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1 Introduction

The affine variational inequality problem (AVIP) is to find x ∈ S such that

〈Mx + q, y − x〉 ≥ 0, ∀y ∈ S,

where S = {y ∈ Rn | Ay = b, y ≥ 0} with A ∈ Rm×n and b ∈ Rm, and M ∈ Rn×n, q ∈ Rn.
The AVIP is a wide class of problems which includes the quadratic programming problem
and the linear complementarity problem.

In the real world, the coefficients M , q, A and b usually contain uncertainty. Hence it
is more appropriate to take into account uncertainty in the formulation of the AVIP. Hence
we consider the stochastic affine variational inequality problem (SAVIP) which is to find
x ∈ S(ω) such that

〈M(ω)x + q(ω), y − x〉 ≥ 0, ∀y ∈ S(ω), (1.1)
∗This work was supported in part by the Scientific Research Grant-in-Aid from the Japan Society for the
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where S(ω) = {y ∈ Rn | A(ω)y = b(ω), y ≥ 0} with A : Ω → Rm×n and b : Ω → Rm, M :
Ω → Rn×n, q : Ω → Rn and (Ω,F , P ) is a probability space with Ω ⊆ Rl. When S(ω) ≡ Rn

+,
the problem is reduced to the stochastic linear complementarity problem (SLCP) [2].

There is no vector x satisfying (1.1) for all ω ∈ Ω in general. We may consider two
approaches in order to get a reasonable solution of SAVIP. One is the expected value
(EV) method which formulates the problem as follows: Let M̄ = E[M(ω)], q̄ = E[q(ω)],
Ā = E[A(ω)] and b̄ = E[b(ω)], where E denotes the expectation. The EV formulation is to
find a vector x ∈ S̄ = {x|Āx = b̄, x ≥ 0} such that

〈M̄x + q̄, y − x〉 ≥ 0, ∀y ∈ S̄.

Another approach is the expected residual (ER) method which makes use of a residual
function for AVIP. The ER method solves the following optimization problem:

min E[r(x, ω)]
s.t. x ∈ X,

where r(·, ω) : Rn → R+ is a residual function for the variational inequality problem.
For the stochastic complementarity problem, the previous studies [2, 3, 5, 7] made use

of an NCP function to formulate ER models. A function φ : R2 → R is called an NCP
function if it has the property: φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0. The two popular NCP
functions are

“min” function φ(a, b) = min(a, b)

Fischer-Burmeister (FB) function φ(a, b) = a + b−√a2 + b2.

All NCP functions are said to be equivalent in the sense that they can reformulate any
complementarity problem as a system of nonlinear equations having the same solution set
[2].

The ER model with the “min” function has been studied in [2, 3, 5] for the stochastic
linear complementarity problem (SLCP). In particular, it is shown that, for a class of SLCPs,
if the EV model has a bounded solution set, then the ER model also has a bounded solution
set, but the converse is not true in general. Moreover, if M(ω) is a stochastic R0 matrix,
then the ER model has a bounded solution set. Recall that a stochastic matrix M(·) is a
stochastic R0 matrix [5] if x ≥ 0, M(ω)x ≥ 0, xT M(ω)x = 0 a.e. implies that x = 0.

Thus we can expect to obtain a solution of the ER model by using existing solution
methods. However, there is no guarantee that such a solution is a global optimal solution
of the ER model. The following example shows the nonconvexity of the ER model with the
natural residual function.

Example 1.1. Consider the SLCP with G(x, ω) =
{

5x− 1 if ω = 1
2.7x− 0.9 if ω = 2 and Ω = {1, 2},

p(1) = p(2) = 1
2 , and r(x, ω) = min (x,G(x, ω))2. Then the expected residual function

E[r(x, ω)] is not convex as shown in Figure 1.

Luo and Lin [8] considers the stochastic variational inequality problem (SVIP) which is
to find a vector x ∈ S ⊆ Rn such that

〈G(x, ω), y − x〉 ≥ 0, ∀y ∈ S, (1.2)
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Figure 1: The ER function with the natural residual for Example 1.1.

where G : Rn×Ω → Rn. The SVIP (1.2) is a generalization of the SLCP studied in [2, 3, 5].
In [8], the authors consider the ER model with the regularized gap function

g(x, ω) = maxy∈S〈G(x, ω), x− y〉 − α

2
‖x− y‖2,

where G is an affine function, that is, G(x, ω) = M(ω)x + q(ω). They establish the differ-
entiability of this regularized gap function and the objective function E[g(x, ω)] of the ER
model. They also establish the conditions for the level boundedness of E[g(x, ω)]. They
then propose a quasi-Monte Carlo method to solve the ER model for the SVIP by means of
sequential approximation of E[g(x, ω)]. The convergence properties of such an approxima-
tion method have also been established. However, they do not consider the convexity of the
ER model.

