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1 Introduction

Let (X, d) be a metric space, and let f be a proper function defined on X, i.e., a function
that nowhere has the value −∞ and is not identically equal to +∞. For the inequality f ≤ 0,
let Sf = {x ∈ X : f(x) ≤ 0} denote the solution set and dSf

(x) = inf{d(x, y) : y ∈ Sf}
denote the distance from x to Sf . Throughout this paper, it is assumed that ∅ 6= Sf 6= X.

Let f+(x) = max{f(x), 0}. The inequality f ≤ 0 is said to have a local error bound at
a if there exist τ, δ ∈ (0,∞) such that dSf

(x) ≤ τf+(x) for all x ∈ B(a, δ), where B(a, δ)
denotes the open ball centered at a with radius δ (cf. [7, 10, 18]). The inequality f ≤ 0 is
said to have a global error bound if there exists τ ∈ (0,∞) such that dSf

(x) ≤ τf+(x) for
all x ∈ X. The smallest global error bound for f ≤ 0 is denoted by τf .

The study of an inequality defined by a non lower semicontinuous function arose from
a broad class of outer approximation methods for convex optimization ([4] and references
therein). It is also a theoretical interest to study error bounds without lower semicontinuity.
Some commonly studied non lower semicontinuous functions include the indicator functions
of nonclosed sets. For example, the feasible direction cones of a closed convex set may not
be closed, thus their indicator functions may not be lower semicontinuous (cf. [3]).

Characterizations of local and global error bounds have been actively studied during the
last two decades and references are too numerous to be completely listed. We can only
select some that are closely related to the topics of this paper. An exterior characterization
of error bounds is a condition on the exterior of the solution set. Such characterizations
typically require f to be lower semicontinuous (e.g. [1, 2, 8, 13, 16, 17]). Without lower
semicontinuity, they become not sufficient or not necessary (see Examples 2.1 and 2.2).

In this paper, we study local and global error bounds for an inequality defined by a
proper function. The relation between error bounds of the given function and its closure is
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established through “bridge” theorems. The equal closure property is introduced and shown
to be critical in this establishment. Applying the bridge theorems to any characterization of
error bounds valid for lower semicontinuous functions, we can obtain a characterization of
error bounds for proper functions. For example, an extensively studied exterior characteri-
zation is the norm of subgradients at all exterior points of the solution set being uniformly
positive. Without lower semicontinuity, this condition is still necessary but not sufficient
[13]. We can use the bridge theorems to extend this and other characterizations to proper
functions.

The notation used in this paper is standard. For A ⊆ X, let cl(A), bd(A), int(A),
conv(A), cone(A) denote the closure, boundary, interior, convex hull, and convex cone of
A respectively. Let dA(x) = inf{d(x, a) : a ∈ A} if A 6= ∅, otherwise, dA(x) = ∞ by
convention.

Let domf = {x ∈ X : f(x) < ∞} and epif = {(x, y) ∈ X ×R : f(x) ≤ y}. The closure
of f is defined by epi(clf) = cl(epif).

For a normed linear space (X, ‖ · ‖), let (X∗, ‖ · ‖∗) denote the topological dual space.
For a convex set C and x ∈ C, let NC(x) = {x∗ ∈ X∗ : 〈x∗, y−x〉 ≤ 0 for all y ∈ C} denote
the normal cone of C at x, where 〈x∗, y − x〉 is the value of continuous linear functional x∗

at y − x.
For a proper convex function f , let ∂f(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ Nepif (x, f(x))}

denote the subdifferential of f at x. Let f ′(x;h) denote the classical directional derivative
of f at x in the direction h, i.e.,

f ′(x;h) = lim
t→0+

f(x + th)− f(x)
t

.

The strong slope of f at x ∈ domf is defined by (e.g. [1, 2])

|∇f |(x) =

{
lim supy→x

f(x)−f(y)
d(x,y) , if x is not a local minimum of f ;

0, otherwise.

If x 6∈ domf , |∇f |(x) = ∞.

