

A VARIATIONAL CONVERGENCE PROBLEM WITH ANTIPERIODIC BOUNDARY CONDITIONS

C. CASTAING, T. HADDAD AND A. SALVADORI

Abstract: We present a variational convergence approach involving existence of solutions for some classes of evolution inclusions with anti-periodic boundary conditions.

Key words: anti-periodic, chain rule, maximal monotone, recession, second dual, subdifferential, Young measures

Mathematics Subject Classification: 45N05, 47J25, 35B40, 35K55, 35K90

1 Introduction

Existence and uniqueness of antiperiodic solution for evolution inclusions generated by the subdifferential of a convex lower semicontinuous even function appeared in a series of papers, see [1, 2, 3, 14, 15, 18, 21, 22] and the references therein. In this paper, we present two epigraphical versions of the mentioned results involving new variational convergence techniques and the stable convergence of Young measures [10]. In section 2, we summarize some basic results of convergence for bounded sequences in $L^1_H([0,T])$ where H is a Hilbert space. In section 3 we state some existence and uniqueness results of anti-periodic solutions for a first order evolution inclusion generated by a subdifferential of a convex lower semicontinuous even function defined on H and its application to a new existence of antiperiodic solutions. Section 4 is devoted to the existence of anti-periodic solutions for a second order evolution inclusion via a variational approach [11, 12] involving the biting convergence, Young measures and the characterization of the second dual of $L^1_H([0,T])$ and other tools.

2 Preliminaries and Background

We introduce some basic notions and results. In this paper, H is a separable Hilbert space. By $L^1_H([0,T])$ we denote the space of all Lebesgue-Bochner integrable H-valued functions defined on [0,T]. A sequence (φ_n) of lower semicontinuous functions defined on H lower epiconverges to a lower semicontinuous function φ_{∞} defined on H if, for every sequence (x_n) in H converging to x, we have $\liminf_n \varphi_n(x_n) \geq \varphi_{\infty}(x)$. (φ_n) upper epiconverges to φ_{∞} if, for every $y \in H$, there exists a sequence $(y_n)_n$ in H converging to y such that $\limsup_n \varphi_n(y_n) \leq \varphi_{\infty}(y)$. If (φ_n) both lower and upper epiconverges to φ_{∞} , we say that (φ_n) epiconverges to φ_{∞} . These notions are easily extended to normal integrands (see e.g. [13, 23]).

Copyright C 2010 Yokohama Publishers http://www.ybook.co.jp

The following result is a particular form of a similar result given in ([11], Proposition 4.1).

Lemma 2.1. Let H be a Hilbert space. Let φ be a proper convex lower semicontinuous function defined on H with values in $] - \infty, +\infty]$. Let $(u_n)_{n \in \mathbb{N} \cup \{\infty\}}$ be a sequence of measurable mappings from [0,T] into H such that $u_n \to u_\infty$ pointwisely with respect to the norm topology. Assume that $(\zeta_n)_{n \in \mathbb{N}}$ is a sequence in $L^1_H([0,T])$ satisfying

$$\zeta_n(t) \in \partial \varphi(u_n(t))$$
 a.e. $t \in [0,T]$

for each $n \in \mathbf{N}$ and $\sigma(L^1_H, L^\infty_H)$ converging to $\zeta_\infty \in L^1_H([0,T])$. Then we have

$$\zeta_{\infty}(t) \in \partial \varphi(u_{\infty}(t))$$
 a.e. $t \in [0, T]$.

Proof. We will use Komlós techniques. See [16, 17, 19]. Namely we may assume that (ζ_n) Komlós converges to ζ_{∞} and $(|\zeta_n|)$ Komlós converges to $\rho_{\infty} \in L^1_{\mathbf{R}}([0,T])$, because the sequence (ζ_n) (resp. $(|\zeta_n|)$) is bounded in $L^1_H([0,T])$ (resp. $L^1_{\mathbf{R}}([0,T])$). Accordingly there are a Lebesgue negligible set \mathcal{M} in [0,T] and subsequences $(\zeta'_m), (|\zeta'_m|)$ such that

$$\begin{split} &\lim_n \frac{1}{n} \sum_{m=1}^n \zeta'_m(t) = \zeta_\infty(t), \\ &\lim_n \frac{1}{n} \sum_{m=1}^n |\zeta'_m|(t) = \rho_\infty(t), \end{split}$$

for all $t \in [0,T] \setminus \mathcal{M}$. Let $\varepsilon > 0$ and let $t \in [0,T] \setminus \mathcal{M}$. By lower semicontinuity of φ and pointwise convergence of u_m to u_∞ , there is $N_{\varepsilon} \in \mathbf{N}$ such that $||u_m(t) - u_\infty(t)|| \leq \varepsilon$ and that $\varphi(u_m(t)) \geq \varphi(u_\infty(t)) - \varepsilon$ for all $m \geq N_{\varepsilon}$. Then we have the estimate

$$\varphi(x) \ge \varphi(u_{\infty}(t)) - \varepsilon + \langle x - u_{\infty}(t), \zeta'_{m}(t) \rangle - |\zeta'^{m}|(t)\varepsilon|$$

for all $x \in H$, using the classical definition of subdifferential in convex analysis and the preceding estimate. Applying the previous Komlós convergences in the last inequality gives

$$\varphi(x) \ge \varphi(u_{\infty}(t)) - \varepsilon + \langle x - u(t), \zeta_{\infty}(t) \rangle - \rho_{\infty}(t) \varepsilon$$

As ε is arbitrary > 0 we finally get

$$\varphi(x) \ge \varphi(u_{\infty}(t)) + \langle \zeta(t), x - u_{\infty}(t) \rangle$$

for all $x \in H$. Whence we have $\zeta_{\infty}(t) \in \partial \varphi(u_{\infty}(t))$ a.e..

Let us recall and summarize another classical closure type lemma. See e.g. [6].

Lemma 2.2. Let H be a Hilbert space. Let φ be a proper convex lower semicontinuous function defined on H with values in $] - \infty, +\infty]$. Let $(u_n)_{n \in \mathbb{N}} \cup \{\infty\}$ be a sequence in $L^2_H([0,T])$ such that $(u_n)_{n \in \mathbb{N}}$ strongly converges to $u_\infty \in L^2_H([0,T])$. Assume that $(\zeta_n)_{n \in \mathbb{N}}$ is a sequence in $L^2_H([0,T])$ satisfying

$$\zeta_n(t) \in \partial \varphi(u_n(t))$$
 a.e. $t \in [0, T]$

for each $n \in \mathbf{N}$ and converging weakly to $\zeta_{\infty} \in L^2_H([0,T])$. Then we have

$$\zeta_{\infty}(t) \in \partial \varphi(u_{\infty}(t))$$
 a.e. $t \in [0, T]$.

Let us recall some facts on Young measures. Let X be a completely regular Suslin space and let $\mathcal{C}^b(X)$ be the space of all bounded continuous functions defined on X. Let $\mathcal{M}^1_+(X)$ be the set of all Borel probability measures on X endowed with the narrow topology. A Young measure $\lambda : [0,T] \to \mathcal{M}^1_+(X)$ is, by definition, a scalarly Lebesgue-measurable mapping from [0,T] into $\mathcal{M}^1_+(X)$, that is, for every $f \in \mathcal{C}^b(X)$, the mapping $t \mapsto \langle f, \lambda_t \rangle := \int_X f(x) d\lambda_t(x)$ is Lebesgue-measurable on [0,T]. A sequence (λ^n) in the space of Young measures $\mathcal{Y}([0,T]; \mathcal{M}^1_+(X))$ stably converges to a Young measure $\lambda \in \mathcal{Y}([0,T]; \mathcal{M}^1_+(X))$ if the following holds

$$\lim_{n} \int_{A} \left[\int_{X} f(x) \, d\lambda_{t}^{n}(x) \right] dt = \int_{A} \left[\int_{X} f(x) \, d\lambda_{t}(x) \right] dt$$

for every Lebesgue-measurable set $A \subset [0,T]$ and for every $f \in \mathcal{C}^b(X)$.

3 Existence Results Involving Anti-Periodic Boundary Conditions

The following deal with an evolution inclusion generated by subdifferential operators of convex lower semicontinuous functions with anti-periodic boundary conditions and cwk(H)-valued upper semicontinuous perturbations, here cwk(H) is the set of all nonempty convex weakly compact subsets of H.

Proposition 3.1. Assume that $\varphi : H \to] - \infty, +\infty]$ is convex lower semicontinuous, even, with $\varphi(0) = 0$ and $D(\varphi)$ closed and satisfying:

- (a) for every r > 0, $\sup_{x \in D(\varphi) \cap \overline{B}_H(0,r)} |\partial \varphi(x)|_0 < +\infty$,
- (b) for every r > 0, $D(\varphi) \cap \overline{B}_H(0, r)$ is strongly compact in H, shortly $D(\varphi)$ is ball-compact.

Assume that $F : [0,T] \times H \to cwk(H)$ is upper semicontinuous on $[0,T] \times H$ satifying $|F(t,x)| \leq \alpha(1+||x||)$ for all $(t,x) \in [0,T] \times H$ for some positive constant α and $G : [0,T] \times H \to cwk(H)$ is a separately scalarly measurable on [0,T] and separately scalarly upper semicontinuous on H such that $|G(t,x)| \leq \beta$ or all $(t,x) \in [0,T] \times H$ for some positive constant β . Assume further that F + G satisfies the following monotone condition: there exists a positive constant γ such that $\langle x - y, u - v \rangle \geq \gamma ||u - v||^2, \forall u, v \in H, \forall x \in F(t, u) + G(t, u), \forall y \in F(t, v) + G(t, v) \text{ and } \forall t \in [0, T]$. Then there is a unique absolutely continuous T-anti-periodic solution $u : [0,T] \to H$ with $\dot{u} \in L^{\infty}_{H}([0,T])$ of the problem

$$(\mathcal{P}) \begin{cases} 0 \in \dot{u}(t) + \partial \varphi(u(t)) + F(t, u(t)) + G(t, u(t)) \\ u(T) = -u(0) \end{cases}$$

Proof. Existence and uniqueness of absolutely continuous solution of the problem

$$(\mathcal{Q}) \begin{cases} 0 \in \dot{u}(t) + \partial \varphi(u(t)) + F(t, u(t)) + G(t, u(t)) \\ u(0) = a \in D(\varphi) \end{cases}$$

follow from ([8], Theorem 3.1). Nevertheless we repeat the uniqueness argument for (\mathcal{Q}) because this led to the uniqueness of *T*-anti-periodic solution for (\mathcal{P}) . Let *u* and *v* be two solutions of (\mathcal{Q}) whose existence is ensured by Theorem 3.1 in [8]. There exist two functions *h* and *k* in $L^{\infty}_{H}([0,T])$ such that for almost all $t \in [0,T]$, we have

$$-\dot{u}(t) - h(t) \in \partial \varphi(u(t)), \tag{3.1}$$

$$-\dot{v}(t) - k(t) \in \partial \varphi(v(t)). \tag{3.2}$$

with

$$h(t) \in F(t,u(t)) + G(t,u(t))$$
 and $k(t) \in F(t,v(t)) + G(t,v(t))$

Further, by our monotone condition on F + G,

$$h(t) - k(t), u(t) - v(t) \ge \gamma ||u(t) - v(t)||^2.$$
 (3.3)

Then (3.1)—(3.3) and the monotonicity of $\partial \varphi$ entail, for almost all $t \in [0, T]$,

$$\langle \dot{u}(t) + h(t) - \dot{v}(t) - k(t), u(t) - v(t) \rangle \le 0$$

and hence

$$\begin{aligned} \langle \dot{u}(t) - \dot{v}(t), u(t) - v(t) \rangle &\leq -\langle h(t) - k(t), u(t) - v(t) \rangle \\ &\leq -\gamma ||u(t) - v(t)||^2 \leq 0. \end{aligned}$$
(3.4)

From the preceding estimate we see by integrating on [s, s'] $(s, s' \in [0, T])$

$$||u(s') - v(s')||^2 \le ||u(s) - v(s)||^2$$

Since this inequality is true for s = 0, we have u = v.