In this paper, we consider the ER model for the stochastic affine variational inequality
problem (SAVIP) based on the regularized gap function and the D-gap function for the
AVIP. In particular, we establish convexity of both the regularized gap function and the
D-gap function and show that the resulting ER models with the proposed residual functions
are convex.

This paper is organized as follows. In the next section, we introduce the regularized gap
function and the D-gap function for the AVIP, and establish the convexity results for those
functions. The proposed ER models are then presented in Section 3. We also establish the
convexity results for these models in this section. In Section 4, we discuss an important
problem in which the main results of this paper can be applied – the traffic equilibrium
problem (TEP) under uncertainty. Computational results for the TEP under uncertainty
with the proposed ER models are given in Section 5. We give a brief conclusion in Section 6.
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2 Convexity of the Regularized Gap Function and D-Gap Function
for AVIP

In this section, we show that the regularized gap function and the D-gap function are
convex when M is positive definite. The results are extensions of [10] where these functions
are shown to be convex for LCP.

Let G(x) = Mx+q and S = {x ∈ Rn|Ax = b, x ≥ 0}. Then the regularized gap function
fα : Rn → R and the D-gap function gα : Rn → R+ for the AVIP are defined, respectively,
by

fα(x) = max
y∈S

{
〈G(x), x− y〉 − 1

2α
‖y − x‖2

}
(2.1)

and
gα(x) = fα(x)− f1/α(x),

where α > 1 is a positive constant.
In what follows we show the main results of this section which are natural extensions of

[10, Theorems 2.1 and 3.1].

Theorem 2.1. Suppose that S is nonempty and M is positive definite. Then the following
statements hold.

(a) The regularized gap function fα is convex for all α ≥ 1
βmin

, where βmin > 0 is the
minimum eigenvalue of M +MT . Moreover, if α ≥ 1

βmin
(1+β) with a positive constant

β, then fα is strongly convex with modulus β.

(b) The D-gap function gα is convex for all α ≥ ᾱ, where ᾱ is given by

ᾱ = max
‖x‖=1

1 + xT MT Mx

2xT Mx
> 0.

Moreover, gα is strongly convex with modulus β > 0 for all α ≥ ᾱ + β.

Proof. (a) Suppose that α ≥ 1
βmin

(1 + β) with a nonnegative constant β. Then vT (α(M +
MT ) − I)v ≥ β‖v‖2 for all v ∈ Rn. It then follows that the maximand in (2.1) is convex
in x for any y, and hence fα is convex. Moreover, if β > 0, then the maximand is strongly
convex with modulus β for every y, and hence fα is also strongly convex with modulus β.

(b) First notice that −f1/α(x) is the optimum value of the following convex quadratic
programming problem:

miny −〈G(x), x− y〉+ α
2 ‖y − x‖2

s.t. Ay = b
y ≥ 0.

(2.2)

Then by direct calculation, the Lagrangian dual problem of (2.2) is formulated as

max(λ,µ) h(x, λ, µ)
s.t. λ ∈ Rm

µ ≥ 0,
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where λ ∈ Rm and µ ∈ Rn are the Lagrange multipliers of (2.2), and h(x, λ, µ) is given by

h(x, λ, µ) = − 1
2α
‖AT λ− µ‖2 − 〈b, λ〉 − 1

α
〈AT λ− µ,Mx + q − αx〉

− 1
2α

〈
x,

(
MT M − α(M + MT ) + α2I

)
x
〉− 1

α
〈q, (M − αI)x〉

− 1
2α
‖q‖2 +

α

2
‖x‖2 − 〈x,Mx〉 − 〈q, x〉.

