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1 Introduction

In this paper, we present a new algorithm to the following convex optimization problem over
the fixed point set [34]: let H be a real Hilbert space with inner product 〈·, ·〉 and its induced
norm ‖ · ‖. Given a convex, Fréchet differentiable function, f : H → R, and a nonexpansive
mapping, T : H → H, with Fix(T ) := {x ∈ H : T (x) = x} 6= ∅,

find a point z ∈ argmin
x∈Fix(T )

f(x) :=
{

z ∈ Fix(T ) : f(z) = min
x∈Fix(T )

f(x)
}

. (1.1)

Thanks to introduction of Problem (1.1), we can discuss constrained optimization problems
for the cases where the closed form expression of the metric projection (see Sec.2) onto the
constrained set is not known, for example, important optimization problems for signal pro-
cessing and inverse problems [6, 27, 28, 35]. Some iterative procedures [6, 15–18, 24, 25, 34]
for (1.1) have been presented. In the case where the gradient ∇f of f is strongly mono-
tone and Lipschitz continuous, the following method has been proposed [34]: x1 ∈ H and
xn+1 = T (xn)− µαn∇f(T (xn)) (n ∈ N), where µ > 0 and (αn)n∈N is a slowly diminishing
constant sequence. The convergence of (xn)n∈N to the uniquely existing solution of (1.1)
is also guaranteed [34]. Recently, in order to accelerate the method in [34], iterative algo-
rithms [16,18] using conjugate gradient directions have been proposed. Other algorithms for
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solving Problem (1.1) when ∇f is strongly monotone and Lipschitz continuous have been
proposed in [6, 15]. In [6], an effective scheme for solving the signal recovery problem has
been proposed and this method converges strongly to the solution without using a diminish-
ing constant sequence. In [15], the variational inequality problem (see Sec.2) which contains
(1.1) and an iterative algorithm for this problem have been presented. In the case where ∇f
is inverse-strongly monotone (see Sec.2), iterative algorithms for (1.1) and its convergence
analysis have been proposed in [24, 25]. In the case where C is a nonempty, closed convex
subset of RN which is simple enough to have a closed form expression of the metric projec-
tion PC and ∇f is a monotone, continuous operator, a projection method for the variational
inequality problem has been presented in [29]. This method requires us to solve some aux-
iliary problem and converges to some solution of Problem (1.1) when T = PC . In the case
where f is convex (and is not necessarily differentiable), a subgradient-type method for (1.1)
and its convergence analysis have been presented in [17]. As this method requires us to solve
an auxiliary maximization problem over the closed ball at every iteration, applications of
this method are limited unfortunately.

On the other hand, an ergodic iterative method [5] for the variational inequality problem
is summarized as: let f : H → R be lower semicontinuous and convex. Given xn ∈ H and
λn > 0, choose ξn ∈ ∂f(xn) (see Sec.2) arbitrarily and compute xn+1 = PC(xn − λnξn)
and zn =

∑n
i=1 λixi/

∑n
i=1 λi. Obviously this method assumes that C is a closed convex

set which is simple enough to have a closed form expression of PC . If
∑∞

n=1 λn = ∞ and if∑∞
n=1 λ2

n‖ξn‖2 < ∞, then the sequence, (zn)n∈N, converges weakly to a point in the solution
set {x ∈ C : 〈v − x, v∗〉 ≥ 0 for all v ∈ C and for all v∗ ∈ ∂f(v)} ⊃ {x ∈ C : 〈v − x, x∗〉 ≥
0 for all v ∈ C and for all x∗ ∈ ∂f(x)} (see Sec.2). Moreover, if f is Fréchet differentiable
and if ∇f is hemicontinuous (see Sec.2), then (zn)n∈N converges weakly to a solution of
Problem (1.1) when T = PC .

