
A BRANCH & CUT TECHNIQUE TO SOLVE A
WEIGHTED-SUM OF LINEAR RATIOS∗

João Paulo Costa

Abstract: In this paper we present a new technique to compute the maximum of a weighted sum of the
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1 Introduction

The weighted sum of functions is probably the widest multicriteria approach used in practice
to aggregate the objective functions according to the preferences of the decision maker (DM).
In multiple objective linear fractional programming (MOLFP) problems this aggregation
leads to a fractional function where the linear numerator and denominator of each objective
function turn out to be (in the general case) polynomials, the degree of which equals the
number of objective functions. Thus, this transformation of an MOLFP problem into a
single criterion problem leads to a very difficult problem to solve by the nowadays existing
techniques. Schaible and Shi [14] consider it one of the most difficult fractional problems
encountered so far – it is much more removed from convex programming than other multi-
ratio problems. They provide a survey of applications and various algorithmic approaches
for this problem.

In this paper we present a new technique (a new and faster version of the algorithm
presented in Costa [5]) for computing the maximum of a weighted sum of the linear fractional
objective functions. This means to compute the non-dominated solution of the MOLFP
problem associated with a given weight vector for the objective functions. The basic idea of
the technique presented in [5] is to divide (approximately by the middle) the non-dominated
region in two sub-regions and to analyze each of them in order to discard one if it can be
proved that the maximum of the weighted sum is in the other. The process is repeated with
the remaining region.

∗The work presented here was partially supported by FCT and FEDER, under research project
POCI/EGE/58828/2004.
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The technique is basically a branch and bound algorithm. Pardalos et al. [13] present
a good outline of branch and bound principles used in global optimization. A synthesis of
these principles is presented as follows. To solve a problem the search space is partitioned
into subsets. For every subset an upper bound is estimated for the maximum of the objective
function over the feasible points of that subset. On the basis of the information currently
available (bounds and incumbent solutions) some subsets are discarded from further consid-
eration, while the most promising subset is selected and further divided. This gives raise to a
more refined partition, and the process is repeated. As Pardalos et al [13, p. 13] noticed “the
computational burden of a branch and bound process usually increases exponentially with
the dimension of the space in which branching is performed. Therefore, (...) it is important
to have branching performed in a space of lowest possible dimension.” The computational
burden of branch and bound processes also increases (usually not exponentially) with the
range of the search. It usually compensates to find constraints that reduce the number of
potential solutions to search.

In the technique presented in this paper a cut is introduced which allows for smaller
search trees. In the computational tests an improvement ranging from 20% to 70%, on aver-
age, was found. The biggest improvement was in the order of 90%. Indeed the new technique
never performed worse than the one presented in [5]. The overall results suggest that the
technique performs very well when compared with the nowadays existing techniques. How-
ever, it is very difficult to compare techniques, because several of the existing ones attempt
to also solve other kinds of problems.

Kornbluth and Steuer [9] can be considered the seminal work in MOLFP. In their paper
they present its main characteristics and difficulties. They also present one method to com-
pute all the weakly non-dominated solutions of an MOLFP problem. Reference should be
made to Steuer [16] for a good introduction to MOLFP. Stancu-Minasian ([15], Chap. 6)
extends these concepts.

Schaible and Shi [14] present a good survey of techniques to the sum of ratios case and
try to compare them. According to them, Kuno’s technique [12] seems to be the existing
technique that proved to have the highest performance so far. We would like to also empha-
size the work of Falk and Palocsay [7], Konno and Yamashita [11], Konno and Fukaishi [10],
Freund and Jarre [8], and Dai et al. [6] due to their important contributions to the field.

Finally, the algorithm presented by Benson [3] is probably the closest one to the tech-
nique presented in Costa [5]. It is an adaptation of the algorithm presented in Benson [2] to
the particular case of the linear sum of ratios problem and it alleviates some of the needed
assumptions to solve non-linear problems (namely the numerators being larger than zero).
Section 4.3 details some of its characteristics, comparing them with the characteristics of
the technique presented in this paper. The breakthrough was achieved by the explicit con-
sideration of a sum of linear ratios as a multiobjective problem.