By the duality theorem, we have −f1/α(x) = max{h(x, λ, µ)|λ ∈ Rm, µ ≥ 0}. Hence, the
D-gap function is written as

gα(x) = max
y∈S

{〈G(x), x− y〉 − 1
2α
‖y − x‖2}+ max

λ∈Rm,µ≥0
h(x, λ, µ)

= max
y∈S,λ∈Rm,µ≥0

{
〈G(x), x− y〉 − 1

2α
‖y − x‖2 + h(x, λ, µ)

}

= max
y∈S,λ∈Rm,µ≥0

p(x, y, λ, µ),

where

p(x, y, λ, µ) = 〈G(x), x− y〉 − 1
2α
‖y − x‖2 + h(x, λ, µ).

Next we show that p(·, y, λ, µ) is convex for every fixed (y, λ, µ). Note that

∇2
xp(x, y, λ, µ) = M + MT − 1

α
I − 1

α
MT M + M + MT − αI + αI −M −MT

= M + MT − MT M + I

α

Then we can deduce that M +MT − MT M+I
α is positive semidefinite for any α ≥ ᾱ in a way

similar to the proof of [10, Theorem 3.1]. Therefore p(·, y, λ, µ) is convex for all (y, λ, µ),
and hence gα is convex.

Remark 2.2. In [10], the linear complementarity problem (LCP) with the general cone is
considered. We can extend Theorem 2.1 to the AVIP with the general cone by assuming
Slater’s constraint qualification.

3 ER Models for SAVIP and Their Convexity

We formulate two ER models using the regularized gap function and the D-gap function.
Let G(x, ω) = M(ω)x + q(ω). Then the regularized gap function and the D-gap function
with random variable ω ∈ Ω are defined by

fα(x, ω) = max
y∈S(ω)

{
〈G(x, ω), x− y〉 − 1

2α
‖y − x‖2

}

and
gα(x, ω) = fα(x, ω)− f1/α(x, ω).
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Using these functions, we formulate the following two ER models:

ER-R min E[fα(x, ω) + τ‖A(ω)x− b(ω)‖]
s.t. x ≥ 0.

ER-D min E[gα(x, ω)]
s.t. x ∈ Rn.

The parameter τ > 0 in ER-R is used for controlling the balance between the residual and
the feasibility.

Let θR
α (x) and θD

α (x) be the objective functions of ER-R and ER-D, respectively, i.e.,

θR
α (x) = E[fα(x, ω) + τ‖A(ω)x− b(ω)‖],

θD
α (x) = E[gα(x, ω)].

Now we investigate the conditions under which θR
α (x) and θD

α (x) are convex.
We call M(ω) uniformly positive definite with modulus β0 if there exists a positive

constant β0 such that
inf

ω∈Ω,‖x‖=1
xT M(ω)x ≥ β0.

Theorem 3.1. Suppose that M(ω) is uniformly positive definite with modulus β0. Suppose
also that S(ω) is nonempty for all ω ∈ Ω. Then the following statements holds.

(a) θR
α is convex for all α ≥ 1

2β0
and strongly convex with modulus β > 0 for all α ≥

1
2β0

(1 + β).

(b) Suppose that M(ω) is bounded on Ω. Then θD
α is convex for all α ≥ ᾱ, where ᾱ is given

by

ᾱ = sup
w∈Ω,‖x‖=1

1 + xT M(ω)T M(ω)x
2xT M(ω)x

.

Moreover, θD
α is strongly convex with modulus β > 0 for all α ≥ ᾱ + β.

Proof. Since the sum of (strongly) convex functions is (strongly) convex, the statements
(a) and (b) follow from Theorem 2.1.

The theorem indicates that both ER-R and ER-D are convex programming problems,
and hence we can obtain a global optimal solution using existing solution methods. These
methods include the quasi-Newton methods and the interior point methods [9, 1].

We show the effects of α on E[gα(x, ω)] in the following example.

Example 3.2. Let Ω = {1, 2} and p(1) = p(2) = 1
2 . Let G(x, ω) =

{
5x− 1 if ω = 1
2.7x− 0.9 if ω = 2,

where S(ω) = {x ∈ R |x ≥ 0}. Figures 2 and 3 show that E[gα(x, ω)] becomes convex when
α is large.

Theorem 3.3. Suppose that M(ω) is uniformly positive definite. Suppose also that S(ω) is
nonempty for all ω ∈ Ω. Then there exists a solution of ER-D. Moreover, if α ≥ 1

2β0
(1+β),

then there exists a solution of ER-R.

