A VARIATIONAL CONVERGENCE PROBLEM WITH ANTIPERIODIC BOUNDARY CONDITIONS

C. Castaing, T. Haddad and A. Salvadori

Abstract

We present a variational convergence approach involving existence of solutions for some classes of evolution inclusions with anti-periodic boundary conditions.

Key words: anti-periodic, chain rule, maximal monotone, recession, second dual, subdifferential, Young measures

Mathematics Subject Classification: 45N05, 47J25, 35B40, 35K55, 35K90

1 Introduction

Existence and uniqueness of antiperiodic solution for evolution inclusions generated by the subdifferential of a convex lower semicontinuous even function appeared in a series of papers, see $[1,2,3,14,15,18,21,22]$ and the references therein. In this paper, we present two epigraphical versions of the mentioned results involving new variational convergence techniques and the stable convergence of Young measures [10]. In section 2, we summarize some basic results of convergence for bounded sequences in $L_{H}^{1}([0, T])$ where H is a Hilbert space. In section 3 we state some existence and uniqueness results of anti-periodic solutions for a first order evolution inclusion generated by a subdifferential of a convex lower semicontinuous even function defined on H and its application to a new existence of antiperiodic solutions. Section 4 is devoted to the existence of anti-periodic solutions for a second order evolution inclusion via a variational approach [11, 12] involving the biting convergence, Young measures and the characterization of the second dual of $L_{H}^{1}([0, T])$ and other tools.

2 Preliminaries and Background

We introduce some basic notions and results. In this paper, H is a separable Hilbert space. By $L_{H}^{1}([0, T])$ we denote the space of all Lebesgue-Bochner integrable H-valued functions defined on $[0, T]$. A sequence $\left(\varphi_{n}\right)$ of lower semicontinuous functions defined on H lower epiconverges to a lower semicontinuous function φ_{∞} defined on H if, for every sequence $\left(x_{n}\right)$ in H converging to x, we have $\liminf _{n} \varphi_{n}\left(x_{n}\right) \geq \varphi_{\infty}(x)$. (φ_{n}) upper epiconverges to φ_{∞} if, for every $y \in H$, there exists a sequence $\left(y_{n}\right)_{n}$ in H converging to y such that $\lim \sup _{n} \varphi_{n}\left(y_{n}\right) \leq \varphi_{\infty}(y)$. If $\left(\varphi_{n}\right)$ both lower and upper epiconverges to φ_{∞}, we say that $\left(\varphi_{n}\right)$ epiconverges to φ_{∞}. These notions are easily extended to normal integrands (see e.g. $[13,23])$.

The following result is a particular form of a similar result given in ([11], Proposition 4.1).

Lemma 2.1. Let H be a Hilbert space. Let φ be a proper convex lower semicontinuous function defined on H with values in $]-\infty,+\infty]$. Let $\left(u_{n}\right)_{n \in \mathbf{N} \cup\{\infty\}}$ be a sequence of measurable mappings from $[0, T]$ into H such that $u_{n} \rightarrow u_{\infty}$ pointwisely with respect to the norm topology. Assume that $\left(\zeta_{n}\right)_{n \in \mathbf{N}}$ is a sequence in $L_{H}^{1}([0, T])$ satisfying

$$
\zeta_{n}(t) \in \partial \varphi\left(u_{n}(t)\right) \quad \text { a.e. } \quad t \in[0, T]
$$

for each $n \in \mathbf{N}$ and $\sigma\left(L_{H}^{1}, L_{H}^{\infty}\right)$ converging to $\zeta_{\infty} \in L_{H}^{1}([0, T])$. Then we have

$$
\zeta_{\infty}(t) \in \partial \varphi\left(u_{\infty}(t)\right) \quad \text { a.e. } \quad t \in[0, T] .
$$

Proof. We will use Komlós techniques. See [16, 17, 19]. Namely we may assume that $\left(\zeta_{n}\right)$ Komlós converges to ζ_{∞} and $\left(\left|\zeta_{n}\right|\right)$ Komlós converges to $\rho_{\infty} \in L_{\mathbf{R}}^{1}([0, T])$, because the sequence $\left(\zeta_{n}\right)$ (resp. $\left.\left(\left|\zeta_{n}\right|\right)\right)$ is bounded in $L_{H}^{1}([0, T])$ (resp. $L_{\mathbf{R}}^{1}([0, T])$). Accordingly there are a Lebesgue negligible set \mathcal{M} in $[0, T]$ and subsequences $\left(\zeta^{\prime}{ }_{m}\right),\left(\left|\zeta^{\prime}{ }_{m}\right|\right)$ such that

$$
\begin{aligned}
\lim _{n} \frac{1}{n} \sum_{m=1}^{n} \zeta_{m}^{\prime}(t) & =\zeta_{\infty}(t), \\
\lim _{n} \frac{1}{n} \sum_{m=1}^{n}\left|\zeta_{m}^{\prime}\right|(t) & =\rho_{\infty}(t),
\end{aligned}
$$

for all $t \in[0, T] \backslash \mathcal{M}$. Let $\varepsilon>0$ and let $t \in[0, T] \backslash \mathcal{M}$. By lower semicontinuity of φ and pointwise convergence of u_{m} to u_{∞}, there is $N_{\varepsilon} \in \mathbf{N}$ such that $\left\|u_{m}(t)-u_{\infty}(t)\right\| \leq \varepsilon$ and that $\varphi\left(u_{m}(t)\right) \geq \varphi\left(u_{\infty}(t)\right)-\varepsilon$ for all $m \geq N_{\varepsilon}$. Then we have the estimate

$$
\varphi(x) \geq \varphi\left(u_{\infty}(t)\right)-\varepsilon+\left\langle x-u_{\infty}(t), \zeta_{m}^{\prime}(t)\right\rangle-\left|\zeta^{\prime m}\right|(t) \varepsilon
$$

for all $x \in H$, using the classical definition of subdifferential in convex analysis and the preceding estimate. Applying the previous Komlós convergences in the last inequality gives

$$
\varphi(x) \geq \varphi\left(u_{\infty}(t)\right)-\varepsilon+\left\langle x-u(t), \zeta_{\infty}(t)\right\rangle-\rho_{\infty}(t) \varepsilon
$$

As ε is arbitrary >0 we finally get

$$
\varphi(x) \geq \varphi\left(u_{\infty}(t)\right)+\left\langle\zeta(t), x-u_{\infty}(t)\right\rangle
$$

for all $x \in H$. Whence we have $\zeta_{\infty}(t) \in \partial \varphi\left(u_{\infty}(t)\right)$ a.e..
Let us recall and summarize another classical closure type lemma. See e.g. [6].
Lemma 2.2. Let H be a Hilbert space. Let φ be a proper convex lower semicontinuous function defined on H with values in $]-\infty,+\infty]$. Let $\left(u_{n}\right)_{n \in \mathbf{N}} \cup\{\infty\}$ be a sequence in $L_{H}^{2}([0, T])$ such that $\left(u_{n}\right)_{n \in \mathbf{N}}$ strongly converges to $u_{\infty} \in L_{H}^{2}([0, T])$. Assume that $\left(\zeta_{n}\right)_{n \in \mathbf{N}}$ is a sequence in $L_{H}^{2}([0, T])$ satisfying

$$
\zeta_{n}(t) \in \partial \varphi\left(u_{n}(t)\right) \quad \text { a.e. } \quad t \in[0, T]
$$

for each $n \in \mathbf{N}$ and converging weakly to $\zeta_{\infty} \in L_{H}^{2}([0, T])$. Then we have

$$
\zeta_{\infty}(t) \in \partial \varphi\left(u_{\infty}(t)\right) \quad \text { a.e. } \quad t \in[0, T] .
$$

Let us recall some facts on Young measures. Let X be a completely regular Suslin space and let $\mathcal{C}^{b}(X)$ be the space of all bounded continuous functions defined on X. Let $\mathcal{M}_{+}^{1}(X)$ be the set of all Borel probability measures on X endowed with the narrow topology. A Young measure $\lambda:[0, T] \rightarrow \mathcal{M}_{+}^{1}(X)$ is, by definition, a scalarly Lebesgue-measurable mapping from $[0, T]$ into $\mathcal{M}_{+}^{1}(X)$, that is, for every $f \in \mathcal{C}^{b}(X)$, the mapping $t \mapsto\left\langle f, \lambda_{t}\right\rangle:=$ $\int_{X} f(x) d \lambda_{t}(x)$ is Lebesgue-measurable on $[0, T]$. A sequence $\left(\lambda^{n}\right)$ in the space of Young measures $\mathcal{Y}\left([0, T] ; \mathcal{M}_{+}^{1}(X)\right)$ stably converges to a Young measure $\lambda \in \mathcal{Y}\left([0, T] ; \mathcal{M}_{+}^{1}(X)\right)$ if the following holds

$$
\lim _{n} \int_{A}\left[\int_{X} f(x) d \lambda_{t}^{n}(x)\right] d t=\int_{A}\left[\int_{X} f(x) d \lambda_{t}(x)\right] d t
$$

for every Lebesgue-measurable set $A \subset[0, T]$ and for every $f \in \mathcal{C}^{b}(X)$.

3 Existence Results Involving Anti-Periodic Boundary Conditions

The following deal with an evolution inclusion generated by subdifferential operators of convex lower semicontinuous functions with anti-periodic boundary conditions and $c w k(H)$ valued upper semicontinuous perturbations, here $c w k(H)$ is the set of all nonempty convex weakly compact subsets of H.

Proposition 3.1. Assume that $\varphi: H \rightarrow]-\infty,+\infty]$ is convex lower semicontinuous, even, with $\varphi(0)=0$ and $D(\varphi)$ closed and satisfying:
(a) for every $r>0, \sup _{x \in D(\varphi) \cap \bar{B}_{H}(0, r)}|\partial \varphi(x)|_{0}<+\infty$,
(b) for every $r>0, D(\varphi) \cap \bar{B}_{H}(0, r)$ is strongly compact in H, shortly $D(\varphi)$ is ball-compact.

Assume that $F:[0, T] \times H \rightarrow \operatorname{cwk}(H)$ is upper semicontinuous on $[0, T] \times H$ satifying $|F(t, x)| \leq \alpha(1+\|x\|)$ for all $(t, x) \in[0, T] \times H$ for some positive constant α and G : $[0, T] \times H \rightarrow c w k(H)$ is a separately scalarly measurable on $[0, T]$ and separately scalarly upper semicontinuous on H such that $|G(t, x)| \leq \beta$ or all $(t, x) \in[0, T] \times H$ for some positive constant β. Assume further that $F+G$ satisfies the following monotone condition: there exists a positive constant γ such that $\langle x-y, u-v\rangle \geq \gamma\|u-v\|^{2}, \forall u, v \in H, \forall x \in$ $F(t, u)+G(t, u), \forall y \in F(t, v)+G(t, v)$ and $\forall t \in[0, T]$. Then there is a unique absolutely continuous T-anti-periodic solution $u:[0, T] \rightarrow H$ with $\dot{u} \in L_{H}^{\infty}([0, T])$ of the problem

$$
(\mathcal{P})\left\{\begin{array}{l}
0 \in \dot{u}(t)+\partial \varphi(u(t))+F(t, u(t))+G(t, u(t)) \\
u(T)=-u(0)
\end{array}\right.
$$

Proof. Existence and uniqueness of absolutely continuous solution of the problem

$$
(\mathcal{Q})\left\{\begin{array}{l}
0 \in \dot{u}(t)+\partial \varphi(u(t))+F(t, u(t))+G(t, u(t)) \\
u(0)=a \in D(\varphi)
\end{array}\right.
$$

follow from ([8], Theorem 3.1). Nevertheless we repeat the uniqueness argument for (\mathcal{Q}) because this led to the uniqueness of T-anti-periodic solution for (\mathcal{P}). Let u and v be two solutions of (\mathcal{Q}) whose existence is ensured by Theorem 3.1 in [8]. There exist two functions h and k in $L_{H}^{\infty}([0, T])$ such that for almost all $t \in[0, T]$, we have

$$
\begin{equation*}
-\dot{u}(t)-h(t) \in \partial \varphi(u(t)) \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
-\dot{v}(t)-k(t) \in \partial \varphi(v(t)) \tag{3.2}
\end{equation*}
$$

with

$$
h(t) \in F(t, u(t))+G(t, u(t)) \text { and } k(t) \in F(t, v(t))+G(t, v(t)) .
$$

Further, by our monotone condition on $F+G$,

$$
\begin{equation*}
\langle h(t)-k(t), u(t)-v(t)\rangle \geq \gamma\|u(t)-v(t)\|^{2} . \tag{3.3}
\end{equation*}
$$