The goal of this paper is to propose a new iteration method to Problem (1.1) which
does not require to solve any auxiliary optimization problems. To this goal, we present an
ergodic algorithm for (1.1) by combining the ideas of a scheme [34] for a convex optimization
problem over the fixed point set and an ergodic iteration [5] for the variational inequality
problem. The proposed algorithm can use any nonexpansive mapping T such that Fix(T )
is equal to the constrained set. Hence, our algorithm can be applied to many practical
situations where no closed form expression of the constrained set is known. In addition, the
conditions on the objective function are weaker than the ones of [6, 15, 16, 24, 25, 34]. Thus,
it is anticipated that the proposed algorithm will be used to important problems to which
the existing methods [6,15,16,34] are not applied (On an ergodic method for power control
for the uplink of code-division multiple-access system, see [19]). In this paper, it is shown
that the sequence generated by the proposed algorithm converges weakly to a solution of
(1.1) under some assumptions.

The rest of this paper is divided into three sections. In Section 2, we state preliminaries
on fixed points, nonexpansive mappings, metric projections, monotone operators, and varia-
tional inequality problems. In Section 3, we present an ergodic iteration method (Algorithm
3.1) for a convex optimization problem over the fixed point set of a nonexpansive mapping
together with its convergence analysis (Theorem 3.2) for the problem. Numerical examples
on the proposed algorithm for a quadratic optimization problem over the fixed point set are
presented in Section 4.
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2 Preliminaries

2.1 Convexity, Continuity, and Monotonicity

A function f : H → R is said to be convex if, for any x, y ∈ H and for any λ ∈ [0, 1],
f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y). It is well known that any convex, Fréchet differentiable
function f : H → R is continuous and that, for all x ∈ H,

∂f(x) := {z ∈ H : f(y) ≥ f(x) + 〈y − x, z〉 for all y ∈ H} 6= ∅.

The set-valued operator ∂f : H → 2H is called a subdifferential of f . A subdifferential of a
convex function f satisfies the monotonicity, that is, 〈x− y, z −w〉 ≥ 0 for all x, y ∈ H and
for all z ∈ ∂f(x) and w ∈ ∂f(y). A convex, Fréchet differentiable function f implies that,
for all x ∈ H, ∂f(x) = {∇f(x)} holds. An operator A : H → H is said to be hemicontinuous
(for example, see [32]) if, for any x, y, z ∈ H, a mapping g : [0, 1] → R defined by g(t) :=
〈z, A(tx + (1 − t)y)〉 (t ∈ [0, 1]) is continuous. Define a quadratic function f : RN → R by
f(x) := (1/2)〈x,Q(x)〉 + 〈b, x〉 for all x ∈ RN , where Q ∈ RN×N is positive semidefinite
and b ∈ RN . Then, ∇f(·) = Q(·) + b is monotone and hemicontinuous. A : H → H is said
to be Lipschitz continuous if there exists L > 0 such that ‖A(x) − A(y)‖ ≤ L‖x − y‖ for
all x, y ∈ H. In such a case, A is called L-Lipschitz continuous. An operator A : H → H
is said to be inverse-strongly-monotone [1, 4, 8, 22, 37, 38] if there exists α > 0 such that
〈x− y, A(x)−A(y)〉 ≥ α‖A(x)−A(y)‖2 for all x, y ∈ H. Suppose that f : H → R is convex
and continuously Fréchet differentiable and that ∇f : H → H is L-Lipschitz continuous.
Then, ∇f is 1/L-inverse-strongly-monotone [1]. Suppose that Q ∈ RN×N is a positive
semidefinite, that the maximum eigenvalue λmax of Q is positive, and that b ∈ RN . Define
f(x) := (1/2)〈x,Q(x)〉 + 〈b, x〉 (x ∈ RN ). Then, ∇f(·) := Q(·) + b is λmax-Lipschitz
continuous and 1/λmax-inverse-strongly monotone [1, 37,38].

