 admits a further generalization replacing the hypothesis that F is C-pseudoconvex
with the more general hypothesis that the functions φξ, ξ ∈ extdC ′ ∩ Γ, are higher-order
pseudoconvex.
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The notions of pseudoconvexity can be relaxed to radial notions as follows. For a given
point x0 ∈ K the svf F : K Ã Y is said radially C-pseudoconvex at x0 if the restriction of
F to the rays starting at x0 is C-pseudoconvex. The class of radially C-pseudoconvex svf is
denoted by RPC(K, x0).

Obviously, the notion of pseudoconvexity from Definition 4.7 reduces to the usual notion
of pseudoconvexity when F is a single-valued scalar function. Let us however mention,
that when F is a differentiable vector function, it does not coincide with the notion of
C-pseudoconvexity for such functions introduced in [3] and generalized in [16]. For such
functions the class of C-pseudoconvex functions in sense of Definition 4.7 is contained in the
class of C-pseudoconvex functions in sense of Cambini [3] (see e.g. [12]).

Consider a continuous svf F : K Ã Y for which the values F (x) have non empty interiors.
Let x0 ∈ K be arbitrary. For each x ∈ K choose yx ∈ intF (x). Now F (x, yx;x0 − x) = Ỹ ,
whence x0 is a solution of the w−V I (2.3). This observation shows that to find a reasonable
generalization of the MVP associated to set w-minimizers we need to modify the VI. Here
we propose to consider the following VI referred in the sequel as W -VI:

∃ ξ ∈ extdC ′ : ∃ y ∈ Fξ(x) : 〈ξ, F ′(x, y;x0 − x)〉 6⊂ intR+ , x ∈ K . (4.2)

Obviously, the validity of (4.2) does not change if we confine the choice of ξ to ξ ∈ extdC ′∩Γ
where Γ is a base of C ′.

When F is single-valued, the W -VI (4.2) reduces to the w-vi (2.6). Any solution of W -VI
(4.2) is also a solution of w-VI (2.3).

The following lemmas will be useful. To prove each of them we need to recall the following
Mean-Value Theorem.

Theorem 4.9 (Diewert Mean Value Theorem [14]). Let φ : [a, b] → R (a < b reals)
be a lsc functions. Then there exists a point c ∈ [a, b) such that

φ′−(c) ≥ φ(b)− φ(a)
b− a

.

Lemma 4.10. Let φ : (a, b) → R (a < b reals) be a lsc functions with negative lower
directional derivative

φ′−(t) = lim inf
t→0+

1
h

(φ(x + h)− φ(x)) < 0 , ∀x ∈ (a, b) .

Then φ is strictly decreasing.

Proof. Assume on the contrary that φ(t1) ≤ φ(t2) for some t1 < t2. From Theorem 4.9
below there exists a point t0 ∈ [t1, t2) such that

φ′−(t0) ≥ φ(t2)− φ(t1)
t2 − t1

≥ 0 ,

a contradiction. ¤

The next Lemma recalls the structure of the lsc pseudoconvex functions and can be
proved applying the Diewert Mean Value Theorem and Lemma 4.10. This result is well
known and can be obtained by the structure of the quasiconvex lsc functions [13]. Some
rigorous proof is given in [17].
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Lemma 4.11. Let φ : [a, b] :→ R (a < b reals) be a lsc pseudoconvex function. Denote by
M the points in [a, b] where φ attains its minimum. Then M is a closed interval M = [α, β]
and φ is strictly decreasing on the interval [a, α] and strictly increasing on the interval [β, b].

The next theorem establishes the MVP for W -VI. We work under the hypothesis that
the cone C is polyhedral. It is an open problem wether it can be extended to arbitrary
cones.