Proof. Since M(ω) is uniformly positive definite, gα(x, ω) is coercive for all ω ∈ Ω, see
Proposition 10.3.9 in [4]. Therefore, θD

α is also coercive. Hence, ER-D has a solution.
Moreover, if α ≥ 1

2β0
(1 + β), it follows from Theorem 3.1 (a) that θR

α is strongly convex.
Thus, ER-R has a solution.
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Figure 2: The ER-D function for Example 3.2 when α = 1.1.
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Figure 3: The ER-D function for Example 3.2 when α = 5.
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4 Application to the Traffic Equilibrium Problem

In this section, we apply the results obtained in the previous sections to the traffic
equilibrium problem (TEP) under uncertainty.

We consider a network G = (A, N ), where A is the set of arcs (with cardinality nA) and
N is the set of nodes (with cardinality nN ). We denote by W the set of origin-destination
(OD) pairs in G (with cardinality nW). For every OD pair w ∈ W, there corresponds the
set Rw of routes connecting the OD pair w. We denote by R the set of all routes (with
cardinality nR), i.e., R =

⋃
w∈W Rw. We assume that the network G is connected, that is,

there exists a route between each pair of nodes. The cost experienced by a person using
route r is denoted by Cr. In general, route costs can be a function of the entire vector
of route flows. The travel demand associated with each OD pair w, denoted by Dw, is a
function of the vector of minimum OD travel costs.

The TEP is to find a vector pair (F ,u) of route flows and minimum route costs satisfying
the Wardrop user equilibrium conditions [11] which can be represented as the variational
inequality problem [4]

〈C(F ∗), F − F ∗〉 ≥ 0, ∀F ∈ S = {F ∈ RnR |F ≥ 0, ΓT F = D(u)}. (4.1)

Here, F ∈ RnR
+ is the vector of route flows Fr, uw is the minimal route cost for the OD pair

w, u ∈ RnW
+ is the vector with components uw and Γ is the route-OD pair incidence matrix

whose entries are given by

Γrw =
{

1 if r ∈ Rw

0 otherwise.

In what follows, we are concerned with the special case where the travel demands do not
depend on the route costs, which is the case of fixed travel demands.

Let Ω denote the sample space of factors contributing to the uncertainty in the traffic
network, such as weather and accidents. For each event ω ∈ Ω, we assign an occurrence
probability p. Let

uw : minimal route cost for OD pair w ∈ W,
u : vector with components uw,
Dw(ω) : travel demand under uncertainty for OD pair w ∈ W,
D(ω) : vector with components Dw(ω),
C(F, ω) : vector of route cost functions Cr(F, ω).

The traffic equilibrium problem with uncertainty can be written as the following stochas-
tic variational inequality problem (SVIP): Find F such that

〈C(F ∗, ω), F − F ∗〉 ≥ 0, ∀F ∈ S(ω) = {F |F ≥ 0,ΓT F = D(ω)}. (4.2)

The route cost function Cr is defined by

Cr(F, ω) =
∑

a∈A
κarta((KF ), ω), (4.3)

where K = (κar) is the arc-route incidence matrix with elements

κar =
{

1 if route r passes through arc a
0 otherwise,

and ta is the travel time with uncertainty on arc a.
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Note that the TEP with uncertainty (4.2) – (4.3) may also be written as the following
stochastic mixed complementarity problem (SMCP):

0 ≤ F ⊥ C(F, ω)− Γu ≥ 0, (4.4)
ΓT F −D(ω) = 0,

where x ⊥ y means vector x and y are perpendicular to each other. However, we observe
that

M(ω) =
( ∇F C(F, ω) −Γ

ΓT 0

)

is not a positive definite matrix, even if C is affine with respect to F and ∇F C(F, ω) is
positive definite. Hence, we cannot apply Theorems 3.3 and 3.1 to the SMCP formulation.

Remark 4.1. When the travel time ta(·, ω) is an affine function for each a and any ω, the
SVIP (4.2) – (4.3) becomes the SAVIP. In (4.2), M(ω) = ∇F C(F, ω) is positive definite
under some conditions such as that ta is an increasing function of the link flows. Hence,
by Theorems 3.1 and 3.3, the convexity of the proposed ER models (ER-R and ER-D)
guarantees that we can obtain a global solution of the ER model for the AVIP formulation
of the TEP with uncertainty.