2.2 Fixed Point and Nonexpansivity

A fixed point of a mapping T : H → H is a point x ∈ H satisfying T (x) = x. The set
Fix(T ) := {x ∈ H : T (x) = x} is called the fixed point set of T . A mapping T : H → H is
said to be nonexpansive [2,3,12,13,26,31,32] if, for all x, y ∈ H, ‖T (x)−T (y)‖ ≤ ‖x−y‖. It is
well known that the fixed point set of a nonexpansive mapping is closed and convex [2,13,32].
Given a nonempty, closed convex subset C of H, the mapping that assigns every point in H
to its unique nearest point in C is called the metric projection onto C; and denoted by PC ,
that is, PC(x) ∈ C and ‖x−PC(x)‖ = infy∈C ‖x−y‖. The metric projection PC is a typical
nonexpansive mapping satisfying Fix(PC) = C. Some closed convex set C is simple in the
sense that the closed form expression of PC is known, which implies that PC can be computed
within a finite number of arithmetic operations. This will be the case, for example, when C
is a linear variety, a closed ball, a closed cone, or a closed polytope [2,7,33]. Let Q ∈ RN×N

be a positive semidefinite matrix with λmax > 0, λ ∈ (0, 2/λmax], and b ∈ RN . We define
a function f : RN → R and a mapping T : RN → RN by f(x) := (1/2)〈x,Q(x)〉+ 〈b, x〉 for
all x ∈ RN and T (x) := PC(x− λ∇f(x)) for all x ∈ RN , respectively. By the inverse-strong
monotonicity of∇f , we can prove that T is nonexpansive and Fix(T ) = argminx∈C f(x) [20].

2.3 Variational Inequality Problem

Problem (1.1) can be formulated equivalently as the variational inequality problem [9–11,
21,23,30,32,34,36] over Fix(T ): find a point z ∈ Fix(T ) such that 〈v− z,∇f(z)〉 ≥ 0 for all
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v ∈ Fix(T ). Suppose that∇f : H → H is monotone and hemicontinuous. Then, the problem
is equivalent to the following problem: find a point z ∈ Fix(T ) such that 〈v− z,∇f(v)〉 ≥ 0
for all v ∈ Fix(T ). This implies that the set of solutions of the variational inequality problem
is closed and convex.

3 Ergodic Iteration Method for a Convex Optimization Problem
over the Fixed Point Set of a Nonexpansive Mapping

In this section, we assume that

(A1) f : H → R is a convex, Fréchet differentiable function;

(A2) ∇f : H → H is hemicontinuous;

(A3) T : H → H is a nonexpansive mapping with Fix(T ) 6= ∅;

(A4) argminx∈Fix(T ) f(x) 6= ∅.

On some examples of f and T satisfying Conditions (A1)–(A4), see Section 4.
We present the following algorithm for Problem (1.1):

Algorithm 3.1 (Ergodic algorithm for convex optimization problem).

Step 0. Choose x1 ∈ H and λ1 ∈ (0,∞) arbitrarily, and let n := 1.

Step 1. Given xn ∈ H, choose λn ∈ (0,∞) (see Theorem 3.2) and compute xn+1 ∈ H and
z
(k)
n ∈ H as

xn+1 := T (xn − λn∇f(xn))

and

z(k)
n :=

∑n
i=k λixi∑n
i=k λi

(k = 1, 2, . . . , n). (3.1)

Update n := n + 1 and go to Step 1.

For Algorithm 3.1, we present the following convergence analysis:

Theorem 3.2. Assume that the sequence, (∇f(xn))n∈N, in Algorithm 3.1 is bounded, and
that there exists n0 ∈ N such that arg minx∈Fix(T ) f(x) ⊂ Ω :=

⋂∞
n=n0

{x ∈ Fix(T ) : f(x) ≤
f(xn)} (For details, see Remark 3.3 and Section 4). If we use (λn)n∈N ⊂ (0,∞) with (i)
λn+1 ≤ λn (n ∈ N), (ii)

∑∞
n=1 λn = ∞, and (iii)

∑∞
n=1 λ2

n < ∞ (An example of (λn)n∈N is
λn := 1/n), then (xn)n∈N and (z(n0)

n )n≥n0 generated by Algorithm 3.1 satisfy the following:

(a) [Boundedness] (xn)n∈N and (z(n0)
n )n≥n0 are bounded.

(b) [Relation between (xn+1) and (T (xn))] limn→∞ ‖xn+1 − T (xn)‖ = 0.