Then (3.1)-(3.3) and the monotonicity of $\partial \varphi$ entail, for almost all $t \in[0, T]$,

$$
\langle\dot{u}(t)+h(t)-\dot{v}(t)-k(t), u(t)-v(t)\rangle \leq 0
$$

and hence

$$
\begin{align*}
\langle\dot{u}(t)-\dot{v}(t), u(t)-v(t)\rangle & \leq-\langle h(t)-k(t), u(t)-v(t)\rangle \tag{3.4}\\
& \leq-\gamma\|u(t)-v(t)\|^{2} \leq 0 .
\end{align*}
$$

From the preceding estimate we see by integrating on $\left[s, s^{\prime}\right]\left(s, s^{\prime} \in[0, T]\right)$

$$
\left\|u\left(s^{\prime}\right)-v\left(s^{\prime}\right)\right\|^{2} \leq\|u(s)-v(s)\|^{2} .
$$

Since this inequality is true for $s=0$, we have $u=v$.
Now let $a, b \in D(\varphi)$ and let u_{a} (resp. u_{b}) be the solution of the above problem associated with the initial value a (resp. b). Applying the last inequality in (3.4) by taking $u=u_{a}$ and $v=u_{b}$ and integrating

$$
\begin{equation*}
\frac{1}{2}\left\|u_{a}(t)-u_{b}(t)\right\|^{2} \leq \frac{1}{2}\|a-b\|^{2}-\int_{0}^{t} \gamma\left\|u_{a}(s)-u_{b}(s)\right\|^{2} d s . \tag{3.5}
\end{equation*}
$$

Now, we finish the proof by checking that $a \mapsto-u_{a}(T)$ is a strict contraction on the closed convex set $D(\varphi)$, using similar arguments as in ([9], Theorem 5.3). It is enough to show that

$$
\left\|u_{a}(T)-u_{b}(T)\right\|<\|a-b\|,
$$

if $\|a-b\|>0$. By Lemma 5.4 in [9] asserting that, if ψ is a continuous real valued function such that

$$
0 \leq \psi(t) \leq \delta-\int_{0}^{t} \theta(s) \varphi(s) d s
$$

with $\delta>0$ and $\theta()>$.0 Lebesgue-integrable, then $\psi(t)<\delta, \forall t \in[0, T]$, so we conclude from (3.5) that

$$
\left\|u_{a}(T)-u_{b}(T)\right\|<\|a-b\| .
$$

Let us consider the mapping $U: a \mapsto-u_{a}(T)$ from $D(\varphi)$ into $D(\varphi)$ because φ is even. Since this mapping is a (strict) contraction, it has a unique fixed point that is the T-anti-periodic solution of the problem (\mathcal{P}).

Here is an application of the preceding result. For this purpose, we need a useful result.
Lemma 3.2. Let $w:[0, T] \rightarrow H$ and $\dot{w} \in L_{H}^{2}([0, T])$ satisfying:

$$
\begin{aligned}
w(t) & =w(0)+\int_{0}^{t} \dot{w}(s) d s, \quad t \in[0, T] \\
w(T) & =-w(0) .
\end{aligned}
$$

Then the following inequality hold

$$
\begin{equation*}
\|w\|_{\mathcal{C}_{H}([0, T])} \leq \frac{\sqrt{T}}{2}\|\dot{w}\|_{L_{H}^{2}([0, T])} \tag{a}
\end{equation*}
$$

Assume further that

$$
\dot{w} \in \mathcal{C}_{H}([0, T]), \quad \dot{w}(T)=-\dot{w}(0)
$$

Then the following inequality hold

$$
\begin{equation*}
\int_{0}^{T}\|w(t)\|^{2} d t \leq \frac{T^{2}}{\pi^{2}} \int_{0}^{T}\|\dot{w}(t)\|^{2} d t \tag{b}
\end{equation*}
$$

Proof. The proof is omitted, see e.g. [5, 7, 18]. Estimate (a) is quoted in several proofs presented here. Estimate (b) is useful when dealing with the uniqueness of solutions of anti-periodic second order inclusions with Lipschitzean perturbations. See the remark 2) of Corollary 4.3.

Here is a useful application.
Corollary 3.3. Let $w^{n}:[0, T] \rightarrow H$ and $\dot{w}^{n} \in L_{H}^{2}([0, T])$ satisfying:

$$
\begin{aligned}
w^{n}(t) & =w^{n}(0)+\int_{0}^{t} \dot{w}^{n}(s) d s, \quad t \in[0, T] \\
w^{n}(T) & =-w^{n}(0), \quad \sup _{n \geq 1}\left\|\dot{w}^{n}\right\|_{L_{H}^{2}([0, T])}<+\infty
\end{aligned}
$$

Then, up to extracted subsequences, there exist $v^{\infty} \in L_{H}^{2}([0, T])$ and a absolutely continuous mapping $w^{\infty}:[0, T] \rightarrow H$ satisfying
(1) $w^{\infty}(t)=w^{\infty}(0)+\int_{0}^{t} v^{\infty}(s) d s, \quad \forall t \in[0, T]$.
(2) $w^{\infty}(T)=-w^{\infty}(0)$.
(3) For every $e \in H$, for every $t \in[0, T], \lim _{n \rightarrow \infty}\left\langle e, w^{n}(t)\right\rangle=\left\langle e, w^{\infty}(t)\right\rangle$.
(4) For every $h \in L_{H}^{2}([0, T])$,

$$
\lim _{n \rightarrow \infty} \int_{0}^{T}\left\langle h(t), w^{n}(t)\right\rangle d t=\int_{0}^{T}\left\langle h(t), w^{\infty}(t)\right\rangle d t
$$

Proof. Applying Lemma 3.2 (a) to w^{n} gives

$$
\left\|w^{n}\right\|_{\mathcal{C}_{H}([0, T])} \leq \frac{\sqrt{T}}{2}\left\|\dot{w}^{n}\right\|_{L_{H}^{2}([0, T])}
$$

Whence $\left(w^{n}\right)$ is bounded in $\mathcal{C}_{H}([0, T])$ because $\left(\dot{w}^{n}\right)$ is bounded in $L_{H}^{2}([0, T])$. Extracting subsequences we may assume that $\left(\dot{w}^{n}\right)$ converges weakly in $L_{H}^{2}([0, T])$ to a function $v^{\infty} \in$ $L_{H}^{2}([0, T])$ and $\left(w^{n}(0)\right)$ weakly converges in H to an element $x^{\infty} \in H$. Let us set

$$
w^{\infty}(t)=x^{\infty}+\int_{0}^{t} v^{\infty}(s) d s, \forall t \in[0, T]
$$

Whence

$$
\lim _{n \rightarrow \infty}\left\langle e, w^{n}(t)\right\rangle=\left\langle e, x^{\infty}\right\rangle+\left\langle e, \int_{0}^{t} v^{\infty}(s) d s\right\rangle
$$

for every $e \in H$ and for every $t \in[0, T]$, so that ($w^{n}(t)$) weakly converges in H to $w^{\infty}(t)$ for every $t \in[0, T]$. We have $w^{\infty}(0)=$ weak- $\lim _{n \rightarrow \infty} w^{n}(0)=x^{\infty}$. Since $w^{n}(T)=-w^{n}(0)$, we also have

$$
w^{\infty}(T)=\text { weak- } \lim _{n \rightarrow \infty} w^{n}(T)=- \text { weak- } \lim _{n} w^{n}(0)=-x^{\infty}=-w^{\infty}(0)
$$

Then w^{∞} is absolutely continuous with $\dot{w}^{\infty}=v$ and satisfies $w^{\infty}(T)=-w^{\infty}(0)$. It remains to check (4). For every $h \in L_{H}^{2}([0, T])$, we have

$$
\int_{0}^{T}\left\langle h(t), w^{n}(t)\right\rangle d t=\int_{0}^{T}\left\langle h(t), w^{n}(0)\right\rangle d t+\int_{0}^{T}\left\langle h(t), \int_{0}^{t} \dot{w}^{n}(s) d s\right\rangle d t
$$

It is clear that $\lim _{n \rightarrow \infty}\left\langle h(t), w^{n}(0)\right\rangle=\left\langle h(t), w^{\infty}(0)\right\rangle$. Hence

$$
\lim _{n \rightarrow \infty} \int_{0}^{T}\left\langle h(t), w^{n}(0)\right\rangle d t=\int_{0}^{T}\left\langle h(t), w^{\infty}(0)\right\rangle d t
$$

by Lebesgue convergence theorem. Similarly we have

$$
\lim _{n \rightarrow \infty}\left\langle h(t), \int_{0}^{t} \dot{w}^{n}(s) d s\right\rangle=\left\langle h(t), \int_{0}^{t} v^{\infty}(s) d s\right\rangle, \quad \forall t \in[0, T] .
$$

By Holder inequality $\left\|\int_{0}^{t} \dot{w}^{n}(s) d s\right\| \leq \sqrt{T}\left\|\dot{w}^{n}\right\|_{L_{H}^{2}([0, T])} \leq M$ for some positive constant M, again by Lebesgue convergence theorem, we see that

$$
\lim _{n \rightarrow \infty} \int_{0}^{T}\left\langle h(t), \int_{0}^{t} \dot{w}^{n}(s) d s\right\rangle d t=\int_{0}^{T}\left\langle h(t), \int_{0}^{t} v(s) d s\right\rangle d t
$$

thus finishing the proof.
Proposition 3.4. Assume that $\varphi: H \rightarrow]-\infty,+\infty$] is convex lower semicontinuous, even, with $\varphi(0)=0$ and $D(\varphi)$ closed and satisfying:
(a) for every $r>0, \sup _{x \in D(\varphi) \cap \bar{B}_{H}(0, r)}|\partial \varphi(x)|_{0}<+\infty$,
(b) for every $r>0, D(\varphi) \cap \bar{B}_{H}(0, r)$ is strongly compact in H, shortly $D(\varphi)$ is ball-compact. Let $\gamma>0$ and $f \in L_{H}^{2}([0, T])$. Then the problem

$$
\left(\mathcal{P}_{1}\right)\left\{\begin{array}{l}
0 \in \dot{u}(t)+\gamma u(t)+f(t)+\partial \varphi(u(t)) \\
u(T)=-u(0)
\end{array}\right.
$$

admits at least a T-anti-periodic absolutely continuous solution $u:[0, T] \rightarrow H$ which satisfies $\|\dot{u}\|_{L_{H}^{2}([0, T])} \leq\|f\|_{L_{H}^{2}([0, T])}$.

Proof. Step 1. Assume that $f \in \mathcal{C}_{H}([0, T])$. It is enough to apply Proposition 3.1 by taking $F(t, x)=\gamma x+f(t)$ and $G(t, x)=0$ for all $(t, x) \in[0, T] \times H$ to get a unique T-anti-periodic absolutely continuous solution for the problem $\left(\mathcal{P}_{1}\right)$. Indeed we have $\langle\gamma x+f(t)-(\gamma y+$
$f(t)), x-y\rangle=\gamma\|x-y\|^{2}, \forall x, y \in H$, and $\forall t \in[0, T]$. Using the classical chain rule formula for lower semicontinuous functions and integrating on $[0, T]$ gives

$$
0=\int_{0}^{T}\|\dot{u}(t)\|^{2} d t+\varphi(u(T))-\varphi(u(0))+\int_{0}^{T}\langle\gamma u(t)+f(t), \dot{u}(t)\rangle d t
$$

Hence the inequality $\|\dot{u}\|_{L_{H}^{2}([0, T])} \leq\|f\|_{L_{H}^{2}([0, T])}$ follows by anti-periodicity.
Step 2. Assume that $f \in L_{H}^{2}([0, T])$. Let $\left(f_{n}\right)$ be a sequence in $\mathcal{C}_{H}([0, T])$ converging to f with respect to the topology of the norm of $L_{H}^{2}([0, T])$. Let $u_{f_{n}}$ be the T-anti-periodic absolutely continuous solution of $\left(\mathcal{P}_{1}\right)$ associated with f_{n}

$$
\left\{\begin{array}{l}
0 \in \dot{u}_{f_{n}}(t)+\gamma u_{f_{n}}(t)+f_{n}(t)+\partial \varphi\left(u_{f_{n}}(t)\right) \\
u_{f_{n}}(T)=-u_{f_{n}}(0)
\end{array}\right.
$$

with $\left\|\dot{u}_{f_{n}}\right\|_{L_{H}^{2}([0, T])} \leq\left\|f_{n}\right\|_{L_{H}^{2}([0, T])}$. It is clear that $\left(\dot{u}_{f_{n}}\right)$ is bounded in $L_{H}^{2}([0, T])$. So we may assume that $\left(\dot{u}_{f_{n}}\right)$ weakly converges in $L_{H}^{2}([0, T])$ to $v \in L_{H}^{2}\left([0, T]\right.$. As $\left\|u_{f_{n}}\right\|_{\mathcal{C}_{H}([0, T])} \leq$ $\frac{\sqrt{T}}{2}\left\|\dot{u}_{f_{n}}\right\|_{L_{H}^{2}([0, T])}$ in view of Lemma 3.2 (a), using the ball-compactness assumption and Ascoli theorem, we infer that $\left(u_{f_{n}}\right)$ is relatively compact in $\mathcal{C}_{H}([0, T])$. Taking account of Corollary 3.3 we may assume that $\left(u_{f_{n}}\right)$ converges uniformly to a T-anti-periodic absolutely continuous function u and $\dot{u}_{f_{n}}$ weakly converges in $L_{H}^{2}([0, T])$ to \dot{u}. For simplicity, let $g_{n}=-\dot{u}_{f_{n}}-\gamma u_{f_{n}}-f_{n}$. Then $g_{n}(t) \in \partial \varphi\left(u_{f_{n}}(t)\right)$ a.e. and $\left(g_{n}\right)$ weakly converges in $L_{H}^{2}([0, T]$ to $-\dot{u}-\gamma u-f$. By invoking Lemma 2.2, we conclude that

$$
-\dot{u}(t)-\gamma u(t)-f(t) \in \partial \varphi(u(t)) \quad \text { a.e. }
$$

In otherwords, u is a T-anti-periodic absolutely continuous solution of $\left(\mathcal{P}_{1}\right)$ satisfying $\|\dot{u}\|_{L_{H}^{2}([0, T])} \leq\|f\|_{L_{H}^{2}([0, T])}$ by antiperiodicity.

