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1 Introduction

Existence and uniqueness of antiperiodic solution for evolution inclusions generated by the
subdifferential of a convex lower semicontinuous even function appeared in a series of papers,
see [1, 2, 3, 14, 15, 18, 21, 22] and the references therein. In this paper, we present two epi-
graphical versions of the mentioned results involving new variational convergence techniques
and the stable convergence of Young measures [10]. In section 2, we summarize some basic
results of convergence for bounded sequences in L1

H([0, T ]) where H is a Hilbert space. In
section 3 we state some existence and uniqueness results of anti-periodic solutions for a first
order evolution inclusion generated by a subdifferential of a convex lower semicontinuous
even function defined on H and its application to a new existence of antiperiodic solutions.
Section 4 is devoted to the existence of anti-periodic solutions for a second order evolu-
tion inclusion via a variational approach [11, 12] involving the biting convergence, Young
measures and the characterization of the second dual of L1

H([0, T ]) and other tools.

2 Preliminaries and Background

We introduce some basic notions and results. In this paper, H is a separable Hilbert space.
By L1

H([0, T ]) we denote the space of all Lebesgue-Bochner integrable H-valued functions
defined on [0, T ]. A sequence (ϕn) of lower semicontinuous functions defined on H lower
epiconverges to a lower semicontinuous function ϕ∞ defined on H if, for every sequence
(xn) in H converging to x, we have lim infn ϕn(xn) ≥ ϕ∞(x). (ϕn) upper epiconverges
to ϕ∞ if, for every y ∈ H, there exists a sequence (yn)n in H converging to y such that
lim supn ϕn(yn) ≤ ϕ∞(y). If (ϕn) both lower and upper epiconverges to ϕ∞, we say that
(ϕn) epiconverges to ϕ∞. These notions are easily extended to normal integrands (see e.g.
[13, 23]).
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The following result is a particular form of a similar result given in ([11], Proposition
4.1).

Lemma 2.1. Let H be a Hilbert space. Let ϕ be a proper convex lower semicontinuous
function defined on H with values in ] −∞,+∞]. Let (un)n∈N∪{∞} be a sequence of mea-
surable mappings from [0, T ] into H such that un → u∞ pointwisely with respect to the norm
topology. Assume that (ζn)n∈N is a sequence in L1

H([0, T ]) satisfying

ζn(t) ∈ ∂ϕ(un(t)) a.e. t ∈ [0, T ]

for each n ∈ N and σ(L1
H , L∞H ) converging to ζ∞ ∈ L1

H([0, T ]). Then we have

ζ∞(t) ∈ ∂ϕ(u∞(t)) a.e. t ∈ [0, T ].

Proof. We will use Komlós techniques. See [16, 17, 19]. Namely we may assume that
(ζn) Komlós converges to ζ∞ and (|ζn|) Komlós converges to ρ∞ ∈ L1

R([0, T ]), because the
sequence (ζn) (resp. (|ζn|)) is bounded in L1

H([0, T ]) (resp. L1
R([0, T ])). Accordingly there

are a Lebesgue negligible set M in [0, T ] and subsequences (ζ ′m), (|ζ ′m|) such that

lim
n

1
n

n∑
m=1

ζ ′m(t) = ζ∞(t),

lim
n

1
n

n∑
m=1

|ζ ′m|(t) = ρ∞(t),

for all t ∈ [0, T ] \M. Let ε > 0 and let t ∈ [0, T ] \M. By lower semicontinuity of ϕ and
pointwise convergence of um to u∞, there is Nε ∈ N such that ||um(t) − u∞(t)|| ≤ ε and
that ϕ(um(t)) ≥ ϕ(u∞(t))− ε for all m ≥ Nε. Then we have the estimate

ϕ(x) ≥ ϕ(u∞(t))− ε + 〈x− u∞(t), ζ ′m(t)〉 − |ζ ′m|(t)ε
for all x ∈ H, using the classical definition of subdifferential in convex analysis and the
preceding estimate. Applying the previous Komlós convergences in the last inequality gives

ϕ(x) ≥ ϕ(u∞(t))− ε + 〈x− u(t), ζ∞(t)〉 − ρ∞(t)ε

As ε is arbitrary > 0 we finally get

ϕ(x) ≥ ϕ(u∞(t)) + 〈ζ(t), x− u∞(t)〉
for all x ∈ H. Whence we have ζ∞(t) ∈ ∂ϕ(u∞(t)) a.e..

Let us recall and summarize another classical closure type lemma. See e.g. [6].

Lemma 2.2. Let H be a Hilbert space. Let ϕ be a proper convex lower semicontinuous
function defined on H with values in ] − ∞,+∞]. Let (un)n∈N ∪ {∞} be a sequence in
L2

H([0, T ]) such that (un)n∈N strongly converges to u∞ ∈ L2
H([0, T ]). Assume that (ζn)n∈N

is a sequence in L2
H([0, T ]) satisfying

ζn(t) ∈ ∂ϕ(un(t)) a.e. t ∈ [0, T ]

for each n ∈ N and converging weakly to ζ∞ ∈ L2
H([0, T ]). Then we have

ζ∞(t) ∈ ∂ϕ(u∞(t)) a.e. t ∈ [0, T ].
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Let us recall some facts on Young measures. Let X be a completely regular Suslin
space and let Cb(X) be the space of all bounded continuous functions defined on X. Let
M1

+(X) be the set of all Borel probability measures on X endowed with the narrow topology.
A Young measure λ : [0, T ] → M1

+(X) is, by definition, a scalarly Lebesgue-measurable
mapping from [0, T ] into M1

+(X), that is, for every f ∈ Cb(X), the mapping t 7→ 〈f, λt〉 :=∫
X

f(x) dλt(x) is Lebesgue-measurable on [0, T ] . A sequence (λn) in the space of Young
measures Y([0, T ];M1

+(X)) stably converges to a Young measure λ ∈ Y([0, T ];M1
+(X)) if

the following holds

lim
n

∫

A

[
∫

X

f(x) dλn
t (x)] dt =

∫

A

[
∫

X

f(x) dλt(x)] dt

for every Lebesgue-measurable set A ⊂ [0, T ] and for every f ∈ Cb(X).

3 Existence Results Involving Anti-Periodic Boundary Conditions

The following deal with an evolution inclusion generated by subdifferential operators of
convex lower semicontinuous functions with anti-periodic boundary conditions and cwk(H)-
valued upper semicontinuous perturbations, here cwk(H) is the set of all nonempty convex
weakly compact subsets of H.

Proposition 3.1. Assume that ϕ : H →]−∞,+∞] is convex lower semicontinuous, even,
with ϕ(0) = 0 and D(ϕ) closed and satisfying:

(a) for every r > 0, supx∈D(ϕ)∩BH(0,r) |∂ϕ(x)|0 < +∞,

(b) for every r > 0, D(ϕ)∩BH(0, r) is strongly compact in H, shortly D(ϕ) is ball-compact.

Assume that F : [0, T ] × H → cwk(H) is upper semicontinuous on [0, T ] × H satifying
|F (t, x)| ≤ α(1 + ||x||) for all (t, x) ∈ [0, T ] × H for some positive constant α and G :
[0, T ] × H → cwk(H) is a separately scalarly measurable on [0, T ] and separately scalarly
upper semicontinuous on H such that |G(t, x)| ≤ β or all (t, x) ∈ [0, T ] × H for some
positive constant β. Assume further that F + G satisfies the following monotone condition:
there exists a positive constant γ such that 〈x − y, u − v〉 ≥ γ||u − v||2,∀u, v ∈ H, ∀x ∈
F (t, u) + G(t, u),∀y ∈ F (t, v) + G(t, v) and ∀t ∈ [0, T ]. Then there is a unique absolutely
continuous T -anti-periodic solution u : [0, T ] → H with u̇ ∈ L∞H ([0, T ]) of the problem

(P)
{

0 ∈ u̇(t) + ∂ϕ(u(t)) + F (t, u(t)) + G(t, u(t))
u(T ) = −u(0)

Proof. Existence and uniqueness of absolutely continuous solution of the problem

(Q)
{

0 ∈ u̇(t) + ∂ϕ(u(t)) + F (t, u(t)) + G(t, u(t))
u(0) = a ∈ D(ϕ)

follow from ([8], Theorem 3.1). Nevertheless we repeat the uniqueness argument for (Q)
because this led to the uniqueness of T -anti-periodic solution for (P). Let u and v be two
solutions of (Q) whose existence is ensured by Theorem 3.1 in [8]. There exist two functions
h and k in L∞H ([0, T ]) such that for almost all t ∈ [0, T ], we have

−u̇(t)− h(t) ∈ ∂ϕ(u(t)), (3.1)
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−v̇(t)− k(t) ∈ ∂ϕ(v(t)). (3.2)

with
h(t) ∈ F (t, u(t)) + G(t, u(t)) and k(t) ∈ F (t, v(t)) + G(t, v(t)).