The paper will proceed as follows. Firstly, we present the notation and formulation of
the problems to be solved. Secondly, we give an outline of the new computation technique.
After that, we formally describe the technique. In Section 4, we present theoretical re-
sults supporting the validity of the technique and discuss some important issues. Section 5
presents some computational results. Finally, in the last section, we present the conclusions.
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2 Notation

In this paper we formulate MOLFP problems in the following way:

max
{

z1 = c1x+α1
d1x+β1

}
· · · max

{
zp = cpx+αp

dpx+βp

}

s.t. x ∈ S = {x ∈ Rn|Ax = b, x ≥ 0}
(2.1)

Where ck, dk ∈ Rn, A ∈ Rm×n, b ∈ Rm and αk, βk ∈ R, k = 1, . . . , p and dkx + βk >
0, ∀k, ∀x ∈ S. We assume that S is non-empty and bounded.

We will differentiate between weakly non-dominated solutions – a point x′ ∈ S is weakly
non-dominated if and only if there does not exist another point x ∈ S such that zk (x) >
zk (x′), for all k = 1, ..., p – and non-dominated solutions – a point x′ ∈ S is non-dominated
if and only if there does not exist another point x ∈ S such that zk (x) ≥ zk (x′), for all k
= 1, ..., p, and zk (x) > zk (x′) for at least one k. We will use the some denomination –
non-dominated – in both the decision and objective spaces. That is, the image, z′, in the
objective space of the non-dominated solution x′ ∈ Swill also be called ‘non-dominated’.

The weighted sum of the objective functions can be formulated as:

max
{

λ1
c1x+α1
d1x+β1

+ · · ·+ λp
cp+αp

dpx+βp

}

s. t. x ∈ S
(2.2)

In the last equation λ ∈ Rp
+ is defined according to the preferences of the decision making

(DM). Usually we impose
p∑

k=1

λk = 1 (2.3)

in order to normalize the weights and λk > 0, k =1, ..., p, in order to prevent the result
from being a weakly non-dominated solution. The maximum of a weighted sum of linear
fractional functions is a non-dominated solution (if all the weights are strictly positive), but
in general not all the non-dominated solutions can be computed using weighted sums of the
linear fractional functions (only the supported solutions can be computed).

The ideal point, z∗, is the point of the objective functions space whose coordinates are
equal to the maximum that can be achieved separately by each objective function in the
feasible region. z∗ is computed through the determination of the pay-off table, that is,
computing zk = z

(
x∗k

)
, k = 1, . . . , p, where x∗k is non-dominated and optimizes the

program:
max zk(x) s.t. x ∈ S (2.4)

There is a variable change technique [4] that turns a linear fractional problem into a plain
linear program. Consider the following single objective problem:

max
{

z = cx+α
dx+β

}

s. t. x ∈ S = {x ∈ Rn|Ax = b, x ≥ 0}
(2.5)

Where c, d ∈ Rn, α, β ∈ R and dx + β > 0,∀x ∈ S.
We define the new variables: t = 1

dx+β and y = xt
Making the variable substitution we arrive at the following linear program:

max {z = cy + αt}
s. t. Ay − bt = 0

dy + βt = 1
y ∈ Rn, y ≥ 0, t ∈ R, t ≥ 0

(2.6)
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This variable change is extensively used by the technique presented in this paper (Section
3) in order to compute the maximum of each objective function of each sub-problem.

3 The Technique

The technique is a new and faster version of the technique presented in [5] for computing
the maximum of the weighted sum of linear fractional objective functions. This means to
compute the non-dominated solution of the MOLFP problem associated with a given weight
vector for the objective functions. The basic idea of the Costa’s technique [5] is to divide
(approximately by the ‘middle’) the non-dominated region in two sub-regions and to analyze
each of them in order to discard one if it can be proved that the maximum of the weighted
sum is in the other. The process is repeated with the remaining region. It is not always
possible to discard one of the regions and so the process must be repeated for both, building
a search tree. In most problems, only after a certain level of the search tree regions can be
discarded. The process ends when the remaining regions are so little that the differences
among their non-dominated solutions are lower than a pre-defined error.