2 Error Bounds and Equal Closure Property

Characterizations of error bounds for inequalities have been actively studied in recent years.
The following characterizations of global error bounds for f ≤ 0, where f is a lower semi-
continuous convex function in a Banach space, are well known and equivalent (cf. [1, 2, 5,
8, 13, 16, 17]).

inf{‖x∗‖∗ : x∗ ∈ ∂f(x), x 6∈ Sf} ≥ τ−1, (2.1)

∂f∗(x∗) ⊆ Sf , ∀x∗ ∈ X∗, ‖x∗‖∗ < τ−1, (2.2)

inf{|∇f |(x) : x 6∈ Sf} ≥ τ−1. (2.3)

It is interesting to observe what may happen to these three characterizations when f
is not lower semicontinuous. In the next two examples, we demonstrate that when lower
semicontinuity is not present, (2.1) and (2.3) are no longer sufficient while (2.2) is no longer
necessary.

Example 2.1. Let D = {(x, y) : x > 0, y ≥ 0} ∪ {(0, y) : 0 ≤ y ≤ 1}, and define
f(x, y) = ID(x, y) + x, where ID(x, y) is the indicator function of D. Note that f is proper
convex but not lower semicontinuous, and Sf = {(x, y) : f(x, y) ≤ 0} = {(0, y) : 0 ≤ y ≤ 1}
is compact.
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First, we verify that (2.1) holds. If (x, y) 6∈ D, then ∂f(x, y) = ∅. If (x, y) ∈ int(D),
then ∂f(x, y) = ∂ID(x, y) + {(1, 0)} = {(1, 0)}. On {(x, 0) : x > 0}, ∂f(x, y) = ND(x, y) +
{(1, 0)} = {(1,−t) : t ≥ 0}. Therefore, inf{‖(x∗, y∗)‖∗ : (x∗, y∗) ∈ ∂f(x, y), (x, y) 6∈ Sf} = 1.

Next, we verify that (2.3) holds. We compute the strong slope for (a, b) ∈ domf\Sf . Let
a > 0, b ≥ 0, and (a, b) 6= (x, y) ∈ domf , then

f(a, b)− f(x, y)
‖(a, b)− (x, y)‖ =

a− x√
(a− x)2 + (b− y)2

≤ 1.

Choosing 0 < x < a and y = b yields

f(a, b)− f(x, y)
‖(a, b)− (x, y)‖ = 1.

Therefore, for any (a, b) ∈ domf\Sf ,

|∇f |(a, b) = lim sup
(x,y)→(a,b)

f(a, b)− f(x, y)
‖(a, b)− (x, y)‖ = 1.

Now we show that f ≤ 0 does not have a global error bound. For any t > 0, let
(xt, yt) = (t, 1 +

√
t). Then, f(xt, yt) = t and

dSf
(xt, yt) = d((t, 1 +

√
t), (0, 1)) = t

√
1 + t−1 =

√
1 + t−1f(xt, yt).

√
1 + t−1 →∞ as t → 0+. Therefore, f ≤ 0 does not have a global error bound.

On the other hand, clf(x, y) = Icl(D)(x, y) + x, and Sclf = {(0, y) : y ≥ 0}. Direct
verification shows that τ = 1 is a global error bound for clf ≤ 0. Observe in this case,
Sf = cl(Sf ) ⊂ Sclf , and cl(Sf ) ∩B((0, 1), r) ⊂ Sclf ∩B((0, 1), r) for any 0 < r < 1.

Example 2.2. Let D = {(x, y) : x ≥ 0, y ≥ 0}\{(0, 0)}, and f(x, y) = ID(x, y) + x. Note
that f is proper convex but not lower semicontinuous, Sf = {(0, y) : y > 0} is nonclosed,
and cl(Sf ) = Sclf = {(0, y) : y ≥ 0}. It is easy to verify directly that f ≤ 0 has a global
error bound τ = 1. Next, we show that condition (2.2) fails to hold.

f∗(x∗, y∗) = sup{〈(x∗, y∗), (x, y)〉 − f(x, y) : (x, y) ∈ R2}
= sup{〈(x∗ − 1, y∗), (x, y)〉 − ID(x, y) : (x, y) ∈ R2}
= sup{〈(x∗ − 1, y∗), (x, y)〉 : (x, y) ∈ D}
≥ 0. (2.4)

For any 0 < a∗ < 1, we claim that (0, 0) ∈ ∂f∗(a∗, 0). Indeed, because a∗ − 1 < 0,
f∗(a∗, 0) = 0 by (2.4). Hence, f∗(x∗, y∗) − f∗(a∗, 0) = f∗(x∗, y∗) ≥ 0 for all (x∗, y∗) ∈ R2,
namely, (0, 0) ∈ ∂f∗(a∗, 0). Note that (0, 0) 6∈ Sf , we conclude that condition (2.2) fails to
hold.