Further, by our monotone condition on F + G,

〈h(t)− k(t), u(t)− v(t)〉 ≥ γ||u(t)− v(t)||2. (3.3)

Then (3.1)—(3.3) and the monotonicity of ∂ϕ entail, for almost all t ∈ [0, T ],

〈u̇(t) + h(t)− v̇(t)− k(t), u(t)− v(t)〉 ≤ 0

and hence

〈u̇(t)− v̇(t), u(t)− v(t)〉 ≤ −〈h(t)− k(t), u(t)− v(t)〉 (3.4)
≤ −γ||u(t)− v(t)||2 ≤ 0.

From the preceding estimate we see by integrating on [s, s′] (s, s′ ∈ [0, T ])

||u(s′)− v(s′)||2 ≤ ||u(s)− v(s)||2.
Since this inequality is true for s = 0, we have u = v.

Now let a, b ∈ D(ϕ) and let ua (resp. ub) be the solution of the above problem associated
with the initial value a (resp. b). Applying the last inequality in (3.4) by taking u = ua and
v = ub and integrating

1
2
||ua(t)− ub(t)||2 ≤ 1

2
||a− b||2 −

∫ t

0

γ||ua(s)− ub(s)||2 ds. (3.5)

Now, we finish the proof by checking that a 7→ −ua(T ) is a strict contraction on the closed
convex set D(ϕ), using similar arguments as in ([9], Theorem 5.3). It is enough to show that

||ua(T )− ub(T )|| < ||a− b||,
if ||a− b|| > 0. By Lemma 5.4 in [9] asserting that, if ψ is a continuous real valued function
such that

0 ≤ ψ(t) ≤ δ −
∫ t

0

θ(s)ϕ(s) ds,

with δ > 0 and θ(.) > 0 Lebesgue-integrable, then ψ(t) < δ, ∀t ∈ [0, T ], so we conclude from
(3.5) that

||ua(T )− ub(T )|| < ||a− b||.
Let us consider the mapping U : a 7→ −ua(T ) from D(ϕ) into D(ϕ) because ϕ is even. Since
this mapping is a (strict) contraction, it has a unique fixed point that is the T -anti-periodic
solution of the problem (P).

Here is an application of the preceding result. For this purpose, we need a useful result.

Lemma 3.2. Let w : [0, T ] → H and ẇ ∈ L2
H([0, T ]) satisfying:

w(t) = w(0) +
∫ t

0

ẇ(s)ds, t ∈ [0, T ]

w(T ) = −w(0).
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Then the following inequality hold

||w||CH([0,T ]) ≤
√

T

2
||ẇ||L2

H([0,T ]). (a)

Assume further that

ẇ ∈ CH([0, T ]), ẇ(T ) = −ẇ(0).

Then the following inequality hold

∫ T

0

||w(t)||2dt ≤ T 2

π2

∫ T

0

||ẇ(t)||2dt. (b)

Proof. The proof is omitted, see e.g. [5, 7, 18]. Estimate (a) is quoted in several proofs
presented here. Estimate (b) is useful when dealing with the uniqueness of solutions of
anti-periodic second order inclusions with Lipschitzean perturbations. See the remark 2) of
Corollary 4.3.

Here is a useful application.

Corollary 3.3. Let wn : [0, T ] → H and ẇn ∈ L2
H([0, T ]) satisfying:

wn(t) = wn(0) +
∫ t

0

ẇn(s)ds, t ∈ [0, T ].

wn(T ) = −wn(0), sup
n≥1

||ẇn||L2
H([0,T ]) < +∞.

Then, up to extracted subsequences, there exist v∞ ∈ L2
H([0, T ]) and a absolutely continuous

mapping w∞ : [0, T ] → H satisfying

(1) w∞(t) = w∞(0) +
∫ t

0
v∞(s)ds, ∀t ∈ [0, T ].

(2) w∞(T ) = −w∞(0).

(3) For every e ∈ H, for every t ∈ [0, T ], limn→∞〈e, wn(t)〉 = 〈e, w∞(t)〉.
(4) For every h ∈ L2

H([0, T ]),

lim
n→∞

∫ T

0

〈h(t), wn(t)〉dt =
∫ T

0

〈h(t), w∞(t)〉dt.

Proof. Applying Lemma 3.2 (a) to wn gives

||wn||CH([0,T ]) ≤
√

T

2
||ẇn||L2

H([0,T ]).

Whence (wn) is bounded in CH([0, T ]) because (ẇn) is bounded in L2
H([0, T ]). Extracting

subsequences we may assume that (ẇn) converges weakly in L2
H([0, T ]) to a function v∞ ∈

L2
H([0, T ]) and (wn(0)) weakly converges in H to an element x∞ ∈ H. Let us set

w∞(t) = x∞ +
∫ t

0

v∞(s)ds,∀t ∈ [0, T ].
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Whence

lim
n→∞

〈e, wn(t)〉 = 〈e, x∞〉+ 〈e,
∫ t

0

v∞(s)ds〉

for every e ∈ H and for every t ∈ [0, T ], so that (wn(t)) weakly converges in H to w∞(t) for
every t ∈ [0, T ]. We have w∞(0) = weak- limn→∞ wn(0) = x∞. Since wn(T ) = −wn(0), we
also have

w∞(T ) = weak- lim
n→∞

wn(T ) = −weak- lim
n

wn(0) = −x∞ = −w∞(0).

Then w∞ is absolutely continuous with ẇ∞ = v and satisfies w∞(T ) = −w∞(0). It remains
to check (4). For every h ∈ L2

H([0, T ]), we have

∫ T

0

〈h(t), wn(t)〉dt =
∫ T

0

〈h(t), wn(0)〉dt +
∫ T

0

〈h(t),
∫ t

0

ẇn(s)ds〉dt

It is clear that limn→∞〈h(t), wn(0)〉 = 〈h(t), w∞(0)〉. Hence

lim
n→∞

∫ T

0

〈h(t), wn(0)〉dt =
∫ T

0

〈h(t), w∞(0)〉dt

by Lebesgue convergence theorem. Similarly we have

lim
n→∞

〈h(t),
∫ t

0

ẇn(s)ds〉 = 〈h(t),
∫ t

0

v∞(s)ds〉, ∀t ∈ [0, T ].

By Holder inequality || ∫ t

0
ẇn(s)ds|| ≤ √

T ||ẇn||L2
H([0,T ]) ≤ M for some positive constant M ,

again by Lebesgue convergence theorem, we see that

lim
n→∞

∫ T

0

〈h(t),
∫ t

0

ẇn(s)ds〉dt =
∫ T

0

〈h(t),
∫ t

0

v(s)ds〉dt

thus finishing the proof.

Proposition 3.4. Assume that ϕ : H →]−∞,+∞] is convex lower semicontinuous, even,
with ϕ(0) = 0 and D(ϕ) closed and satisfying:

(a) for every r > 0, supx∈D(ϕ)∩BH(0,r) |∂ϕ(x)|0 < +∞,

(b) for every r > 0, D(ϕ)∩BH(0, r) is strongly compact in H, shortly D(ϕ) is ball-compact.

Let γ > 0 and f ∈ L2
H([0, T ]). Then the problem

(P1)
{

0 ∈ u̇(t) + γu(t) + f(t) + ∂ϕ(u(t))
u(T ) = −u(0)

admits at least a T -anti-periodic absolutely continuous solution u : [0, T ] → H which satisfies
||u̇||L2

H([0,T ]) ≤ ||f ||L2
H([0,T ]).