Remarks. Proposition 3.4 seems to be a corollary of the general theory in [3]. The above techniques led to a variational convergence result.

Theorem 3.5. Let $\gamma>0, f^{n} \in L_{H}^{2}([0, T]), \varphi_{n}, \varphi_{\infty}: H \rightarrow[0,+\infty]$ are proper, convex, l.s.c, even with $\varphi_{n}(0)=\varphi_{\infty}(0)=0, \forall n \in \mathbf{N} \cup\{\infty\}$ satisfying:
(i) for every $n \in \mathbf{N}$, for every $r>0, \sup _{x \in D\left(\varphi_{n}\right) \cap \bar{B}_{H}(0, r)}\left|\partial \varphi_{n}(x)\right|_{0}<+\infty$,
(ii) for every $r>0, \cup_{n} D\left(\varphi_{n}\right) \cap \bar{B}_{H}(0, r)$ is relatively compact in H, shortly $\cup_{n} D\left(\varphi_{n}\right)$ is ball-compact.

Let u_{n} be a T-anti-periodic absolutely continuous of

$$
\left\{\begin{array}{l}
0 \in \dot{u}^{n}(t)+\gamma u^{n}(t)+f^{n}(t)+\partial \varphi_{n}\left(u^{n}(t)\right), \quad \text { a.e. } \quad t \in[0, T] \\
u^{n}(T)=-u^{n}(0) .
\end{array}\right.
$$

Assume that

$\left(H_{1}\right):\left(f^{n}\right)$ weakly converges to $f \in L_{H}^{2}([0, T])$.
; $\left(H_{2}\right):\left(\varphi_{n}\right)$ epiconverges to φ_{∞}.
Then, up to extracted subsequences, $\left(u^{n}\right)$ converges uniformly to a T-anti-periodic absolutely continuous solution u of the inclusion

$$
\left\{\begin{array}{l}
0 \in \dot{u}+\gamma u+f+\partial I_{\varphi_{\infty}}(u) \\
u(T)=-u(0)
\end{array}\right.
$$

with $\int_{0}^{T} \varphi_{\infty}(u(t)) d t<+\infty$, here $\partial I_{\varphi_{\infty}}$ denotes the subdifferential of the convex integral functional $I_{\varphi_{\infty}}$ defined on $L_{H}^{2}([0, T])$ by

$$
I_{\varphi_{\infty}}(u)=\left\{\begin{array}{l}
\int_{0}^{T} \varphi_{\infty}(u(t)) d t \text { if } \quad \int_{0}^{T} \varphi_{\infty}(u(t)) d t \quad \text { is finite } \\
+\infty \text { otherwise. }
\end{array}\right.
$$

Proof. Step 1 Thanks to the estimate $\left\|\dot{u}^{n}\right\|_{L_{H}^{2}} \leq\left\|f^{n}\right\|_{L_{H}^{2}}$ and Lemma 3.2 (a) we have

$$
\left\|u^{n}\right\|_{\mathcal{C}_{H}([0, T])} \leq \frac{\sqrt{T}}{2}\left\|\dot{u}^{n}\right\|_{L_{H}^{2}([0, T])} \leq \frac{\sqrt{T}}{2}\left\|f^{n}\right\|_{L_{H}^{2}}
$$

so that $\sup _{n \geq 1}\left\|u^{n}\right\|_{\mathcal{C}_{H}([0, T])}<+\infty$. Furthermore, using the absolute continuity of $\varphi_{n}\left(u^{n}\right)$ and the chain rule theorem [6], yields

$$
\left\langle-\dot{u}^{n}(t)-\gamma u^{n}(t)-f_{n}(t), \dot{u}^{n}(t)\right\rangle=\frac{d}{d t} \varphi_{n}\left(u^{n}(t)\right)
$$

for every $n \in \mathbf{N}$. Hence by integrating

$$
+\infty>\sup _{n \geq 1} \int_{0}^{T}\left|\left\langle\dot{u}^{n}(t), \dot{u}^{n}(t)+\gamma u^{n}(t)+f^{n}(t)\right\rangle\right| d t=\sup _{n \geq 1} \int_{0}^{T}\left|\frac{d}{d t} \varphi_{n}\left(u^{n}(t)\right)\right| d t .
$$

Further apply the classical definition of the subdifferential to convex lsc funtion φ_{n} yields

$$
\left.0=\varphi_{n}(0)\right) \geq \varphi_{n}\left(u^{n}(t)\right)+\left\langle u^{n}(t), \dot{u}^{n}(t)+\gamma u^{n}(t)+f^{n}(t)\right\rangle
$$

or

$$
0 \leq \varphi_{n}\left(u^{n}(t)\right) \leq\left\langle u^{n}(t),-\dot{u}^{n}(t)-\gamma u^{n}(t)-f^{n}(t)\right\rangle
$$

Hence $\sup _{n \geq 1}\left|\varphi_{n}\left(u^{n}\right)\right|_{L_{\mathbf{R}}^{1}([0, T])}<+\infty$. Now we assert that $\left|\varphi_{n}\left(u^{n}(t)\right)\right| \leq L$ for all $t \in[0, T]$ and all $n \in N$, here L is a positive constant. Indeed we have

$$
\begin{aligned}
\varphi_{n}\left(u^{n}(0)\right) & \leq\left|\varphi_{n}\left(u^{n}(t)\right)-\varphi_{n}\left(u^{n}(0)\right)\right|+\varphi_{n}\left(u^{n}(t)\right) \\
& \leq \int_{0}^{T}\left|\frac{d}{d t} \varphi_{n}\left(u^{n}(t)\right)\right| d t+\varphi_{n}\left(u^{n}(t)\right) .
\end{aligned}
$$

Hence

$$
\varphi_{n}\left(u^{n}(0)\right) \leq \sup _{n \geq 1} \int_{0}^{T}\left|\frac{d}{d t} \varphi_{n}\left(u^{n}(t)\right)\right| d t+\frac{1}{T} \sup _{n \geq 1} \int_{0}^{T} \varphi_{n}\left(u^{n}(t)\right) d t<+\infty
$$

Whence we get the estimate

$$
\begin{equation*}
M:=\sup _{n \geq 1} \sup _{t \in[0, T]}\left\|u^{n}(t)\right\|<+\infty, \quad L=\sup _{n \geq 1} \sup _{t \in[0, T]} \varphi_{n}\left(u^{n}(t)\right)<+\infty \tag{*}
\end{equation*}
$$

Using the ball-compactness assumption and Ascoli theorem we may assume that (u^{n}) converges uniformly to a T-anti-periodic absolutely continuous function u with $\dot{u} \in L_{H}^{2}$ ([0, T], taking account into the above estimate. So, in view of $\left(H_{2}\right)$ and $\left({ }^{*}\right)$ we have

$$
\int_{0}^{T} \varphi_{\infty}(u(t)) d t \leq \liminf _{n} \int_{0}^{T} \varphi_{n}\left(u^{n}(t)\right) d t \leq L T<+\infty
$$

Step $2 u$ is solution of

$$
\left\{\begin{array}{l}
0 \in \dot{u}+\gamma u+f+\partial I_{\varphi_{\infty}}(u) \\
u(T)=-u(0)
\end{array}\right.
$$

with $\int_{0}^{T} \varphi_{\infty}(u(t)) d t \leq L T<+\infty, \partial I_{\varphi_{\infty}}$ being the subdifferential of the convex integral functional $I_{\varphi_{\infty}}$ defined on $L_{H}^{2}([0, T])$ by

$$
I_{\varphi_{\infty}}(u)=\left\{\begin{array}{l}
\int_{0}^{T} \varphi_{\infty}(u(t)) d t \text { if } \int_{0}^{T} \varphi_{\infty}(u(t)) d t \quad \text { is finite } \\
+\infty \text { otherwise. }
\end{array}\right.
$$

For simplicity let $z^{n}:=\dot{u}^{n}+\gamma u^{n}+f^{n}$ and $z:=\dot{u}+\gamma u+f$. Then

$$
\begin{equation*}
-z^{n}(t) \in \partial \varphi_{n}\left(u^{n}(t)\right) \tag{**}
\end{equation*}
$$

a.e. As $\left(\dot{u}^{n}\right)$ converges weakly to \dot{u} in $L_{H}^{2}([0, T]),\left(z_{n}\right)$ converges weakly in $L_{H}^{2}([0, T])$ to z. The proof will be achieved by using some facts developed in ([11], Lemma 3.4 and Lemma 3.7).

Fact 1 If h_{n}, h are measurable mappings $h_{n}, h:[0, T] \rightarrow H$ such that $\left(h_{n}\right)$ pointwisely converges to h. Then

$$
\liminf _{n \rightarrow \infty} \int_{B} \varphi_{n}\left(h^{n}(t)\right) d t \geq \int_{B} \varphi_{\infty}(h(t)) d t
$$

for every measurable subset B of $[0, T]$, using $\left(H_{2}\right)$.
Fact 2 Let $v \in L_{H}^{\infty}([0, T])$. Then there exists a bounded sequence $\left(v_{n}\right)$ in $L_{H}^{\infty}([0, T])$ which pointwisely converges to v and such that

$$
\limsup _{n \rightarrow \infty} \int_{B} \varphi_{n}\left(v^{n}(t)\right) d t \leq \int_{B} \varphi_{\infty}(v(t) d t
$$

for every measurable subset B of $[0, T]$, using $\left(H_{2}\right)$ and the estimate $\left({ }^{*}\right)$. From Fact 1 and the result obtained in Step 1, we have

$$
+\infty>L T \geq \liminf _{n \rightarrow \infty} \int_{0}^{T} \varphi_{n}\left(u^{n}(t)\right) d t \geq \int_{0}^{T} \varphi_{\infty}(u(t)) d t
$$

From (**) we have

$$
\varphi_{n}(v(t)) \geq \varphi_{n}\left(u^{n}(t)\right)+\left\langle v(t)-u^{n}(t),-z^{n}(t)\right\rangle \quad \text { a.e. } \quad t \in[0, T]
$$

for every $v \in L_{H}^{\infty}([0, T])$. By integrating

$$
\int_{0}^{T} \varphi_{n}(v(t)) d t \geq \int_{0}^{T} \varphi_{n}\left(u^{n}(t)\right) d t+\int_{0}^{T}\left\langle v(t)-u^{n}(t),-z^{n}(t)\right\rangle d t
$$

For every $v \in L_{H}^{\infty}([0, T])$, from Fact 2, there is a bounded sequence $\left(v^{n}\right)$ in $L_{H}^{\infty}([0, T])$ which converges pointwisely to v and such that

$$
\limsup _{n \rightarrow \infty} \int_{0}^{T} \varphi_{n}\left(v^{n}(t)\right) d t \leq \int_{0}^{T} \varphi_{\infty}(v(t)) d t
$$

Combining this with Fact 1 gives

$$
\lim _{n \rightarrow \infty} \int_{0}^{T} \varphi_{n}\left(v^{n}(t)\right) d t=\int_{0}^{T} \varphi_{\infty}(v(t)) d t
$$

As

$$
\lim _{n \rightarrow \infty} \int_{0}^{T}\left\langle v^{n}(t)-u^{n}(t), z^{n}(t)\right\rangle d t=\int_{0}^{T}\langle v(t)-u(t), z(t)\rangle d t
$$

because the sequence $\left(v^{n}-u^{n}\right)$ is bounded in $L_{H}^{\infty}([0, T])$ and converges pointwisely to $u-v$ and the sequence $\left(z^{n}\right)$ converges to z with respect to the weak topology of $L_{H}^{2}([0, T])$. Finally by combining these facts and by passing to the limit when $n \rightarrow \infty$ in the integral subdifferential inequality

$$
\int_{0}^{T} \varphi_{n}\left(v^{n}(t)\right) d t \geq \int_{0}^{T} \varphi_{n}\left(u^{n}(t)\right) d t+\int_{0}^{T}\left\langle v^{n}(t)-u^{n}(t),-z^{n}(t)\right\rangle d t
$$

we get

$$
\int_{0}^{T} \varphi_{\infty}(v(t)) d t \geq \int_{0}^{T} \varphi_{\infty}(u(t)) d t+\int_{0}^{T}\langle v(t)-u(t),-z(t)\rangle d t
$$

Hence we conclude that $-z=-\dot{u}-\gamma u-f \in \partial I_{\varphi_{\infty}}(u)$ with $I_{\varphi_{\infty}}(u) \leq L T<+\infty$.