Theorem 4.12 (MVP for W -VI). Assume that the cone C is polyhedral. Let the svf
F : K Ã Y be compact-valued, and x0 ∈ K be a solution of W -VI (4.2). Suppose that F is
C-pseudoconvex, and φξ ∈ RLSC(K,x0) for ξ ∈ extdC ′ ∩Γ, where Γ is a base of C ′. Then
the following properties have place:

10 (W -IAR property). For u ∈ K(x0) and 0 ≤ t1 < t2 such that x0 + t2u ∈ K it holds

F (x0 + t1u) 6⊂
⋂ {

H◦
+(ξ, φξ(x0 + t2u)) | ξ ∈ extdC ′ ∩ Γ

}
. (4.3)

20 (W -MIN property). The point x0 is a set W -minimizer of problem (2.4).

Proof. 10. We obtain the W -IAR property as a consequence of the W -MIN property for-
mulated in point 20 and proved below. Define the svf function F 0 : K0 Ã Y where K0 is
the segment K0 = [x0 + t1u, x0 + t2u] and F 0 is the restriction of F on K0. Consider the
W -VI (4.2) with F replaced by F 0 and K replaced by K0. The point x1 = x0 + t1u is a
solution of this VI. To check this we take the point x = x0 + tu, t1 ≤ t ≤ t2, and observe
that the positive homogeneity of the Dini derivative with respect to the direction gives, as
calculated in (3.4), F ′(x, y;x1 − x) = (1− t1/t)F ′(x, y;x0 − x). Let ξ ∈ extdC ′, y ∈ Fξ(x)
and z ∈ F ′(x, y;x0 − x) be such that 〈ξ, z〉 ≤ 0. Now (1 − t1/t)z ∈ F ′(x, y;x1 − x) and
〈ξ, (1− t1/t)z〉 = (1− t1/t)〈ξ, z〉 ≤ 0. Thus, x1 is a solution of the restricted W -VI and the
function F 0 satisfies the hypotheses of the theorem. According to the W -MIN property x1

is a set W -minimizer of F 0 on K0, which in particular comparing the points x1 and x2 gives
(4.3).

20. Suppose to the contrary that x0 is not a set W -minimizer. Then for some x1 ∈ K
and all ξ ∈ extdC ′ ∩ Γ it holds F (x0) ⊂ H◦

+(ξ, φξ(x1)). This gives φξ(x0) > φξ(x1).
Put u = x1 − x0 and x(t) = x0 + tu. The function φξ(x(t)) is pseudoconvex in t by the
hypotheses. Because of the structure of the pseudoconvex functions (see Lemma 4.11), there
exists δξ ∈ (0, 1) such that φξ(x(t)) is strictly decreasing for t ∈ [0, δξ]. The set extd C ′ ∩ Γ
is finite, since the cone C is polyhedral. Put δ = min{δξ | ξ ∈ extdC ′ ∩ Γ}. Then δ > 0
and all the functions φξ(x(t)), ξ ∈ extdC ′ ∩ Γ, are strictly decreasing on [0, δ]. Since they
are pseudoconvex, applying the positive homogeneity of the lower directional derivative
we get (φξ)′−(x(t), x1 − x(t)) = (1 − t)(φξ)′−(x(t), x1 − x0) < 0 for t ∈ [0, δ]. Therefore
(φξ)′−(x(t), x1 − x0) < 0 for t ∈ [0, δ]. The function φξ being monotone is differentiable
almost everywhere on [0, δ] (the proof of this result known as Theorem of Lebesgue can be
found e. g. in [18, page 321]). Since the set extdC ′ ∩ Γ is finite, there exists t̄ ∈ (0, δ) such
that at t̄ all the functions φξ(x(t)), ξ ∈ extdC ′ ∩ Γ, are differentiable. Put x̄ = x(t̄). This
gives

(φξ)′−(x̄, x1 − x0) = φ′ξ(x̄, x1 − x0) = −φ′ξ(x̄, x0 − x1) < 0 .