Proof. Step 1. Assume that f ∈ CH([0, T ]). It is enough to apply Proposition 3.1 by taking
F (t, x) = γx + f(t) and G(t, x) = 0 for all (t, x) ∈ [0, T ]×H to get a unique T -anti-periodic
absolutely continuous solution for the problem (P1). Indeed we have 〈γx + f(t) − (γy +
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f(t)), x− y〉 = γ||x− y||2,∀x, y ∈ H, and ∀t ∈ [0, T ]. Using the classical chain rule formula
for lower semicontinuous functions and integrating on [0, T ] gives

0 =
∫ T

0

||u̇(t)||2dt + ϕ(u(T ))− ϕ(u(0)) +
∫ T

0

〈γu(t) + f(t), u̇(t)〉dt.

Hence the inequality ||u̇||L2
H([0,T ]) ≤ ||f ||L2

H([0,T ]) follows by anti-periodicity.
Step 2. Assume that f ∈ L2

H([0, T ]). Let (fn) be a sequence in CH([0, T ]) converging to
f with respect to the topology of the norm of L2

H([0, T ]). Let ufn be the T -anti-periodic
absolutely continuous solution of (P1) associated with fn

{
0 ∈ u̇fn(t) + γufn(t) + fn(t) + ∂ϕ(ufn(t))
ufn

(T ) = −ufn
(0)

with ||u̇fn ||L2
H([0,T ]) ≤ ||fn||L2

H([0,T ]). It is clear that (u̇fn) is bounded in L2
H([0, T ]). So we

may assume that (u̇fn
) weakly converges in L2

H([0, T ]) to v ∈ L2
H([0, T ]. As ||ufn

||CH([0,T ]) ≤√
T
2 ||u̇fn ||L2

H([0,T ]) in view of Lemma 3.2 (a), using the ball-compactness assumption and
Ascoli theorem, we infer that (ufn

) is relatively compact in CH([0, T ]). Taking account of
Corollary 3.3 we may assume that (ufn

) converges uniformly to a T -anti-periodic absolutely
continuous function u and u̇fn weakly converges in L2

H([0, T ]) to u̇. For simplicity, let
gn = −u̇fn − γufn − fn. Then gn(t) ∈ ∂ϕ(ufn(t)) a.e. and (gn) weakly converges in
L2

H([0, T ] to −u̇− γu− f . By invoking Lemma 2.2, we conclude that

−u̇(t)− γu(t)− f(t) ∈ ∂ϕ(u(t)) a.e.

In otherwords, u is a T -anti-periodic absolutely continuous solution of (P1) satisfying
||u̇||L2

H([0,T ]) ≤ ||f ||L2
H([0,T ]) by antiperiodicity.

Remarks. Proposition 3.4 seems to be a corollary of the general theory in [3]. The above
techniques led to a variational convergence result.

Theorem 3.5. Let γ > 0, fn ∈ L2
H([0, T ]), ϕn, ϕ∞ : H → [0,+∞] are proper, convex, l.s.c,

even with ϕn(0) = ϕ∞(0) = 0,∀n ∈ N ∪ {∞} satisfying:

(i) for every n ∈ N, for every r > 0, supx∈D(ϕn)∩BH(0,r) |∂ϕn(x)|0 < +∞,

(ii) for every r > 0, ∪nD(ϕn) ∩ BH(0, r) is relatively compact in H, shortly ∪nD(ϕn) is
ball-compact.

Let un be a T -anti-periodic absolutely continuous of
{

0 ∈ u̇n(t) + γun(t) + fn(t) + ∂ϕn(un(t)), a.e. t ∈ [0, T ],
un(T ) = −un(0).

Assume that

(H1): (fn) weakly converges to f ∈ L2
H([0, T ]).

,̊ (H2): (ϕn) epiconverges to ϕ∞.

Then, up to extracted subsequences, (un) converges uniformly to a T -anti-periodic absolutely
continuous solution u of the inclusion

{
0 ∈ u̇ + γu + f + ∂Iϕ∞(u),
u(T ) = −u(0).
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with
∫ T

0
ϕ∞(u(t))dt < +∞, here ∂Iϕ∞ denotes the subdifferential of the convex integral

functional Iϕ∞ defined on L2
H([0, T ]) by

Iϕ∞(u) =
{ ∫ T

0
ϕ∞(u(t))dt if

∫ T

0
ϕ∞(u(t))dt is finite

+∞ otherwise.

Proof. Step 1 Thanks to the estimate ||u̇n||L2
H
≤ ||fn||L2

H
and Lemma 3.2 (a) we have

||un||CH([0,T ]) ≤
√

T

2
||u̇n||L2

H([0,T ]) ≤
√

T

2
||fn||L2

H

so that supn≥1 ||un||CH([0,T ]) < +∞. Furthermore, using the absolute continuity of ϕn(un)
and the chain rule theorem [6], yields

〈−u̇n(t)− γun(t)− fn(t), u̇n(t)〉 =
d

dt
ϕn(un(t))

for every n ∈ N. Hence by integrating

+∞ > sup
n≥1

∫ T

0

|〈u̇n(t), u̇n(t) + γun(t) + fn(t)〉|dt = sup
n≥1

∫ T

0

| d
dt

ϕn(un(t))|dt.

Further apply the classical definition of the subdifferential to convex lsc funtion ϕn yields

0 = ϕn(0)) ≥ ϕn(un(t)) + 〈un(t), u̇n(t) + γun(t) + fn(t)〉

or
0 ≤ ϕn(un(t)) ≤ 〈un(t),−u̇n(t)− γun(t)− fn(t)〉.

Hence supn≥1 |ϕn(un)|L1
R([0,T ]) < +∞. Now we assert that |ϕn(un(t))| ≤ L for all t ∈ [0, T ]

and all n ∈ N , here L is a positive constant. Indeed we have

ϕn(un(0)) ≤ |ϕn(un(t))− ϕn(un(0))|+ ϕn(un(t))

≤
∫ T

0

| d
dt

ϕn(un(t))|dt + ϕn(un(t)).

Hence

ϕn(un(0)) ≤ sup
n≥1

∫ T

0

| d
dt

ϕn(un(t))|dt +
1
T

sup
n≥1

∫ T

0

ϕn(un(t))dt < +∞.

Whence we get the estimate

M := sup
n≥1

sup
t∈[0,T ]

||un(t)|| < +∞, L = sup
n≥1

sup
t∈[0,T ]

ϕn(un(t)) < +∞. (∗)

Using the ball-compactness assumption and Ascoli theorem we may assume that (un) con-
verges uniformly to a T -anti-periodic absolutely continuous function u with u̇ ∈ L2

H([0, T ],
taking account into the above estimate. So, in view of (H2) and (∗) we have

∫ T

0

ϕ∞(u(t))dt ≤ lim inf
n

∫ T

0

ϕn(un(t))dt ≤ LT < +∞.
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Step 2 u is solution of {
0 ∈ u̇ + γu + f + ∂Iϕ∞(u),
u(T ) = −u(0).

with
∫ T

0
ϕ∞(u(t))dt ≤ LT < +∞, ∂Iϕ∞ being the subdifferential of the convex integral

functional Iϕ∞ defined on L2
H([0, T ]) by

Iϕ∞(u) =
{ ∫ T

0
ϕ∞(u(t))dt if

∫ T

0
ϕ∞(u(t))dt is finite

+∞ otherwise.

For simplicity let zn := u̇n + γun + fn and z := u̇ + γu + f . Then

−zn(t) ∈ ∂ϕn(un(t)) (∗∗)

a.e. As (u̇n) converges weakly to u̇ in L2
H([0, T ]), (zn) converges weakly in L2

H([0, T ]) to z.
The proof will be achieved by using some facts developed in ([11], Lemma 3.4 and Lemma
3.7).
Fact 1 If hn, h are measurable mappings hn, h : [0, T ] → H such that (hn) pointwisely
converges to h. Then

lim inf
n→∞

∫

B

ϕn(hn(t))dt ≥
∫

B

ϕ∞(h(t))dt

for every measurable subset B of [0, T ], using (H2).
Fact 2 Let v ∈ L∞H ([0, T ]). Then there exists a bounded sequence (vn) in L∞H ([0, T ]) which
pointwisely converges to v and such that

lim sup
n→∞

∫

B

ϕn(vn(t))dt ≤
∫

B

ϕ∞(v(t)dt

for every measurable subset B of [0, T ], using (H2) and the estimate (∗). From Fact 1 and
the result obtained in Step 1, we have

+∞ > LT ≥ lim inf
n→∞

∫ T

0

ϕn(un(t))dt ≥
∫ T

0

ϕ∞(u(t))dt.