Examples 2.1 and 2.2 indicate that the closedness of the solution set Sf is not necessary
for the existence of a global error bound, while the condition cl(Sf ) = Sclf seems to be
critical. In addition, the existence of a global error bound for clf ≤ 0 is not sufficient to
ensure the existence of a global error bound for f ≤ 0. These observations lead to the
following useful topological condition, and motivate the research for the relation between
error bounds of f(x) ≤ 0 and error bounds of clf(x) ≤ 0.
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Definition 2.3. The inequality f ≤ 0 is said to have the equal closure property (ECP) if
it satisfies cl(Sf ) = Sclf .

Obviously, if f is lower semicontinuous, then f satisfies ECP. Example 2.2 shows that
ECP is indeed weaker than lower semicontinuity. We’ll prove that cl(Sf ) = Sclf is a necessary
condition for the existence of a global error bound. Before presenting the main result of this
section, we need the following convenient lemma.

Lemma 2.4. Let (X, d) be a metric space. Then, for all x ∈ X, we have cl(f+)(x) =
(clf)+(x).

Proof. We calculate the epigraphs of the functions.

epi(cl(f+)) = cl(epi(f+)) = cl(epif ∩ epi0).

epi((clf)+) = epi(clf) ∩ epi0 = cl(epif) ∩ epi0.

By [7, Lemma 2.3 (i)], cl(epif ∩ epi0) = cl(epif) ∩ epi0, therefore Lemma 2.4 holds. Note
that [7, Lemma 2.3 (i)] is stated for a proper function in a Banach space, but the same proof
is valid in a metric space.

Theorem 2.5. Suppose that (X, d) is a metric space, f is a proper function, and τ ∈ (0,∞).
The following statements are equivalent.
(i) dSf

(x) ≤ τf+(x) for all x ∈ X.
(ii) cl(Sf ) = Sclf and dSclf (x) ≤ τ(clf)+(x) for all x ∈ X.
In this case, the least global error bound for f ≤ 0 is the same as that for clf ≤ 0, i.e.,
τf = τclf .

Proof. (i) ⇒ (ii). From (i), we have τ−1dSf
(x) ≤ f+(x) for all x ∈ X. Since τ−1dSf

(x)
is continuous and cl(f+) is the greatest lower semicontinuous function majorized by f+, by
Lemma 2.4 we have that

τ−1dSf
(x) ≤ cl(f+)(x) = (clf)+(x) ≤ f+(x) ∀x ∈ X. (2.5)

Since clf ≤ f and Sclf is closed, Sf ⊆ cl(Sf ) ⊆ Sclf . This implies that

dSclf (x) ≤ dSf
(x) ∀x ∈ X. (2.6)

It follows from (2.5) and (2.6) that

dSclf (x) ≤ dSf
(x) ≤ τ(clf)+(x) ∀x ∈ X. (2.7)

It remains to show Sclf ⊆ cl(Sf ). Let x ∈ Sclf . Then clf(x) ≤ 0, which implies that
(clf)+(x) = 0. By (2.7), dSf

(x) = 0, which implies that x ∈ cl(Sf ). Thus Sclf ⊆ cl(Sf ).
(ii) ⇒ (i). By (ii) and Lemma 2.4,

dSf
(x) = dcl(Sf )(x) = dSclf (x) ≤ τ(clf)+(x) = τcl(f+)(x) ≤ τf+(x) ∀x ∈ X.