The division of the non-dominated region – Step 4, Section 3.1 – is modified in the
technique presented in this paper because a cut is introduced. This cut also divides the
non-dominated region in two sub-regions but Theorem 4.2, Section 4.1, guarantees that one
of the sub-regions can be discarded. This speeds up the technique because the search tree
is trimmed.

One region can be discarded when the value of the weighted sum of its ideal point is
worse than the value of the weighted sum of a non-dominated solution belonging to another
region not yet discarded – Theorem 4.1, Section 4.1. In order to speed up the computations,
an incumbent non-dominated solution is maintained: the solution that has the best weighted
sum computed so far. This incumbent solution is used to make the necessary comparisons
with the ideal point of the regions that can potentially be discarded and to define the cut.

The cut is only introduced once in every second iteration of the technique. In some
occasions the generated constraint does not effectively cut the non-dominated region. Step
4, Section 3.1, is divided in two parts: Step 4.1 – to divide the non-dominated region in two
sub-regions – and Step 4.2 – to introduce the cut. These steps alternate.

It is also relevant to note that when analyzing a region, that is, when computing the
pay-off table corresponding to that region, it is not necessary to perform all the pay-off table
calculations. If we have the pay-off table of one region and we divide it in two sub-regions,
we only need to compute half of the pay-off table solutions of the two new sub-regions. The
solutions of the preceding pay-off table will be present in the pay-off tables of the two new
sub-regions – Step 5, Section 3.1.

Having a tree to search, a criterion to choose the next region to divide is needed: the
technique chooses the one having the best ideal point – Step 3, Section 3.1. Other criteria
have already been tested: 1) to choose the region having the best non-dominated solution;
and 2) to choose the region having the lowest index (next region). Some computational
tests showed that the best performance is achieved by choosing the region with the best
ideal point.

When there are no more regions to divide, the remaining regions have the range of their
pay-off tables lower than the error and the technique stops – Section 3.1, Step 3.1.

3.1 Pseudo Code

Step 1 – Initializing
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ε # is the pre-defined error.
λ # is the given weight vector.
tI # is the incumbent region index.
V # is the index set of regions that can be further sub-divided.
Q = ∅ # is the index set of regions for which the range is lower than the error.
t = 0 # is the index of the current region.
V = {t} # is the initial region index set.
g = 0 # is the region counter.
S(t) = S# is the feasible region of the t th region.
zI = (−∞,−∞, . . . ,−∞) ..# is the incumbent solution.
Branch ← true # is the variable to decide either to Branch or to Cut

Step 2 – Analyzing the first region
# Computing the pay-off table of the region t=0.
For k = 1, ..., p do

x∗k = arg max
x
{zk (x) : x ∈ S (t)};

# Note: The solutions can be weakly non-dominated.
zkt = z

(
x∗k

)
;

End for
z∗t =

(
z1t
1 , z2t

2 , ..., zpt
p

)
# is the ideal point of region t=0;

# Initializing the incumbent solution.
For j = 1, ..., p do

If
p∑

k=1

λkzjt
k >

p∑
k=1

λkzI
k then zI ← zjt;

End for
tI ← t.

Step 3 – Choosing the next region
# If there are regions that can be further divided the algorithm chooses the one having

the best ideal point to proceed, i.e., it defines the new t.

If V 6= ∅ then t = arg max
v∈V

{
p∑

k=1

λkzkv
k

}
; V ← V \ {t};

Else
Step 3.1 – Stopping
# If there is no other region to further divide it is necessary to recalculate the pay-off

tables of the not discarded regions (the ones remaining in Q), taking into consideration that
we do not want weakly non-dominated solutions.

For all q ∈ Q do:
Compute zkq = z

(
x∗k

)
, k = 1, . . . , p

where x∗k is non-dominated and optimizes the program:
max {zk (x) : x ∈ S (q)};

End For
The non-dominated solution, z̄, that maximizes the weighted sum of the objective func-

tions is the one that maximizes: max
q∈Q;j=1,...,p

p∑
k=1

λkzjq
k ;

The algorithm stops.
End Else.