From (∗∗) we have

ϕn(v(t)) ≥ ϕn(un(t)) + 〈v(t)− un(t),−zn(t)〉 a.e. t ∈ [0, T ]

for every v ∈ L∞H ([0, T ]). By integrating
∫ T

0

ϕn(v(t))dt ≥
∫ T

0

ϕn(un(t))dt +
∫ T

0

〈v(t)− un(t),−zn(t)〉dt.

For every v ∈ L∞H ([0, T ]), from Fact 2, there is a bounded sequence (vn) in L∞H ([0, T ]) which
converges pointwisely to v and such that

lim sup
n→∞

∫ T

0

ϕn(vn(t))dt ≤
∫ T

0

ϕ∞(v(t))dt.

Combining this with Fact 1 gives

lim
n→∞

∫ T

0

ϕn(vn(t))dt =
∫ T

0

ϕ∞(v(t))dt.
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As

lim
n→∞

∫ T

0

〈vn(t)− un(t), zn(t)〉dt =
∫ T

0

〈v(t)− u(t), z(t)〉dt

because the sequence (vn−un) is bounded in L∞H ([0, T ]) and converges pointwisely to u− v
and the sequence (zn) converges to z with respect to the weak topology of L2

H([0, T ]).
Finally by combining these facts and by passing to the limit when n → ∞ in the integral
subdifferential inequality

∫ T

0

ϕn(vn(t))dt ≥
∫ T

0

ϕn(un(t))dt +
∫ T

0

〈vn(t)− un(t),−zn(t)〉dt

we get ∫ T

0

ϕ∞(v(t))dt ≥
∫ T

0

ϕ∞(u(t))dt +
∫ T

0

〈v(t)− u(t),−z(t)〉dt.

Hence we conclude that −z = −u̇− γu− f ∈ ∂Iϕ∞(u) with Iϕ∞(u) ≤ LT < +∞.

4 A Class of Second Order Evolution Inclusion via a Variational
Approach

This section is devoted to a generalization of some results developed by [3, 7] in second order
evolution inclusions with T -anti-periodic boundary conditions. For this purpose we will use
essentially an existence result obtained by [3, 7] and some variational techniques developed
in [10, 12]. We recall below some notations and summarize some results which describe the
limiting behaviour of a bounded sequence in L1

H([0, T ]). See ([10], Proposition 6.5.17).

Proposition 4.1. Let H be a separable Hilbert space. Let (ζn) be a bounded sequence in
L1

H([0, T ]). Then the following hold:

1) (ζn) (up to an extracted subsequence) stably converges to a Young measure ν that is,
there exist a subsequence (ζ ′n) of (ζn) and a Young measure ν belonging to the space
of Young measure Y([0, T ];M1

+(Hσ)) with t 7→ bar(νt) ∈ L1
H([0, T ]) (here bar(νt)

denotes the barycenter of νt) such that

lim
n→∞

∫ T

0

h(t, ζ ′n(t))) dt) =
∫ T

0

[
∫

H

h(t, x) νt(dx)] dt

for all bounded Carathéodory integrands h : [0, T ]×Hweak → R,

2) (ζn) (up to an extracted subsequence) weakly biting converges to an integrable function
f ∈ L1

H([0, T ]), which means that, there is a subsequence (ζ ′m) of (ζn) and an increasing
sequence of Lebesgue-measurable sets (Ap) with limp λ(Ap) = 1 and f ∈ L1

H([0, T ]) such
that, for each p,

lim
m→∞

∫

Ap

〈h(t), ζ ′m(t)〉 dt =
∫

Ap

〈h(t), f(t)〉 dt

for all h ∈ L∞H ([0, T ]),

3) (ζn) (up to an extracted subsequence) Komlós converges to an integrable function g ∈
L1

H([0, T ]), which means that, there is a subsequence (ζβ(m)) and an integrable function
g ∈ L1

H([0, T ]), such that

lim
n→∞

1
n

Σn
j=1ζγ(j)(t) = g(t), a.e. ∈ [0, T ],
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for every subsequence (fγ(n)) of (fβ(n)).

4) There is a filter U finer than the Fréchet filter such that U − limn ζn = l ∈ (L∞H )′weak

where (L∞H )′weak is the second dual of L1
H([0, T ]).

Let wla ∈ L1
H([0, T ]) be the density of the absolutely continuous part la of l in the decompo-

sition l = la + ls in absolutely continuous part la and singular part ls. If we have considered
the same extracted subsequence in 1), 2), 3), 4), then one has

f(t) = g(t) = bar(νt) = wla(t) a.e. t ∈ [0, T ]

For more information on Young measures, see [10] and the references therein. Now comes
our second epigraphical convergence.

Theorem 4.2. Let H = Rd, γ ∈ R+. Assume that ψ : Rd → R, ϕn : Rd → [0,+∞[ are
C1, even, convex, Lipschitzean with ϕn(0) = 0, ∀n ≥ 1 and, ϕ∞ : Rd → [0,+∞[ is even
proper convex lower semicontinuous. Let (fn) be sequence in L2

H([0, T ]) weakly converging
to f∞ ∈ L2

H([0, T ]). Let un be a W 2,2
Rd ([0, T ]) solution of the problem

{
ün(t) + γu̇n(t)−∇ψ(un(t))− fn(t) +∇ϕn(un(t)) = 0 t ∈ [0, T ],
un(T ) = −un(0), u̇n(T ) = −u̇n(0)

Assume that

(i) ϕn epi-converges to ϕ∞.

(ii) There exist r0 > 0 and x0 ∈ Rd such that

sup
n∈N

sup
v∈BL∞

Rd
([0,T ])

∫ T

0

ϕn(x0 + r0v(t))) < +∞

here BL∞
Rd ([0,T ]) is the closed unit ball in L∞Rd([0, T ]).

(a) Then up to extracted subsequences, (un) converges uniformly to an absolutely continuous
function u∞ with u∞(T ) = −u∞(0), (u̇n) pointwisely converges to a BV function y∞ with
y∞ = u̇∞ and u̇∞(T ) = −u̇∞(0), and (ün) weakly biting converges to a function ζ∞ ∈
L1

Rd([0, T ]) which satisfy the variational inclusion

(Q∞) 0 ∈ ζ∞ + γu̇∞ − f∞ −∇ψ(u∞) + ∂Iϕ∞(u∞)

here ∂Iϕ∞ denotes the subdifferential of the convex lower semicontinuous integral functional
Iϕ∞ defined on L∞Rd([0, T ])

Iϕ∞(u) :=
∫ T

0

ϕ∞(u(t)) dt, ∀u ∈ L∞Rd([0, T ]).

Furthermore lim
n

∫ T

0

ϕn(un(t))dt =
∫ T

0

ϕ∞(u∞(t))dt.

(b) There are a filter U finer than the Fréchet filter, l ∈ L∞Rd([0, T ])′ such that

U − lim
n

[−ün − γu̇n + fn +∇ψ(un)] = l ∈ L∞Rd([0, T ])′weak
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where L∞Rd([0, T ])′weak is the second dual of L1
Rd([0, T ]) endowed with the topology

σ(L∞Rd([0, T ])′, L∞Rd([0, T ])) and m ∈ CRd([0, T ])′weak such that

∀h ∈ CRd([0, T ]), lim
n

∫ T

0

〈h,−ün − γu̇n + fn +∇ψ(un)〉dt = 〈h,m〉

here CRd([0, T ])′weak denotes the space CRd([0, T ])′ endowed with the weak topology
σ(CRd([0, T ])′, CRd([0, T ])). Let la be the density of the absolutely continuous part la of l in
the decomposition l = la + ls in absolutely continuous part la and singular part ls. Then

la(h) =
∫ T

0

〈h(t),−ζ∞(t)− γu̇∞(t) + f∞(t) +∇ψ(u∞(t))〉dt

for all h ∈ L∞Rd([0, T ]) so that

I∗ϕ∞(l) = Iϕ∗∞(−ζ∞ − γu̇∞ + f∞ +∇ψ(u∞) + δ∗(ls, domIϕ∞)

here ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ the integral functional defined on L1
Rd([0, T ]) associated

with ϕ∗∞, I∗ϕ∞ the conjugate of the integral functional Iϕ∞ , domIϕ∞ := {u ∈ L∞Rd([0, T ]) :
Iϕ∞(u) < ∞} and

〈m,h〉 =
∫ T

0

〈−ζ∞(t)− γu̇∞(t) + f∞ +∇ψ(u∞(t)), h(t)〉dt + 〈ms, h〉

∀h ∈ CRd([0, T ]) with 〈ms, h〉 = ls(h), ∀h ∈ CRd([0, T ]). Further m belongs to the subdif-
ferential ∂Jϕ∞(u∞) of the convex lower semicontinuous integral functional Jϕ∞ defined on
CRd([0, T ])

Jϕ∞(u) :=
∫ T

0

ϕ∞(u(t)) dt, ∀u ∈ CRd([0, T ]).