Now let $a, b \in D(\varphi)$ and let u_a (resp. u_b) be the solution of the above problem associated with the initial value a (resp. b). Applying the last inequality in (3.4) by taking $u = u_a$ and $v = u_b$ and integrating

$$\frac{1}{2}||u_a(t) - u_b(t)||^2 \le \frac{1}{2}||a - b||^2 - \int_0^t \gamma ||u_a(s) - u_b(s)||^2 \, ds.$$
(3.5)

Now, we finish the proof by checking that $a \mapsto -u_a(T)$ is a strict contraction on the closed convex set $D(\varphi)$, using similar arguments as in ([9], Theorem 5.3). It is enough to show that

$$||u_a(T) - u_b(T)|| < ||a - b||,$$

if ||a - b|| > 0. By Lemma 5.4 in [9] asserting that, if ψ is a continuous real valued function such that

$$0 \le \psi(t) \le \delta - \int_0^t \theta(s)\varphi(s) \, ds$$

with $\delta > 0$ and $\theta(.) > 0$ Lebesgue-integrable, then $\psi(t) < \delta$, $\forall t \in [0, T]$, so we conclude from (3.5) that

$$||u_a(T) - u_b(T)|| < ||a - b||.$$

Let us consider the mapping $U: a \mapsto -u_a(T)$ from $D(\varphi)$ into $D(\varphi)$ because φ is even. Since this mapping is a (strict) contraction, it has a unique fixed point that is the *T*-anti-periodic solution of the problem (\mathcal{P}).

Here is an application of the preceding result. For this purpose, we need a useful result. Lemma 3.2. Let $w : [0,T] \to H$ and $\dot{w} \in L^2_H([0,T])$ satisfying:

$$\begin{array}{lll} w(t) & = & w(0) + \int_0^t \dot{w}(s) ds, \quad t \in [0,T] \\ w(T) & = & -w(0). \end{array}$$

Then the following inequality hold

$$||w||_{\mathcal{C}_{H}([0,T])} \le \frac{\sqrt{T}}{2} ||\dot{w}||_{L^{2}_{H}([0,T])}.$$
 (a)

Assume further that

$$\dot{w} \in \mathcal{C}_H([0,T]), \quad \dot{w}(T) = -\dot{w}(0).$$

Then the following inequality hold

$$\int_{0}^{T} ||w(t)||^{2} dt \leq \frac{T^{2}}{\pi^{2}} \int_{0}^{T} ||\dot{w}(t)||^{2} dt.$$
 (b)

Proof. The proof is omitted, see e.g. [5, 7, 18]. Estimate (a) is quoted in several proofs presented here. Estimate (b) is useful when dealing with the uniqueness of solutions of anti-periodic second order inclusions with Lipschitzean perturbations. See the remark 2) of Corollary 4.3.

Here is a useful application.

Corollary 3.3. Let $w^n : [0,T] \to H$ and $\dot{w}^n \in L^2_H([0,T])$ satisfying:

$$\begin{aligned} w^n(t) &= w^n(0) + \int_0^t \dot{w}^n(s) ds, \quad t \in [0,T]. \\ w^n(T) &= -w^n(0), \quad \sup_{n \ge 1} ||\dot{w}^n||_{L^2_H([0,T])} < +\infty. \end{aligned}$$

Then, up to extracted subsequences, there exist $v^{\infty} \in L^2_H([0,T])$ and a absolutely continuous mapping $w^{\infty}: [0,T] \to H$ satisfying

- (1) $w^{\infty}(t) = w^{\infty}(0) + \int_0^t v^{\infty}(s) ds, \quad \forall t \in [0, T].$
- (2) $w^{\infty}(T) = -w^{\infty}(0).$
- (3) For every $e \in H$, for every $t \in [0,T]$, $\lim_{n\to\infty} \langle e, w^n(t) \rangle = \langle e, w^\infty(t) \rangle$.
- (4) For every $h \in L^2_H([0,T])$,

$$\lim_{n \to \infty} \int_0^T \langle h(t), w^n(t) \rangle dt = \int_0^T \langle h(t), w^\infty(t) \rangle dt.$$

Proof. Applying Lemma 3.2 (a) to w^n gives

$$||w^n||_{\mathcal{C}_H([0,T])} \le \frac{\sqrt{T}}{2} ||\dot{w}^n||_{L^2_H([0,T])}.$$

Whence (w^n) is bounded in $\mathcal{C}_H([0,T])$ because (\dot{w}^n) is bounded in $L^2_H([0,T])$. Extracting subsequences we may assume that (\dot{w}^n) converges weakly in $L^2_H([0,T])$ to a function $v^{\infty} \in L^2_H([0,T])$ and $(w^n(0))$ weakly converges in H to an element $x^{\infty} \in H$. Let us set

$$w^{\infty}(t) = x^{\infty} + \int_0^t v^{\infty}(s) ds, \forall t \in [0, T].$$

Whence

$$\lim_{n \to \infty} \langle e, w^n(t) \rangle = \langle e, x^\infty \rangle + \langle e, \int_0^t v^\infty(s) ds \rangle$$

for every $e \in H$ and for every $t \in [0, T]$, so that $(w^n(t))$ weakly converges in H to $w^{\infty}(t)$ for every $t \in [0, T]$. We have $w^{\infty}(0) =$ weak- $\lim_{n\to\infty} w^n(0) = x^{\infty}$. Since $w^n(T) = -w^n(0)$, we also have

$$w^{\infty}(T) = \text{weak-}\lim_{n \to \infty} w^n(T) = -\text{weak-}\lim_n w^n(0) = -x^{\infty} = -w^{\infty}(0).$$

Then w^{∞} is absolutely continuous with $\dot{w}^{\infty} = v$ and satisfies $w^{\infty}(T) = -w^{\infty}(0)$. It remains to check (4). For every $h \in L^2_H([0,T])$, we have

$$\int_0^T \langle h(t), w^n(t) \rangle dt = \int_0^T \langle h(t), w^n(0) \rangle dt + \int_0^T \langle h(t), \int_0^t \dot{w}^n(s) ds \rangle dt$$

It is clear that $\lim_{n\to\infty} \langle h(t), w^n(0) \rangle = \langle h(t), w^\infty(0) \rangle$. Hence

$$\lim_{n\to\infty}\int_0^T \langle h(t), w^n(0)\rangle dt = \int_0^T \langle h(t), w^\infty(0)\rangle dt$$

by Lebesgue convergence theorem. Similarly we have

$$\lim_{n \to \infty} \langle h(t), \int_0^t \dot{w}^n(s) ds \rangle = \langle h(t), \int_0^t v^\infty(s) ds \rangle, \quad \forall t \in [0, T]$$

By Holder inequality $|| \int_0^t \dot{w}^n(s) ds || \leq \sqrt{T} || \dot{w}^n ||_{L^2_H([0,T])} \leq M$ for some positive constant M, again by Lebesgue convergence theorem, we see that

$$\lim_{n \to \infty} \int_0^T \langle h(t), \int_0^t \dot{w}^n(s) ds \rangle dt = \int_0^T \langle h(t), \int_0^t v(s) ds \rangle dt$$

thus finishing the proof.

Proposition 3.4. Assume that $\varphi : H \to] - \infty, +\infty]$ is convex lower semicontinuous, even, with $\varphi(0) = 0$ and $D(\varphi)$ closed and satisfying:

- (a) for every r > 0, $\sup_{x \in D(\varphi) \cap \overline{B}_H(0,r)} |\partial \varphi(x)|_0 < +\infty$,
- (b) for every r > 0, $D(\varphi) \cap \overline{B}_H(0, r)$ is strongly compact in H, shortly $D(\varphi)$ is ball-compact.

Let $\gamma > 0$ and $f \in L^2_H([0,T])$. Then the problem

$$(\mathcal{P}_1) \left\{ \begin{array}{l} 0 \in \dot{u}(t) + \gamma u(t) + f(t) + \partial \varphi(u(t)) \\ u(T) = -u(0) \end{array} \right.$$

admits at least a T-anti-periodic absolutely continuous solution $u: [0,T] \to H$ which satisfies $||\dot{u}||_{L^2_H([0,T])} \leq ||f||_{L^2_H([0,T])}$.

Proof. Step 1. Assume that $f \in C_H([0,T])$. It is enough to apply Proposition 3.1 by taking $F(t,x) = \gamma x + f(t)$ and G(t,x) = 0 for all $(t,x) \in [0,T] \times H$ to get a unique *T*-anti-periodic absolutely continuous solution for the problem (\mathcal{P}_1) . Indeed we have $\langle \gamma x + f(t) - (\gamma y + t) \rangle$

f(t), $x - y = \gamma ||x - y||^2$, $\forall x, y \in H$, and $\forall t \in [0, T]$. Using the classical chain rule formula for lower semicontinuous functions and integrating on [0, T] gives

$$0 = \int_0^T ||\dot{u}(t)||^2 dt + \varphi(u(T)) - \varphi(u(0)) + \int_0^T \langle \gamma u(t) + f(t), \dot{u}(t) \rangle dt$$

Hence the inequality $||\dot{u}||_{L^2_H([0,T])} \leq ||f||_{L^2_H([0,T])}$ follows by anti-periodicity.