Step 4 – Branch or Cut
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If Branch = true then
Step 4.1 – Branch
# The index of the objective function to constrain, denoted by r, in order to sub-divide

the region t, corresponds to the one having the largest range in the pay-off table, i.e.:

r = arg max
k=1,...,p

{
∆zt

k =
(

zkt
k − min

j=1,...,p;j 6=k

{
zjt
k

})}
;

# Creating two new regions:
g ← g + 1; S (g) = S (t) ∩ {x ∈ Rn|zr (x) ≥ zrt

r − 1/2∆zt
r} ;

g ← g + 1; S (g) = S (t) ∩ {x ∈ Rn|zr (x) ≤ zrt
r − 1/2∆zt

r} ;
Branch ← false # Next time it will cut.
Else
Step 4.2 – Cut
# The cut corresponds to a constraint on one of the objective functions, denoted by r. It

is guaranteed (Theorem 4.2, Section 4.1) that the r th objective of the non-dominated solution
that optimizes the weighted-sum is not bellow a value computed in the following way:

r = arg max
k=1,··· ,p

{
z̃t
k − min

j=1,··· ,p;j 6=k

(
zjt
k

)}
where z̃t

k =

pP
i=1

λiz
I
i−

pP
i=1;i6=k

λiz
it
i

λk
;

# Creating one new region by introducing the cut:
g ← g + 1; S (g) = S (t) ∩ {x ∈ Rn|zr (x) ≥ z̃t

r} ;
Branch ← true; # Next time it will Branch
End Else

Step 5 – Analyzing Regions
If Branch = false then
Step 5.1 – Analysing the two new regions resulting from the branch
# Computing the pay-off table of the two new regions. Note that the maximum of each

objective function in the previous region must belong to one of the new regions, and so there
is no need to compute it.

For k = 1, ..., p do
If zkt

r ≥ zrt
r − 1/2∆zt

r then
zk(g−1) = zkt;
zkg = z

(
x∗k

)
with x∗k = arg max

x
{zk (x) : x ∈ S (g)};

# The solutions can be weakly non-dominated.
Else

zkg = zkt;
zk(g−1) = z

(
x∗k

)
with x∗k = arg max

x
{zk (x) : x ∈ S (g − 1)};

# The solutions can be weakly non-dominated.
End Else

End For
z∗g =

(
z1g
1 , z2g

2 , ..., zpg
p

)
; z∗(g−1) =

(
z
1(g−1)
1 , z

2(g−1)
2 , ..., z

p(g−1)
p

)
;

# If g is an interesting region (a region where it is still possible to find the non-dominated
solution that optimizes the weighted sum) it will be further analyzed, otherwise it will be just
ignored (discarded).

If
p∑

k=1

λkz∗gk ≥
p∑

k=1

λkzI
k then

# Being an interesting region the incumbent solution will be compared with the so-
lutions of the pay-off table of region g.

For j = 1, ..., p do
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If
p∑

k=1

λkzjg
k >

p∑
k=1

λkzI
k then zI ← zjg; tI ← g ;

End For
# Being an interesting region it will be further divided (if the range in the pay-off

table of any objective function is larger than the error) or classified as a region to search for
the non-dominated solution in the end.

If
(
∃k,j k = 1, ..., p; j = 1, ..., p|z g∗

k
−zjg

k > ε

)
then V ← V ∪ {g};

Else Q ← Q ∪ {g};
End If
# The same as above for the region (g-1).

If
p∑

k=1

λkz
∗(g−1)
k ≥

p∑
k=1

λkzI
k then

For j = 1, ..., p do

If
p∑

k=1

λkz
j(g−1)
k >

p∑
k=1

λkzI
k then zI ← zj(g−1);tI ← (g − 1);

End For

If
(
∃k,j k = 1, ..., p; j = 1, ..., p|z (g−1)∗

k
−z

j(g−1)
k > ε

)
then V ← V ∪ {(g − 1)};

Else Q ← Q ∪ {(g − 1)};
End If
Else
Step 5.2 – Analysing the region resulting from the cut
# Computing the pay-off table of the new region.
For k = 1, ..., p do