In the following, we give a particular example to illustrate the meaning of the solutions
obtained by the ER-R and ER-D models.

Example 4.2. Consider the case where there are two events, ω1 and ω2 that can happen,
say, ω1 = fine day and ω2 = rainy day. The TEP without uncertainty only considers the
case when the traffic users know the exact weather of the day. That is, where either ω1

happens with probability 1 or ω2 happens with probability 1. However, in reality, nobody
can exactly predict the weather, and the available weather information such as the weather
forecast cannot be trusted completely. The TEP with uncertainty considers the case when
the occurrence probability of ω1 is, say, 0.6 and that of ω2 is, say, 0.4. The solution obtained
by the ER model is regarded as the traffic flow pattern that satisfies the equilibrium condition
on average.

5 Numerical Experiments

In this section, we present our computational results. In the numerical experiments, we
solve the TEP with uncertainty (4.2) – (4.3) using the ER-D model proposed in Section 3.
We solve the problem using the solver fminunc in the Optimization Toolbox of Matlab.
We employ the quadratic programming solver quadprog of Matlab to compute gα(x, ω) for
each ω ∈ Ω. The TEP under uncertainty is solved using different values of the parameter
α to find its influence on the solution obtained. Moreover, we consider the case where
D(ω) is fixed for all ω ∈ Ω and the case where there is also uncertainty in D(ω). We also
solve the MCP formulation (4.4) of the TEP under uncertainty using the ER method with
Fischer-Burmeister (FB) function and compare the solutions obtained with those of the
ER-D method.

The sample network shown in Figure 4 is used in our experiment. The attributes of
this sample network are given in Table 1. We use the linear link cost function given by
ta(f, ω) = H(ω)f + k(ω), where f = KF is the vector of link flows fa, ki(ω) represents the
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Figure 4: A sample traffic network.

Table 1: OD pair, routes and links of the sample network.

O-D pair Routes Links

1-7

1 {a,d,i}
2 {a,c,f,i}
3 {a,c,h,j}
4 {b,e,f,i}
5 {b,e,h,j}
6 {b,g,j}

free travel cost of link i and Hij(ω) represents the magnitude of the effect of flows on link j
to the link cost of link i. The corresponding values of H(ω) and k(ω) are as follows:

H(ω) =




22 0 2 2 4 1 2 0 4 5
0 15 0 0 1 2 0 3 5 3
2 0 14 0 2 0 1 3 2 3
2 0 0 16 + 50ω 0 2 3 1 2 4
4 1 2 0 12 0 2 2 0 0
1 2 0 2 0 10 0 0 1 2
2 0 1 3 2 0 11 0 0 0
0 3 3 1 2 0 0 14 0 1
4 5 2 2 0 1 0 0 16 + 50ω 0
5 3 3 4 0 2 0 1 0 20




and k(ω) = [50, 30, 40, 40 + 60ω, 30, 50, 20, 60, 40 + 40ω, 70]T .
Note that in this sample network, only the costs of links d = (2, 5) and i = (5, 7)

depend on the random variable ω. We assume that ω is uniformly distributed in the interval
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[ 12 − δ, 1
2 + δ]. Hence, the expectation of ω is 1

2 and its variance is δ2

3 .
In our experiments, we choose L samples of ω from the interval [12−δ, 1

2+δ] to approximate
the actual continuous distribution. Hence, the occurrence probability of each event ωi is
pi = 1

L . We set L = 21. The value of α have been arbitrarily chosen in our numerical
experiments.

5.1 Comparison of Link Flows for Different Values of α

In this experiment, we look at the influence of α. Here we set δ = 0.1 and assume the
fixed demand D(ω) = 200 for all ω ∈ Ω. We present the results for various values of α in
Tables 2 and 3. Table 2 shows that some route flows obtained are negative for small values
of α. However, as the value of α becomes large, the route flows obtained become all positive.
In Table 3, it can be seen that as the value of α increases, the link flows on links d = (2, 5)
and i = (5, 7) increase correspondingly. It is also interesting to observe that as the value of α
becomes larger, the corresponding route flows obtained get closer to satisfying the demand,
as shown in Figure 5. Moreover, the increase in the total route flow is small when α is large,
so the effect of α to a solution is small for large α.

Table 2: Route flows for different values of α when D(ω) = 200.