Step 2. Assume that $f \in L^2_H([0,T])$. Let (f_n) be a sequence in $\mathcal{C}_H([0,T])$ converging to f with respect to the topology of the norm of $L^2_H([0,T])$. Let u_{f_n} be the *T*-anti-periodic absolutely continuous solution of (\mathcal{P}_1) associated with f_n

$$\begin{cases} 0 \in \dot{u}_{f_n}(t) + \gamma u_{f_n}(t) + f_n(t) + \partial \varphi(u_{f_n}(t)) \\ u_{f_n}(T) = -u_{f_n}(0) \end{cases}$$

with $||\dot{u}_{f_n}||_{L^2_H([0,T])} \leq ||f_n||_{L^2_H([0,T])}$. It is clear that (\dot{u}_{f_n}) is bounded in $L^2_H([0,T])$. So we may assume that (\dot{u}_{f_n}) weakly converges in $L^2_H([0,T])$ to $v \in L^2_H([0,T])$. As $||u_{f_n}||_{\mathcal{C}_H([0,T])} \leq \frac{\sqrt{T}}{2} ||\dot{u}_{f_n}||_{L^2_H([0,T])}$ in view of Lemma 3.2 (a), using the ball-compactness assumption and Ascoli theorem, we infer that (u_{f_n}) is relatively compact in $\mathcal{C}_H([0,T])$. Taking account of Corollary 3.3 we may assume that (u_{f_n}) converges uniformly to a *T*-anti-periodic absolutely continuous function *u* and \dot{u}_{f_n} weakly converges in $L^2_H([0,T])$ to \dot{u} . For simplicity, let $g_n = -\dot{u}_{f_n} - \gamma u_{f_n} - f_n$. Then $g_n(t) \in \partial \varphi(u_{f_n}(t))$ a.e. and (g_n) weakly converges in $L^2_H([0,T])$ to $-\dot{u} - \gamma u - f$. By invoking Lemma 2.2, we conclude that

$$-\dot{u}(t) - \gamma u(t) - f(t) \in \partial \varphi(u(t))$$
 a.e.

In other words, u is a T-anti-periodic absolutely continuous solution of (\mathcal{P}_1) satisfying $||\dot{u}||_{L^2_H([0,T])} \leq ||f||_{L^2_H([0,T])}$ by antiperiodicity. \Box

Remarks. Proposition 3.4 seems to be a corollary of the general theory in [3]. The above techniques led to a variational convergence result.

Theorem 3.5. Let $\gamma > 0$, $f^n \in L^2_H([0,T])$, $\varphi_n, \varphi_\infty : H \to [0, +\infty]$ are proper, convex, l.s.c, even with $\varphi_n(0) = \varphi_\infty(0) = 0$, $\forall n \in \mathbf{N} \cup \{\infty\}$ satisfying:

- (i) for every $n \in \mathbf{N}$, for every r > 0, $\sup_{x \in D(\varphi_n) \cap \overline{B}_H(0,r)} |\partial \varphi_n(x)|_0 < +\infty$,
- (ii) for every r > 0, $\bigcup_n D(\varphi_n) \cap \overline{B}_H(0, r)$ is relatively compact in H, shortly $\bigcup_n D(\varphi_n)$ is ball-compact.

Let u_n be a T-anti-periodic absolutely continuous of

$$\begin{cases} 0 \in \dot{u}^n(t) + \gamma u^n(t) + f^n(t) + \partial \varphi_n(u^n(t)), & a.e. \quad t \in [0,T], \\ u^n(T) = -u^n(0). \end{cases}$$

Assume that

(H₁): (fⁿ) weakly converges to $f \in L^2_H([0,T])$.

; (H₂): (φ_n) epiconverges to φ_∞ .

Then, up to extracted subsequences, (u^n) converges uniformly to a T-anti-periodic absolutely continuous solution u of the inclusion

$$\begin{cases} 0 \in \dot{u} + \gamma u + f + \partial I_{\varphi_{\infty}}(u), \\ u(T) = -u(0). \end{cases}$$

with $\int_0^T \varphi_{\infty}(u(t))dt < +\infty$, here $\partial I_{\varphi_{\infty}}$ denotes the subdifferential of the convex integral functional $I_{\varphi_{\infty}}$ defined on $L^2_H([0,T])$ by

$$I_{\varphi_{\infty}}(u) = \begin{cases} \int_{0}^{T} \varphi_{\infty}(u(t)) dt & \text{if } \int_{0}^{T} \varphi_{\infty}(u(t)) dt & \text{is finite} \\ +\infty & \text{otherwise.} \end{cases}$$

Proof. Step 1 Thanks to the estimate $||\dot{u}^n||_{L^2_H} \leq ||f^n||_{L^2_H}$ and Lemma 3.2 (a) we have

$$||u^{n}||_{\mathcal{C}_{H}([0,T])} \leq \frac{\sqrt{T}}{2}||\dot{u}^{n}||_{L^{2}_{H}([0,T])} \leq \frac{\sqrt{T}}{2}||f^{n}||_{L^{2}_{H}}$$

so that $\sup_{n\geq 1} ||u^n||_{\mathcal{C}_H([0,T])} < +\infty$. Furthermore, using the absolute continuity of $\varphi_n(u^n)$ and the chain rule theorem [6], yields

$$\langle -\dot{u}^n(t) - \gamma u^n(t) - f_n(t), \dot{u}^n(t) \rangle = \frac{d}{dt}\varphi_n(u^n(t))$$

for every $n \in \mathbf{N}$. Hence by integrating

$$+\infty > \sup_{n \ge 1} \int_0^T |\langle \dot{u}^n(t), \dot{u}^n(t) + \gamma u^n(t) + f^n(t) \rangle| dt = \sup_{n \ge 1} \int_0^T |\frac{d}{dt} \varphi_n(u^n(t))| dt.$$

Further apply the classical definition of the subdifferential to convex lsc function φ_n yields

$$0 = \varphi_n(0)) \ge \varphi_n(u^n(t)) + \langle u^n(t), \dot{u}^n(t) + \gamma u^n(t) + f^n(t) \rangle$$

or

$$0 \le \varphi_n(u^n(t)) \le \langle u^n(t), -\dot{u}^n(t) - \gamma u^n(t) - f^n(t) \rangle$$

Hence $\sup_{n\geq 1} |\varphi_n(u^n)|_{L^1_{\mathbf{R}}([0,T])} < +\infty$. Now we assert that $|\varphi_n(u^n(t))| \leq L$ for all $t \in [0,T]$ and all $n \in N$, here L is a positive constant. Indeed we have

$$\begin{aligned} \varphi_n(u^n(0)) &\leq |\varphi_n(u^n(t)) - \varphi_n(u^n(0))| + \varphi_n(u^n(t)) \\ &\leq \int_0^T |\frac{d}{dt}\varphi_n(u^n(t))| dt + \varphi_n(u^n(t)). \end{aligned}$$

Hence

$$\varphi_n(u^n(0)) \le \sup_{n\ge 1} \int_0^T \left| \frac{d}{dt} \varphi_n(u^n(t)) \right| dt + \frac{1}{T} \sup_{n\ge 1} \int_0^T \varphi_n(u^n(t)) dt < +\infty.$$

Whence we get the estimate

$$M := \sup_{n \ge 1} \sup_{t \in [0,T]} ||u^n(t)|| < +\infty, \quad L = \sup_{n \ge 1} \sup_{t \in [0,T]} \varphi_n(u^n(t)) < +\infty.$$
(*)

Using the ball-compactness assumption and Ascoli theorem we may assume that (u^n) converges uniformly to a *T*-anti-periodic absolutely continuous function u with $\dot{u} \in L^2_H([0,T],$ taking account into the above estimate. So, in view of (H_2) and (*) we have

$$\int_0^T \varphi_\infty(u(t)) dt \le \liminf_n \int_0^T \varphi_n(u^n(t)) dt \le LT < +\infty.$$

Step 2 u is solution of

$$\begin{cases} 0 \in \dot{u} + \gamma u + f + \partial I_{\varphi_{\infty}}(u) \\ u(T) = -u(0). \end{cases}$$

with $\int_0^T \varphi_{\infty}(u(t))dt \leq LT < +\infty$, $\partial I_{\varphi_{\infty}}$ being the subdifferential of the convex integral functional $I_{\varphi_{\infty}}$ defined on $L^2_H([0,T])$ by

$$I_{\varphi_{\infty}}(u) = \begin{cases} \int_{0}^{T} \varphi_{\infty}(u(t)) dt & \text{if } \int_{0}^{T} \varphi_{\infty}(u(t)) dt & \text{is finite} \\ +\infty & \text{otherwise.} \end{cases}$$

For simplicity let $z^n := \dot{u}^n + \gamma u^n + f^n$ and $z := \dot{u} + \gamma u + f$. Then

$$-z^n(t) \in \partial \varphi_n(u^n(t)) \tag{**}$$

a.e. As (\dot{u}^n) converges weakly to \dot{u} in $L^2_H([0,T])$, (z_n) converges weakly in $L^2_H([0,T])$ to z. The proof will be achieved by using some facts developed in ([11], Lemma 3.4 and Lemma 3.7).

Fact 1 If h_n, h are measurable mappings $h_n, h : [0, T] \to H$ such that (h_n) pointwisely converges to h. Then

$$\liminf_{n \to \infty} \int_{B} \varphi_n(h^n(t)) dt \ge \int_{B} \varphi_\infty(h(t)) dt$$

for every measurable subset B of [0, T], using (H_2) .

Fact 2 Let $v \in L^{\infty}_{H}([0,T])$. Then there exists a bounded sequence (v_n) in $L^{\infty}_{H}([0,T])$ which pointwisely converges to v and such that

$$\limsup_{n \to \infty} \int_B \varphi_n(v^n(t)) dt \le \int_B \varphi_\infty(v(t)) dt$$

for every measurable subset B of [0, T], using (H_2) and the estimate (*). From Fact 1 and the result obtained in Step 1, we have

$$+\infty > LT \ge \liminf_{n \to \infty} \int_0^T \varphi_n(u^n(t)) dt \ge \int_0^T \varphi_\infty(u(t)) dt.$$

From (**) we have

$$\varphi_n(v(t)) \ge \varphi_n(u^n(t)) + \langle v(t) - u^n(t), -z^n(t) \rangle$$
 a.e. $t \in [0, T]$

for every $v \in L^{\infty}_{H}([0,T])$. By integrating

$$\int_0^T \varphi_n(v(t))dt \ge \int_0^T \varphi_n(u^n(t))dt + \int_0^T \langle v(t) - u^n(t), -z^n(t) \rangle dt.$$

For every $v \in L^{\infty}_{H}([0,T])$, from Fact 2, there is a bounded sequence (v^{n}) in $L^{\infty}_{H}([0,T])$ which converges pointwisely to v and such that

$$\limsup_{n \to \infty} \int_0^T \varphi_n(v^n(t)) dt \le \int_0^T \varphi_\infty(v(t)) dt.$$

Combining this with Fact 1 gives

$$\lim_{n \to \infty} \int_0^T \varphi_n(v^n(t)) dt = \int_0^T \varphi_\infty(v(t)) dt.$$

As

162

$$\lim_{n \to \infty} \int_0^T \langle v^n(t) - u^n(t), z^n(t) \rangle dt = \int_0^T \langle v(t) - u(t), z(t) \rangle dt$$

because the sequence $(v^n - u^n)$ is bounded in $L^{\infty}_H([0,T])$ and converges pointwisely to u - vand the sequence (z^n) converges to z with respect to the weak topology of $L^2_H([0,T])$. Finally by combining these facts and by passing to the limit when $n \to \infty$ in the integral subdifferential inequality

$$\int_0^T \varphi_n(v^n(t))dt \ge \int_0^T \varphi_n(u^n(t))dt + \int_0^T \langle v^n(t) - u^n(t), -z^n(t) \rangle dt$$

we get

$$\int_0^T \varphi_\infty(v(t))dt \ge \int_0^T \varphi_\infty(u(t))dt + \int_0^T \langle v(t) - u(t), -z(t) \rangle dt.$$

Hence we conclude that $-z = -\dot{u} - \gamma u - f \in \partial I_{\varphi_{\infty}}(u)$ with $I_{\varphi_{\infty}}(u) \leq LT < +\infty$. \Box

4 A Class of Second Order Evolution Inclusion via a Variational Approach

This section is devoted to a generalization of some results developed by [3, 7] in second order evolution inclusions with *T*-anti-periodic boundary conditions. For this purpose we will use essentially an existence result obtained by [3, 7] and some variational techniques developed in [10, 12]. We recall below some notations and summarize some results which describe the limiting behaviour of a bounded sequence in $L^1_H([0, T])$. See ([10], Proposition 6.5.17).