Thus, we have φ′ξ(x̄, x0 − x1) > 0 for all ξ ∈ extdC ′ ∩ Γ. Now take arbitrary y ∈ Fξ(x̄) and
z ∈ F ′(x, y;x0−x̄). We have z = (1/tk)(yk−y) for some tk → 0+ and yk ∈ F (x̄+tk(x0−x̄)).
Therefore

〈ξ, z〉 = lim
k
〈ξ, 1

tk

(
yk − y

)〉 = lim
k

1
tk

(〈ξ, yk〉 − φξ(x̄)
)

≥ lim
k

1
tk

(
φξ(x̄ + tk(x0 − x̄))− φξ(x̄)

)
= φ′ξ(x̄, x0 − x̄) > 0 .
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This is a contradiction with the hypothesis that x0 is a solution of W − V I (4.2). ¤

Remark 4.13. The assumption of C-pseudoconvexity can be relaxed to F ∈ C-RPC(K, x0).

Theorem 4.12 remains true, if instead of W -VI (4.2) we consider the finite W -VI, that is

∃ ξ ∈ extdC ′ : ∃ y ∈ Fξ(x) : 〈ξ, F ′(x, y;x0 − x)〉 6⊂ intR+ , x ∈ K . (4.4)

where the limit in (2.1) defining the Dini derivative is taken in Y instead of Ỹ .
Since from Theorem 4.4 every set W -minimizer is also a set w-minimizer, weakening the

thesis of Theorem 4.12 we get immediately the following result.

Theorem 4.14 (weak MVP for W -VI). Assume that the cone C is polyhedral. Let the
svf F : K Ã Y be compact-valued, and x0 ∈ K be a solution of W -VI (4.2). Suppose that
F is C-pseudoconvex (or more generally F ∈ C-RPC(K, x0)), and φξ ∈ RLSC(K, x0) for
ξ ∈ extdC ′ ∩ Γ, where Γ is a base of C ′. Then the following properties have place:

10 (w-IAR property). For u ∈ K(x0) and 0 ≤ t1 < t2 such that x0 + t2u ∈ K it holds

F (x0 + t1u) 6⊂ F (x0 + t2u) + intC . (4.5)

20 (w-MIN property). The point x0 is a set w-minimizer of problem (2.4).

When F = f is a single-valued function the W -VI (4.2) reduces to the vector w-vi (2.6).
On this base from Theorem 4.12 we obtain for the vector VI the following result.

Corollary 4.15 (MVP for w-vi). Let the cone C be polyhedral and x0 ∈ K be a so-
lution of w-vi (2.6). Suppose that f : K → Y is C-pseudoconvex (or more generally
f ∈ C-RPC(K, x0)), and φξ ∈ RLSC(K,x0) for ξ ∈ extdC ′ ∩ Γ, where Γ is a base of
C ′. Then the point x0 is a w-minimizer of the vector problem (2.7).

As a special case we obtain also the following result.

Corollary 4.16 (X. M. Yang, X. Q. Yang, K. L. Teo [22]). Let X be a normed space,
Y = Rm and C = Rm

+ . Let the function f : K → Y be of class C1. Put f = (f1, . . . , fm)
and assume that the coordinate functions fi, i = 1, . . . , m, are pseudoconvex. If x0 ∈ K is
such that for every x ∈ K there exists an index i for which f ′i(x)(x0 − x) ≤ 0, then x0 is a
w-minimizer for problem (2.7).

Now, similarly to Theorem 3.13, we prove that the W -IAR property at x0 implies that
x0 is a solution of the W -VI. Let us underline, that the cone C now is not polyhedral, and
that the result uses essentially the extension of Y with infinite elements to Ỹ .

Theorem 4.17. Let the svf F : K Ã Y be compact-valued, and such that there exists a
point x0 ∈ K where F has the W -IAR(K, x0) property. Then the following properties have
place:

10 (W -MIN property). The point x0 is a set W -minimizer (and hence a set w-minimizer)
of problem (2.4).