α Route Flows
3.3 (35.85, 19.85, 8.47, 17.72, -2.28, 148.07 )
5 (35.76, 19.81, 8.46, 17.68, -2.28, 147.77)
18 (29.39, 21.20, 2.45, 8.57, 3.40, 125.25)
50 (29.90, 23.63, 0.39, 6.58, 5.58, 127.24)
100 (30.38, 24.24, 0.13, 6.43, 5.93, 129.13)
1000 (31.00, 18.67, 6.14, 12.56, 0.06, 131.53)

5.2 The Case of Travel Demand with Uncertainty

In our experiments, we also consider the case where the travel demand is subject to
uncertainty. Here, we set δ = 0.1 and assume that the travel demand is given by D(ω) =
500ω − 100. The results are shown in Table 4.

It can be seen from Table 4 that some route flows obtained are negative when α is small.
It is also observed that, similar to the case where the demand is fixed as D(ω) = 200, the
total route flow increases as the value of α increases. It can be seen from Figure 6 that as
α becomes large, the total route flow approaches 150. Moreover, the increase in the total
route flow is small when α is large. Hence, the effect of α to a solution is small when α is
large.

Remark 5.1. Note that even if ER-D is not convex, i.e., when α is small, we may still
obtain a reasonable solution. However, it can be seen from Table 2 and Table 4 that the
solutions tend to be infeasible when α is small.

5.3 Comparison of ER-D Model with Another ER Model

In this experiment, we also compare the ER-D model proposed in this paper with another
ER model which is based on the MCP formulation (4.4) and uses the Fischer-Burmeister
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Table 3: Link flows for different values of α when D(ω) = 200.

α Link Flows

18 (53.04, 137.22, 23.65, 29.39, 11.97
29.77, 125.25, 5.85, 59.16, 131.10)

50 (53.91, 139.40, 24.01, 29.90, 12.16
30.21, 127.24, 5.96, 60.11, 133.20)

75 (54.45 , 140.73, 24.24, 30.21, 12.27,
30.50, 128.44, 6.03, 60.70, 134.47)

100 (54.75, 141.49, 24.37, 30.38, 12.36,
30.66, 129.13, 6.07, 61.04, 135.20)

500 (55.59, 143.59, 24.72, 30.87, 12.56,
31.11, 131.03, 6.17, 61.98, 137.20)

5000 (55.80, 144.11, 24.81, 30.99, 12.61,
31.22, 131.50, 6.20, 62.22, 137.70)

9000 (55.82, 144.14, 24.82, 31.00, 12.61,
31.23, 131.52, 6.20, 62.23, 137.72)

10000 (55.82, 144.14, 24.82, 31.00, 12.61,
31.23, 131.53, 6.20, 62.23, 137.73)
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Figure 5: Total route flow for different values of α when D(ω) = 200.
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Table 4: Route flows for different values of δ when D(ω) = 500ω − 100.

α Route Flows
10 (25.6609, 14.1777, 5.9815, 12.7606, -2.0497, 107.0979)
50 (22.4198, 19.0718, -1.2081, 3.6273, 5.1809, 96.2403)
145 (22.8787, 18.2127, -0.0121, 4.9095, 4.0867, 98.0357)
150 (22.8883, 18.1652, 0.0425, 4.9659, 4.0342, 98.0733)
500 (23.0951, 17.1067, 1.2529, 6.2162, 2.8694, 98.8816)
1000 ( 23.1423, 15.8479, 2.5464, 7.5188, 1.5863, 99.0661)
5000 (23.1808, 15.9142, 2.5084, 7.4884, 1.6328, 99.2165)
10000 ( 23.1857, 15.9310, 2.4952, 7.4760 1.6471, 99.2355)

148.0

148.2

148.4

148.6

148.8

149.0

149.2

149.4

149.6

149.8

150.0

150.2

0 2000 4000 6000 8000 10000

T
o

ta
l 
ro

u
te

 f
lo

w

Figure 6: Total route flow for different values of α when D(ω) = 500ω − 100.
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(FB) function. This ER model is referred to as ER-FB and is defined as follows:

min E[Ψ(F, u, ω)] (5.1)
s.t. ΓT F − D̄ = 0,

where Ψ(F, u, ω) = ‖Φ(F, u, ω)‖2 with

Φ(F, u, ω) =




φ(F1, (C(F, ω)− Γu)1)
...