Proposition 4.1. Let H be a separable Hilbert space. Let (ζ_n) be a bounded sequence in $L^1_H([0,T])$. Then the following hold:

1) (ζ_n) (up to an extracted subsequence) stably converges to a Young measure ν that is, there exist a subsequence (ζ'_n) of (ζ_n) and a Young measure ν belonging to the space of Young measure $\mathcal{Y}([0,T]; \mathcal{M}^1_+(H_\sigma))$ with $t \mapsto bar(\nu_t) \in L^1_H([0,T])$ (here $bar(\nu_t)$ denotes the barycenter of ν_t) such that

$$\lim_{n \to \infty} \int_0^T h(t, \zeta'_n(t))) \, dt) = \int_0^T \left[\int_H h(t, x) \, \nu_t(dx) \right] dt$$

for all bounded Carathéodory integrands $h: [0,T] \times H_{\text{weak}} \to \mathbf{R}$,

2) (ζ_n) (up to an extracted subsequence) weakly biting converges to an integrable function $f \in L^1_H([0,T])$, which means that, there is a subsequence (ζ'_m) of (ζ_n) and an increasing sequence of Lebesgue-measurable sets (A_p) with $\lim_p \lambda(A_p) = 1$ and $f \in L^1_H([0,T])$ such that, for each p,

$$\lim_{m\to\infty}\int_{A_p}\langle h(t),\zeta_m'(t)\rangle\,dt=\int_{A_p}\langle h(t),f(t)\rangle\,dt$$

for all $h \in L^{\infty}_{H}([0,T])$,

3) (ζ_n) (up to an extracted subsequence) Komlós converges to an integrable function $g \in L^1_H([0,T])$, which means that, there is a subsequence $(\zeta_{\beta(m)})$ and an integrable function $g \in L^1_H([0,T])$, such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \zeta_{\gamma(j)}(t) = g(t), \ a.e. \in [0,T],$$

for every subsequence $(f_{\gamma(n)})$ of $(f_{\beta(n)})$.

4) There is a filter \mathcal{U} finer than the Fréchet filter such that $\mathcal{U} - \lim_n \zeta_n = l \in (L_H^{\infty})'_{weak}$ where $(L_H^{\infty})'_{weak}$ is the second dual of $L_H^1([0,T])$.

Let $w_{l_a} \in L^1_H([0,T])$ be the density of the absolutely continuous part l_a of l in the decomposition $l = l_a + l_s$ in absolutely continuous part l_a and singular part l_s . If we have considered the same extracted subsequence in 1), 2), 3), 4), then one has

$$f(t) = g(t) = bar(\nu_t) = w_{l_a}(t) \ a.e. \ t \in [0, T]$$

For more information on Young measures, see [10] and the references therein. Now comes our second epigraphical convergence.

Theorem 4.2. Let $H = \mathbf{R}^d$, $\gamma \in \mathbf{R}^+$. Assume that $\psi : \mathbf{R}^d \to \mathbf{R}$, $\varphi_n : \mathbf{R}^d \to [0, +\infty[$ are \mathcal{C}^1 , even, convex, Lipschitzean with $\varphi_n(0) = 0$, $\forall n \ge 1$ and, $\varphi_\infty : \mathbf{R}^d \to [0, +\infty[$ is even proper convex lower semicontinuous. Let (f^n) be sequence in $L^2_H([0,T])$ weakly converging to $f^\infty \in L^2_H([0,T])$. Let u^n be a $W^{2,2}_{\mathbf{R}^d}([0,T])$ solution of the problem

$$\begin{cases} \ddot{u}^{n}(t) + \gamma \dot{u}^{n}(t) - \nabla \psi(u^{n}(t)) - f^{n}(t) + \nabla \varphi_{n}(u^{n}(t)) = 0 \quad t \in [0, T], \\ u_{n}(T) = -u_{n}(0), \dot{u}_{n}(T) = -\dot{u}_{n}(0) \end{cases}$$

Assume that

- (i) φ_n epi-converges to φ_∞ .
- (ii) There exist $r_0 > 0$ and $x_0 \in \mathbf{R}^d$ such that

$$\sup_{n \in \mathbf{N}} \sup_{v \in \overline{B}_{L^{\infty}_{\mathbf{R}^d}([0,T])}} \int_0^T \varphi_n(x_0 + r_0 v(t))) < +\infty$$

here $\overline{B}_{L^{\infty}_{\mathbf{R}^d}([0,T])}$ is the closed unit ball in $L^{\infty}_{\mathbf{R}^d}([0,T])$.

(a) Then up to extracted subsequences, (u^n) converges uniformly to an absolutely continuous function u^{∞} with $u^{\infty}(T) = -u^{\infty}(0)$, (\dot{u}^n) pointwisely converges to a BV function y^{∞} with $y^{\infty} = \dot{u}^{\infty}$ and $\dot{u}^{\infty}(T) = -\dot{u}^{\infty}(0)$, and (\ddot{u}^n) weakly biting converges to a function $\zeta^{\infty} \in L^1_{\mathbf{R}^d}([0,T])$ which satisfy the variational inclusion

$$(\mathcal{Q}_{\infty}) \qquad 0 \in \zeta^{\infty} + \gamma \dot{u}^{\infty} - f^{\infty} - \nabla \psi(u^{\infty}) + \partial I_{\varphi_{\infty}}(u^{\infty})$$

here $\partial I_{\varphi_{\infty}}$ denotes the subdifferential of the convex lower semicontinuous integral functional $I_{\varphi_{\infty}}$ defined on $L^{\infty}_{\mathbf{R}^d}([0,T])$

$$I_{\varphi_{\infty}}(u) := \int_0^T \varphi_{\infty}(u(t)) \, dt, \ \forall u \in L^{\infty}_{\mathbf{R}^d}([0,T]).$$

Furthermore $\lim_{n} \int_{0}^{T} \varphi_{n}(u^{n}(t)) dt = \int_{0}^{T} \varphi_{\infty}(u^{\infty}(t)) dt.$ (b) There are a filter \mathcal{U} finer than the Fréchet filter, $l \in L^{\infty}_{\mathbf{R}^{d}}([0,T])'$ such that

 $\mathcal{U} - \lim_n [-\ddot{u}^n - \gamma \dot{u}^n + f^n + \nabla \psi(u^n)] = l \in L^\infty_{\mathbf{R}^d}([0,T])'_{weak}$

where $L^{\infty}_{\mathbf{R}^d}([0,T])'_{weak}$ is the second dual of $L^1_{\mathbf{R}^d}([0,T])$ endowed with the topology $\sigma(L^{\infty}_{\mathbf{R}^d}([0,T])', L^{\infty}_{\mathbf{R}^d}([0,T]))$ and $m \in \mathcal{C}_{\mathbf{R}^d}([0,T])'_{weak}$ such that

$$\forall h \in \mathcal{C}_{\mathbf{R}^d}([0,T]), \lim_n \int_0^T \langle h, -\ddot{u}^n - \gamma \dot{u}^n + f^n + \nabla \psi(u^n) \rangle dt = \langle h, m \rangle$$

here $C_{\mathbf{R}^d}([0,T])'_{weak}$ denotes the space $C_{\mathbf{R}^d}([0,T])'$ endowed with the weak topology $\sigma(\mathcal{C}_{\mathbf{R}^d}([0,T])', \mathcal{C}_{\mathbf{R}^d}([0,T]))$. Let l_a be the density of the absolutely continuous part l_a of l in the decomposition $l = l_a + l_s$ in absolutely continuous part l_a and singular part l_s . Then

$$l_a(h) = \int_0^T \langle h(t), -\zeta^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + f^{\infty}(t) + \nabla \psi(u^{\infty}(t)) \rangle dt$$

for all $h \in L^{\infty}_{\mathbf{R}^d}([0,T])$ so that

$$I_{\varphi_{\infty}}^{*}(l) = I_{\varphi_{\infty}^{*}}(-\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty}) + \delta^{*}(l_{s}, dom I_{\varphi_{\infty}})$$

here φ_{∞}^* is the conjugate of φ_{∞} , $I_{\varphi_{\infty}^*}$ the integral functional defined on $L^1_{\mathbf{R}^d}([0,T])$ associated with φ_{∞}^* , $I_{\varphi_{\infty}}^*$ the conjugate of the integral functional $I_{\varphi_{\infty}}$, $dom I_{\varphi_{\infty}} := \{u \in L^{\infty}_{\mathbf{R}^d}([0,T]) : I_{\varphi_{\infty}}(u) < \infty\}$ and

$$\langle m,h\rangle = \int_0^T \langle -\zeta^\infty(t) - \gamma \dot{u}^\infty(t) + f^\infty + \nabla \psi(u^\infty(t)), h(t)\rangle dt + \langle m_s,h\rangle$$

 $\forall h \in \mathcal{C}_{\mathbf{R}^d}([0,T]) \text{ with } \langle m_s,h \rangle = l_s(h), \forall h \in \mathcal{C}_{\mathbf{R}^d}([0,T]).$ Further *m* belongs to the subdifferential $\partial J_{\varphi_{\infty}}(u^{\infty})$ of the convex lower semicontinuous integral functional $J_{\varphi_{\infty}}$ defined on $\mathcal{C}_{\mathbf{R}^d}([0,T])$

$$J_{\varphi_{\infty}}(u) := \int_{0}^{T} \varphi_{\infty}(u(t)) dt, \ \forall u \in \mathcal{C}_{\mathbf{R}^{d}}([0,T]).$$

(c) Consequently the density $-\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty})$ of the absolutely continuous part m_a

$$m_a(h) := \int_0^T \langle -\zeta^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + f^{\infty} + \nabla \psi(u^{\infty}(t)), h(t) \rangle dt$$

for all $h \in \mathcal{C}_{\mathbf{R}^d}([0,T])$, satisfies the inclusion

$$-\zeta^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + f^{\infty}(t) + \nabla \psi(u^{\infty}(t)) \in \partial \varphi_{\infty}(u^{\infty}(t)), \quad \text{a.e.}.$$

and for any nonnegative measure θ on [0,T] with respect to which m_s is absolutely continuous

$$\int_0^T h_{\varphi_\infty^*}(\frac{dm_s}{d\theta}(t))d\theta(t) = \int_0^T \langle u^\infty(t), \frac{dm_s}{d\theta}(t) \rangle d\theta(t)$$

here $h_{\varphi_{\infty}^*}$ denotes the recession function of φ_{∞}^* .