Theorem 2.5 is a useful bridge. Applying Theorem 2.5 to characterizations valid for a
lower semicontinuous function, one can obtain characterizations for a proper function. In
particular, for a convex inequality in a Banach space, we immediately have the following
extension of (2.1), (2.2) and (2.3).
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Theorem 2.6. Suppose that X is a Banach space, f is a proper convex function, and
τ ∈ (0,∞). The following statements are equivalent.
(i) dSf

(x) ≤ τf+(x) for all x ∈ X.
(ii) cl(Sf ) = Sclf and inf{‖x∗‖∗ : x∗ ∈ ∂(clf)(x), x 6∈ Sclf} ≥ τ−1.
(iii) cl(Sf ) = Sclf and ∂f∗(x∗) ⊆ Sclf , for all x∗ ∈ X∗ satisfying ‖x∗‖∗ < τ−1.
(iv) cl(Sf ) = Sclf and inf{|∇clf |(x) : x 6∈ Sclf} ≥ τ−1.

It was known that condition (2.1) remains necessary even when lower semicontinuity is
not present (cf. [13]). This necessity is easily seen from Theorem 2.6 (ii) because ∂f(x) ⊆
∂(clf)(x). In order to derive a local version of Theorem 2.5, we need the following lemma.

Lemma 2.7. Let (X, d) be a metric space. If a ∈ A ⊆ X and r ∈ (0,∞), then dA(x) =
dA∩B(a,r)(x) for all x ∈ B(a, r/2).

Proof. Let x ∈ B(a, r/2). Since A ∩ B(a, r) ⊆ A implies that dA(x) ≤ dA∩B(a,r)(x), we
only need to show that dA∩B(a,r)(x) ≤ dA(x). For all n = 1, 2, . . ., choose an ∈ A such that
d(x, an) < dA(x) + (1/n). We have

d(an, a) ≤ d(an, x) + d(x, a) < dA(x) + (1/n) + (r/2).

Since d(x, a) < (r/2), there exists N > 0 such that d(x, a) + (1/n) < (r/2) for all n ≥ N .
Therefore, for all n ≥ N we have

d(an, a) < dA(x) + (1/n) + (r/2) ≤ d(x, a) + (1/n) + (r/2) < r,

which implies that an ∈ A∩B(a, r) for all n ≥ N . Consequently, dA∩B(a,r)(x) ≤ d(x, an) <
dA(x) + (1/n) for all n ≥ N , and thus dA∩B(a,r)(x) ≤ dA(x).

Now we can establish a bridge theorem for local error bounds.

Theorem 2.8. Suppose that (X, d) is a metric space, f is a proper function, and a ∈
cl(Sf ) ⊆ Sclf . The following statements are equivalent.
(i) There exist τ, δ ∈ (0,∞) such that dSf

(x) ≤ τf+(x) for all x ∈ B(a, δ).
(ii) There exist τ, γ ∈ (0,∞) such that cl(Sf ) ∩ B(a, γ) = Sclf ∩ B(a, γ) and d(x, Sclf ) ≤
τ(clf)+(x) for all x ∈ B(a, γ).

Proof. (i) ⇒ (ii). From (i), we have τ−1dSf
(x) ≤ f+(x) for all x ∈ B(a, δ). Define a function

H(x) by

H(x) =

{
f+(x), ifx ∈ B(a, δ);
τ−1dSf

(x), otherwise.

Note that τ−1dSf
(x) is continuous and τ−1dSf

(x) ≤ H(x) for all x ∈ X, we have τ−1dSf
(x) ≤

clH(x) ≤ H(x) for all x ∈ X. Since H(x) = f+(x) for all x ∈ B(a, δ), clH(x) = cl(f+)(x)
in B(a, δ). Thus,

τ−1dSf
(x) ≤ cl(f+)(x) = (clf)+(x) ∀x ∈ B(a, δ),

which implies that
dSclf (x) ≤ dSf

(x) ≤ τ(clf)+(x) ∀x ∈ B(a, δ). (2.8)

Now we show that cl(Sf ) ∩ B(a, δ) = Sclf ∩ B(a, δ). As cl(Sf ) ⊆ Sclf , we only need to
show that Sclf ∩ B(a, δ) ⊆ cl(Sf ) ∩ B(a, δ). If x ∈ Sclf ∩ B(a, δ) = S(clf)+ ∩ B(a, δ), then
(clf)+(x) = 0. By (2.8), dSf

(x) = 0, thus x ∈ cl(Sf ) ∩B(a, δ).
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(ii) ⇒ (i). Let a ∈ cl(Sf ) ⊆ Sclf and x ∈ B(a, γ/2).

dSf
(x) = dcl(Sf )(x)

= dcl(Sf )∩B(a,γ)(x) (Lemma2.7)
= dSclf∩B(a,γ)(x)
= dSclf (x) (Lemma2.7)
≤ τ(clf)+(x)
≤ τf+(x).