If zkt
r ≥ z̃t

r then zkg = zkt;
Else zkg = z

(
x∗k

)
with x∗k = arg max

x
{zk (x) : x ∈ S (g)};

# The solutions can be weakly non-dominated.
End For
z∗g =

(
z1g
1 , z2g

2 , ..., zpg
p

)
;

# If it is an interesting region, it will be further analyzed, otherwise it will just be ignored
(discarded).

If
p∑

k=1

λkz∗gk ≥
p∑

k=1

λkzI
k then

For j = 1, ..., p do

If
p∑

k=1

λkzjg
k >

p∑
k=1

λkzI
k then zI ← zjg tI ← g;

End For

If
(
∃k,j k = 1, ..., p; j = 1, ..., p|z g∗

k
−zjg

k > ε

)
then V ← V ∪ {g};

Else Q ← Q ∪ {g};
End If
End Else

Step 6 – Discarding regions
# If the incumbent solution has changed it pays to check if some more regions can be

discarded
If ( tI = g ) or (( tI = (g – 1) ) and (Branch = false)) then

For all v ∈ V do
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If
p∑

k=1

λkz
v∗
k

<
p∑

k=1

λkzI
kthen V ← V \ {v};

End For
For all q ∈ Q do

If
p∑

k=1

λkz
q∗
k

<
p∑

k=1

λkzI
kthen Q ← Q\ {q};

End For
End If
Return to Step 3.

4 Important Issues

4.1 The Condition to Discard Regions and the Cut Constraint

Let us introduce the set:

Λ =



(λ1, ..., λp) : λi > 0, i = 1, ..., p,

p∑

j=1

λj = 1





Theorem 4.1 (Condition to discard a region [5]). Consider that z∗ is the ideal point
of region A of S and that z1 can be achieved in region B of S.

If
p∑

k=1

λkz∗k <
p∑

k=1

λkz1
k , λ ∈ Λ , then the non-dominated solution, z̄, that maximizes

p∑
k=1

λkzk(x) , x ∈ S, cannot be achieved in region A.

Proof. Consider that z̄ can be achieved in region A. Thus,
p∑

k=1

λkz̄k ≥
p∑

k=1

λkz1
k >

p∑
k=1

λkz∗k that is
p∑

k=1

λk(z̄k − z∗k) > 0 .

This last expression means that there is at least one k’ for which z̄k′ > z∗k′ and so z∗
would not be the ideal point of region A. This proofs the theorem.

Theorem 4.2 (Cut constraint (Step 4.2)). Consider that z∗ is the ideal point of region
A of S, that z1 can be achieved in region B of S and that z̄ is the non-dominated solution

that maximizes
p∑

k=1

λkzk(x) , x ∈ S, λ ∈ Λ .

If z̃k =

pP
i=1

λiz
1
i−

pP
i=1;i6=k

λiz
∗
i

λk
then z̄ cannot be achieved in region C = A∩{x ∈ Rn : zk (x) ≤ z̃k}.

Proof. z̃k =

pP
i=1

λiz
1
i−

pP
i=1;i6=k

λiz
∗
i

λk
⇔ λkz̃k +

p∑
i=1;i 6=k

λiz
∗
i =

p∑
i=1

λiz
1
i .

Because z̄ is the solution that maximizes
p∑

k=1

λkzk(x) then λkz̃k+
p∑

i=1;i 6=k

λiz
∗
i =

p∑
i=1

λiz
1
i ≤

p∑
i=1

λiz̄i.

Considering region C, then zk (x) ≤ z̃kand so the coordinate k of the ideal point of
region C, z∗Ck , will also be z∗Ck (x) ≤ z̃k. The other coordinates of the ideal point of region
C are equal to or lower than the respective coordinates of the ideal point of region A. Then

λkz∗Ck +
p∑

i=1;i 6=k

λiz
∗C
i ≤

p∑
i=1

λiz̄i. By Theorem 4.1 z̄ cannot be achieved in region C.
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Corollary 4.3. Consider that z∗ is the ideal point of region A of S, that z1 can be achieved

in region B of S and that z̄ is the non-dominated solution that maximizes
p∑

k=1

λkzk(x) , x ∈ S,

λ ∈ Λ .