Proof. Existence of u^n for the problem

$$\begin{cases} \ddot{u}^n(t) + \gamma \dot{u}^n(t) - \nabla \psi(u^n(t)) - f^n(t) + \nabla \varphi_n(u^n(t)) = 0 \quad t \in [0,T], \\ u_n(T) = -u_n(0), \dot{u}_n(T) = -\dot{u}_n(0) \end{cases}$$

is ensured by ([3], Lemme 3.6) or ([7], Theorem 3.1). Step 1 Estimation of $||\dot{u}^n(.)||_{L^2_H([0,T])}$. Multiply scalarly the equation

$$\ddot{u}^n(t) + \gamma \dot{u}^n(t) = \nabla \psi(u^n(t)) + f^n(t) - \nabla \varphi_n(u^n(t))$$

by $\dot{u}^n(t)$ and applying the chain rule formula [20] for the C^1 , Lipschitzean function $\psi - \varphi_n$ gives

$$\gamma ||\dot{u}^{n}(t)||^{2} = \frac{d}{dt} [\psi(u^{n}(t)) - \varphi_{n}(u^{n}(t)) - \frac{1}{2} ||\dot{u}^{n}(t)||^{2}] + \langle \dot{u}^{n}(t), f^{n}(t) \rangle.$$

Hence by antiperiodicity conditions we get the estimate

$$\gamma ||\dot{u}^n||_{L^2_H([0,T])} \le ||f^n||_{L^2_H([0,T])}.$$
(4.1)

From Lemma 3.2 (a)

$$||u^n||_{\mathcal{C}_H([0,T])} \le \frac{\sqrt{T}}{2} ||\dot{u}^n||_{L^2_H([0,T])}$$

and (4.1), it is immediate (u^n) is bounded in $\mathcal{C}_H([0,T])$ and $(\nabla \psi(u^n(.)))$ is uniformly bounded.

Step 2 Estimation of $||\ddot{u}^n(.)||$. As

$$z^{n}(t) := -\ddot{u}^{n}(t) - \gamma \dot{u}^{n}(t) + f^{n}(t) + \nabla \psi(u^{n}(t)) = \nabla \varphi_{n}(u^{n}(t))$$

by the subdifferential inequality for convex lower semi continuous functions we have

$$\varphi_n(x) \ge \varphi_n(u^n(t)) + \langle x - u^n(t), z^n(t) \rangle$$

for all $x \in \mathbf{R}^d$. Now let $v \in \overline{B}_{L^{\infty}_{\mathbf{R}^d}([0,T])}$, the closed unit ball of $L^{\infty}_{\mathbf{R}^d}[0,T]$). By taking $x = w(t) := x_0 + r_0 v(t)$ in the preceding inequality we get

$$\varphi_n(w(t)) \ge \varphi_n(u^n(t)) + \langle w(t) - u^n(t), z^n(t) \rangle.$$

Integrating the preceding inequality gives

$$\int_{0}^{T} \langle x_{0} + r_{0}v(t) - u^{n}(t), z^{n}(t) \rangle dt = \int_{0}^{T} \langle x_{0} - u^{n}(t), z^{n}(t) \rangle dt + r_{0} \int_{0}^{T} \langle v(t), z^{n}(t) \rangle dt$$

$$\leq \int_{0}^{T} \varphi_{n}(x_{0} + r_{0}v(t)) dt - \int_{0}^{T} \varphi_{n}(u^{n}(t)) dt.$$

Whence follows

$$r_0 \int_0^T \langle v(t), z^n(t) \rangle dt \le \int_0^T \varphi_n(x_0 + r_0 v(t)) dt - \int_0^T \varphi_n(u^n(t)) dt - \int_0^T \langle x_0 - u^n(t), z^n(t) \rangle dt.$$
(4.2)

For simplicity, let us set $v^n(t) = u^n(t) - x_0$ for all $t \in [0, T]$. We compute the last integral in the preceding inequality.

$$-\int_{0}^{T} \langle x_{0} - u^{n}(t), z^{n}(t) \rangle dt = -\int_{0}^{T} \langle v^{n}(t), \ddot{v}^{n}(t) + \gamma \dot{v}^{n}(t) - f^{n}(t) - \nabla \psi(u^{n}(t)) \rangle dt$$

$$= -\int_{0}^{T} \langle v^{n}(t), \ddot{v}^{n}(t) + \gamma \dot{v}^{n}(t) \rangle dt \qquad (4.3)$$

$$+ \int_{0}^{T} \langle v^{n}(t), f^{n}(t) + \nabla \psi(u^{n}(t)) \rangle dt.$$

Then it is immediate that the last integral

$$\int_0^T \langle v^n(t), f^n(t) + \nabla \psi(u^n(t)) \rangle dt$$

is bounded using the above estimates. By integration by parts and taking account into $\left(4.2\right)$ we have

$$\begin{aligned} -\int_{0}^{T} \langle v^{n}(t), \ddot{v}^{n}(t) + \gamma \dot{v}^{n}(t) \rangle dt &= -[\langle v^{n}(t), \dot{v}^{n}(t) + \gamma v^{n}(t)]_{0}^{T} \\ &+ \int_{0}^{T} \langle \dot{v}^{n}(t), \dot{v}^{n}(t) + \gamma v^{n}(t) \rangle dt \qquad (4.4) \\ &= -\langle v^{n}(T), \dot{v}^{n}(T) \rangle \\ &+ \langle v^{n}(0), \dot{v}^{n}(0) \rangle - \gamma \langle v^{n}(T), v^{n}(T) \rangle \\ &+ \gamma \langle v^{n}(0), v^{n}(0) \rangle \\ &+ \int_{0}^{T} ||\dot{v}^{n}(t)||^{2} dt + \gamma \int_{0}^{T} \langle \dot{v}^{n}(t), v^{n}(t) \rangle dt \\ &= \int_{0}^{T} ||\dot{v}^{n}(t)||^{2} dt \quad (\text{by antiperiodicity}). \end{aligned}$$

By (4.1)-(4.4), we get

$$r_0 \int_0^T \langle v(t), z^n(t) \rangle dt \le \int_0^T \varphi_n(x_0 + r_0 v(t)) dt + \int_0^T ||\dot{u}^n(t)||^2 dt + C$$
(4.5)

for all $v \in \overline{B}_{L^{\infty}_{\mathbf{R}^d}([0,T])}$, where

$$C := \sup_{n \ge 1} \int_0^T |\langle v^n(t), f^n(t) + \nabla \psi(u^n(t)) \rangle| dt < \infty.$$

By (ii), (4.1)–(4.5), we conclude that

$$(\ddot{u}^n + \gamma \dot{u}^n - f^n - \nabla \psi(u^n))$$

is bounded in $L^1_{\mathbf{R}^d}([0,T])$, and so is (\ddot{u}^n) . It turns out that the sequence (\dot{u}^n) of absolutely continuous functions is bounded in variation and by Helly theorem, we may assume that (\dot{u}^n) pointwisely converges to a BV function $v^{\infty} : [0,T] \to \mathbf{R}^d$ and the sequence (u^n) converges uniformly to an absolutely continuous function u^{∞} with $\dot{u}^{\infty} = v^{\infty}$ a.e. At this point, it is clear that (\dot{u}^n) converges in $L^1_{\mathbf{R}^d}([0,T])$ to v^{∞} , using (4.1) and the dominated convergence theorem. Hence $(\gamma \dot{u}_n)$ converges in $L^1_{\mathbf{R}^d}([0,T])$ to γv^{∞} .

Step 3. Weak biting limit of \ddot{u}_n . As (\ddot{u}_n) is bounded in $L^1_{\mathbf{R}^d}([0,T])$, we may assume that (\ddot{u}_n) weakly biting converges to a function $\zeta^{\infty} \in L^1_{\mathbf{R}^d}([0,T])$, that is, there exists a decreasing sequence of Lebesgue-measurable sets (B_p) with $\lim_p \lambda(B_p) = 0$ such that the restriction of (\ddot{u}_n) on each B_p^c converges weakly in $L^1_{\mathbf{R}^d}([0,T])$ to ζ^{∞} . Noting that (\dot{u}_n) converges in $L^1_{\mathbf{R}^d}([0,T])$ to χ^{∞} . It follows that the restriction of $(z^n = -\ddot{u}_n - \gamma\dot{u}_n + f^n + \nabla\psi(u^n))$ to each B_p^c weakly converges in $L^1_{\mathbf{R}^d}([0,T])$ to $z^{\infty} := -\zeta^{\infty} - \gamma v^{\infty} + f^{\infty} + \nabla\psi(u^{\infty})$, because

$$\lim_{n} \int_{B} \langle \ddot{u}_{n} + \gamma \dot{u}_{n} - f^{n} - \nabla \psi(u^{n}), h \rangle \, dt = \int_{B} \langle \zeta^{\infty} + \gamma v^{\infty} - f^{\infty} - \nabla \psi(u^{\infty}), h \rangle \, dt$$

for every $B \in B_p^c \cap \mathcal{L}([0,T])$ and for every function $h \in L^{\infty}_{\mathbf{R}^d}([0,T])$. Step 4. $L = \sup_{n \ge 1} \sup_{t \in [0,T]} \varphi_n(u^n(t)) < +\infty$ From the chain rule theorem given in Step 1, recall that

$$-\langle \dot{u}^n(t), \ddot{u}^n(t) + \gamma \dot{u}_n(t) - f^n - \nabla \psi(u^n) \rangle = \frac{d}{dt} [\varphi_n(u^n(t))]$$

that is

$$\langle \dot{u}^n(t), z^n(t) \rangle = \frac{d}{dt} [\varphi_n(u^n(t))]$$

From the above estimate and the anti-periodicity of \dot{u}^n , it is immediate that $\left(\frac{d}{dt}[\varphi_n(u^n(t))]\right)$ is bounded in $L^1_{\mathbf{R}}([0,T])$ so that $(\varphi_n(u^n(.))$ is bounded in variation. In fact, we get more here by arguing as in the proof of Theorem 3.5. Apply the classical definition of the subdifferential to convex lsc function φ_n yields

$$0 = \varphi_n(0) \ge \varphi_n(u^n(t)) + \langle -u^n(t), z^n(t) \rangle$$

or

$$0 \le \varphi_n(u^n(t)) \le \langle u^n(t), z^n(t) \rangle = \langle u^n(t), -\ddot{u}^n(t) - \gamma \dot{u}^n(t) + f^n(t) + \nabla \psi(u^n(t)) \rangle.$$