4 A Class of Second Order Evolution Inclusion via a Variational Approach

This section is devoted to a generalization of some results developed by $[3,7]$ in second order evolution inclusions with T-anti-periodic boundary conditions. For this purpose we will use essentially an existence result obtained by $[3,7]$ and some variational techniques developed in $[10,12]$. We recall below some notations and summarize some results which describe the limiting behaviour of a bounded sequence in $L_{H}^{1}([0, T])$. See ([10], Proposition 6.5.17).
Proposition 4.1. Let H be a separable Hilbert space. Let $\left(\zeta_{n}\right)$ be a bounded sequence in $L_{H}^{1}([0, T])$. Then the following hold:

1) (ζ_{n}) (up to an extracted subsequence) stably converges to a Young measure ν that is, there exist a subsequence $\left(\zeta_{n}^{\prime}\right)$ of $\left(\zeta_{n}\right)$ and a Young measure ν belonging to the space of Young measure $\mathcal{Y}\left([0, T] ; \mathcal{M}_{+}^{1}\left(H_{\sigma}\right)\right)$ with $t \mapsto \operatorname{bar}\left(\nu_{t}\right) \in L_{H}^{1}([0, T])$ (here bar $\left(\nu_{t}\right)$ denotes the barycenter of $\left.\nu_{t}\right)$ such that

$$
\left.\left.\lim _{n \rightarrow \infty} \int_{0}^{T} h\left(t, \zeta_{n}^{\prime}(t)\right)\right) d t\right)=\int_{0}^{T}\left[\int_{H} h(t, x) \nu_{t}(d x)\right] d t
$$

for all bounded Carathéodory integrands $h:[0, T] \times H_{\text {weak }} \rightarrow \mathbf{R}$,
2) $\left(\zeta_{n}\right)$ (up to an extracted subsequence) weakly biting converges to an integrable function $f \in L_{H}^{1}([0, T])$, which means that, there is a subsequence $\left(\zeta_{m}^{\prime}\right)$ of $\left(\zeta_{n}\right)$ and an increasing sequence of Lebesgue-measurable sets $\left(A_{p}\right)$ with $\lim _{p} \lambda\left(A_{p}\right)=1$ and $f \in L_{H}^{1}([0, T])$ such that, for each p,

$$
\lim _{m \rightarrow \infty} \int_{A_{p}}\left\langle h(t), \zeta_{m}^{\prime}(t)\right\rangle d t=\int_{A_{p}}\langle h(t), f(t)\rangle d t
$$

for all $h \in L_{H}^{\infty}([0, T])$,
3) $\left(\zeta_{n}\right)$ (up to an extracted subsequence) Komlós converges to an integrable function $g \in$ $L_{H}^{1}([0, T])$, which means that, there is a subsequence $\left(\zeta_{\beta(m)}\right)$ and an integrable function $g \in L_{H}^{1}([0, T])$, such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \Sigma_{j=1}^{n} \zeta_{\gamma(j)}(t)=g(t), \text { a.e. } \in[0, T]
$$

for every subsequence $\left(f_{\gamma(n)}\right)$ of $\left(f_{\beta(n)}\right)$.
4) There is a filter \mathcal{U} finer than the Fréchet filter such that $\mathcal{U}-\lim _{n} \zeta_{n}=l \in\left(L_{H}^{\infty}\right)_{\text {weak }}^{\prime}$ where $\left(L_{H}^{\infty}\right)_{\text {weak }}^{\prime}$ is the second dual of $L_{H}^{1}([0, T])$.

Let $w_{l_{a}} \in L_{H}^{1}([0, T])$ be the density of the absolutely continuous part l_{a} of l in the decomposition $l=l_{a}+l_{s}$ in absolutely continuous part l_{a} and singular part l_{s}. If we have considered the same extracted subsequence in 1), 2), 3), 4), then one has

$$
f(t)=g(t)=\operatorname{bar}\left(\nu_{t}\right)=w_{l_{a}}(t) \text { a.e. } t \in[0, T]
$$

For more information on Young measures, see [10] and the references therein. Now comes our second epigraphical convergence.

Theorem 4.2. Let $H=\mathbf{R}^{d}, \gamma \in \mathbf{R}^{+}$. Assume that $\psi: \mathbf{R}^{d} \rightarrow \mathbf{R}, \varphi_{n}: \mathbf{R}^{d} \rightarrow[0,+\infty[$ are \mathcal{C}^{1}, even, convex, Lipschitzean with $\varphi_{n}(0)=0, \forall n \geq 1$ and, $\varphi_{\infty}: \mathbf{R}^{d} \rightarrow[0,+\infty[$ is even proper convex lower semicontinuous. Let $\left(f^{n}\right)$ be sequence in $L_{H}^{2}([0, T])$ weakly converging to $f^{\infty} \in L_{H}^{2}([0, T])$. Let u^{n} be a $W_{\mathbf{R}^{d}}^{2,2}([0, T])$ solution of the problem

$$
\left\{\begin{array}{l}
\ddot{u}^{n}(t)+\gamma \dot{u}^{n}(t)-\nabla \psi\left(u^{n}(t)\right)-f^{n}(t)+\nabla \varphi_{n}\left(u^{n}(t)\right)=0 \quad t \in[0, T] \\
u_{n}(T)=-u_{n}(0), \dot{u}_{n}(T)=-\dot{u}_{n}(0)
\end{array}\right.
$$

Assume that
(i) φ_{n} epi-converges to φ_{∞}.
(ii) There exist $r_{0}>0$ and $x_{0} \in \mathbf{R}^{d}$ such that

$$
\left.\sup _{n \in \mathbf{N}} \sup _{v \in \bar{B}_{L_{\mathbf{R}^{d}}}^{\infty}([0, T])} \int_{0}^{T} \varphi_{n}\left(x_{0}+r_{0} v(t)\right)\right)<+\infty
$$

here $\bar{B}_{L_{\mathbf{R}^{d}}^{\infty}([0, T])}$ is the closed unit ball in $L_{\mathbf{R}^{d}}^{\infty}([0, T])$.
(a) Then up to extracted subsequences, $\left(u^{n}\right)$ converges uniformly to an absolutely continuous function u^{∞} with $u^{\infty}(T)=-u^{\infty}(0)$, ($\left.\dot{u}^{n}\right)$ pointwisely converges to a $B V$ function y^{∞} with $y^{\infty}=\dot{u}^{\infty}$ and $\dot{u}^{\infty}(T)=-\dot{u}^{\infty}(0)$, and ($\left.\ddot{u}^{n}\right)$ weakly biting converges to a function $\zeta^{\infty} \in$ $L_{\mathbf{R}^{d}}^{1}([0, T])$ which satisfy the variational inclusion

$$
\left(\mathcal{Q}_{\infty}\right) \quad 0 \in \zeta^{\infty}+\gamma \dot{u}^{\infty}-f^{\infty}-\nabla \psi\left(u^{\infty}\right)+\partial I_{\varphi_{\infty}}\left(u^{\infty}\right)
$$

here $\partial I_{\varphi_{\infty}}$ denotes the subdifferential of the convex lower semicontinuous integral functional $I_{\varphi_{\infty}}$ defined on $L_{\mathbf{R}^{d}}^{\infty}([0, T])$

$$
I_{\varphi_{\infty}}(u):=\int_{0}^{T} \varphi_{\infty}(u(t)) d t, \quad \forall u \in L_{\mathbf{R}^{d}}^{\infty}[[0, T])
$$

Furthermore $\lim _{n} \int_{0}^{T} \varphi_{n}\left(u^{n}(t)\right) d t=\int_{0}^{T} \varphi_{\infty}\left(u^{\infty}(t)\right) d t$.
(b) There are a filter \mathcal{U} finer than the Fréchet filter, $l \in L_{\mathbf{R}^{d}}^{\infty}([0, T])^{\prime}$ such that

$$
\mathcal{U}-\lim _{n}\left[-\ddot{u}^{n}-\gamma \dot{u}^{n}+f^{n}+\nabla \psi\left(u^{n}\right)\right]=l \in L_{\mathbf{R}^{d}}^{\infty}([0, T])_{\text {weak }}^{\prime}
$$

where $L_{\mathbf{R}^{d}}^{\infty}([0, T])_{\text {weak }}^{\prime}$ is the second dual of $L_{\mathbf{R}^{d}}^{1}([0, T])$ endowed with the topology $\sigma\left(L_{\mathbf{R}^{d}}^{\infty}([0, T])^{\prime}, L_{\mathbf{R}^{d}}^{\infty}([0, T])\right)$ and $m \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])_{\text {weak }}^{\prime}$ such that

$$
\forall h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T]), \lim _{n} \int_{0}^{T}\left\langle h,-\ddot{u}^{n}-\gamma \dot{u}^{n}+f^{n}+\nabla \psi\left(u^{n}\right)\right\rangle d t=\langle h, m\rangle
$$

here $\mathcal{C}_{\mathbf{R}^{d}}([0, T])_{\text {weak }}^{\prime}$ denotes the space $\mathcal{C}_{\mathbf{R}^{d}}([0, T])^{\prime}$ endowed with the weak topology $\sigma\left(\mathcal{C}_{\mathbf{R}^{d}}([0, T])^{\prime}, \mathcal{C}_{\mathbf{R}^{d}}([0, T])\right)$. Let l_{a} be the density of the absolutely continuous part l_{a} of l in the decomposition $l=l_{a}+l_{s}$ in absolutely continuous part l_{a} and singular part l_{s}. Then

$$
l_{a}(h)=\int_{0}^{T}\left\langle h(t),-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}(t)+\nabla \psi\left(u^{\infty}(t)\right)\right\rangle d t
$$

for all $h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$ so that

$$
I_{\varphi_{\infty}}^{*}(l)=I_{\varphi_{\infty}^{*}}\left(-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right)+\delta^{*}\left(l_{s}, \operatorname{dom} I_{\varphi_{\infty}}\right)\right.
$$

here φ_{∞}^{*} is the conjugate of $\varphi_{\infty}, I_{\varphi_{\infty}^{*}}$ the integral functional defined on $L_{\mathbf{R}^{d}}^{1}([0, T])$ associated with $\varphi_{\infty}^{*}, I_{\varphi_{\infty}}^{*}$ the conjugate of the integral functional $I_{\varphi_{\infty}}$, $\operatorname{dom}_{\varphi_{\infty}}:=\left\{u \in L_{\mathbf{R}^{d}}^{\infty}([0, T]):\right.$ $\left.I_{\varphi_{\infty}}(u)<\infty\right\}$ and

$$
\langle m, h\rangle=\int_{0}^{T}\left\langle-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}+\nabla \psi\left(u^{\infty}(t)\right), h(t)\right\rangle d t+\left\langle m_{s}, h\right\rangle
$$

$\forall h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])$ with $\left\langle m_{s}, h\right\rangle=l_{s}(h), \forall h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])$. Further m belongs to the subdifferential $\partial J_{\varphi_{\infty}}\left(u^{\infty}\right)$ of the convex lower semicontinuous integral functional $J_{\varphi_{\infty}}$ defined on $\mathcal{C}_{\mathbf{R}^{d}}([0, T])$

$$
J_{\varphi_{\infty}}(u):=\int_{0}^{T} \varphi_{\infty}(u(t)) d t, \quad \forall u \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])
$$