If z̃k =

pP
i=1

λiz
1
i−

pP
i=1;i6=k

λiz
∗
i

λk
, k = 1, . . . , p. then z̄ cannot be achieved in region D =

p⋃
k=1

(A ∩ {x ∈ Rn; zk (x) ≤ z̃k}).

Proof. The proof stems directly from applying, p times, Theorem 4.2.

This corollary was not used in the algorithm presented in Section 3. For implementation
reasons (simplicity) only one constraint is considered in Step 4.2 and not the constraints on
all the objective functions. All the constraints are computed, but then only the one that
produces the deepest cut is considered at every second iteration of the algorithm.

4.2 The Condition to Stop

When there are no more regions to divide, the remaining regions have ranges in their pay-off
tables lower than the error and the technique stops – Section 3.1, Step 3.1. These pay-off
tables were computed in a straightforward way allowing for weakly non-dominated solutions.
So the considered incumbent solution may be weakly non-dominated.

In Step 3.1 the pay-off tables of the remaining regions are recomputed, now guaranteeing
that the solutions are non-dominated. This is achieved, in the current software implemen-
tation, through a lexicographic approach. For each solution zk of the pay-off table, the
maximum of each objective function (zk

i , i= 1, ..., p, i 6= k) is recomputed individually,
considering the remaining objective functions as constraints, defined by the so far achieved
maximum. Other approaches could be used. This additional computation is not necessary
to guarantee that the predefined error is not exceeded but it was considered, by the author,
that this issue should not be disregarded due to the actual possibility of the incumbent
solution to be weakly non-dominated. In the framework of multiobjective programming it
is important to guarantee non-dominance. Moreover, computational tests were carried out
to assess the computational burden of this task and it was considered negligible – usually
there are only a few remaining regions (neither discarded nor divided). Notice that in Step
6 the set Q (remaining regions) is examined in order to further discard regions.

The pay-off tables can overestimate the nadir point for multiobjective problems. The
minima of the objective functions over the non-dominated set are called nadir values and are
the coordinates of the nadir point. Whereas the values of the ideal point are easy to obtain
by simply maximizing each objective function individually over the feasible region, the nadir
values are very hard to determine in the general case [1]. This implies that the range of the
pay-off tables of the remaining regions could be underestimated and consequently the actual
error could be bigger than the predefined error. However, with a small predefined error the
remaining regions are severely constrained and this situation is atypical.

The remaining regions S(q), q ∈ Q, are defined by S and several constraints on each
objective function – Step 4, Section 3.1. Only two of these constraints, per objective function,
can be non-redundant. So S(q) can be defined as:

S (q) = S ∩ {x ∈ Rn : zk (x) ≤ Uq
k , zk (x) ≥ Lq

k, k = 1, ..., p}

with Lq
k, Uq

k ∈ R, k = 1, ...p, where some Lq
k can be -∞ and some Uq

k can be +∞.
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Some computational tests were performed using an earlier version of the presented tech-
nique. In this earlier version the following algorithm was at the beginning of Step 3.1:

Step 3.1 – Stopping
For all q ∈ Q do

For k = 1, ..., p do

If
(

z ∗q

k
−Lq

k

)
> ε then # Redefine the lower bounds of S(q)

Lq
k = zk

(
xkq

)
with xkq = arg min

x
{zk (x) : x ∈ S (q)}

End if
End for
For k = 1, ..., p do

If
(

z ∗q

k
−Lq

k

)
> ε then # Branch again

g ← g + 1; S (g) = S(q) ∩
{

x ∈ Rn : zk (x) ≥ 1/2

(
z

q∗
k
−Lq

k

)}
; V ← V ∪

{g};
g ← g + 1; S (g) = S(q) ∩

{
x ∈ Rn : zk (x) ≤ 1/2

(
z

q∗
k
−Lq

k

)}
; V ← V ∪

{g};
If q ∈ Q then Q ← Q\ {q};

End if
End for

End for
If V 6= ∅ then

Do the general case to compute the pay-off tables and analyse the regions belonging
to V

Else
The algorithm proceeds as it is in Step 3.1, Section 3.1.