Hence $\sup_{n\geq 1} |\varphi_n(u^n)|_{L^1_{\mathbf{R}}([0,T])} < +\infty$. Now we assert that $|\varphi_n(u^n(t))| \leq L$ for all $t \in [0,T]$ and all $n \in N$, here L is a positive constant. Indeed we have

$$\begin{aligned} \varphi_n(u^n(0)) &\leq |\varphi_n(u^n(t)) - \varphi_n(u^n(0))| + \varphi_n(u^n(t)) \\ &\leq \int_0^T |\frac{d}{dt}\varphi_n(u^n(t))|dt + \varphi_n(u^n(t)). \end{aligned}$$

Hence

$$\varphi_n(u^n(0)) \le \sup_{n\ge 1} \int_0^T |\frac{d}{dt}\varphi_n(u^n(t))| dt + \frac{1}{T} \sup_{n\ge 1} \int_0^T \varphi_n(u^n(t)) dt < +\infty.$$

Whence we get the estimates (*)

$$M: = \sup_{n \ge 1} \sup_{t \in [0,T]} ||u^n(t)|| < +\infty, \text{ (by Step 1)}$$
$$L = \sup_{n \ge 1} \sup_{t \in [0,T]} \varphi_n(u^n(t)) < +\infty.$$

Step 5. Localization of the limits:

$$z^{\infty} = -\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty}) \in \partial I_{\varphi_{\infty}}(u^{\infty}).$$

We will adapt the techniques developed in ([11], Lemma 3.7, Proposition 4.2). As (φ_n) epiconverges to φ_{∞} , by Lemma 3.4 in [11] we have

$$\liminf_{n} \int_{B} \varphi_n(u^n(t)) \, dt \ge \int_{B} \varphi_\infty(u^\infty(t)) \, dt,$$

for every $B \in \mathcal{L}([0,T])$. Let $h \in L^{\infty}_{\mathbf{R}^d}([0,T])$. Using the estimates (*) and applying Lemma 3.7 in [11] provides a bounded sequence (h^n) in $L^{\infty}_H([0,T])$, such that (h^n) pointwisely converges to h and such that

$$\limsup_{n} \int_{B} \varphi_{n}(h^{n}(t)) \, dt \leq \int_{B} \varphi_{\infty}(h(t)) \, dt$$

for every $B \in \mathcal{L}([0,T])$. Coming back to the inclusion $z^n(t) \in \partial \varphi_n(u^n(t))$, we have

$$\varphi_n(x) \ge \varphi_n(u^n(t)) + \langle x - u^n(t), z^n(t) \rangle$$

for all $x \in \mathbf{R}^d$. By substituting x by $h^n(t)$ in this inequality and by integrating on each $B \in B_p^c \cap \mathcal{L}([0,T]),$

$$\int_{B} \varphi_n(h^n(t)) \, dt \ge \int_{B} \varphi_n(u^n(t)) \, dt + \int_{B} \langle h^n(t) - u^n(t), z^n(t) \rangle \, dt$$

and passing to the limit in the preceding inequality when n goes to $+\infty$, we get

$$\int_{B} \varphi_{\infty}(h(t)) \, dt \ge \int_{B} \varphi_{\infty}(u^{\infty}(t)) \, dt + \int_{B} \langle h(t) - u^{\infty}(t), z^{\infty}(t) \rangle \, dt.$$

As this inequality is true on each $B \cap B_p^c$

$$\int_{B \cap B_p^c} \varphi_{\infty}(h(t)) dt \geq \int_{B \cap B_p^c} \varphi_{\infty}(u^{\infty}(t)) dt + \int_{B \cap B_p^c} \langle h(t) - u^{\infty}(t), z^{\infty}(t) \rangle dt$$

and $B_p^c \uparrow [0,T]$, by passing to the limit when p goes to ∞ in the last inequality, we get

$$\int_{B} \varphi_{\infty}(h(t)) \, dt \ge \int_{B} \varphi_{\infty}(u^{\infty}(t)) \, dt + \int_{B} \langle z^{\infty}(t), h(t) - u^{\infty}(t) \rangle \, dt$$

for all $B \in \mathcal{L}([0,T])$ and for all $h \in L^{\infty}_{\mathbf{R}^d}([0,T])$. In other words,

$$z^{\infty} = -\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty}) \in \partial I_{\varphi_{\infty}}(u^{\infty}).$$

Step 6. $\lim_{n} \int_{0}^{T} \varphi_{n}(u_{n}(t)) dt = \int_{0}^{T} \varphi_{\infty}(u^{\infty}(t)) dt$. From the estimates in Step 4 and Helly theorem, we may assume that $(\varphi_{n}(u_{n}(.))$ pointwisely converges to a BV function β . By (*), ($\varphi_n(u_n(.))$ converges in $L^1_{\mathbf{R}}([0,T])$ to β . In particular, for every $k \in L^{\infty}_{\mathbf{R}^+}([0,T])$ we have

$$\lim_{n \to \infty} \int_0^T k(t)\varphi_n(u_n(t))dt = \int_0^T k(t)\beta(t)dt.$$

Using this fact and repeating the biting arguments via the epi-limit results given in Step 5, it is easy to see that

$$\int_{B} \varphi_{\infty}(h(t)) \, dt \ge \int_{B} \beta(t) \, dt + \int_{B} \langle z^{\infty}(t), h(t) - u^{\infty}(t) \rangle \, dt$$

for all $B \in \mathcal{L}([0,T])$ and for all $h \in L^{\infty}_{\mathbf{R}^d}([0,T])$. In particular, we get the estimate

$$\int_{B} \varphi_{\infty}(u^{\infty}(t)) \, dt \ge \int_{B} \beta(t) \, dt$$

for all $B \in \mathcal{L}([0,T])$. Again by the epi-lower convergence result in Step 5, we have

$$\int_{B} \beta(t) dt = \lim_{n \to \infty} \int_{B} \varphi_n(u^n(t)) dt$$
$$= \liminf_{n \to \infty} \int_{B} \varphi_n(u^n(t)) dt \ge \int_{B} \varphi_\infty(u^\infty(t)) dt$$

for all $B \in \mathcal{L}([0,T])$. It turns out that $\varphi_{\infty}(u^{\infty}(t)) = \beta(t)$ a.e. Step 7. Localization of further limits and final step. As $(z^n = -\ddot{u}^n - \gamma \dot{u}^n + f^n + \nabla \psi(u^n))$ is bounded in $L^1_{\mathbf{R}^d}([0,T])$ in view of Step 3, it is relatively compact in the second dual $L^{\infty}_{\mathbf{R}^d}([0,T])'$ of $L^1_{\mathbf{R}^d}([0,T])$ endowed with the weak topology $\sigma(L^{\infty}_{\mathbf{R}^d}([0,T])', L^{\infty}_{\mathbf{R}^d}([0,T]))$. Furthermore, (z^n) can be viewed as a bounded sequence in $\mathcal{C}_{\mathbf{R}^d}([0,T])'$. Hence there are a filter \mathcal{U} finer than the Fréchet filter, $l \in L^{\infty}_{\mathbf{R}^d}([0,T])'$ and $m \in \mathcal{C}_{\mathbf{R}^d}([0,T])'$ such that

$$\mathcal{U} - \lim_{n} z^{n} = l \in L^{\infty}_{\mathbf{R}^{d}}([0,T])'_{weak}$$

$$\tag{4.6}$$

and

$$\lim_{n \to \infty} z^n = m \in \mathcal{C}_{\mathbf{R}^d}([0,T])'_{weak} \tag{4.7}$$

where $L^{\infty}_{\mathbf{R}^d}([0,T])'_{weak}$ is the second dual of $L^1_{\mathbf{R}^d}([0,T])$ endowed with the topology $\sigma(L^{\infty}_{\mathbf{R}^d}([0,T])', L^{\infty}_{\mathbf{R}^d}([0,T]))$ and $\mathcal{C}_{\mathbf{R}^d}([0,T])'_{weak}$ denotes the space $\mathcal{C}_{\mathbf{R}^d}([0,T])'$ endowed with the weak topology $\sigma(\mathcal{C}_{\mathbf{R}^d}([0,T])', \mathcal{C}_{\mathbf{R}^d}([0,T]))$, because $\mathcal{C}_{\mathbf{R}^d}([0,T])$ is a separable Banach space for the norm sup, so that we may assume by extracting subsequence that (z^n) weakly converges to $m \in \mathcal{C}_{\mathbf{R}^d}([0,T])'$. Let l_a be the density of the absolutely continuous part l_a of l in the decomposition $l = l_a + l_s$ in absolutely continuous part l_a and singular part l_s , in the sense there is an decreasing sequence (A_n) of Lebesgue measurable sets in [0,T] with $A_n \downarrow \emptyset$ such that $l_s(h) = l_s(1_{A_n}h)$ for all $h \in L^{\infty}_{\mathbf{R}^d}([0,T])$ and for all $n \ge 1$. As $(z^n = -\ddot{u}^n - \gamma \dot{u}^n + f^n + \nabla \psi(u^n))$ weakly biting converges to $z^{\infty} = -\zeta^{\infty}(t) - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty})$ in Step 4, it is already seen (cf. Proposition 4.1) that

$$l_a(h) = \int_0^T \langle h(t), -\zeta^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + f^{\infty} + \nabla \psi(u^{\infty}) \rangle dt$$

for all $h \in L^{\infty}_{\mathbf{R}^d}([0,T])$, shortly $z^{\infty} = -\zeta^{\infty}(t) - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty})$ coincides a.e. with the density of the absolutely continuous part l_a . By [13, 23] we have

$$I_{\varphi_{\infty}}^{*}(l) = I_{\varphi_{\infty}^{*}}(-\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty})) + \delta^{*}(l_{s}, dom I_{\varphi_{\infty}})$$

here φ_{∞}^* is the conjugate of φ_{∞} , $I_{\varphi_{\infty}^*}$ is the integral functional defined on $L^1_{\mathbf{R}^d}([0,T])$ associated with φ_{∞}^* , $I_{\varphi_{\infty}}^*$ is the conjugate of the integral functional $I_{\varphi_{\infty}}$ and

$$dom I_{\varphi_{\infty}} := \{ u \in L^{\infty}_{\mathbf{R}^d}([0,T]) : I_{\varphi_{\infty}}(u) < \infty \}.$$