(c) Consequently the density $-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right)$ of the absolutely continuous part m_{a}

$$
m_{a}(h):=\int_{0}^{T}\left\langle-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}+\nabla \psi\left(u^{\infty}(t)\right), h(t)\right\rangle d t
$$

for all $h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])$, satisfies the inclusion

$$
-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}(t)+\nabla \psi\left(u^{\infty}(t)\right) \in \partial \varphi_{\infty}\left(u^{\infty}(t)\right), \quad \text { a.e.. }
$$

and for any nonnegative measure θ on $[0, T]$ with respect to which m_{s} is absolutely continuous

$$
\int_{0}^{T} h_{\varphi_{\infty}^{*}}\left(\frac{d m_{s}}{d \theta}(t)\right) d \theta(t)=\int_{0}^{T}\left\langle u^{\infty}(t), \frac{d m_{s}}{d \theta}(t)\right\rangle d \theta(t)
$$

here $h_{\varphi_{\infty}^{*}}$ denotes the recession function of φ_{∞}^{*}.
Proof. Existence of u^{n} for the problem

$$
\left\{\begin{array}{l}
\ddot{u}^{n}(t)+\gamma \dot{u}^{n}(t)-\nabla \psi\left(u^{n}(t)\right)-f^{n}(t)+\nabla \varphi_{n}\left(u^{n}(t)\right)=0 \quad t \in[0, T] \\
u_{n}(T)=-u_{n}(0), \dot{u}_{n}(T)=-\dot{u}_{n}(0)
\end{array}\right.
$$

is ensured by ([3], Lemme 3.6) or ([7], Theorem 3.1).
Step 1 Estimation of $\left\|\dot{u}^{n}(.)\right\|_{L_{H}^{2}([0, T])}$. Multiply scalarly the equation

$$
\ddot{u}^{n}(t)+\gamma \dot{u}^{n}(t)=\nabla \psi\left(u^{n}(t)\right)+f^{n}(t)-\nabla \varphi_{n}\left(u^{n}(t)\right)
$$

by $\dot{u}^{n}(t)$ and applying the chain rule formula [20] for the C^{1}, Lipschitzean function $\psi-\varphi_{n}$ gives

$$
\gamma\left\|\dot{u}^{n}(t)\right\|^{2}=\frac{d}{d t}\left[\psi\left(u^{n}(t)\right)-\varphi_{n}\left(u^{n}(t)\right)-\frac{1}{2}\left\|\dot{u}^{n}(t)\right\|^{2}\right]+\left\langle\dot{u}^{n}(t), f^{n}(t)\right\rangle .
$$

Hence by antiperiodicity conditions we get the estimate

$$
\begin{equation*}
\gamma\left\|\dot{u}^{n}\right\|_{L_{H}^{2}([0, T])} \leq\left\|f^{n}\right\|_{L_{H}^{2}([0, T])} . \tag{4.1}
\end{equation*}
$$

From Lemma 3.2 (a)

$$
\left\|u^{n}\right\|_{\mathcal{C}_{H}([0, T])} \leq \frac{\sqrt{T}}{2}\left\|\dot{u}^{n}\right\|_{L_{H}^{2}([0, T])}
$$

and (4.1), it is immediate $\left(u^{n}\right)$ is bounded in $\mathcal{C}_{H}([0, T])$ and $\left(\nabla \psi\left(u^{n}().\right)\right)$ is uniformly bounded.
Step 2 Estimation of $\left\|\ddot{u}^{n}().\right\|$. As

$$
z^{n}(t):=-\ddot{u}^{n}(t)-\gamma \dot{u}^{n}(t)+f^{n}(t)+\nabla \psi\left(u^{n}(t)\right)=\nabla \varphi_{n}\left(u^{n}(t)\right)
$$

by the subdifferential inequality for convex lower semi continuous functions we have

$$
\varphi_{n}(x) \geq \varphi_{n}\left(u^{n}(t)\right)+\left\langle x-u^{n}(t), z^{n}(t)\right\rangle
$$

for all $x \in \mathbf{R}^{d}$. Now let $v \in \bar{B}_{L_{\mathbf{R}^{d}}^{\infty}([0, T])}$, the closed unit ball of $\left.L_{\mathbf{R}^{d}}^{\infty}[0, T]\right)$. By taking $x=w(t):=x_{0}+r_{0} v(t)$ in the preceding inequality we get

$$
\varphi_{n}(w(t)) \geq \varphi_{n}\left(u^{n}(t)\right)+\left\langle w(t)-u^{n}(t), z^{n}(t)\right\rangle .
$$

Integrating the preceding inequality gives

$$
\begin{aligned}
\int_{0}^{T}\left\langle x_{0}+r_{0} v(t)-u^{n}(t), z^{n}(t)\right\rangle d t & =\int_{0}^{T}\left\langle x_{0}-u^{n}(t), z^{n}(t)\right\rangle d t+r_{0} \int_{0}^{T}\left\langle v(t), z^{n}(t)\right\rangle d t \\
& \leq \int_{0}^{T} \varphi_{n}\left(x_{0}+r_{0} v(t)\right) d t-\int_{0}^{T} \varphi_{n}\left(u^{n}(t)\right) d t
\end{aligned}
$$

Whence follows

$$
\begin{equation*}
r_{0} \int_{0}^{T}\left\langle v(t), z^{n}(t)\right\rangle d t \leq \int_{0}^{T} \varphi_{n}\left(x_{0}+r_{0} v(t)\right) d t-\int_{0}^{T} \varphi_{n}\left(u^{n}(t)\right) d t-\int_{0}^{T}\left\langle x_{0}-u^{n}(t), z^{n}(t)\right\rangle d t \tag{4.2}
\end{equation*}
$$

For simplicity, let us set $v^{n}(t)=u^{n}(t)-x_{0}$ for all $t \in[0, T]$. We compute the last integral in the preceding inequality.

$$
\begin{align*}
-\int_{0}^{T}\left\langle x_{0}-u^{n}(t), z^{n}(t)\right\rangle d t= & -\int_{0}^{T}\left\langle v^{n}(t), \ddot{v}^{n}(t)+\gamma \dot{v}^{n}(t)-f^{n}(t)-\nabla \psi\left(u^{n}(t)\right)\right\rangle d t \\
= & -\int_{0}^{T}\left\langle v^{n}(t), \ddot{v}^{n}(t)+\gamma \dot{v}^{n}(t)\right\rangle d t \tag{4.3}\\
& +\int_{0}^{T}\left\langle v^{n}(t), f^{n}(t)+\nabla \psi\left(u^{n}(t)\right)\right\rangle d t
\end{align*}
$$

Then it is immediate that the last integral

$$
\int_{0}^{T}\left\langle v^{n}(t), f^{n}(t)+\nabla \psi\left(u^{n}(t)\right)\right\rangle d t
$$

is bounded using the above estimates. By integration by parts and taking account into (4.2) we have

$$
\begin{align*}
-\int_{0}^{T}\left\langle v^{n}(t), \dot{v}^{n}(t)+\gamma \dot{v}^{n}(t)\right\rangle d t= & -\left[\left\langle v^{n}(t), \dot{v}^{n}(t)+\gamma v^{n}(t)\right]_{0}^{T}\right. \\
& +\int_{0}^{T}\left\langle\dot{v}^{n}(t), \dot{v}^{n}(t)+\gamma v^{n}(t)\right\rangle d t \tag{4.4}\\
= & -\left\langle v^{n}(T), \dot{v}^{n}(T)\right\rangle \\
& +\left\langle v^{n}(0), \dot{v}^{n}(0)\right\rangle-\gamma\left\langle v^{n}(T), v^{n}(T)\right\rangle \\
& +\gamma\left\langle v^{n}(0), v^{n}(0)\right\rangle \\
& +\int_{0}^{T}\left\|\dot{v}^{n}(t)\right\|^{2} d t+\gamma \int_{0}^{T}\left\langle\dot{v}^{n}(t), v^{n}(t)\right\rangle d t \\
= & \int_{0}^{T}\left\|\dot{v}^{n}(t)\right\|^{2} d t \quad \text { (by antiperiodicity). }
\end{align*}
$$

By (4.1)-(4.4), we get

$$
\begin{equation*}
r_{0} \int_{0}^{T}\left\langle v(t), z^{n}(t)\right\rangle d t \leq \int_{0}^{T} \varphi_{n}\left(x_{0}+r_{0} v(t)\right) d t+\int_{0}^{T}\left\|\dot{u}^{n}(t)\right\|^{2} d t+C \tag{4.5}
\end{equation*}
$$

for all $v \in \bar{B}_{L_{\mathbf{R}^{d}}^{\infty}}[[0, T])$, where

$$
C:=\sup _{n \geq 1} \int_{0}^{T}\left|\left\langle v^{n}(t), f^{n}(t)+\nabla \psi\left(u^{n}(t)\right)\right\rangle\right| d t<\infty
$$

By (ii), (4.1)-(4.5), we conclude that

$$
\left(\ddot{u}^{n}+\gamma \dot{u}^{n}-f^{n}-\nabla \psi\left(u^{n}\right)\right)
$$

is bounded in $L_{\mathbf{R}^{d}}^{1}([0, T])$, and so is $\left(\ddot{u}^{n}\right)$. It turns out that the sequence $\left(\dot{u}^{n}\right)$ of absolutely continuous functions is bounded in variation and by Helly theorem, we may assume that (\dot{u}^{n}) pointwisely converges to a BV function $v^{\infty}:[0, T] \rightarrow \mathbf{R}^{d}$ and the sequence (u^{n}) converges uniformly to an absolutely continuous function u^{∞} with $\dot{u}^{\infty}=v^{\infty}$ a.e. At this point, it is clear that $\left(\dot{u}^{n}\right)$ converges in $L_{\mathbf{R}^{d}}^{1}([0, T])$ to v^{∞}, using (4.1) and the dominated convergence theorem. Hence ($\gamma \dot{u}_{n}$) converges in $L_{\mathbf{R}^{d}}^{1}([0, T])$ to γv^{∞}.
Step 3. Weak biting limit of \ddot{u}_{n}. As $\left(\ddot{u}_{n}\right)$ is bounded in $L_{\mathbf{R}^{d}}^{1}([0, T])$, we may assume that $\left(\ddot{u}_{n}\right)$ weakly biting converges to a function $\zeta^{\infty} \in L_{\mathbf{R}^{d}}^{1}([0, T])$, that is, there exists a decreasing sequence of Lebesgue-measurable sets $\left(B_{p}\right)$ with $\lim _{p} \lambda\left(B_{p}\right)=0$ such that the restriction of $\left(\ddot{u}_{n}\right)$ on each B_{p}^{c} converges weakly in $L_{\mathbf{R}^{d}}^{1}([0, T])$ to ζ^{∞}. Noting that $\left(\dot{u}_{n}\right)$ converges in $L_{\mathbf{R}^{d}}^{1}([0, T])$ to v^{∞}. It follows that the restriction of $\left(z^{n}=-\ddot{u}_{n}-\gamma \dot{u}_{n}+f^{n}+\nabla \psi\left(u^{n}\right)\right)$ to each B_{p}^{c} weakly converges in $L_{\mathbf{R}^{d}}^{1}([0, T])$ to $z^{\infty}:=-\zeta^{\infty}-\gamma v^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right)$, because

$$
\lim _{n} \int_{B}\left\langle\ddot{u}_{n}+\gamma \dot{u}_{n}-f^{n}-\nabla \psi\left(u^{n}\right), h\right\rangle d t=\int_{B}\left\langle\zeta^{\infty}+\gamma v^{\infty}-f^{\infty}-\nabla \psi\left(u^{\infty}\right), h\right\rangle d t
$$

for every $B \in B_{p}^{c} \cap \mathcal{L}([0, T])$ and for every function $h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$.
Step 4. $L=\sup _{n \geq 1} \sup _{t \in[0, T]} \varphi_{n}\left(u^{n}(t)\right)<+\infty$
From the chain rule theorem given in Step 1, recall that

$$
-\left\langle\dot{u}^{n}(t), \ddot{u}^{n}(t)+\gamma \dot{u}_{n}(t)-f^{n}-\nabla \psi\left(u^{n}\right)\right\rangle=\frac{d}{d t}\left[\varphi_{n}\left(u^{n}(t)\right)\right]
$$

that is

$$
\left\langle\dot{u}^{n}(t), z^{n}(t)\right\rangle=\frac{d}{d t}\left[\varphi_{n}\left(u^{n}(t)\right)\right]
$$

From the above estimate and the anti-periodicity of \dot{u}^{n}, it is immediate that $\left(\frac{d}{d t}\left[\varphi_{n}\left(u^{n}(t)\right)\right]\right)$ is bounded in $L_{\mathbf{R}}^{1}([0, T])$ so that $\left(\varphi_{n}\left(u^{n}().\right)\right.$ is bounded in variation. In fact, we get more here by arguing as in the proof of Theorem 3.5. Apply the classical definition of the subdifferential to convex lsc funtion φ_{n} yields

$$
0=\varphi_{n}(0) \geq \varphi_{n}\left(u^{n}(t)\right)+\left\langle-u^{n}(t), z^{n}(t)\right\rangle
$$

or

$$
0 \leq \varphi_{n}\left(u^{n}(t)\right) \leq\left\langle u^{n}(t), z^{n}(t)\right\rangle=\left\langle u^{n}(t),-\ddot{u}^{n}(t)-\gamma \dot{u}^{n}(t)+f^{n}(t)+\nabla \psi\left(u^{n}(t)\right\rangle .\right.
$$