End if

The computation time of this task was considered negligible, but this additional com-
plexity was dropped because all performed tests showed that the error is bounded by the
range of the pay-off tables if the predefined error is small.

4.3 Comparing the Technique

Benson [3] presents an algorithm that is probably the closest to the technique presented in
Costa [5]. It is an adaptation of the algorithm presented in Benson [2] for the particular case
of the linear sum of ratios problem and it alleviates some of the needed assumptions to solve
non-linear problems (namely the numerators being positive). The space to be branched is
also the objective space (dimension p, being p the number of objective functions or ratios).
However, while our technique considers only the non-dominated region, which is further
trimmed by the cut, Benson’s algorithm considers a box defined by the minimum and maxi-
mum of the denominators of the ratios over the feasible region. For each generated subregion
the technique of Benson [3] solves one linear program with (p+1)×(n+1) constraints and
2×(p+1)+m variables. This linear program is obtained by applying some Lagrangean weak
duality results. The technique presented in this paper solves on average p/2 linear programs,
per each sub-region, with 1+m+2×p constraints and n+1 variables. The comparison of the
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computational performances of the algorithms is very difficult because there are no compu-
tational results in [3]. More important than this issue is, probably, how to combine both
techniques in order to achieve the solution of problems of higher dimension in a reasonable
time.

5 Computational Tests

Figure 1: Performance of the Costa [5] and the new techniques according to time.

We will report some computational results from tests performed on randomly generated
problems. The technique was coded in Delphi Pascal 5.0 for Microsoft Windows and a sim-
plex code for solving linear problems was obtained through URL http://www.netcologne.de/
∼nc-weidenma/readme.htm, and adapted to the present case. The application was limited
to problems with 200 (m) constraints and 140 (n) decision variables. There was no limit on
the number of objective functions (p). The used data structures were dynamic arrays. All
the data generated by the technique is kept in the data structures.

The tests used randomly generated problems according to Kuno [12]: data ckj , dkj ∈
[0.0, 0.5] and aij ∈ [0.0, 1.0] were uniformly distributed random numbers; b was set to con-
stant and equals to one. In [12] all constant terms of denominators and numerators were the
same number, which ranged from 2.0 and 100.0. Instead, in our tests αk, βk ∈ [2.0, 100.0]
were also uniformly distributed random numbers. Each performance measure was obtained
through the average of 20 runs, ignoring the two worst and two best values.

We used an Intel 6700, with 2 Gbytes of RAM, under the Windows XP Pack 2 operating
system.

Fig. 1 presents the performance of the technique according to the elapsed time in mil-
liseconds. The problems were generated with 10 decision variables and 10 constraints. The
error was set equal to 0.001. Fig. 2 presents the number of generated regions for the same
problems. The standard deviation of the measures whose averages are depicted in both
figures is approximately equal to, but lower than the averages. These figures compare the
performance of the algorithm presented by Costa [5], identified by ‘Old’, and the new algo-
rithm presented in this paper, which is identified by ‘New’. ‘1’ refers to the performance of



32 JOÃO PAULO COSTA

Figure 2: Performance of the Costa [5] and the new techniques according to the number of
searched regions.

Figure 3: Improvement found in the tests reported in Fig. 1 and Fig. 2.
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the algorithms using a weight vector for the objective functions with all components being
equal, i.e. λi = 1/p, i = 1, ..., p. ‘2’ refers to the performance of the algorithms with one of
the weights much bigger than the others, all the others being equal among them, e.g. λ1 =
0.9, λi = 1/(p-1), i = 2, ..., p. Costa [5] noticed that the worst situation for the performance
occurred when the weights were all equal. The results presented here confirm this situation.