Using the inclusion

$$z^{\infty} = -\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty}) \in \partial I_{\varphi_{\infty}}(u^{\infty})$$

that is

$$I_{\varphi_{\infty}^{*}}(-\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty})) = \langle -\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty}), u^{\infty} \rangle - I_{\varphi_{\infty}}(u^{\infty})$$

we see that

$$I_{\varphi_{\infty}}^{*}(l) = \langle -\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty}), u^{\infty} \rangle - I_{\varphi_{\infty}}(u^{\infty}) + \delta^{*}(l_{s}, dom I_{\varphi_{\infty}})$$

Coming back to the inclusion $z^n(t) \in \partial \varphi_n(u^n(t))$, we have

$$\varphi_n(x) \ge \varphi_n(u^n(t)) + \langle x - u^n(t), z^n(t) \rangle$$

for all $x \in \mathbf{R}^d$. By substituting x by h(t) in this inequality, here $h \in L^{\infty}_{\mathbf{R}^d}([0,T])$, and by integrating

$$\int_0^T \varphi_n(h(t)) \, dt \ge \int_0^T \varphi_n(u^n(t)) \, dt + \int_0^T \langle h(t) - u^n(t), z^n(t) \rangle \, dt.$$

Arguing as in Step 5 by passing to the limit in the preceding inequality, involving the epilimsup property for integral functionals $\int_0^T \varphi_n(h(t)) dt$ defined on $L^{\infty}_{\mathbf{R}^d}([0,T])$, it is easy to see that

$$\int_0^T \varphi_{\infty}(h(t)) \, dt \ge \int_0^T \varphi_{\infty}(u^{\infty}(t)) \, dt + \langle h - u^{\infty}, m \rangle$$

Since this holds, in particular, when $h \in C_{\mathbf{R}^d}([0,T])$, we conclude that m belongs to the subdifferential $\partial J_{\varphi_{\infty}}(u^{\infty})$ of the convex lower semicontinuous integral functional $J_{\varphi_{\infty}}$ defined on $C_{\mathbf{R}^d}([0,T])$

$$J_{\varphi_{\infty}}(u) := \int_{0}^{T} \varphi_{\infty}(u(t)) dt, \ \forall u \in \mathcal{C}_{\mathbf{R}^{d}}([0,T]).$$

As $(z^n = -\ddot{u}^n - \gamma \dot{u}^n + f^n + \nabla \psi(u^n))$ weakly biting converges to $z^{\infty} = -\zeta^{\infty}(t) - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty})$ in Step 5, we see that

$$l_a(h) = \int_0^T \langle h(t), -\zeta^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + f^{\infty}(t) + \nabla \psi(u^{\infty}(t)) \rangle dt$$

for all $h \in L^{\infty}_{\mathbf{R}^d}([0,T])$ (see Proposition 4.1) so that

$$l(h) = \int_0^T \langle -\zeta^\infty(t) - \gamma \dot{u}^\infty(t) + f^\infty + \nabla \psi(u^\infty), h(t) \rangle dt + l_s(h)$$

 $\forall h \in L^{\infty}_{\mathbf{R}^d}([0,T])$. Now let $B : \mathcal{C}_{\mathbf{R}^d}([0,T]) \to L^{\infty}_{\mathbf{R}^d}([0,T])$ be the continuous injection and let $B^* : L^{\infty}_{\mathbf{R}^d}([0,T])' \to \mathcal{C}_{\mathbf{R}^d}([0,T])'$ be the adjoint of B given by

$$\langle B^*l,h\rangle = \langle l,Bh\rangle = \langle l,h\rangle, \quad \forall l \in L^{\infty}_{\mathbf{R}^d}([0,T])', \quad \forall h \in \mathcal{C}_{\mathbf{R}^d}([0,T]).$$

Then we have $B^*l = B^*l_a + B^*l_s$, $l \in L^{\infty}_{\mathbf{R}^d}([0,T])'$ being the limit of $(z^n = -\zeta^n - \gamma \dot{u}^n + f^n + \nabla \psi(u^n))$ under the filter \mathcal{U} given in section 4 and $l = l_a + l_s$ being the decomposition of l in absolutely continuous part l_a and singular part l_s . It follows that

$$\langle B^*l,h\rangle = \langle B^*l_a,h\rangle + \langle B^*l_s,h\rangle = \langle l_a,h\rangle + \langle l_s,h\rangle$$

for all $h \in \mathcal{C}_{\mathbf{R}^d}([0,T])$. But it is already seen that

$$\langle l_a, h \rangle = \int_0^T \langle -\zeta^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + f^{\infty} + \nabla \psi(u^{\infty}), h(t) \rangle dt$$

for all $h \in L^{\infty}_{\mathbf{R}^d}([0,T])$ so that the measure B^*l_a is absolutely continuous

$$\langle B^* l_a, h \rangle = \int_0^T \langle -\zeta^\infty(t) - \gamma \dot{u}^\infty(t) + f^\infty + \nabla \psi(u^\infty), h(t) \rangle dt, \quad \forall h \in \mathcal{C}_{\mathbf{R}^d}([0, T])$$

and its density $-\zeta^\infty-\gamma \dot{u}^\infty+f^\infty+\nabla\psi(u^\infty)$ satisfies the inclusion

$$-\zeta^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + f^{\infty} + \nabla \psi(u^{\infty}) \in \partial \varphi_{\infty}(u^{\infty}(t)), \quad \text{a.e}$$

and the singular part B^*l_s satisfies the equation

$$\langle B^* l_s, h \rangle = \langle l_s, h \rangle, \quad \forall h \in \mathcal{C}_{\mathbf{R}^d}([0, T])$$

As we have $B^*l = m$, using (4.6)-(4.7), it turns out that m is the sum of the absolutely continuous measure m_a with

$$\langle m_a, h \rangle = \int_0^T \langle -\zeta^\infty(t) - \gamma \dot{u}^\infty(t) + f^\infty + \nabla \psi(u^\infty), h(t) \rangle dt, \quad \forall h \in \mathcal{C}_{\mathbf{R}^d}([0, T])$$

and the singular part m_s given by

$$\langle m_s, h \rangle = \langle l_s, h \rangle, \quad \forall h \in \mathcal{C}_{\mathbf{R}^d}([0, T])$$

which satisfies the property: for any nonnegative measure θ on [0,T] with respect to which m_s is absolutely continuous

$$\int_0^T h_{\varphi_\infty^*}(\frac{dm_s}{d\theta}(t))d\theta(t) = \int_0^T \langle u^\infty(t), \frac{dm_s}{d\theta}(t) \rangle d\theta(t)$$

here $h_{\varphi_{\infty}^*}$ denotes the recession function of φ_{∞}^* . Indeed, as *m* belongs to $\partial J_{\varphi_{\infty}}(u^{\infty})$ by applying Theorem 5 in [23] we have

$$J_{\varphi_{\infty}}^{*}(m) = I_{\varphi_{\infty}^{*}}(\frac{dm_{a}}{dt}) + \int_{0}^{T} h_{\varphi_{\infty}^{*}}(\frac{dm_{s}}{d\theta}(t))d\theta(t)$$

$$(4.8)$$

with

$$I_{\varphi_{\infty}^{*}}(v) := \int_{0}^{T} \varphi_{\infty}^{*}(v(t))dt, \forall v \in L^{1}_{\mathbf{R}^{d}}([0,T]).$$

Recall that

$$\frac{dm_a}{dt} = -\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty}) \in \partial I_{\varphi_{\infty}}(u^{\infty})$$

that is

$$I_{\varphi_{\infty}^{*}}(\frac{dm_{a}}{dt}) + I_{\varphi_{\infty}}(u^{\infty}) = \langle -\zeta^{\infty} - \gamma \dot{u}^{\infty} + f^{\infty} + \nabla \psi(u^{\infty}), u^{\infty} \rangle_{\langle L^{1}_{\mathbf{R}^{d}}([0,T]), L^{\infty}_{\mathbf{R}^{d}}([0,T]) \rangle}.$$
 (4.9)

From (4.9) we deduce

$$\begin{split} J^*_{\varphi_{\infty}}(m) &= \langle u^{\infty}, m \rangle_{\langle \mathcal{C}_{\mathbf{R}^d}([0,T]), \mathcal{C}_{\mathbf{R}^d}([0,T])' \rangle} - J_{\varphi_{\infty}}(u^{\infty}) \\ &= \langle u^{\infty}, m \rangle_{\langle \mathcal{C}_{\mathbf{R}^d}([0,T]), \mathcal{C}_{\mathbf{R}^d}([0,T])' \rangle} - I_{\varphi_{\infty}}(u^{\infty}) \\ &= \int_0^T \langle u^{\infty}(t), -\zeta^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + f^{\infty} + \nabla \psi(u^{\infty}) \rangle dt \\ &+ \int_0^T \langle u^{\infty}(t), \frac{dm_s}{d\theta}(t) \rangle d\theta(t) \rangle - I_{\varphi_{\infty}}(u^{\infty}) \\ &= I_{\varphi_{\infty}^*}(\frac{dm_a}{dt}) + \int_0^T \langle u^{\infty}(t), \frac{dm_s}{d\theta}(t) \rangle d\theta(t). \end{split}$$

Coming back to (4.8) we get the equality

$$\int_0^T h_{\varphi_\infty^*}(\frac{dm_s}{d\theta}(t))d\theta(t) = \int_0^T \langle u^\infty(t), \frac{dm_s}{d\theta}(t) \rangle d\theta(t).$$

Remarks. Combining biting argument with the characterization of the decomposition formula in the dual of $L^{\infty}_{\mathbf{R}^d}([0,T])$ allows to localize the limits under consideration and their relationships via Proposition 4.1 and the continuous injection $B : \mathcal{C}_{\mathbf{R}^d}([0,T]) \to L^{\infty}_{\mathbf{R}^d}([0,T])$, namely the absolute continuous part m_a of the measure limit m and its singular part m_s . At this point, it is easy to see that, up to extracted subsequence, (z_n) stably converges to a Young measure $\nu^{\infty} \in \mathcal{Y}([0,T], \mathcal{M}^1_+(\mathbf{R}^d))$ with

$$bar(\nu_t) = \int_{\mathbf{R}^d} x \,\nu_t(dx) = -\zeta^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + f^{\infty}(t) + \nabla \psi(u^{\infty}(t))$$

for a.e. $t \in [0, T]$.