(c) [Convergence of (zn)] The sequence (z(n0)
n )n≥n0 converges weakly to a solution of (1.1).
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Proof. (a) Fix u ∈ Ω arbitrarily. By the definition of ∂f , we have 〈xn − u,∇f(xn)〉 ≥
f(xn)− f(u) ≥ 0 for all n ≥ n0. From Condition (A3), we also have that, for all n ≥ n0,

‖xn+1 − u‖2 = ‖T (xn − λn∇f(xn))− T (u)‖2
≤ ‖(xn − u)− λn∇f(xn)‖2
= ‖xn − u‖2 − 2λn〈xn − u,∇f(xn)〉+ λ2

n‖∇f(xn)‖2
≤ ‖xn − u‖2 + M2λ2

n,

(3.2)

where M := sup{‖∇f(xn)‖ : n ∈ N} < ∞. By
∑∞

n=1 λ2
n < ∞ and (3.2), there exists

limn→∞ ‖xn−u‖, and hence, (xn)n∈N is bounded. By (3.1), the sequence (z(n0)
n )n≥n0 is also

bounded.
(b) By Condition (A3) and the definition of xn, we get that, for every n ∈ N,

‖xn+1 − T (xn)‖ = ‖T (xn − λn∇f(xn))− T (xn)‖
≤ λn‖∇f(xn)‖ ≤ Mλn.

Since Condition (iii) implies limn→∞ λn = 0, we deduce

lim
n→∞

‖xn+1 − T (xn)‖ = 0. (3.3)

(c) Put zn := z
(n0)
n for every n ≥ n0. By the boundedness of (zn)n≥n0 , there exist a

subsequence (zni
)i∈N of (zn)n≥n0 and z ∈ H such that, for all w ∈ H, limi→∞〈zni

−z, w〉 = 0.
The proof is divided into the following four steps:

(I) Proof of z ∈ Fix(T ).
By Condition (A3), we have that, for every y ∈ H and for every n ∈ N, ‖xn+1−T (y)‖ ≤

‖xn+1 − T (xn)‖ + ‖xn − y‖. So, it holds from the boundedness of (xn)n∈N and Condition
(i) that, for all n ≥ n0,

λn+1‖xn+1 − T (y)‖2 ≤ λn+1(‖xn − y‖+ ‖xn+1 − T (xn)‖)2
≤ λn‖xn − y‖2 + (2‖xn − y‖+ ‖xn+1 − T (xn)‖)λn‖xn+1 − T (xn)‖
≤ λn‖xn − y‖2 + Kλn‖xn+1 − T (xn)‖,

where K := sup{2‖xn − y‖+ ‖xn+1 − T (xn)‖ : n ∈ N} < ∞. Hence, we obtain that, for all
n ≥ n0,

0 ≤ λn‖xn − y‖2 − λn+1‖xn+1 − T (y)‖2 + Kλn‖xn+1 − T (xn)‖
= λn‖xn − T (y)‖2 + 2λn〈xn − T (y), T (y)− y〉+ λn‖T (y)− y‖2

− λn+1‖xn+1 − T (y)‖2 + Kλn‖xn+1 − T (xn)‖,

which implies

0 ≤ λn0‖xn0 − T (y)‖2 − λm+1‖xm+1 − T (y)‖2 + ‖T (y)− y‖2
m∑

k=n0

λk

+ K
m∑

k=n0

λk‖xk+1 − T (xk)‖+ 2

〈
m∑

k=n0

λkxk −
m∑

k=n0

λkT (y), T (y)− y

〉
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for all m ≥ n0. Therefore, we get

0 ≤ λn0‖xn0 − T (y)‖2∑m
k=n0

λk
+ 2〈zm − T (y), T (y)− y〉+ ‖T (y)− y‖2

+ K

∑m
k=n0

λk‖xk+1 − T (xk)‖∑m
k=n0

λk
.

Taking m := ni, from Condition (ii) and (3.3), we have 0 ≤ 2〈z−T (y), T (y)−y〉+‖T (y)−y‖2
as i →∞. Putting y := z, we get 0 ≤ 2〈z − T (z), T (z)− z〉+ ‖T (z)− z‖2 = −‖T (z)− z‖2.
Thus, we obtain z ∈ Fix(T ).