(c) Consequently the density −ζ∞ − γu̇∞ + f∞ +∇ψ(u∞) of the absolutely continuous part
ma

ma(h) :=
∫ T

0

〈−ζ∞(t)− γu̇∞(t) + f∞ +∇ψ(u∞(t)), h(t)〉dt

for all h ∈ CRd([0, T ]), satisfies the inclusion

−ζ∞(t)− γu̇∞(t) + f∞(t) +∇ψ(u∞(t)) ∈ ∂ϕ∞(u∞(t)), a.e..

and for any nonnegative measure θ on [0, T ] with respect to which ms is absolutely continuous
∫ T

0

hϕ∗∞(
dms

dθ
(t))dθ(t) =

∫ T

0

〈u∞(t),
dms

dθ
(t)〉dθ(t)

here hϕ∗∞ denotes the recession function of ϕ∗∞.

Proof. Existence of un for the problem
{

ün(t) + γu̇n(t)−∇ψ(un(t))− fn(t) +∇ϕn(un(t)) = 0 t ∈ [0, T ],
un(T ) = −un(0), u̇n(T ) = −u̇n(0)

is ensured by ([3], Lemme 3.6) or ([7], Theorem 3.1).
Step 1 Estimation of ||u̇n(.)||L2

H([0,T ]). Multiply scalarly the equation

ün(t) + γu̇n(t) = ∇ψ(un(t)) + fn(t)−∇ϕn(un(t))
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by u̇n(t) and applying the chain rule formula [20] for the C1, Lipschitzean function ψ − ϕn

gives

γ||u̇n(t)||2 =
d

dt
[ψ(un(t))− ϕn(un(t))− 1

2
||u̇n(t)||2] + 〈u̇n(t), fn(t)〉.

Hence by antiperiodicity conditions we get the estimate

γ||u̇n||L2
H([0,T ]) ≤ ||fn||L2

H([0,T ]). (4.1)

From Lemma 3.2 (a)

||un||CH([0,T ]) ≤
√

T

2
||u̇n||L2

H([0,T ])

and (4.1), it is immediate (un) is bounded in CH([0, T ]) and (∇ψ(un(.))) is uniformly
bounded.
Step 2 Estimation of ||ün(.)||. As

zn(t) := −ün(t)− γu̇n(t) + fn(t) +∇ψ(un(t)) = ∇ϕn(un(t))

by the subdifferential inequality for convex lower semi continuous functions we have

ϕn(x) ≥ ϕn(un(t)) + 〈x− un(t), zn(t)〉
for all x ∈ Rd. Now let v ∈ BL∞

Rd ([0,T ]), the closed unit ball of L∞Rd [0, T ]). By taking
x = w(t) := x0 + r0v(t) in the preceding inequality we get

ϕn(w(t)) ≥ ϕn(un(t)) + 〈w(t)− un(t), zn(t)〉.
Integrating the preceding inequality gives

∫ T

0

〈x0 + r0v(t)− un(t), zn(t)〉dt =
∫ T

0

〈x0 − un(t), zn(t)〉dt + r0

∫ T

0

〈v(t), zn(t)〉dt

≤
∫ T

0

ϕn(x0 + r0v(t))dt−
∫ T

0

ϕn(un(t))dt.

Whence follows

r0

∫ T

0

〈v(t), zn(t)〉dt ≤
∫ T

0

ϕn(x0 + r0v(t))dt−
∫ T

0

ϕn(un(t))dt−
∫ T

0

〈x0 − un(t), zn(t)〉dt.

(4.2)
For simplicity, let us set vn(t) = un(t) − x0 for all t ∈ [0, T ]. We compute the last integral
in the preceding inequality.

−
∫ T

0

〈x0 − un(t), zn(t)〉dt = −
∫ T

0

〈vn(t), v̈n(t) + γv̇n(t)− fn(t)−∇ψ(un(t))〉dt

= −
∫ T

0

〈vn(t), v̈n(t) + γv̇n(t)〉dt (4.3)

+
∫ T

0

〈vn(t), fn(t) +∇ψ(un(t))〉dt.

Then it is immediate that the last integral
∫ T

0

〈vn(t), fn(t) +∇ψ(un(t))〉dt
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is bounded using the above estimates. By integration by parts and taking account into (4.2)
we have

−
∫ T

0

〈vn(t), v̈n(t) + γv̇n(t)〉dt = −[〈vn(t), v̇n(t) + γvn(t)]T0

+
∫ T

0

〈v̇n(t), v̇n(t) + γvn(t)〉dt (4.4)

= −〈vn(T ), v̇n(T )〉
+〈vn(0), v̇n(0)〉 − γ〈vn(T ), vn(T )〉
+γ〈vn(0), vn(0)〉

+
∫ T

0

||v̇n(t)||2dt + γ

∫ T

0

〈v̇n(t), vn(t)〉dt

=
∫ T

0

||v̇n(t)||2dt (by antiperiodicity).

By (4.1)–(4.4), we get

r0

∫ T

0

〈v(t), zn(t)〉dt ≤
∫ T

0

ϕn(x0 + r0v(t))dt +
∫ T

0

||u̇n(t)||2dt + C (4.5)

for all v ∈ BL∞
Rd ([0,T ]), where

C := sup
n≥1

∫ T

0

|〈vn(t), fn(t) +∇ψ(un(t))〉|dt < ∞.

By (ii), (4.1)–(4.5), we conclude that

(ün + γu̇n − fn −∇ψ(un))

is bounded in L1
Rd([0, T ]), and so is (ün). It turns out that the sequence (u̇n) of absolutely

continuous functions is bounded in variation and by Helly theorem, we may assume that (u̇n)
pointwisely converges to a BV function v∞ : [0, T ] → Rd and the sequence (un) converges
uniformly to an absolutely continuous function u∞ with u̇∞ = v∞ a.e. At this point, it is
clear that (u̇n) converges in L1

Rd([0, T ]) to v∞, using (4.1) and the dominated convergence
theorem. Hence (γu̇n) converges in L1

Rd([0, T ]) to γv∞.
Step 3. Weak biting limit of ün. As (ün) is bounded in L1

Rd([0, T ]), we may assume that (ün)
weakly biting converges to a function ζ∞ ∈ L1

Rd([0, T ]), that is, there exists a decreasing
sequence of Lebesgue-measurable sets (Bp) with limp λ(Bp) = 0 such that the restriction
of (ün) on each Bc

p converges weakly in L1
Rd([0, T ]) to ζ∞. Noting that (u̇n) converges in

L1
Rd([0, T ]) to v∞. It follows that the restriction of (zn = −ün − γu̇n + fn + ∇ψ(un)) to

each Bc
p weakly converges in L1

Rd([0, T ]) to z∞ := −ζ∞ − γv∞ + f∞ +∇ψ(u∞), because

lim
n

∫

B

〈ün + γu̇n − fn −∇ψ(un), h〉 dt =
∫

B

〈ζ∞ + γv∞ − f∞ −∇ψ(u∞), h〉 dt

for every B ∈ Bc
p ∩ L([0, T ]) and for every function h ∈ L∞Rd([0, T ]).