φ(FnR
, (C(F, ω)− Γu)nR

)


 ,

and the travel demand is assumed to be fixed at D̄ = 200.
Here, we consider the effect of δ, which defines the interval Ω = [12 − δ, 1

2 + δ], on the
feasibility of the solutions obtained by the two ER methods. Link flows obtained for different
values of α and different values of δ are shown in Table 5. It can be seen from the table that
ER-FB and ER-D obtained the same solution when δ is very small. However, the results
vary when δ and α become larger.

Moreover, as shown in Figure 7, as δ increases, that is, as the variance of ω becomes
larger, the obtained route flows tend to violate the demand condition. More specifically, the
bigger the value of δ, the smaller the total route flow. However, as seen from the figure,
the decrease in the total route flow for the ER-FB model is more significant than the ER-D
models with large α. Thus the solutions obtained by the ER-D models with larger values
of α are more stable than the solutions obtained by the ER-FB model when the variance of
random variable ω becomes large.

Remark 5.2. Note that when we consider ER-FB for the SAVIP, we need to convert SAVIP
into SMCP. Hence, the ER-FB model may lose some properties of the SAVIP. The difference
between the solutions obtained by the ER-D model and the ER-FB model can be seen in
the numerical results above, where the solution of ER-FB tends to violate the conditions
more than the solution of ER-D.

6 Conclusion

In this paper, we have proposed two new ER models, the ER-R model which uses the
regularized gap function and the ER-D model which uses the D-gap function for the stochas-
tic affine variational inequality problem (SAVIP). Sufficient conditions for the models to be
convex have been established. One of the ER models proposed in this paper, the ER-D
model, is then applied to the traffic equilibrium problem under uncertainty. In the nu-
merical experiment, we compare the ER-D model with the MCP-based ER model with the
Fischer-Burmeister function (ER-FB).

The numerical results show that, when the demand D(ω) is fixed (D(ω) = 200), the
proposed ER-D model with large α can obtain more reasonable solutions since the obtained
route flows tend to satisfy the demand condition. Moreover, the demand condition is not
greatly affected by the increase in the variance of ω, that is, in the change in δ, as compared
to the ER-FB model.

In this paper, the values of α used in the numerical experiments were only chosen arbi-
trarily. Determining how large the value of α (and ᾱ) based on Theorem 3.1 and investigating
its effect on the feasibility of the solutions would be an interesting topic to consider in the
future.
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Table 5: Link flows for ER-D and ER-FB for different values of δ when D(ω) = 200.

δ
Link Flows

ER-D (α = 100) ER-D (α = 500) ER-D (α = 1000) ER-D (α = 5000) ER-FB

0.0001

54.85 54.85 54.85 54.85 54.85
145.15 145.15 145.15 145.15 145.15
26.60 26.60 26.60 26.60 26.60
28.25 28.25 28.25 28.25 28.25
11.78 11.78 11.78 11.78 11.78
31.59 31.59 31.59 31.59 31.59
133.37 133.37 133.37 133.37 133.37
6.79 6.79 6.79 6.79 6.79
59.85 59.85 59.85 59.85 59.85
140.15 140.15 140.15 140.15 140.15

0.01

54.75 55.60 55.71 55.80 54.61
141.49 143.59 143.88 144.11 142.20
24.37 24.72 24.77 24.81 24.02
30.38 30.87 30.94 30.99 30.59
12.36 12.56 12.59 12.61 15.50
30.66 31.11 31.18 31.22 32.05
129.14 131.03 131.29 131.50 126.68
6.07 6.17 6.19 6.20 7.50
61.05 61.98 62.11 62.22 62.64
135.20 137.20 137.48 137.70 134.20

0.02

53.67 55.61 55.88 56.11 55.66
137.62 142.47 143.15 143.70 138.40
22.79 23.61 23.72 23.81 21.60
30.88 32.01 32.17 32.30 34.07
12.07 12.54 12.61 12.66 16.40
28.82 29.82 29.96 30.08 33.16
125.54 129.93 130.54 131.04 121.97
6.05 6.32 6.36 6.40 4.80
59.70 61.83 62.13 62.37 67.29
131.59 136.26 136.90 137.43 126.80
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Figure 7: Total route flow for different values of δ when D(ω) = 200.
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