Fig. 3 presents the achieved improvement with the new algorithm for the results pre-
sented in Fig. 1 and Fig. 2, which as been computed as follows: let Nold and Nnew be
the number of regions explored by the old and the new algorithm, respectively. Then the
improvement is given by (Nold – Nnew)/Nold. The improvement on time is computed in
the same way. One can see that the achieved improvement is approximately 20% for the
situation where all the weights are equal and approximately 70% for the situation where
there is one weight much bigger than the others. This was expected because the cut intro-
duced in the algorithm presented in this paper is particularly good if the values of one of the
objective functions are higher than the values of the others objective functions. It is worth
noting here that the introduced cut is a constraint on the kth objective function considering
a division by its weight λk . In all the tests the lower improvement was 0% (cases where
the algorithms were so fast that achieved the solutions in less than 1 millisecond) and the
biggest was 90%. These last cases will be carefully studied in the future in order to explain
why such great improvement is happening.

Figure 4: Performance of the Costa [5] and the new techniques according to time.

Fig. 4 and Fig 5 present the performances of the Costa [5] algorithm and the new
algorithm when the error is changed. Please notice that both axes, on Figs 4 and 5, are on
a logarithmic scale. The number of objective functions for all problems was set to 5. The
problems were generated with 10 decision variables and 10 constraints. One can see that the
improvement is greater when the error is reduced, that is in problems that consume more
time. The weight vector of the objective functions was set for the best situation, that is
one of the weights is much bigger than the others. The results presented in Fig. 4 and Fig.
5 confirm the conclusion already reached: the cut turns the algorithm faster. In problems
that need more computation resources the improvement is more significant than in the ones
requiring less resources.
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Figure 5: Performance of the Costa [5] and the new techniques according to the number of
searched regions.

Fig. 6 and Fig 7 depict the results of a study of the Costa [5] algorithm and the new
algorithm varying the number of constraints and variables of the problems. The number of
objective functions for all problems was set to 3 and the error was set to 0.001. The weights
for the objective functions were set to the worst situation, which is setting the weights all
equal among themselves. The study was conducted with these parameters in order to assess
the improvement in adverse circumstances.

Table 1: Improvement found in the tests reported in Fig. 6 (Time).
Improvement time No. Constraints (m)
No. Variables (n) 200 140 80 40 10
10 40,72% 30,81% 42,00% 30,11% 33,13%
40 38,11% 36,80% 35,49% 31,45% 30,25%
80 34,12% 33,27% 34,31% 35,23% 30,35%
140 34,11% 35,40% 34,57% 37,40% 34,12%

Note that the axe of ‘Time’ in Fig. 6 is on a logarithmic scale. The axe of ‘Number of
Regions’ in Fig. 7 is not on a logarithmic scale. The increase of time with the growth of
the number of variables and constraints is enormous when compared with the increase of
the number of searched regions. This indicates that the computational burden associated
with each region grows fast with the dimension of the original problem to be solved. It
also indicates that there is much to gain in time on using already known optimal bases
for a region as starting points for the needed computations of its child(ren). This was not
included in the current implementation of the technique.

Tables 1 and 2 present the improvement of the new technique in relation to the old one
in time and in the number of regions, respectively. Although being interesting, these results
do not allow extracting any pattern or conclusion but the already known: the introduced
cut works in all the considered situations.
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Figure 6: Performance of the Costa [5] and the new techniques according to time.

Table 2: Improvement found in the tests reported in Fig. 7 (Regions).
Improv. no. regions No. Constraints (m)
No. Variables (n) 200 140 80 40 10
10 40,86% 31,51% 39,28% 32,91% 40,72%
40 31,87% 28,79% 29,85% 24,89% 25,47%
80 25,95% 22,18% 27,61% 25,07% 27,37%
140 25,52% 28,58% 29,24% 31,39% 24,48%
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Figure 7: Performance of the Costa [5] and the new techniques according to the number of
searched regions.
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6 Conclusions

In this paper we presented a new technique to compute the maximum of a weighted sum
of the objective functions in multiple objective linear fractional programming (MOLFP).
This is an improvement of the technique presented in Costa [5] which is basically a Branch
& Bound approach. Now a cut is introduced. Some computational results indicating the
performance of the technique were presented. The cut proves to speed up the technique in
all the tests. On average the improvement ranges from 20% to 70%. Nevertheless, we believe
that the technique can be further improved by carefully choosing when the cut should be
introduced. The cut is, by now, introduced in a ‘blind’ way.
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