Hence $\sup _{n \geq 1}\left|\varphi_{n}\left(u^{n}\right)\right|_{L_{\mathbf{R}}^{1}([0, T])}<+\infty$. Now we assert that $\left|\varphi_{n}\left(u^{n}(t)\right)\right| \leq L$ for all $t \in[0, T]$ and all $n \in \bar{N}$, here L is a positive constant. Indeed we have

$$
\begin{aligned}
\varphi_{n}\left(u^{n}(0)\right) & \leq\left|\varphi_{n}\left(u^{n}(t)\right)-\varphi_{n}\left(u^{n}(0)\right)\right|+\varphi_{n}\left(u^{n}(t)\right) \\
& \leq \int_{0}^{T}\left|\frac{d}{d t} \varphi_{n}\left(u^{n}(t)\right)\right| d t+\varphi_{n}\left(u^{n}(t)\right)
\end{aligned}
$$

Hence

$$
\varphi_{n}\left(u^{n}(0)\right) \leq \sup _{n \geq 1} \int_{0}^{T}\left|\frac{d}{d t} \varphi_{n}\left(u^{n}(t)\right)\right| d t+\frac{1}{T} \sup _{n \geq 1} \int_{0}^{T} \varphi_{n}\left(u^{n}(t)\right) d t<+\infty
$$

Whence we get the estimates (*)

$$
\begin{aligned}
M: & =\sup _{n \geq 1} \sup _{t \in[0, T]}\left\|u^{n}(t)\right\|<+\infty,(\text { by Step 1) } \\
L & =\sup _{n \geq 1} \sup _{t \in[0, T]} \varphi_{n}\left(u^{n}(t)\right)<+\infty .
\end{aligned}
$$

Step 5. Localization of the limits:

$$
z^{\infty}=-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right) \in \partial I_{\varphi_{\infty}}\left(u^{\infty}\right)
$$

We will adapt the techniques developed in ([11], Lemma 3.7, Proposition 4.2). As (φ_{n}) epiconverges to φ_{∞}, by Lemma 3.4 in [11] we have

$$
\liminf _{n} \int_{B} \varphi_{n}\left(u^{n}(t)\right) d t \geq \int_{B} \varphi_{\infty}\left(u^{\infty}(t)\right) d t
$$

for every $B \in \mathcal{L}([0, T])$. Let $h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$. Using the estimates $\left(^{*}\right)$ and applying Lemma 3.7 in [11] provides a bounded sequence $\left(h^{n}\right)$ in $L_{H}^{\infty}([0, T])$, such that $\left(h^{n}\right)$ pointwisely converges to h and such that

$$
\limsup _{n} \int_{B} \varphi_{n}\left(h^{n}(t)\right) d t \leq \int_{B} \varphi_{\infty}(h(t)) d t
$$

for every $B \in \mathcal{L}([0, T])$. Coming back to the inclusion $z^{n}(t) \in \partial \varphi_{n}\left(u^{n}(t)\right)$, we have

$$
\varphi_{n}(x) \geq \varphi_{n}\left(u^{n}(t)\right)+\left\langle x-u^{n}(t), z^{n}(t)\right\rangle
$$

for all $x \in \mathbf{R}^{d}$. By substituting x by $h^{n}(t)$ in this inequality and by integrating on each $B \in B_{p}^{c} \cap \mathcal{L}([0, T])$,

$$
\int_{B} \varphi_{n}\left(h^{n}(t)\right) d t \geq \int_{B} \varphi_{n}\left(u^{n}(t)\right) d t+\int_{B}\left\langle h^{n}(t)-u^{n}(t), z^{n}(t)\right\rangle d t
$$

and passing to the limit in the preceding inequality when n goes to $+\infty$, we get

$$
\int_{B} \varphi_{\infty}(h(t)) d t \geq \int_{B} \varphi_{\infty}\left(u^{\infty}(t)\right) d t+\int_{B}\left\langle h(t)-u^{\infty}(t), z^{\infty}(t)\right\rangle d t
$$

As this inequality is true on each $B \cap B_{p}^{c}$

$$
\begin{aligned}
\int_{B \cap B_{p}^{c}} \varphi_{\infty}(h(t)) d t \geq & \int_{B \cap B_{p}^{c}} \varphi_{\infty}\left(u^{\infty}(t)\right) d t \\
& +\int_{B \cap B_{p}^{c}}\left\langle h(t)-u^{\infty}(t), z^{\infty}(t)\right\rangle d t
\end{aligned}
$$

and $B_{p}^{c} \uparrow[0, T]$, by passing to the limit when p goes to ∞ in the last inequality, we get

$$
\int_{B} \varphi_{\infty}(h(t)) d t \geq \int_{B} \varphi_{\infty}\left(u^{\infty}(t)\right) d t+\int_{B}\left\langle z^{\infty}(t), h(t)-u^{\infty}(t)\right\rangle d t
$$

for all $B \in \mathcal{L}([0, T])$ and for all $h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$. In other words,

$$
z^{\infty}=-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right) \in \partial I_{\varphi_{\infty}}\left(u^{\infty}\right)
$$

Step 6. $\lim _{n} \int_{0}^{T} \varphi_{n}\left(u_{n}(t)\right) d t=\int_{0}^{T} \varphi_{\infty}\left(u^{\infty}(t)\right) d t$.
From the estimates in Step 4 and Helly theorem, we may assume that ($\varphi_{n}\left(u_{n}().\right)$ pointwisely converges to a BV function β. By $\left({ }^{*}\right)$, $\left(\varphi_{n}\left(u_{n}().\right)\right.$ converges in $L_{\mathbf{R}}^{1}([0, T])$ to β. In particular, for every $k \in L_{\mathbf{R}^{+}}^{\infty}([0, T])$ we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{T} k(t) \varphi_{n}\left(u_{n}(t)\right) d t=\int_{0}^{T} k(t) \beta(t) d t
$$

Using this fact and repeating the biting arguments via the epi-limit results given in Step 5, it is easy to see that

$$
\int_{B} \varphi_{\infty}(h(t)) d t \geq \int_{B} \beta(t) d t+\int_{B}\left\langle z^{\infty}(t), h(t)-u^{\infty}(t)\right\rangle d t
$$

for all $B \in \mathcal{L}([0, T])$ and for all $h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$. In particular, we get the estimate

$$
\int_{B} \varphi_{\infty}\left(u^{\infty}(t)\right) d t \geq \int_{B} \beta(t) d t
$$

for all $B \in \mathcal{L}([0, T])$. Again by the epi-lower convergence result in Step 5 , we have

$$
\begin{aligned}
\int_{B} \beta(t) d t & =\lim _{n \rightarrow \infty} \int_{B} \varphi_{n}\left(u^{n}(t)\right) d t \\
& =\liminf _{n \rightarrow \infty} \int_{B} \varphi_{n}\left(u^{n}(t)\right) d t \geq \int_{B} \varphi_{\infty}\left(u^{\infty}(t)\right) d t
\end{aligned}
$$

for all $B \in \mathcal{L}([0, T])$. It turns out that $\varphi_{\infty}\left(u^{\infty}(t)\right)=\beta(t)$ a.e.
Step 7. Localization of further limits and final step.
As $\left(z^{n}=-\ddot{u}^{n}-\gamma \dot{u}^{n}+f^{n}+\nabla \psi\left(u^{n}\right)\right)$ is bounded in $L_{\mathbf{R}^{d}}^{1}([0, T])$ in view of Step 3 , it is relatively compact in the second dual $L_{\mathbf{R}^{d}}^{\infty}([0, T])^{\prime}$ of $L_{\mathbf{R}^{d}}^{1}([0, T])$ endowed with the weak topology $\sigma\left(L_{\mathbf{R}^{d}}^{\infty}([0, T])^{\prime}, L_{\mathbf{R}^{d}}^{\infty}([0, T])\right)$. Furthermore, $\left(z^{n}\right)$ can be viewed as a bounded sequence in $\mathcal{C}_{\mathbf{R}^{d}}([0, T])^{\prime}$. Hence there are a filter \mathcal{U} finer than the Fréchet filter, $l \in L_{\mathbf{R}^{d}}^{\infty}([0, T])^{\prime}$ and $m \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])^{\prime}$ such that

$$
\begin{equation*}
\mathcal{U}-\lim _{n} z^{n}=l \in L_{\mathbf{R}^{d}}^{\infty}([0, T])_{\text {weak }}^{\prime} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n} z^{n}=m \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])_{\text {weak }}^{\prime} \tag{4.7}
\end{equation*}
$$

where $L_{\mathbf{R}^{d}}^{\infty}([0, T])_{\text {weak }}^{\prime}$ is the second dual of $L_{\mathbf{R}^{d}}^{1}([0, T])$ endowed with the topology $\sigma\left(L_{\mathbf{R}^{d}}^{\infty}([0, T])^{\prime}, L_{\mathbf{R}^{d}}^{\infty}[[0, T])\right)$ and $\mathcal{C}_{\mathbf{R}^{d}}([0, T])_{\text {weak }}^{\prime}$ denotes the space $\mathcal{C}_{\mathbf{R}^{d}}([0, T])^{\prime}$ endowed with the weak topology $\sigma\left(\mathcal{C}_{\mathbf{R}^{d}}([0, T])^{\prime}, \mathcal{C}_{\mathbf{R}^{d}}([0, T])\right)$, because $\mathcal{C}_{\mathbf{R}^{d}}([0, T])$ is a separable Banach space for the norm sup, so that we may assume by extracting subsequence that $\left(z^{n}\right)$ weakly converges to $m \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])^{\prime}$. Let l_{a} be the density of the absolutely continuous part l_{a} of l in the decomposition $l=l_{a}+l_{s}$ in absolutely continuous part l_{a} and singular part l_{s}, in the sense there is an decreasing sequence $\left(A_{n}\right)$ of Lebesgue measurable sets in $[0, T]$ with $A_{n} \downarrow \emptyset$ such that $l_{s}(h)=l_{s}\left(1_{A_{n}} h\right)$ for all $h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$ and for all $n \geq 1$. As $\left(z^{n}=\right.$ $-\ddot{u}^{n}-\gamma \dot{u}^{n}+f^{n}+\nabla \psi\left(u^{n}\right)$) weakly biting converges to $z^{\infty}=-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right)$ in Step 4, it is already seen (cf. Proposition 4.1) that

$$
l_{a}(h)=\int_{0}^{T}\left\langle h(t),-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}+\nabla \psi\left(u^{\infty}\right)\right\rangle d t
$$

for all $h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$, shortly $z^{\infty}=-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right)$ coincides a.e. with the density of the absolutely continuous part l_{a}. By [13, 23] we have

$$
I_{\varphi_{\infty}}^{*}(l)=I_{\varphi_{\infty}^{*}}\left(-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right)\right)+\delta^{*}\left(l_{s}, \operatorname{dom} I_{\varphi_{\infty}}\right)
$$

here φ_{∞}^{*} is the conjugate of $\varphi_{\infty}, I_{\varphi_{\infty}^{*}}$ is the integral functional defined on $L_{\mathbf{R}^{d}}^{1}([0, T])$ associated with $\varphi_{\infty}^{*}, I_{\varphi_{\infty}}^{*}$ is the conjugate of the integral functional $I_{\varphi_{\infty}}$ and

$$
\operatorname{dom} I_{\varphi_{\infty}}:=\left\{u \in L_{\mathbf{R}^{d}}^{\infty}([0, T]): I_{\varphi_{\infty}}(u)<\infty\right\}
$$

Using the inclusion

$$
z^{\infty}=-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right) \in \partial I_{\varphi_{\infty}}\left(u^{\infty}\right)
$$

that is

$$
I_{\varphi_{\infty}^{*}}\left(-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right)\right)=\left\langle-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right), u^{\infty}\right\rangle-I_{\varphi_{\infty}}\left(u^{\infty}\right)
$$

we see that

$$
I_{\varphi_{\infty}}^{*}(l)=\left\langle-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right), u^{\infty}\right\rangle-I_{\varphi_{\infty}}\left(u^{\infty}\right)+\delta^{*}\left(l_{s}, \operatorname{dom} I_{\varphi_{\infty}}\right)
$$