Step 4. L = supn≥1 supt∈[0,T ] ϕn(un(t)) < +∞
From the chain rule theorem given in Step 1, recall that

−〈u̇n(t), ün(t) + γu̇n(t)− fn −∇ψ(un)〉 =
d

dt
[ϕn(un(t))]
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that is
〈u̇n(t), zn(t)〉 =

d

dt
[ϕn(un(t))].

From the above estimate and the anti-periodicity of u̇n, it is immediate that ( d
dt [ϕn(un(t))])

is bounded in L1
R([0, T ]) so that (ϕn(un(.)) is bounded in variation. In fact, we get more here

by arguing as in the proof of Theorem 3.5. Apply the classical definition of the subdifferential
to convex lsc funtion ϕn yields

0 = ϕn(0) ≥ ϕn(un(t)) + 〈−un(t), zn(t)〉

or

0 ≤ ϕn(un(t)) ≤ 〈un(t), zn(t)〉 = 〈un(t),−ün(t)− γu̇n(t) + fn(t) +∇ψ(un(t)〉.

Hence supn≥1 |ϕn(un)|L1
R([0,T ]) < +∞. Now we assert that |ϕn(un(t))| ≤ L for all t ∈ [0, T ]

and all n ∈ N , here L is a positive constant. Indeed we have

ϕn(un(0)) ≤ |ϕn(un(t))− ϕn(un(0))|+ ϕn(un(t))

≤
∫ T

0

| d
dt

ϕn(un(t))|dt + ϕn(un(t)).

Hence

ϕn(un(0)) ≤ sup
n≥1

∫ T

0

| d
dt

ϕn(un(t))|dt +
1
T

sup
n≥1

∫ T

0

ϕn(un(t))dt < +∞.

Whence we get the estimates (∗)

M : = sup
n≥1

sup
t∈[0,T ]

||un(t)|| < +∞, (by Step 1)

L = sup
n≥1

sup
t∈[0,T ]

ϕn(un(t)) < +∞.

Step 5. Localization of the limits:

z∞ = −ζ∞ − γu̇∞ + f∞ +∇ψ(u∞) ∈ ∂Iϕ∞(u∞).

We will adapt the techniques developed in ([11], Lemma 3.7, Proposition 4.2). As (ϕn)
epiconverges to ϕ∞, by Lemma 3.4 in [11] we have

lim inf
n

∫

B

ϕn(un(t)) dt ≥
∫

B

ϕ∞(u∞(t)) dt,

for every B ∈ L([0, T ]). Let h ∈ L∞Rd([0, T ]). Using the estimates (∗) and applying Lemma
3.7 in [11] provides a bounded sequence (hn) in L∞H ([0, T ]), such that (hn) pointwisely
converges to h and such that

lim sup
n

∫

B

ϕn(hn(t)) dt ≤
∫

B

ϕ∞(h(t)) dt

for every B ∈ L([0, T ]). Coming back to the inclusion zn(t) ∈ ∂ϕn(un(t)), we have

ϕn(x) ≥ ϕn(un(t)) + 〈x− un(t), zn(t)〉
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for all x ∈ Rd. By substituting x by hn(t) in this inequality and by integrating on each
B ∈ Bc

p ∩ L([0, T ]),
∫

B

ϕn(hn(t)) dt ≥
∫

B

ϕn(un(t)) dt +
∫

B

〈hn(t)− un(t), zn(t)〉 dt

and passing to the limit in the preceding inequality when n goes to +∞, we get
∫

B

ϕ∞(h(t)) dt ≥
∫

B

ϕ∞(u∞(t)) dt +
∫

B

〈h(t)− u∞(t), z∞(t)〉 dt.

As this inequality is true on each B ∩Bc
p

∫

B∩Bc
p

ϕ∞(h(t)) dt ≥
∫

B∩Bc
p

ϕ∞(u∞(t)) dt

+
∫

B∩Bc
p

〈h(t)− u∞(t), z∞(t)〉 dt

and Bc
p ↑ [0, T ], by passing to the limit when p goes to ∞ in the last inequality, we get

∫

B

ϕ∞(h(t)) dt ≥
∫

B

ϕ∞(u∞(t)) dt +
∫

B

〈z∞(t), h(t)− u∞(t)〉 dt

for all B ∈ L([0, T ]) and for all h ∈ L∞Rd([0, T ]). In other words,

z∞ = −ζ∞ − γu̇∞ + f∞ +∇ψ(u∞) ∈ ∂Iϕ∞(u∞).

Step 6. limn

∫ T

0
ϕn(un(t))dt =

∫ T

0
ϕ∞(u∞(t))dt.

From the estimates in Step 4 and Helly theorem, we may assume that (ϕn(un(.)) pointwisely
converges to a BV function β. By (∗), (ϕn(un(.)) converges in L1

R([0, T ]) to β. In particular,
for every k ∈ L∞R+([0, T ]) we have

lim
n→∞

∫ T

0

k(t)ϕn(un(t))dt =
∫ T

0

k(t)β(t)dt.

Using this fact and repeating the biting arguments via the epi-limit results given in Step 5,
it is easy to see that

∫

B

ϕ∞(h(t)) dt ≥
∫

B

β(t) dt +
∫

B

〈z∞(t), h(t)− u∞(t)〉 dt

for all B ∈ L([0, T ]) and for all h ∈ L∞Rd([0, T ]). In particular, we get the estimate
∫

B

ϕ∞(u∞(t)) dt ≥
∫

B

β(t) dt

for all B ∈ L([0, T ]). Again by the epi-lower convergence result in Step 5, we have
∫

B

β(t) dt = lim
n→∞

∫

B

ϕn(un(t)) dt

= lim inf
n→∞

∫

B

ϕn(un(t)) dt ≥
∫

B

ϕ∞(u∞(t)) dt
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for all B ∈ L([0, T ]). It turns out that ϕ∞(u∞(t)) = β(t) a.e.
Step 7. Localization of further limits and final step.
As (zn = −ün−γu̇n+fn+∇ψ(un)) is bounded in L1

Rd([0, T ]) in view of Step 3, it is relatively
compact in the second dual L∞Rd([0, T ])′ of L1

Rd([0, T ]) endowed with the weak topology
σ(L∞Rd([0, T ])′, L∞Rd([0, T ])). Furthermore, (zn) can be viewed as a bounded sequence in
CRd([0, T ])′. Hence there are a filter U finer than the Fréchet filter, l ∈ L∞Rd([0, T ])′ and
m ∈ CRd([0, T ])′ such that

U − lim
n

zn = l ∈ L∞Rd([0, T ])′weak (4.6)

and
lim
n

zn = m ∈ CRd([0, T ])′weak (4.7)

where L∞Rd([0, T ])′weak is the second dual of L1
Rd([0, T ]) endowed with the topology

σ(L∞Rd([0, T ])′, L∞Rd([0, T ])) and CRd([0, T ])′weak denotes the space CRd([0, T ])′ endowed with
the weak topology σ(CRd([0, T ])′, CRd([0, T ])), because CRd([0, T ]) is a separable Banach
space for the norm sup, so that we may assume by extracting subsequence that (zn) weakly
converges to m ∈ CRd([0, T ])′. Let la be the density of the absolutely continuous part la of
l in the decomposition l = la + ls in absolutely continuous part la and singular part ls, in
the sense there is an decreasing sequence (An) of Lebesgue measurable sets in [0, T ] with
An ↓ ∅ such that ls(h) = ls(1An

h) for all h ∈ L∞Rd([0, T ]) and for all n ≥ 1. As (zn =
−ün−γu̇n +fn +∇ψ(un)) weakly biting converges to z∞ = −ζ∞(t)−γu̇∞+f∞+∇ψ(u∞)
in Step 4, it is already seen (cf. Proposition 4.1) that

la(h) =
∫ T

0

〈h(t),−ζ∞(t)− γu̇∞(t) + f∞ +∇ψ(u∞)〉dt

for all h ∈ L∞Rd([0, T ]), shortly z∞ = −ζ∞(t)−γu̇∞+ f∞+∇ψ(u∞) coincides a.e. with the
density of the absolutely continuous part la. By [13, 23] we have

I∗ϕ∞(l) = Iϕ∗∞(−ζ∞ − γu̇∞ + f∞ +∇ψ(u∞)) + δ∗(ls, domIϕ∞)

here ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ is the integral functional defined on L1
Rd([0, T ]) asso-

ciated with ϕ∗∞, I∗ϕ∞ is the conjugate of the integral functional Iϕ∞ and

domIϕ∞ := {u ∈ L∞Rd([0, T ]) : Iϕ∞(u) < ∞}.