Therefore, (i) and (ii) are equivalent.

We have seen that ECP is a necessary condition for the existence of a global error bound
for an inequality in a metric space. Now we show that for a convex inequality f ≤ 0 in a
Banach space, ECP is also necessary for the existence of local error bounds on the entire
cl(Sf ). First, we clarify some technical facts.
Fact 2.1. Suppose that C, D are convex sets in a normed linear space X, and a ∈ C ⊆ D.
If there exists r ∈ (0,∞) such that C ∩B(a, r) = D ∩B(a, r), then NC(a) = ND(a).

Indeed, since C ⊆ D implies ND(a) ⊆ NC(a), we only need to verify that NC(a) ⊆
ND(a). If a∗ ∈ NC(a), then 〈a∗, x − a〉 ≤ 0 for all x ∈ C. Let y ∈ D and choose
t ∈ (0, 1) sufficiently small such that a + t(y − a) ∈ B(a, r). By the convexity of D,
a + t(y − a) = (1− t)a + ty ∈ D ∩B(a, r) = C ∩B(a, r) ⊆ C. Define z = a + t(y − a) ∈ C,
we have 〈a∗, y − a〉 = (1/t)〈a∗, z − a〉 ≤ 0. Since the above inequality holds for all y ∈ D,
we conclude that a∗ ∈ ND(a).
Fact 2.2. Suppose that X is a Banach space, C, D are nonempty convex sets, C is closed,
and C ⊆ D. If NC(x) = ND(x) for all x ∈ C, then C = D.

Without loss of generality, we may assume that X 6= {0}. If C 6= D, then pick b ∈ D\C
and let A = {b}. By the strong separation Theorem (cf. [11, Theorem 2.2.28]), C and A can
be strongly separated. Now applying the Bishop-Phelps Theorem (cf. [11, Theorem 2.11.12])
to A and C, there exist a unit a∗ ∈ X∗ and a ∈ C such that

〈a∗, a〉 = sup{〈a∗, x〉 : x ∈ C} < 〈a∗, b〉. (2.9)

It follows that a∗ ∈ NC(a). By the assumption NC(a) = ND(a), we have a∗ ∈ ND(a). Since
b ∈ D, 〈a∗, b− a〉 ≤ 0, which contradicts (2.9). Therefore, we must have C = D.

Now we are ready to show that ECP is necessary for the existence of local error bounds
on cl(Sf ).

Theorem 2.9. Suppose that f is a proper convex function in a Banach space. If f ≤ 0 has
a local error bound for all x ∈ cl(Sf ), then cl(Sf ) = Sclf .

Proof. Let a ∈ cl(Sf ) ⊆ Sclf . By Theorem 2.8, f ≤ 0 has a local error bound at a implies
that there exists r ∈ (0,∞) such that cl(Sf ) ∩ B(a, r) = Sclf ∩ B(a, r). By Fact 2.1,
Ncl(Sf )(a) = NSclf (a). Since the above equation holds for all a ∈ cl(Sf ), by Fact 2.2 we
conclude that cl(Sf ) = Sclf .

From Theorem 2.9, we can derive some simple sufficient conditions for the equal closure
property when f is a proper convex function in a Banach space. Indeed, if f satisfies the
Slater condition, then f ≤ 0 has a local error bound for all x ∈ cl(Sf ) (cf. [14]). By Theorem
2.9, we have cl(Sf ) = Sclf . If inf f cannot be attained, then Sf 6= ∅ implies that f satisfies
the Slater condition. Thus, we have the following corollary.

Corollary 2.10. Suppose that f is a proper convex function in a Banach space. If f satisfies
the Slater condition or inf f cannot be attained, then cl(Sf ) = Sclf .
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Next, we extend the bridge theorems to weak sharp minima. For a proper function f ,
let argminf = {x : f(x) ≤ inf f}. Define h(x) = f(x) − inf f . Since inf f = inf(clf),
clh(x) = clf(x)− inf(clf). Thus, we have Sh = argminf and Sclh = argmin(clf). Applying
Theorems 2.5 and 2.8 to the inequality h ≤ 0, we immediately obtain the following results.