(II) Proof of z ∈ argminx∈Fix(T ) f(x).
Let v ∈ Fix(T ). By the monotonicity of ∇f , we get that, for all n ≥ n0,

‖xn+1 − v‖2 ≤ ‖(xn − v)− λn∇f(xn)‖2
= ‖xn − v‖2 − 2λn〈xn − v,∇f(xn)〉+ M2λ2

n

≤ ‖xn − v‖2 − 2λn〈xn − v,∇f(v)〉+ M2λ2
n.

So, we deduce that, for all m ≥ n0,

‖xm+1 − v‖2 − ‖xn0 − v‖2 ≤ −2

〈
m∑

k=n0

λkxk −
m∑

k=n0

λkv,∇f(v)

〉
+ M2

m∑

k=n0

λ2
k,

which implies that

−‖xn0 − v‖2∑m
k=n0

λk
≤ −2〈zm − v,∇f(v)〉+ M2

∑m
k=n0

λ2
k∑m

k=n0
λk

.

Taking m := ni, from Conditions (ii) and (iii), we obtain 0 ≤ −2〈z−v,∇f(v)〉 as i →∞, and
hence, 〈v−z,∇f(v)〉 ≥ 0 for all v ∈ Fix(T ). Condition (A2) ensures that 〈v−z,∇f(z)〉 ≥ 0
for all v ∈ Fix(T ), that is, z ∈ argminx∈Fix(T ) f(x).

By Condition (A1) and the closedness and convexity of Fix(T ) ⊂ H, it is shown that
Ω ⊂ H is closed and convex. So, we can define un := PΩ(xn) for every n ∈ N.

(III) Proof of convergence of (un)n∈N
Fix w ∈ Ω arbitrarily. It holds from (3.2) that, for every n,m ≥ n0,

‖xn+m − w‖2 ≤ ‖xn+m−1 − w‖2 + M2λ2
n+m−1

≤ ‖xn+m−2 − w‖2 + M2(λ2
n+m−1 + λ2

n+m−2)

≤ ‖xn − w‖2 + M2
n+m−1∑

i=n

λ2
i ≤ ‖xn − w‖2 + M2

∞∑

i=n

λ2
i .

So, we have

‖xn+m − un‖2 ≤ ‖xn − un‖2 + M2
∞∑

i=n

λ2
i (3.4)

for every n,m ≥ n0. By un+m = PΩ(xn+m) and the convexity of Ω, we also have
∥∥∥xn+m − un + un+m

2

∥∥∥ ≥ ‖xn+m − un+m‖. (3.5)
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From (3.4) and (3.5), we get

‖un+m − un‖2 = ‖(un+m − xn+m) + (xn+m − un)‖2

= 2‖un+m − xn+m‖2 + 2‖xn+m − un‖2 − 4
∥∥∥xn+m − un + un+m

2

∥∥∥
2

≤ 2‖xn+m − un‖2 − 2‖un+m − xn+m‖2

≤ 2‖xn − un‖2 − 2‖un+m − xn+m‖2 + 2M2
∞∑

i=n

λ2
i ,

(3.6)

and hence,

lim sup
m→∞

‖xm − um‖2 ≤ ‖xn − un‖2 + M2
∞∑

i=n

λ2
i .

So, by Condition (iii), there exists limn→∞ ‖xn − un‖. Thus, by (3.6) and Condition (iii),
(un)n∈N is a Cauchy sequence. Since Ω ⊂ H is closed, (un)n∈N converges strongly to a point
ẑ ∈ Ω.