Using the inclusion

z∞ = −ζ∞ − γu̇∞ + f∞ +∇ψ(u∞) ∈ ∂Iϕ∞(u∞).

that is

Iϕ∗∞(−ζ∞ − γu̇∞ + f∞ +∇ψ(u∞)) = 〈−ζ∞ − γu̇∞ + f∞ +∇ψ(u∞), u∞〉 − Iϕ∞(u∞)

we see that

I∗ϕ∞(l) = 〈−ζ∞ − γu̇∞ + f∞ +∇ψ(u∞), u∞〉 − Iϕ∞(u∞) + δ∗(ls, domIϕ∞).

Coming back to the inclusion zn(t) ∈ ∂ϕn(un(t)), we have

ϕn(x) ≥ ϕn(un(t)) + 〈x− un(t), zn(t)〉
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for all x ∈ Rd. By substituting x by h(t) in this inequality, here h ∈ L∞Rd([0, T ]), and by
integrating

∫ T

0

ϕn(h(t)) dt ≥
∫ T

0

ϕn(un(t)) dt +
∫ T

0

〈h(t)− un(t), zn(t)〉 dt.

Arguing as in Step 5 by passing to the limit in the preceding inequality, involving the
epilimsup property for integral functionals

∫ T

0
ϕn(h(t))dt defined on L∞Rd([0, T ]), it is easy

to see that
∫ T

0

ϕ∞(h(t)) dt ≥
∫ T

0

ϕ∞(u∞(t)) dt + 〈h− u∞,m〉.

Since this holds, in particular, when h ∈ CRd([0, T ]), we conclude that m belongs to the
subdifferential ∂Jϕ∞(u∞) of the convex lower semicontinuous integral functional Jϕ∞ defined
on CRd([0, T ])

Jϕ∞(u) :=
∫ T

0

ϕ∞(u(t)) dt, ∀u ∈ CRd([0, T ]).

As (zn = −ün − γu̇n + fn + ∇ψ(un)) weakly biting converges to z∞ = −ζ∞(t) − γu̇∞ +
f∞ +∇ψ(u∞) in Step 5, we see that

la(h) =
∫ T

0

〈h(t),−ζ∞(t)− γu̇∞(t) + f∞(t) +∇ψ(u∞(t))〉dt

for all h ∈ L∞Rd([0, T ]) (see Proposition 4.1) so that

l(h) =
∫ T

0

〈−ζ∞(t)− γu̇∞(t) + f∞ +∇ψ(u∞), h(t)〉dt + ls(h)

∀h ∈ L∞Rd([0, T ]). Now let B : CRd([0, T ]) → L∞Rd([0, T ]) be the continuous injection and let
B∗ : L∞Rd([0, T ])′ → CRd([0, T ])′ be the adjoint of B given by

〈B∗l, h〉 = 〈l, Bh〉 = 〈l, h〉, ∀l ∈ L∞Rd([0, T ])′, ∀h ∈ CRd([0, T ]).

Then we have B∗l = B∗la + B∗ls, l ∈ L∞Rd([0, T ])′ being the limit of (zn = −ζn − γu̇n +
fn +∇ψ(un)) under the filter U given in section 4 and l = la + ls being the decomposition
of l in absolutely continuous part la and singular part ls. It follows that

〈B∗l, h〉 = 〈B∗la, h〉+ 〈B∗ls, h〉 = 〈la, h〉+ 〈ls, h〉
for all h ∈ CRd([0, T ]). But it is already seen that

〈la, h〉 =
∫ T

0

〈−ζ∞(t)− γu̇∞(t) + f∞ +∇ψ(u∞), h(t)〉dt,

for all h ∈ L∞Rd([0, T ]) so that the measure B∗la is absolutely continuous

〈B∗la, h〉 =
∫ T

0

〈−ζ∞(t)− γu̇∞(t) + f∞ +∇ψ(u∞), h(t)〉dt, ∀h ∈ CRd([0, T ])

and its density −ζ∞ − γu̇∞ + f∞ +∇ψ(u∞) satisfies the inclusion

−ζ∞(t)− γu̇∞(t) + f∞ +∇ψ(u∞) ∈ ∂ϕ∞(u∞(t)), a.e.
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and the singular part B∗ls satisfies the equation

〈B∗ls, h〉 = 〈ls, h〉, ∀h ∈ CRd([0, T ]).

As we have B∗l = m, using (4.6)-(4.7), it turns out that m is the sum of the absolutely
continuous measure ma with

〈ma, h〉 =
∫ T

0

〈−ζ∞(t)− γu̇∞(t) + f∞ +∇ψ(u∞), h(t)〉dt, ∀h ∈ CRd([0, T ])

and the singular part ms given by

〈ms, h〉 = 〈ls, h〉, ∀h ∈ CRd([0, T ])

which satisfies the property: for any nonnegative measure θ on [0, T ] with respect to which
ms is absolutely continuous

∫ T

0

hϕ∗∞(
dms

dθ
(t))dθ(t) =

∫ T

0

〈u∞(t),
dms

dθ
(t)〉dθ(t)

here hϕ∗∞ denotes the recession function of ϕ∗∞. Indeed, as m belongs to ∂Jϕ∞(u∞) by
applying Theorem 5 in [23] we have

J∗ϕ∞(m) = Iϕ∗∞(
dma

dt
) +

∫ T

0

hϕ∗∞(
dms

dθ
(t))dθ(t) (4.8)

with

Iϕ∗∞(v) :=
∫ T

0

ϕ∗∞(v(t))dt, ∀v ∈ L1
Rd([0, T ]).

Recall that
dma

dt
= −ζ∞ − γu̇∞ + f∞ +∇ψ(u∞) ∈ ∂Iϕ∞(u∞)

that is

Iϕ∗∞(
dma

dt
) + Iϕ∞(u∞) = 〈−ζ∞ − γu̇∞ + f∞ +∇ψ(u∞), u∞〉〈L1

Rd ([0,T ]),L∞
Rd ([0,T ])〉. (4.9)

From (4.9) we deduce

J∗ϕ∞(m) = 〈u∞,m〉〈C
Rd ([0,T ]),C

Rd ([0,T ])′〉 − Jϕ∞(u∞)
= 〈u∞,m〉〈C

Rd ([0,T ]),C
Rd ([0,T ])′〉 − Iϕ∞(u∞)

=
∫ T

0

〈u∞(t),−ζ∞(t)− γu̇∞(t) + f∞ +∇ψ(u∞)〉dt

+
∫ T

0

〈u∞(t),
dms

dθ
(t)〉dθ(t))− Iϕ∞(u∞)

= Iϕ∗∞(
dma

dt
) +

∫ T

0

〈u∞(t),
dms

dθ
(t)〉dθ(t).

Coming back to (4.8) we get the equality
∫ T

0

hϕ∗∞(
dms

dθ
(t))dθ(t) =

∫ T

0

〈u∞(t),
dms

dθ
(t)〉dθ(t).
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Remarks. Combining biting argument with the characterization of the decomposition
formula in the dual of L∞Rd([0, T ]) allows to localize the limits under consideration and their
relationships via Proposition 4.1 and the continuous injection B : CRd([0, T ]) → L∞Rd([0, T ]),
namely the absolute continuous part ma of the measure limit m and its singular part ms.
At this point, it is easy to see that, up to extracted subsequence, (zn) stably converges to a
Young measure ν∞ ∈ Y([0, T ],M1

+(Rd)) with

bar(νt) =
∫

Rd

x νt(dx) = −ζ∞(t)− γu̇∞(t) + f∞(t) +∇ψ(u∞(t))

for a.e. t ∈ [0, T ].