Coming back to the inclusion $z^{n}(t) \in \partial \varphi_{n}\left(u^{n}(t)\right)$, we have

$$
\varphi_{n}(x) \geq \varphi_{n}\left(u^{n}(t)\right)+\left\langle x-u^{n}(t), z^{n}(t)\right\rangle
$$

for all $x \in \mathbf{R}^{d}$. By substituting x by $h(t)$ in this inequality, here $h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$, and by integrating

$$
\int_{0}^{T} \varphi_{n}(h(t)) d t \geq \int_{0}^{T} \varphi_{n}\left(u^{n}(t)\right) d t+\int_{0}^{T}\left\langle h(t)-u^{n}(t), z^{n}(t)\right\rangle d t
$$

Arguing as in Step 5 by passing to the limit in the preceding inequality, involving the epilimsup property for integral functionals $\int_{0}^{T} \varphi_{n}(h(t)) d t$ defined on $L_{\mathbf{R}^{d}}^{\infty}([0, T])$, it is easy to see that

$$
\int_{0}^{T} \varphi_{\infty}(h(t)) d t \geq \int_{0}^{T} \varphi_{\infty}\left(u^{\infty}(t)\right) d t+\left\langle h-u^{\infty}, m\right\rangle
$$

Since this holds, in particular, when $h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])$, we conclude that m belongs to the subdifferential $\partial J_{\varphi_{\infty}}\left(u^{\infty}\right)$ of the convex lower semicontinuous integral functional $J_{\varphi_{\infty}}$ defined on $\mathcal{C}_{\mathbf{R}^{d}}([0, T])$

$$
J_{\varphi_{\infty}}(u):=\int_{0}^{T} \varphi_{\infty}(u(t)) d t, \quad \forall u \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])
$$

As $\left(z^{n}=-\ddot{u}^{n}-\gamma \dot{u}^{n}+f^{n}+\nabla \psi\left(u^{n}\right)\right)$ weakly biting converges to $z^{\infty}=-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}+$ $f^{\infty}+\nabla \psi\left(u^{\infty}\right)$ in Step 5, we see that

$$
l_{a}(h)=\int_{0}^{T}\left\langle h(t),-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}(t)+\nabla \psi\left(u^{\infty}(t)\right)\right\rangle d t
$$

for all $h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$ (see Proposition 4.1) so that

$$
l(h)=\int_{0}^{T}\left\langle-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}+\nabla \psi\left(u^{\infty}\right), h(t)\right\rangle d t+l_{s}(h)
$$

$\forall h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$. Now let $B: \mathcal{C}_{\mathbf{R}^{d}}([0, T]) \rightarrow L_{\mathbf{R}^{d}}^{\infty}([0, T])$ be the continuous injection and let $B^{*}: L_{\mathbf{R}^{d}}^{\infty}([0, T])^{\prime} \rightarrow \mathcal{C}_{\mathbf{R}^{d}}([0, T])^{\prime}$ be the adjoint of B given by

$$
\left\langle B^{*} l, h\right\rangle=\langle l, B h\rangle=\langle l, h\rangle, \quad \forall l \in L_{\mathbf{R}^{d}}^{\infty}([0, T])^{\prime}, \quad \forall h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T]) .
$$

Then we have $B^{*} l=B^{*} l_{a}+B^{*} l_{s}, l \in L_{\mathbf{R}^{d}}^{\infty}([0, T])^{\prime}$ being the limit of $\left(z^{n}=-\zeta^{n}-\gamma \dot{u}^{n}+\right.$ $\left.f^{n}+\nabla \psi\left(u^{n}\right)\right)$ under the filter \mathcal{U} given in section 4 and $l=l_{a}+l_{s}$ being the decomposition of l in absolutely continuous part l_{a} and singular part l_{s}. It follows that

$$
\left\langle B^{*} l, h\right\rangle=\left\langle B^{*} l_{a}, h\right\rangle+\left\langle B^{*} l_{s}, h\right\rangle=\left\langle l_{a}, h\right\rangle+\left\langle l_{s}, h\right\rangle
$$

for all $h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])$. But it is already seen that

$$
\left\langle l_{a}, h\right\rangle=\int_{0}^{T}\left\langle-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}+\nabla \psi\left(u^{\infty}\right), h(t)\right\rangle d t
$$

for all $h \in L_{\mathbf{R}^{d}}^{\infty}([0, T])$ so that the measure $B^{*} l_{a}$ is absolutely continuous

$$
\left\langle B^{*} l_{a}, h\right\rangle=\int_{0}^{T}\left\langle-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}+\nabla \psi\left(u^{\infty}\right), h(t)\right\rangle d t, \quad \forall h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])
$$

and its density $-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right)$ satisfies the inclusion

$$
-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}+\nabla \psi\left(u^{\infty}\right) \in \partial \varphi_{\infty}\left(u^{\infty}(t)\right), \quad \text { a.e. }
$$

and the singular part $B^{*} l_{s}$ satisfies the equation

$$
\left\langle B^{*} l_{s}, h\right\rangle=\left\langle l_{s}, h\right\rangle, \quad \forall h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T]) .
$$

As we have $B^{*} l=m$, using (4.6)-(4.7), it turns out that m is the sum of the absolutely continuous measure m_{a} with

$$
\left\langle m_{a}, h\right\rangle=\int_{0}^{T}\left\langle-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}+\nabla \psi\left(u^{\infty}\right), h(t)\right\rangle d t, \quad \forall h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])
$$

and the singular part m_{s} given by

$$
\left\langle m_{s}, h\right\rangle=\left\langle l_{s}, h\right\rangle, \quad \forall h \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])
$$

which satisfies the property: for any nonnegative measure θ on $[0, T]$ with respect to which m_{s} is absolutely continuous

$$
\int_{0}^{T} h_{\varphi_{\infty}^{*}}\left(\frac{d m_{s}}{d \theta}(t)\right) d \theta(t)=\int_{0}^{T}\left\langle u^{\infty}(t), \frac{d m_{s}}{d \theta}(t)\right\rangle d \theta(t)
$$

here $h_{\varphi_{\infty}^{*}}$ denotes the recession function of φ_{∞}^{*}. Indeed, as m belongs to $\partial J_{\varphi_{\infty}}\left(u^{\infty}\right)$ by applying Theorem 5 in [23] we have

$$
\begin{equation*}
J_{\varphi_{\infty}}^{*}(m)=I_{\varphi_{\infty}^{*}}\left(\frac{d m_{a}}{d t}\right)+\int_{0}^{T} h_{\varphi_{\infty}^{*}}\left(\frac{d m_{s}}{d \theta}(t)\right) d \theta(t) \tag{4.8}
\end{equation*}
$$

with

$$
I_{\varphi_{\infty}^{*}}(v):=\int_{0}^{T} \varphi_{\infty}^{*}(v(t)) d t, \forall v \in L_{\mathbf{R}^{d}}^{1}([0, T]) .
$$

Recall that

$$
\frac{d m_{a}}{d t}=-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right) \in \partial I_{\varphi_{\infty}}\left(u^{\infty}\right)
$$

that is

$$
\begin{equation*}
\left.I_{\varphi_{\infty}^{*}}\left(\frac{d m_{a}}{d t}\right)+I_{\varphi_{\infty}}\left(u^{\infty}\right)=\left\langle-\zeta^{\infty}-\gamma \dot{u}^{\infty}+f^{\infty}+\nabla \psi\left(u^{\infty}\right), u^{\infty}\right\rangle_{\left\langle L_{\mathbf{R}^{d}}^{1}\right.}([0, T]), L_{\mathbf{R}^{d}}^{\infty}([0, T])\right\rangle . \tag{4.9}
\end{equation*}
$$

From (4.9) we deduce

$$
\begin{aligned}
J_{\varphi_{\infty}}^{*}(m)= & \left\langle u^{\infty}, m\right\rangle_{\left\langle\mathcal{C}_{\mathbf{R}^{d}}([0, T]), \mathcal{C}_{\mathbf{R}^{d}}([0, T])^{\prime}\right\rangle}-J_{\varphi_{\infty}}\left(u^{\infty}\right) \\
= & \left\langle u^{\infty}, m\right\rangle\left\langle\mathcal{C}_{\mathbf{R}^{d}}([0, T]), \mathcal{C}_{\mathbf{R}^{d}}([0, T])^{\prime}\right\rangle-I_{\varphi_{\infty}}\left(u^{\infty}\right) \\
= & \int_{0}^{T}\left\langle u^{\infty}(t),-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}+\nabla \psi\left(u^{\infty}\right)\right\rangle d t \\
& \left.+\int_{0}^{T}\left\langle u^{\infty}(t), \frac{d m_{s}}{d \theta}(t)\right\rangle d \theta(t)\right)-I_{\varphi_{\infty}}\left(u^{\infty}\right) \\
= & I_{\varphi_{\infty}^{*}}\left(\frac{d m_{a}}{d t}\right)+\int_{0}^{T}\left\langle u^{\infty}(t), \frac{d m_{s}}{d \theta}(t)\right\rangle d \theta(t) .
\end{aligned}
$$

Coming back to (4.8) we get the equality

$$
\int_{0}^{T} h_{\varphi_{\infty}^{*}}\left(\frac{d m_{s}}{d \theta}(t)\right) d \theta(t)=\int_{0}^{T}\left\langle u^{\infty}(t), \frac{d m_{s}}{d \theta}(t)\right\rangle d \theta(t)
$$

Remarks. Combining biting argument with the characterization of the decomposition formula in the dual of $L_{\mathbf{R}^{d}}^{\infty}([0, T])$ allows to localize the limits under consideration and their relationships via Proposition 4.1 and the continuous injection $B: \mathcal{C}_{\mathbf{R}^{d}}([0, T]) \rightarrow L_{\mathbf{R}^{d}}^{\infty}([0, T])$, namely the absolute continuous part m_{a} of the measure limit m and its singular part m_{s}. At this point, it is easy to see that, up to extracted subsequence, $\left(z_{n}\right)$ stably converges to a Young measure $\nu^{\infty} \in \mathcal{Y}\left([0, T], \mathcal{M}_{+}^{1}\left(\mathbf{R}^{d}\right)\right)$ with

$$
\operatorname{bar}\left(\nu_{t}\right)=\int_{\mathbf{R}^{d}} x \nu_{t}(d x)=-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+f^{\infty}(t)+\nabla \psi\left(u^{\infty}(t)\right)
$$

for a.e. $t \in[0, T]$.
Taking account into the above remark and the results given in Theorem 4.2 and its proofs, we obtain

Corollary 4.3. Under the hypotheses and notations of Theorem 4.2, assume that φ_{n}^{*} is non negative for all $n \in \mathbf{N} \cup\{\infty\}$ and $\left(\varphi_{n}^{*}\right)_{n \geq 1}$ epilower converges to φ_{∞}^{*}, then the following hold:

$$
\begin{equation*}
\underset{n}{\liminf } \int_{0}^{T} \varphi_{n}^{*}\left(-\ddot{u}^{n}(t)-\gamma \dot{u}^{n}(t)+f^{n}(t)+\nabla \psi\left(u^{n}(t)\right)\right) d t \geq \int_{0}^{T}\left[\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(d x)\right] d t \tag{}
\end{equation*}
$$

Consequently the limits under consideration satisfy

$$
\begin{align*}
0 \geq & \int_{0}^{T}\left[\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(d x)\right] d t-\int_{0}^{T}\left\langle\operatorname{bar}\left(\nu_{t}^{\infty}\right), u^{\infty}(t)\right\rangle d t \\
& +\int_{0}^{T} \varphi_{\infty}\left(u^{\infty}(t)\right) d t-\int_{0}^{T} h_{\varphi_{\infty}^{*}}\left(\frac{d m_{s}}{d \theta}(t)\right) d \theta(t) \\
\geq & \int_{0}^{T} \varphi_{\infty}^{*}\left(b a r\left(\nu_{t}^{\infty}\right)\right) d t-\int_{0}^{T}\left\langle\operatorname{bar}\left(\nu_{t}^{\infty}\right), u^{\infty}(t)\right\rangle d t \tag{**}\\
& +\int_{0}^{T} \varphi_{\infty}\left(u^{\infty}(t)\right) d t-\int_{0}^{T} h_{\varphi_{\infty}^{*}}\left(\frac{d m_{s}}{d \theta}(t)\right) d \theta(t)
\end{align*}
$$

Proof. As $\left(\varphi_{n}^{*}\right)$ epilower converges to φ_{∞}^{*} and $\left(z^{n}=-\ddot{u}^{n}-\gamma \dot{u}^{n}+f^{n}+\nabla \psi\left(u^{n}\right)\right)$ stably converges to $\nu^{\infty} \in \mathcal{Y}\left([0, T], \mathcal{M}_{+}^{1}\left(\mathbf{R}^{d}\right)\right)$, by virtue of Lemma 3.4 in [11], we have

$$
\begin{equation*}
\underset{n}{\liminf } \int_{0}^{T} \varphi_{n}^{*}\left(-\ddot{u}^{n}(t)-\gamma \dot{u}^{n}(t)+f^{n}(t)+\nabla \psi\left(u^{n}(t)\right)\right) d t \geq \int_{0}^{T}\left[\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(d x)\right] d t \tag{}
\end{equation*}
$$