(IV) Proof of z = ẑ
By un = PΩ(xn) and z ∈ argminx∈Fix(T ) f(x) ⊂ Ω, we have 〈z − un, un − xn〉 ≥ 0 for all

n ≥ n0. Then, we get

〈z − ẑ, xn − un〉 = 〈z − un, xn − un〉+ 〈un − ẑ, xn − un〉
≤ ‖un − ẑ‖‖xn − un‖ ≤ L‖un − ẑ‖,

where L := sup{‖xn − un‖ : n ∈ N} < ∞. Hence, we deduce that, for every m ≥ n0,
〈

z − ẑ, zm −
∑m

k=n0
λkuk∑m

k=n0
λk

〉
≤ L

∑m
k=n0

λk‖uk − ẑ‖∑m
k=n0

λk
.

Taking m := ni, by Condition (ii) and limn→∞ ‖un− ẑ‖ = 0, we obtain 〈z− ẑ, z− ẑ〉 ≤ 0 as
i → ∞, that is, z = ẑ. This implies that the sequence (zn) converges weakly to the point
ẑ = z ∈ argminx∈Fix(T ) f(x).

Remark 3.3. Assume that there exists n0 ∈ N such that xn ∈ Fix(T ) for all n ≥ n0. Then,
the convergence condition, argminx∈Fix(T ) f(x) ⊂ Ω, holds. On numerical examples for the
relation xn ∈ Fix(T ), see Section 4.

4 Numerical Examples

In this section, we present numerical examples for an algorithm presented in the previous
section. We consider the following quadratic optimization problem:

Problem 4.1 (Quadratic optimization problem over complex constrained set).

minimize f(x) :=
1
2
〈x,Q(x)〉 subject to x ∈ C,

where Q ∈ R64×64 is a positive semidefinite matrix generated in [14] and C ⊂ R64 is a
nonempty, closed convex set such that no closed form expression of PC is known, or its
computation is not easy.
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By the definitions of f and Q, a function f and its gradient ∇f := Q satisfy Conditions
(A1) and (A2).

We first discuss the case where C is the intersection of two closed balls. Let C1 := {x ∈
R64 : ‖x‖2 ≤ 1} and C2 := {x ∈ R64 : ‖x− (1, 1, 0, . . . , 0)T ‖2 ≤ 1}, and define

C := C1 ∩ C2 6= ∅.

In such a problem, the exact solutions of Problem 4.1 cannot be described. We note that
the computations of PC1 and PC2 are easy, but the computation of PC is not easy. To relax
this complexity, we use a computable mapping, T : R64 → R64, defined by

T (x) :=
1
2
PC1(x) +

1
2
PC2(x) for all x ∈ R64.

Such a mapping T satisfies the nonexpansivity and Fix(T ) = C 6= ∅, that is, Condition (A3)
is satisfied. Moreover, by the continuity of f and the compactness of C, Condition (A4)
holds. In this case, we used x1 := (−0.5,−0.5, . . . ,−0.5)T ∈ R64 and λn := 1/(104(n + 1)).
Figure 1 shows the behaviors for (xn)100n=1 and (z(100)

n )n≥100. It is seen from Figure 1 that
each point xn (n ≥ 100) is in Fix(T ) = C. So, the convergence condition, argminx∈C f(x) ⊂
Ω, is satisfied. At the same time, it can be observed from Figure 1 that the behavior of
f(z(100)

n ) (n ≥ 100) is stable.
Next we consider the case where C is the solution set of a convex optimization problem

over a simple constrained set. Let D := {x ∈ R64 : ‖x‖2 ≤ 1}, R ∈ R64×64 the diagonal
matrix that has eigenvalues 0, 1, . . . , 63, b ∈ R64, and

C :=
{

x̂ ∈ D :
1
2
〈x̂, R(x̂)〉+ 〈b, x̂〉 = min

x∈D

[
1
2
〈x,R(x)〉+ 〈b, x〉

]}
6= ∅.