Taking account into the above remark and the results given in Theorem 4.2 and its
proofs, we obtain

Corollary 4.3. Under the hypotheses and notations of Theorem 4.2, assume that ϕ∗n is non
negative for all n ∈ N ∪ {∞} and (ϕ∗n)n≥1 epilower converges to ϕ∗∞, then the following
hold:

lim inf
n

∫ T

0

ϕ∗n(−ün(t)− γu̇n(t) + fn(t) +∇ψ(un(t))) dt ≥
∫ T

0

[
∫

Rd

ϕ
∗
∞(x)ν∞t (dx)] dt. (∗)

Consequently the limits under consideration satisfy

0 ≥
∫ T

0

[
∫

Rd

ϕ
∗
∞(x)ν∞t (dx)] dt−

∫ T

0

〈bar(ν∞t ), u∞(t)〉 dt

+
∫ T

0

ϕ∞(u∞(t)) dt−
∫ T

0

hϕ∗∞(
dms

dθ
(t))dθ(t)

≥
∫ T

0

ϕ
∗
∞(bar(ν∞t ))dt−

∫ T

0

〈bar(ν∞t ), u∞(t)〉 dt

+
∫ T

0

ϕ∞(u∞(t)) dt−
∫ T

0

hϕ∗∞(
dms

dθ
(t))dθ(t).

(∗∗)

Proof. As (ϕ∗n) epilower converges to ϕ∗∞ and (zn = −ün − γu̇n + fn + ∇ψ(un)) stably
converges to ν∞ ∈ Y([0, T ],M1

+(Rd)), by virtue of Lemma 3.4 in [11], we have

lim inf
n

∫ T

0

ϕ∗n(−ün(t)− γu̇n(t) + fn(t) +∇ψ(un(t))) dt ≥
∫ T

0

[
∫

Rd

ϕ
∗
∞(x)ν∞t (dx)] dt. (∗)

Using the results obtained in the proof of Theorem 4.2 and (∗), it is not difficult to check
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that

0 ≥ lim inf
n

[
∫ T

0

ϕ∗n(−ün(t)− γu̇n(t) + fn(t) +∇ψ(un(t))) dt

+
∫ T

0

〈ün(t) + γu̇n(t))− fn(t)−∇ψ(un(t)), un(t)〉dt +
∫ T

0

ϕn(un(t) dt]

≥
∫ T

0

[
∫

Rd

ϕ
∗
∞(x)ν∞t (dx)] dt− 〈u∞,m〉+

∫ T

0

ϕ∞(u∞(t)) dt

=
∫ T

0

[
∫

Rd

ϕ
∗
∞(x)ν∞t (dx)] dt

+
∫ T

0

〈ζ∞(t) + γu̇∞(t)− f∞(t)−∇ψ(u∞(t)), u∞(t)〉 dt

−
∫ T

0

〈u∞(t),
dms

dθ
(t)〉dθ(t) +

∫ T

0

ϕ∞(u∞(t)) dt

=
∫ T

0

[
∫

Rd

ϕ
∗
∞(x)ν∞t (dx)] dt

+
∫ T

0

〈ζ∞(t) + γu̇∞(t)− f∞(t)−∇ψ(u∞(t)), u∞(t)〉 dt

−
∫ T

0

hϕ∗∞(
dms

dθ
(t))dθ(t) +

∫ T

0

ϕ∞(u∞(t)) dt

thus proving (∗∗).

Remarks. 1) Some comments are in order. It is worthy to mention that there is no rela-
tionship between the ∇Ψ(x) and the ∇ϕn(x) and ∂ϕ(x). Without additional assumptions
one cannot expect to have the convergence of approximated solutions (un)

{
ün(t) + γu̇n(t)−∇ψ(un(t))− fn(t) +∇ϕn(un(t)) = 0 t ∈ [0, T ],
un(T ) = −un(0), u̇n(T ) = −u̇n(0)

towards a W 2,2
Rd ([0, T ]) T -anti-periodic solution u∞ of the problem

{ −ü∞(t)− γu̇∞(t) +∇ψ(u∞(t)) + f∞(t) ∈ ∂ϕ∞(u∞(t)) t ∈ [0, T ],
u∞(T ) = −u∞(0), u̇∞(T ) = −u̇∞(0)

because (ün) is bounded in L1
H([0, T ]). Nevertheless Theorem 4.2 shows that (un) converges

pointwisely to the absolutely continuous T -anti-periodic mapping u∞, (u̇n) pointwisely con-
verges to the T -anti-periodic mapping u̇∞, (−ün(t) − γu̇n(t) +∇ψ(un(t)) + fn(t)) weak∗-
converges in CRd([0, T ])∗ to a vector measure m ∈ CRd([0, T ])∗ such that the density of its
absolutely continuous part ma satisfies the inclusion

−ζ∞(t)− γu̇∞(t) +∇ψ(u∞(t)) + f∞(t) ∈ ∂ϕ∞(u∞(t))

and such that the singular measure ms in the decomposition m = ma + ms satisfies the
equality ∫ T

0

hϕ∗∞(
dms

dθ
(t))dθ(t) =

∫ T

0

〈u∞(t),
dms

dθ
(t)〉dθ(t)
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for any nonnegative measure θ on [0, T ] with respect to which ms is absolutely continuous.
On account of the proof of Theorem 4.2, it is easily seen that when (ün) is bounded in
L2

H([0, T ]), the proof of Theorem 4.2 is rather simple, because here one can assume that (un)
converges uniformly to the T -anti-periodic mapping u∞ and (u̇n) converges pointwisely to
the T -anti-periodic absolutely continuous mapping u̇∞ (see Corollary 3.3) and (ün) converges
weakly in L2

H([0, T ]) to ü∞ which satisfy the problem under consideration. In this particular
situation the variational inequality (∗∗) in Corollary 4.3 is reduced to

0 ≥
∫ T

0

ϕ
∗
∞(−ü∞(t)− γu̇∞(t) +∇ψ(u∞(t)) + f∞(t)) dt

+
∫ T

0

〈ü∞(t) + γu̇∞(t)−∇ψ(u∞(t))− f∞(t), u∞(t)〉 dt

+
∫ T

0

ϕ∞(u∞(t)) dt

(∗∗)

that is equivalent to

−ü∞(t)− γu̇∞(t) +∇ψ(u∞(t)) + f∞(t) ∈ ∂ϕ∞(u∞(t)) a.e.

2) The existence and uniqueness of W 2,2
Rd ([0, T ]) T -anti-periodic solution for the inclusion of

the form {
ü(t) + γu̇(t) ∈ f(t, u(t)) + ∂ϕ(u(t)), a.e. t ∈ [0, T ],
u∞(T ) = −u∞(0), u̇∞(T ) = −u̇∞(0)

where ϕ is lsc even function, f : R × H → H is a Carathéodory mapping satisfying:
||f(t, x)− f(t, y)|| ≤ L||x− y|| for all (t, x) ∈ R×H, for some positive constant L > 0 and:
there is a L2

R integrable function r : R → R+ such that ||f(t, x)|| ≤ r(t) for all (t, x) ∈ R×H,
and 0 < T < π√

L
, is avaiblable ([7], Theorem 3.2) using the specific inequalities given in

Lemma 3.2.

Acknowledgements

The authors are very thankful to the anonymous reviewer for his/her pertinent comments
and valuable suggestions which substantially inproved the paper.

References

[1] A. Aftabizadeh, S. Aizicovici and N.H. Pavel, Anti-Periodic boundary value problems
for higher order differential equations in Hilbert spaces, Nonlinear Anal. 18 (1992)
253–267.

[2] A. Aftabizadeh, S. Aizicovici and N.H. Pavel, On class of second order anti-periodic
boundary value problem, J. Math. Anal. Appl. 171 (1992) 301–320.

[3] S. Aizicovici and N.H. Pavel, Anti-Periodic Solutions to a class of Nonlinear Differential
Equations in Hilbert Space, J. Func. Anal. 99 (1991) 387-408.

[4] S. Aizicovici, N.H. Pavel and I.I. Vrabie, Anti-Periodic Solutions to Strongly Nonlinear
Evolutions Equations in Hilbert Space, An. Stiint. Univ. Al. I. Cuza Iasi Inform. XIV,
s.I.a. Matematica, (1998) 227–234.



A VARIATIONAL CONVERGENCE PROBLEM 175

[5] F. Antonacci and P. Margone, Second order nonautonomuous systems with symetric
potential changing sign. Rend. Mat. 18 (1998) 367-379.
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