Using the results obtained in the proof of Theorem 4.2 and $\left({ }^{*}\right)$, it is not difficult to check
that

$$
\begin{aligned}
0 \geq & \lim _{n} \inf \left[\int_{0}^{T} \varphi_{n}^{*}\left(-\ddot{u}^{n}(t)-\gamma \dot{u}^{n}(t)+f^{n}(t)+\nabla \psi\left(u^{n}(t)\right)\right) d t\right. \\
& \left.+\int_{0}^{T}\left\langle\ddot{u}^{n}(t)+\gamma \dot{u}^{n}(t)\right)-f^{n}(t)-\nabla \psi\left(u^{n}(t)\right), u^{n}(t)\right\rangle d t+\int_{0}^{T} \varphi_{n}\left(u_{n}(t) d t\right] \\
\geq & \int_{0}^{T}\left[\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(d x)\right] d t-\left\langle u^{\infty}, m\right\rangle+\int_{0}^{T} \varphi_{\infty}\left(u^{\infty}(t)\right) d t \\
= & \int_{0}^{T}\left[\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(d x)\right] d t \\
& +\int_{0}^{T}\left\langle\zeta^{\infty}(t)+\gamma \dot{u}^{\infty}(t)-f^{\infty}(t)-\nabla \psi\left(u^{\infty}(t)\right), u^{\infty}(t)\right\rangle d t \\
& -\int_{0}^{T}\left\langle u^{\infty}(t), \frac{d m_{s}}{d \theta}(t)\right\rangle d \theta(t)+\int_{0}^{T} \varphi_{\infty}\left(u^{\infty}(t)\right) d t \\
= & \int_{0}^{T}\left[\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(d x)\right] d t \\
& +\int_{0}^{T}\left\langle\zeta^{\infty}(t)+\gamma \dot{u}^{\infty}(t)-f^{\infty}(t)-\nabla \psi\left(u^{\infty}(t)\right), u^{\infty}(t)\right\rangle d t \\
& -\int_{0}^{T} h_{\varphi_{\infty}^{*}}\left(\frac{d m_{s}}{d \theta}(t)\right) d \theta(t)+\int_{0}^{T} \varphi_{\infty}\left(u^{\infty}(t)\right) d t
\end{aligned}
$$

thus proving (${ }^{* *}$).
Remarks. 1) Some comments are in order. It is worthy to mention that there is no relationship between the $\nabla \Psi(x)$ and the $\nabla \varphi_{n}(x)$ and $\partial \varphi(x)$. Without additional assumptions one cannot expect to have the convergence of approximated solutions (u^{n})

$$
\left\{\begin{array}{l}
\ddot{u}^{n}(t)+\gamma \dot{u}^{n}(t)-\nabla \psi\left(u^{n}(t)\right)-f^{n}(t)+\nabla \varphi_{n}\left(u^{n}(t)\right)=0 \quad t \in[0, T], \\
u_{n}(T)=-u_{n}(0), \dot{u}_{n}(T)=-\dot{u}_{n}(0)
\end{array}\right.
$$

towards a $W_{\mathbf{R}^{d}}^{2,2}([0, T]) T$-anti-periodic solution u^{∞} of the problem

$$
\left\{\begin{array}{l}
-\ddot{u}^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+\nabla \psi\left(u^{\infty}(t)\right)+f^{\infty}(t) \in \partial \varphi_{\infty}\left(u^{\infty}(t)\right) \quad t \in[0, T], \\
u^{\infty}(T)=-u^{\infty}(0), \dot{u}^{\infty}(T)=-\dot{u}^{\infty}(0)
\end{array}\right.
$$

because $\left(\ddot{u}^{n}\right)$ is bounded in $L_{H}^{1}([0, T])$. Nevertheless Theorem 4.2 shows that (u^{n}) converges pointwisely to the absolutely continuous T-anti-periodic mapping $u^{\infty},\left(\dot{u}^{n}\right)$ pointwisely converges to the T-anti-periodic mapping $\dot{u}^{\infty},\left(-\ddot{u}^{n}(t)-\gamma \dot{u}^{n}(t)+\nabla \psi\left(u^{n}(t)\right)+f^{n}(t)\right)$ weak ${ }^{*}$ converges in $\mathcal{C}_{R^{d}}([0, T])^{*}$ to a vector measure $m \in \mathcal{C}_{\mathbf{R}^{d}}([0, T])^{*}$ such that the density of its absolutely continuous part m_{a} satisfies the inclusion

$$
-\zeta^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+\nabla \psi\left(u^{\infty}(t)\right)+f^{\infty}(t) \in \partial \varphi_{\infty}\left(u^{\infty}(t)\right)
$$

and such that the singular measure m_{s} in the decomposition $m=m_{a}+m_{s}$ satisfies the equality

$$
\int_{0}^{T} h_{\varphi_{\infty}^{*}}\left(\frac{d m_{s}}{d \theta}(t)\right) d \theta(t)=\int_{0}^{T}\left\langle u^{\infty}(t), \frac{d m_{s}}{d \theta}(t)\right\rangle d \theta(t)
$$

for any nonnegative measure θ on $[0, T]$ with respect to which m_{s} is absolutely continuous. On account of the proof of Theorem 4.2, it is easily seen that when (\ddot{u}^{n}) is bounded in $L_{H}^{2}([0, T])$, the proof of Theorem 4.2 is rather simple, because here one can assume that (u^{n}) converges uniformly to the T-anti-periodic mapping u^{∞} and (\dot{u}^{n}) converges pointwisely to the T-anti-periodic absolutely continuous mapping \dot{u}^{∞} (see Corollary 3.3) and (\ddot{u}^{n}) converges weakly in $L_{H}^{2}([0, T])$ to \ddot{u}^{∞} which satisfy the problem under consideration. In this particular situation the variational inequality $\left({ }^{* *}\right)$ in Corollary 4.3 is reduced to

$$
\begin{align*}
0 \geq & \int_{0}^{T} \varphi_{\infty}^{*}\left(-\ddot{u}^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+\nabla \psi\left(u^{\infty}(t)\right)+f^{\infty}(t)\right) d t \\
& +\int_{0}^{T}\left\langle\ddot{u}^{\infty}(t)+\gamma \dot{u}^{\infty}(t)-\nabla \psi\left(u^{\infty}(t)\right)-f^{\infty}(t), u^{\infty}(t)\right\rangle d t \tag{**}\\
& +\int_{0}^{T} \varphi_{\infty}\left(u^{\infty}(t)\right) d t
\end{align*}
$$

that is equivalent to

$$
-\ddot{u}^{\infty}(t)-\gamma \dot{u}^{\infty}(t)+\nabla \psi\left(u^{\infty}(t)\right)+f^{\infty}(t) \in \partial \varphi_{\infty}\left(u^{\infty}(t)\right) \quad \text { a.e. }
$$

2) The existence and uniqueness of $W_{\mathbf{R}^{d}}^{2,2}([0, T]) T$-anti-periodic solution for the inclusion of the form

$$
\left\{\begin{array}{l}
\ddot{u}(t)+\gamma \dot{u}(t) \in f(t, u(t))+\partial \varphi(u(t)), \quad \text { a.e. } \quad t \in[0, T], \\
u^{\infty}(T)=-u^{\infty}(0), \dot{u}^{\infty}(T)=-\dot{u}^{\infty}(0)
\end{array}\right.
$$

where φ is lsc even function, $f: \mathbf{R} \times H \rightarrow H$ is a Carathéodory mapping satisfying: $\|f(t, x)-f(t, y)\| \leq L\|x-y\|$ for all $(t, x) \in \mathbf{R} \times H$, for some positive constant $L>0$ and: there is a $L_{\mathbf{R}}^{2}$ integrable function $r: \mathbf{R} \rightarrow \mathbf{R}^{+}$such that $\|f(t, x)\| \leq r(t)$ for all $(t, x) \in \mathbf{R} \times H$, and $0<T<\frac{\pi}{\sqrt{L}}$, is avaiblable ([7], Theorem 3.2) using the specific inequalities given in Lemma 3.2.

Acknowledgements

The authors are very thankful to the anonymous reviewer for his/her pertinent comments and valuable suggestions which substantially inproved the paper.

References

[1] A. Aftabizadeh, S. Aizicovici and N.H. Pavel, Anti-Periodic boundary value problems for higher order differential equations in Hilbert spaces, Nonlinear Anal. 18 (1992) 253-267.
[2] A. Aftabizadeh, S. Aizicovici and N.H. Pavel, On class of second order anti-periodic boundary value problem, J. Math. Anal. Appl. 171 (1992) 301-320.
[3] S. Aizicovici and N.H. Pavel, Anti-Periodic Solutions to a class of Nonlinear Differential Equations in Hilbert Space, J. Func. Anal. 99 (1991) 387-408.
[4] S. Aizicovici, N.H. Pavel and I.I. Vrabie, Anti-Periodic Solutions to Strongly Nonlinear Evolutions Equations in Hilbert Space, An. Stiint. Univ. Al. I. Cuza Iasi Inform. XIV, s.I.a. Matematica, (1998) 227-234.
[5] F. Antonacci and P. Margone, Second order nonautonomuous systems with symetric potential changing sign. Rend. Mat. 18 (1998) 367-379.
[6] H. Brezis, Opérateurs maximaux monotones et Semi-groupes de contractions dans un espace de Hilbert. North Holland, 1979.
[7] C. Castaing and T. Haddad, Relaxation and Bolza problem involving a second order evolution inclusion, J. Nonlinear Convex Anal. 9 (2008) 141-159.
[8] C. Castaing, A.G. Ibrahim and S. Marcellin, Evolution inclusion generated by maccretive operators and the subdifferentials of nonconvex l.s.c pln functions, Working paper, 04-2007, Université de Montpellier II, to appear in Int. J. Differ. Equ. Appl.
[9] C. Castaing and M.D.P. Monteiro Marques, BV Periodic Solutions of an Evolution Problem Associated with continuous moving Convex Sets, Set-Valued Analysis 3 (1995),381-389.
[10] C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces. With Applications in Control Theory and Probability Theory. Kluwer Academic Publishers, Dordrecht (2004).
[11] C. Castaing, P. Raynaud de Fitte and A. Salvadori, Some variational convergence results with application to evolution inclusions, Adv. Math. Econ. 8 (2006), 33-73.
[12] C. Castaing, A.G Ibrahim and M. Yarou, Some existence problems in second order evolution inclusions: discretization and variational approach, Taiwanese J. Math. 12 (2008), 1435-1477.
[13] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lectures Notes in Mathematics, 580, Springer-Verlag, Berlin, 1977.
[14] Y. Chen, X. Wang and H. Xu, Antiperiodic solutions for semilinear evolution equations, J. Math. Anal. Appl. 273 (2002) 627-636.
[15] J.F Couchourou and R. Precup, Anti-periodic solution for second order differential inclusions, Electron. J. Differential Equations 124 (2004) 1-17.
[16] D.J.H. Garling, Subsequence principles for vector-valued random variables, Math. Proc. Cambridge Philos. Soc. 86 (1079) 301-311.
[17] M. Guessous, An elementary proof of Komlós-Revesz theorem in Hilbert spaces, J. Convex Anal. 4 (1997) 321-332.
[18] A. Haraux, Anti-periodic solutions of some nonlinear evolution equations, Manuscripta. Math. 63 (1989) 479-505.
[19] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Hungar 18 (1967) 217-229.
[20] J.J. Moreau and M. Valadier, A chain rule involving vector functions of bounded variations, J. Funct. Anal. 74 (1987) 333-345.
[21] H. Okochi, On the existence of periodic solution of some nonlinear abstract parabolic equations, J. Math. Soc. Japan 40(1988) 541-553.
[22] H. Okochi, On the existence of anti-periodic solutions to nonlinear evolution equations associated with odd subdifferential operators, J. Funct. Anal. 91 (1990) 246-258.
[23] R.T. Rockafellar, Integrals which are convex functionals, II, Pacific J. Math. 39 (1971) 439-469.

[^0]
[^0]: C. Castaing

 Département de Mathématiques, Université Montpellier II 34095 Montpellier Cedex 5, France
 E-mail address: castaing.charles@numericable.fr
 T. HADDAD

 Faculty of Sciences, Université de Jijel, Algerie
 E-mail address: haddadtr2000@yahoo.fr
 A. Salvadori

 Dipartimento di Matematica, Universitetà Perugia
 via Vanvitelli 1, 06123 Perugia, Italia
 E-mail address: mateas@unipg.it