Problem 4.1 with this constrained set C is a three-stage convex optimization problem and the
exact solutions of this problem are more than one, and these solutions cannot be described.
As the closed form expression of PC is not known, we cannot compute PC . So, we define a
mapping, T : R64 → R64, by

T (x) := PD(x− α(R(x) + b)) for all x ∈ R64,

where α ∈ (0, 2/63]. Then, T is a nonexpansive mapping with Fix(T ) = C 6= ∅ (see
Sec.2), and hence, Condition (A3) holds. By C ⊂ D and the compactness of D ⊂ R64,
Condition (A4) is also satisfied. In this problem, we used x1 := (0, 0, . . . , 0)T ∈ R64,
α := 2/63, and λn := 1/(105(n + 1)). The behaviors for (xn)2000n=1 and (z(2000)

n )n≥2000

when b := (−0.1,−0.1, . . . ,−0.1)T ∈ R64 are presented in Figure 2. From Figure 2,
we note that xn (n ≥ 2000) is in Fix(T ) = C, and hence, the convergence condition,
argminx∈C f(x) ⊂ Ω, is satisfied. Figure 2 shows that the behaviors of f(xn)2000n=500 and
f(z(2000)

n ) (n ≥ 2000) are stable, and that its values are the same. Therefore, it is considered
that the proposed algorithm converges to some solution of Problem 4.1. The behaviors for
(xn)100n=1 and (z(100)

n )n≥100 when b := (1, 1, . . . , 1)T ∈ R64 are presented in Figure 3. Figure
3 shows that the behavior of f(xn) (n = 1, 2, . . . , 100) is unstable, but, by computing the
mean of xn, the behavior of f(z(100)

n ) (n ≥ 100) is stable. Hence, it is considered that the
proposed algorithm converges to some solution of Problem 4.1.

Let C1 := {x ∈ R64 : ‖x‖2 ≤ 1}, D1 := {x := (x1, x2, . . . , x64)T ∈ R64 : x1 ≥ a}, and
D2 := {x := (x1, x2, . . . , x64)T ∈ R64 : x2 ≥ a}, where a ≥ 0. Finally we consider the case
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where C := C1 ∩ (D1 ∩ D2). When a ≥ 1, the condition C = ∅ holds. To resolve this
situation, we define the following generalized convex feasible set [34]:

CΦ :=
{

x̂ ∈ C1 : Φ(x̂) = min
x∈C1

Φ(x)
}
6= ∅,

where d(x,Di) := inf{‖x−y‖ : y ∈ Di} (i = 1, 2, x ∈ R64) and Φ(x) := (1/2)[(1/2)d(x,D1)2+
(1/2)d(x,D2)2] (x ∈ R64). If C 6= ∅, that is, a < 1, then CΦ = C holds. Even if C = ∅,
the set CΦ is well defined as the set of all minimizers of Φ over C1. It follows from the
compactness of C1 that CΦ 6= ∅ is satisfied; for more details, see [34]. Problem 4.1 with CΦ

is also a three-stage convex optimization problem and no closed form expression of PΦ is
known. So, we define a mapping, T : R64 → R64, as follows:

T (x) := PC1

[
1
2
PD1(x) +

1
2
PD2(x)

]
for all x ∈ R64.

Then, T is nonexpansive and Fix(T ) = CΦ 6= ∅ [34]. We used x1 := (0.5, 0.5, . . . , 0.5)T ∈ R64

and λn := 1/(104(n+1)). Figure 4 shows the behaviors for (xn)100n=1 and (z(100)
n )n≥100 when

a := 1/2. From Figure 4, we note that xn ∈ Fix(T ) = C1 ∩ (D1 ∩D2) (n ≥ 100) and that
the behavior of f(z(100)

n ) (n ≥ 600) is stable. The behaviors for (xn)100n=1 and (z(100)
n )n≥100

when a := 1 are presented in Figure 5. It can be observed from Figure 5 that xn ∈ Fix(T )
(n ≥ 100). Moreover, it is seen from Figure 5 that the behavior of f(z(100)

n ) (n ≥ 100) is
stable by using the ergodic method. Therefore, it is considered that the proposed method
converges to some solution of Problem 4.1.

Remark 4.2. By Theorem 3.2, the proposed algorithm requires us to choose n0 ∈ N such
that arg minx∈Fix(T ) f(x) ⊂ Ω :=

⋂∞
n=n0

{x ∈ Fix(T ) : f(x) ≤ f(xn)}. A choice of the
number n0 ∈ N depends on a nonexpansive mapping T , the objective function f , and an
initial point x1.
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