20 (W -VI property). The point x0 is a solution of W -VI (4.2) (and hence of w-VI (2.3)).

Proof. 10. Take x ∈ K arbitrary, and put in (4.3) u = x− x0, t1 = 0 and t1 = 1. Now (4.3)
reduces to (4.1) which shows that x0 is a set W -minimizer of (2.4).



MINTY VARIATIONAL PRINCIPLE FOR SET-VALUED VARIATIONAL INEQUALITIES 53

20. Take x ∈ K arbitrary and put in (4.3) u = x − x0, t1 = 1 − t with 0 < t ≤ 1, and
t2 = 1. We get F (x + t(x0 − x)) 6⊂ H◦

+(ξ(t), φξ(t)) for some ξ(t) ∈ extdC ′ ∩ Γ. Therefore
there exist ξ(t) ∈ extdC ′ ∩ Γ such that

〈ξ(t), F (x + t(x0 − x))〉 6⊂ 〈ξ(t), F (x)〉+ intR+ .

Since Γ is compact, there exist a sequence tk → 0+ and ξ0 ∈ extdC ′∩Γ, such that ξ(tk) → ξ0.
Now

〈ξ0, F (x + tk(x0 − x))〉 6⊂ 〈ξ0, F (x)〉+ intR+

for all sufficiently large k. Take y0 ∈ Fξ0(x) and let yk ∈ F (x + tk(x0 − x)) be such that

〈ξ0, yk〉 /∈ 〈ξ0, F (x)〉+ intR+ = φξ0(x) + intR+ = 〈ξ0, y0〉+ intR+ .

This gives

〈ξ0,
1
tk

(yk − y0)〉 /∈ intR+ .

Because Ỹ is compact, passing to a subsequence, we may assume that (1/tk)(yk − y0) →
z ∈ Ỹ . Now we have z ∈ F ′(x, y0, x0 − x), y0 ∈ Fξ0(x), and 〈ξ0, z〉 /∈ intR+. This shows
that x0 is a solution of W -VI (4.2) (the lack of compactness of Y makes this property not
true for the finite W -VI (4.4)). Further, since any solution of the W -VI is a solution also of
the corresponding w-VI, x0 is also a solution of w-VI (2.3). ¤

After Theorem 4.17 it is natural to pose the question whether under pseudoconvexity
conditions, the set W -minimizers of problem (2.4) are also solutions of the W -VI. The next
Theorem 4.18 gives an affirmative answer. It states even more, that this result is valid for
C-quasiconvex functions. In connection with this, let us recall the structure of the scalar
quasiconvex functions (see e. g. [13, Section 3]): Let φ : [a, b] → R be quasiconvex. Then
there exists t ∈ [a, b] so that, either φ is non increasing on [a, t] and nondecreasing on (t, b],
or φ is non increasing on [a, t) and nondecreasing on [t, b].

Theorem 4.18. Consider W -VI (4.2). Let the svf F : K Ã Y be C-quasiconvex. Suppose
that the point x0 ∈ K is a set W -minimizer of problem (2.4). Then the following properties
hold.

10 (W -IAR property). For u ∈ K(x0) and 0 ≤ t1 < t2 such that x0 + t2u ∈ K the
relation (4.3) is true.

20 (W -VI property). If in addition F is compact-valued, then x0 is a solution of W -VI
(4.2).