Theorem 2.11. Suppose that (X, d) is a metric space, f is a proper function, α ∈ (0,∞),
and argminf 6= ∅. The following statements are equivalent.
(i) f(x) ≥ inf f + αdargminf (x) for all x ∈ X.
(ii) cl(argminf) = argmin(clf) and clf(x) ≥ inf(clf) + αdargmin(clf)(x) for all x ∈ X.

Theorem 2.12. Suppose that (X, d) is a metric space, f is a proper function, and a ∈
cl(argminf). The following statements are equivalent.
(i) There exist α, δ ∈ (0,∞) such that f(x) ≥ inf f + αdargminf (x) for all x ∈ B(a, δ).
(ii) There exist α, γ ∈ (0,∞) cl(argminf) ∩ B(a, γ) = argmin(clf) ∩ B(a, γ) and clf(x) ≥
inf(clf) + αdargmin(clf)(x) for all x ∈ B(a, γ).

For a proper convex function in a Banach space, because f∗ = (clf)∗, we have the
following result by Theorem 2.11 and [5, Theorem 5.1].

Theorem 2.13. Suppose that (X, ‖ · ‖) is a Banach space, f is a proper convex function,
α ∈ (0,∞), and argminf 6= ∅. The following statements are equivalent.
(i) f(x) ≥ inf f + αdargminf (x) for all x ∈ X.
(ii) cl(argminf) = argmin(clf) and inf{‖x∗‖∗ : x∗ ∈ ∂(clf)(x), x 6∈ Sclf} ≥ α.
(iii) cl(argminf) = argmin(clf) and ∂f∗(x∗) ⊆ ∂f∗(0) for all x∗ ∈ X∗ satisfying ‖x∗‖∗ < α.

3 Extension to Systems of Inequalities and Equal Level Set Closure
Property

Let f1, . . . , fm be proper functions in a metric space X, and g1 = clf1, . . . , gm = clfm.
Consider the system of inequalities

f1(x) ≤ 0, . . . , fm(x) ≤ 0, (3.1)

and the related system defined by their closure functions

g1(x) ≤ 0, . . . , gm(x) ≤ 0. (3.2)

Let F (x) = max{f1(x), . . . , fm(x)} and G(x) = max{g1(x), . . . , gm(x)}. Let Sfi
= {x :

fi(x) ≤ 0}, Sgi = {x : gi(x) ≤ 0}, SF = {x : F (x) ≤ 0}, and SG = {x : G(x) ≤ 0}. In order
to extend Theorem 2.5 to the system of inequalities (3.1), we need the following topological
relation among members of a family of sets.

Definition 3.1. A collection of sets {Ai ⊆ X : i = 1, . . . , m} is said to have the closed
intersection property (CIP), if cl(

⋂m
i=1 Ai) =

⋂m
i=1 cl(Ai) (cf. [3]).

In the next lemma, we characterize G(x) = clF (x) and cl(SF ) = SG.

Lemma 3.2. Let f1, . . . , fm be proper functions in a metric space.
(i) G(x) = clF (x) for all x ∈ X if and only if {epifi : i = 1, . . . , m} has CIP.
(ii) If fi ≤ 0 has ECP for all i = 1, . . . , m, then cl(SF ) = SG if and only if {Sfi

: i =
1, . . . , m} has CIP.
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Proof. (i) G(x) = clF (x) for all x ∈ X if and only if epiG = epi(clF ). By the definition of
the closure function,

epiG = epi(max{g1(x), . . . , gm(x)}) =
m⋂

i=1

epigi =
m⋂

i=1

cl(epifi),

epi(clF ) = cl(epiF ) = cl
(
epi(max{f1(x), . . . , fm(x)})) = cl(

m⋂

i=1

epifi).

Consequently, epiG = epi(clF ) if and only if {epifi : i = 1, . . . , m} has CIP.
(ii) cl(SF ) = cl(

⋂m
i=1 Sfi

). If fi ≤ 0 has ECP for all i = 1, . . . , m, then SG =
⋂m

i=1 Sgi
=⋂m

i=1 cl(Sfi
). Thus, clSF = SG if and only if {Sfi

: i = 1, . . . , m} has CIP.