Proof. 10. Assume to the contrary, that the W -IAR property does not hold. Then for
some u ∈ K(x0), 0 < t1 < t2, and for all ξ ∈ extdC ′ ∩ Γ, we would have F (x0 + t1u) ⊂
H◦

+(ξ, φξ(x0 + t2u)), or equivalently φξ(x0 + t2u) < φξ(x0 + t1u). Since φξ is pseudoconvex,
this inequality implies φξ(x0 + t1u) ≤ φξ(x0). Consequently φξ(x0 + t2u) < φξ(x0) for all
ξ ∈ extdC ′ ∩ Γ. These inequalities give

F (x0) ⊂
⋂ {

H◦
+(ξ, φξ(x0 + tu)) | ξ ∈ extdC ′ ∩ Γ

}
,

a contradiction the assumption x0 is a set W -minimizer.
20. We proved that the hypotheses imply the W -IAR property, which on the base of

Theorem 4.17 implies the W -VI property. ¤



54 G.P. CRESPI, I.GINCHEV AND M. ROCCA

Remark 4.19. The assumption of C-quasiconvexity can be relaxed to F ∈ C-RQC(K, x0).

Let us underline that Theorem 4.18 in opposite to Theorem 4.18 does not assume neither
that the cone C is polyhedral, nor φξ ∈ RLSC(K, x0) for ξ ∈ extdC ′ ∩ Γ.

The following example shows that, dealing with set w-minimizers, Theorem 4.18 is not
true. Even more, it shows that a C-convex svf F : K Ã Y having x0 ∈ K as a set
w-minimizer need not have the w-IAR property (4.5).

Example 4.20. Let X = R, K = [0, β] with 0 < β ≤ 1/4, Y = R3, C = R3
+. We consider

Y as the Euclidean space, then Y ∗ is identified with Y and the dual pairing with the scalar
product 〈ξ, x〉 = ξ1x1 + ξ2x2 + ξ3x3. Define the svf F : K Ã Y by

F (x) =
{

co
{
(x, x+1

2 , x+1
2 ), (x+1

2 , x, x+1
2 ), (x+1

2 , x+1
2 , x)

}
, 0 ≤ x < β,

co {(1, x, x), (x, 1, x), (x, x, 1)} , x = β.

Then F is compact-valued and convex-valued and it is C-convex, the point x0 = β is a set
w-minimizer of F (hence set W -minimizer), but the w-IAR propert (4.5) fails.

To explain the example put ξ1 = (1, 0, 0), ξ2 = (0, 1, 0), ξ3 = (0, 0, 1). The svf F is
C-convex because the functions φξi(x) = x, x ∈ [0, β], are convex for i = 1, 2, 3.

The point x0 = β is a set w-minimizer because F (β) 6⊂ F (x) + intC for 0 ≤ x < β.
Indeed, any point y = (y1, y2, y3) ∈ F (x) has at least two coordinates greater than 1/4. To
show this, rearranging the coordinates of y, we can find numbers λ ≥ µ ≥ ν, λ + µ + ν = 1,
and c1 > 0, c2 > 0, c3 > 0, such that the coordinates of y are

λ + µ

2
+

(
λ + µ

2
+ ν

)
t + c1 >

λ + µ

2
,

λ + ν

2
+

(
λ + ν

2
+ µ

)
t + c2 >

λ + ν

2
,

µ + ν

2
+

(
µ + ν

2
+ λ

)
t + c3 >

µ + ν

2
.

Since 1 = λ + µ + ν ≥ 3ν and 1 = λ + µ + ν ≥ 2µ we get ν ≤ 1/3 and µ ≤ 1/2 whence

λ + µ

2
=

1
2
− ν

2
≥ 1

3
>

1
4

,
λ + ν

2
=

1
2
− µ

2
≥ 1

4
.

At the same time any of the points (1, β, β), (β, 1, β), (β, β, 1), being vertices of F (β), has
at least two coordinates not exceeding 1/4.

The svf F does not satisfy the w-IAR property, since for 0 < t < β it holds evidently
F (t) ⊂ F (0) + intC.

5 List of Abbreviations

MVP : Minty Variational Principle
VI : Variational Inequality
IAR : Increasing along rays
svf :; set-valued function
C −RQC

(
K,x0

)
: radially C-quasiconvex at x0 ∈ K

RLSC
(
K, x0

)
: radially lower semicontinuous along rays starting at x0 ∈ K.
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