Now we are ready to extend Theorem 2.5 to the system of inequalities (3.1).

Theorem 3.3. Suppose that f1, . . . , fm are proper functions in a metric space, {epifi : i =
1, . . . , m} has CIP, and τ ∈ (0,∞). Then, the following statements are equivalent.
(i) dSF

(x) ≤ τF+(x) for all x ∈ X.
(ii) cl(SF ) = SG and dSG

(x) ≤ τG+(x) for all x ∈ X.

Proof. By Theorem 2.5, dSF
(x) ≤ τF+(x) for all x ∈ X if and only if cl(SF ) = SclF and

dSclF (x) ≤ τ(clF )+(x) for all x ∈ X. By the assumption that {epifi : i = 1, . . . , m} has CIP
and Lemma 3.2 (i), clF (x) = G(x).

Theorem 3.4. Suppose that f1, . . . , fm are proper functions in a metric space, fi ≤ 0 has
ECP for all i = 1, . . . , m, {epifi : i = 1, . . . , m} has CIP, and τ ∈ (0,∞). Then, the
following statements are equivalent.
(i) dSF

(x) ≤ τF+(x) for all x ∈ X.
(ii) {Sfi : i = 1, . . . , m} has CIP and dSG

(x) ≤ τG+(x) for all x ∈ X.

Proof. By the assumption that {epifi : i = 1, . . . , m} has CIP and Lemma 3.2 (i), clF (x) =
G(x). By the assumption that fi ≤ 0 has ECP for all i = 1, . . . , m and Lemma 3.2 (ii),
cl(SF ) = SG if and only if {Sfi

: i = 1, . . . , m} has CIP. Then, Theroem 3.4 follows directly
form Theorem 2.5.

Remark 3.5. Theorems 3.3 and 3.4 remain valid for an infinite system of inequalities
without additional assumptions. Local versions of Theorems 3.3 and 3.4 can be obtained
from Theorem 2.8 and Lemma 3.2.

Next, we look at the equal closure condition for all level sets of f . For any α ∈ (−∞,∞),
let Sf,α = {x : f(x) ≤ α} be the α-level set. Let hα(x) = f(x)− α. Then, clhα = clf − α.
By applying Theorem 2.5 to hα ≤ 0, we know that cl(Sf,α) = Sclf,α whenever a global error
bound exists for f(x) ≤ α. This observation motivates the definition of the equal level set
closure property.

Definition 3.6. A proper function f is said to have the equal level set closure property
(ELSC) if cl(Sf,α) = Sclf,α for all Sf,α 6= ∅, α ∈ (−∞,∞).

The class of functions having ELSC is broader than the lower semicontinuous class. It is
the necessary class such that a global error bound exists for all {x : f(x) ≤ α} 6= ∅. In the
next theorem, we show that for a proper convex function in a Banach space, its membership
in the ELSC class can be verified at a single level set.
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Theorem 3.7. If f is a proper convex function in a Banach space, then f belongs to the
ELSC class if and only if either argminf = ∅ or cl(argminf) = argmin(clf).

Proof. Let α ∈ (−∞,∞) and hα(x) = f(x)− α. If α > inf f = inf clf , then hα ≤ 0 satisfies
the Slater condition. Therefore, hα ≤ 0 has a local error bound for all x ∈ cl(Shα

) (cf. [14]).
By Theorem 2.8, for any a ∈ cl(Shα

), there exists r ∈ (0,∞) such that cl(Shα
) ∩ B(a, r) =

Sclhα
∩ B(a, r). By Facts 2.1 and 2.2, cl(Shα

) = Sclhα. Therefore, cl(Sf,α) = Sclf,α for all
α > inf f . Thus, for a convex inequality in a Banach space, the critical level for ELCS is
α = inf f . At this level, cl(argminf) = argmin(clf) when argminf 6= ∅.

By Theorems 2.13 and 3.7, we know that for a proper convex function f in a Banach
space, its membership in the ELSC class is a necessary condition for the existence of a global
weak sharp minima.
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