Taking account into the above remark and the results given in Theorem 4.2 and its proofs, we obtain

Corollary 4.3. Under the hypotheses and notations of Theorem 4.2, assume that φ_n^* is non negative for all $n \in \mathbf{N} \cup \{\infty\}$ and $(\varphi_n^*)_{n \geq 1}$ epilower converges to φ_∞^* , then the following hold:

$$\liminf_{n} \int_{0}^{T} \varphi_{n}^{*}(-\ddot{u}^{n}(t) - \gamma \dot{u}^{n}(t) + f^{n}(t) + \nabla \psi(u^{n}(t))) \, dt \geq \int_{0}^{T} [\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(dx)] \, dt. \quad (*)$$

Consequently the limits under consideration satisfy

$$\begin{split} 0 &\geq \int_0^T \left[\int_{\mathbf{R}^d} \varphi_\infty^*(x) \nu_t^\infty(dx) \right] dt - \int_0^T \langle bar(\nu_t^\infty), u^\infty(t) \rangle \, dt \\ &+ \int_0^T \varphi_\infty(u^\infty(t)) \, dt - \int_0^T h_{\varphi_\infty^*}(\frac{dm_s}{d\theta}(t)) d\theta(t) \\ &\geq \int_0^T \varphi_\infty^*(bar(\nu_t^\infty)) dt - \int_0^T \langle bar(\nu_t^\infty), u^\infty(t) \rangle \, dt \\ &+ \int_0^T \varphi_\infty(u^\infty(t)) \, dt - \int_0^T h_{\varphi_\infty^*}(\frac{dm_s}{d\theta}(t)) d\theta(t). \end{split}$$
(**)

Proof. As (φ_n^*) epilower converges to φ_∞^* and $(z^n = -\ddot{u}^n - \gamma \dot{u}^n + f^n + \nabla \psi(u^n))$ stably converges to $\nu^\infty \in \mathcal{Y}([0,T], \mathcal{M}^1_+(\mathbf{R}^d))$, by virtue of Lemma 3.4 in [11], we have

$$\liminf_{n} \int_{0}^{T} \varphi_{n}^{*}(-\ddot{u}^{n}(t) - \gamma \dot{u}^{n}(t) + f^{n}(t) + \nabla \psi(u^{n}(t))) \, dt \ge \int_{0}^{T} \left[\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(dx) \right] dt. \quad (*)$$

Using the results obtained in the proof of Theorem 4.2 and (*), it is not difficult to check

that

$$\begin{aligned} 0 &\geq \liminf_{n} [\int_{0}^{T} \varphi_{n}^{*}(-\ddot{u}^{n}(t) - \gamma \dot{u}^{n}(t) + f^{n}(t) + \nabla \psi(u^{n}(t))) dt \\ &+ \int_{0}^{T} \langle \ddot{u}^{n}(t) + \gamma \dot{u}^{n}(t) \rangle - f^{n}(t) - \nabla \psi(u^{n}(t)), u^{n}(t) \rangle dt + \int_{0}^{T} \varphi_{n}(u_{n}(t) dt] \\ \geq &\int_{0}^{T} [\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(dx)] dt - \langle u^{\infty}, m \rangle + \int_{0}^{T} \varphi_{\infty}(u^{\infty}(t)) dt \\ &= &\int_{0}^{T} [\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(dx)] dt \\ &+ \int_{0}^{T} \langle \zeta^{\infty}(t) + \gamma \dot{u}^{\infty}(t) - f^{\infty}(t) - \nabla \psi(u^{\infty}(t)), u^{\infty}(t) \rangle dt \\ &- &\int_{0}^{T} [\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(dx)] dt \\ &= &\int_{0}^{T} [\int_{\mathbf{R}^{d}} \varphi_{\infty}^{*}(x) \nu_{t}^{\infty}(dx)] dt \\ &+ &\int_{0}^{T} \langle \zeta^{\infty}(t) + \gamma \dot{u}^{\infty}(t) - f^{\infty}(t) - \nabla \psi(u^{\infty}(t)), u^{\infty}(t) \rangle dt \\ &- &\int_{0}^{T} h_{\varphi_{\infty}^{*}}(\frac{dm_{s}}{d\theta}(t)) d\theta(t) + \int_{0}^{T} \varphi_{\infty}(u^{\infty}(t)) dt \end{aligned}$$

thus proving $(^{**})$.

Remarks. 1) Some comments are in order. It is worthy to mention that there is no relationship between the $\nabla \Psi(x)$ and the $\nabla \varphi_n(x)$ and $\partial \varphi(x)$. Without additional assumptions one cannot expect to have the convergence of approximated solutions (u^n)

$$\begin{cases} \ddot{u}^n(t) + \gamma \dot{u}^n(t) - \nabla \psi(u^n(t)) - f^n(t) + \nabla \varphi_n(u^n(t)) = 0 \quad t \in [0,T], \\ u_n(T) = -u_n(0), \dot{u}_n(T) = -\dot{u}_n(0) \end{cases}$$

towards a $W^{2,2}_{\mathbf{R}^d}([0,T])$ *T*-anti-periodic solution u^{∞} of the problem

$$\begin{cases} -\ddot{u}^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + \nabla \psi(u^{\infty}(t)) + f^{\infty}(t) \in \partial \varphi_{\infty}(u^{\infty}(t)) & t \in [0,T], \\ u^{\infty}(T) = -u^{\infty}(0), \dot{u}^{\infty}(T) = -\dot{u}^{\infty}(0) \end{cases}$$

because (\ddot{u}^n) is bounded in $L^1_H([0,T])$. Nevertheless Theorem 4.2 shows that (u^n) converges pointwisely to the absolutely continuous *T*-anti-periodic mapping u^{∞} , (\dot{u}^n) pointwisely converges to the *T*-anti-periodic mapping \dot{u}^{∞} , $(-\ddot{u}^n(t) - \gamma \dot{u}^n(t) + \nabla \psi(u^n(t)) + f^n(t))$ weak^{*}converges in $\mathcal{C}_{R^d}([0,T])^*$ to a vector measure $m \in \mathcal{C}_{\mathbf{R}^d}([0,T])^*$ such that the density of its absolutely continuous part m_a satisfies the inclusion

$$-\zeta^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + \nabla \psi(u^{\infty}(t)) + f^{\infty}(t) \in \partial \varphi_{\infty}(u^{\infty}(t))$$

and such that the singular measure m_s in the decomposition $m = m_a + m_s$ satisfies the equality

$$\int_0^T h_{\varphi_\infty^*}(\frac{dm_s}{d\theta}(t))d\theta(t) = \int_0^T \langle u^\infty(t), \frac{dm_s}{d\theta}(t) \rangle d\theta(t)$$

for any nonnegative measure θ on [0, T] with respect to which m_s is absolutely continuous. On account of the proof of Theorem 4.2, it is easily seen that when (\ddot{u}^n) is bounded in $L^2_H([0, T])$, the proof of Theorem 4.2 is rather simple, because here one can assume that (u^n) converges uniformly to the *T*-anti-periodic mapping u^{∞} and (\dot{u}^n) converges pointwisely to the *T*-anti-periodic absolutely continuous mapping \dot{u}^{∞} (see Corollary 3.3) and (\ddot{u}^n) converges weakly in $L^2_H([0,T])$ to \ddot{u}^{∞} which satisfy the problem under consideration. In this particular situation the variational inequality (**) in Corollary 4.3 is reduced to

$$0 \ge \int_0^T \varphi_\infty^* (-\ddot{u}^\infty(t) - \gamma \dot{u}^\infty(t) + \nabla \psi(u^\infty(t)) + f^\infty(t)) dt + \int_0^T \langle \ddot{u}^\infty(t) + \gamma \dot{u}^\infty(t) - \nabla \psi(u^\infty(t)) - f^\infty(t), u^\infty(t) \rangle dt \qquad (**) + \int_0^T \varphi_\infty(u^\infty(t)) dt$$

that is equivalent to

$$-\ddot{u}^{\infty}(t) - \gamma \dot{u}^{\infty}(t) + \nabla \psi(u^{\infty}(t)) + f^{\infty}(t) \in \partial \varphi_{\infty}(u^{\infty}(t)) \quad a.e.$$

2) The existence and uniqueness of $W^{2,2}_{\mathbf{R}^d}([0,T])$ *T*-anti-periodic solution for the inclusion of the form

$$\begin{cases} \ddot{u}(t) + \gamma \dot{u}(t) \in f(t, u(t)) + \partial \varphi(u(t)), & a.e. \quad t \in [0, T], \\ u^{\infty}(T) = -u^{\infty}(0), \dot{u}^{\infty}(T) = -\dot{u}^{\infty}(0) \end{cases}$$

where φ is lsc even function, $f : \mathbf{R} \times H \to H$ is a Carathéodory mapping satisfying: $||f(t,x) - f(t,y)|| \leq L||x-y||$ for all $(t,x) \in \mathbf{R} \times H$, for some positive constant L > 0 and: there is a $L^2_{\mathbf{R}}$ integrable function $r : \mathbf{R} \to \mathbf{R}^+$ such that $||f(t,x)|| \leq r(t)$ for all $(t,x) \in \mathbf{R} \times H$, and $0 < T < \frac{\pi}{\sqrt{L}}$, is available ([7], Theorem 3.2) using the specific inequalities given in Lemma 3.2.

Acknowledgements

The authors are very thankful to the anonymous reviewer for his/her pertinent comments and valuable suggestions which substantially inproved the paper.

References

- A. Aftabizadeh, S. Aizicovici and N.H. Pavel, Anti-Periodic boundary value problems for higher order differential equations in Hilbert spaces, *Nonlinear Anal.* 18 (1992) 253–267.
- [2] A. Aftabizadeh, S. Aizicovici and N.H. Pavel, On class of second order anti-periodic boundary value problem, J. Math. Anal. Appl. 171 (1992) 301–320.
- [3] S. Aizicovici and N.H. Pavel, Anti-Periodic Solutions to a class of Nonlinear Differential Equations in Hilbert Space, J. Func. Anal. 99 (1991) 387-408.
- [4] S. Aizicovici, N.H. Pavel and I.I. Vrabie, Anti-Periodic Solutions to Strongly Nonlinear Evolutions Equations in Hilbert Space, An. Stiint. Univ. Al. I. Cuza Iasi Inform. XIV, s.I.a. Matematica, (1998) 227–234.

- [5] F. Antonacci and P. Margone, Second order nonautonomuous systems with symetric potential changing sign. *Rend. Mat.* 18 (1998) 367-379.
- [6] H. Brezis, Opérateurs maximaux monotones et Semi-groupes de contractions dans un espace de Hilbert. North Holland, 1979.
- [7] C. Castaing and T. Haddad, Relaxation and Bolza problem involving a second order evolution inclusion, J. Nonlinear Convex Anal. 9 (2008) 141–159.
- [8] C. Castaing, A.G. Ibrahim and S. Marcellin, Evolution inclusion generated by maccretive operators and the subdifferentials of nonconvex l.s.c pln functions, Working paper, 04-2007, Université de Montpellier II, to appear in Int. J. Differ. Equ. Appl.
- [9] C. Castaing and M.D.P. Monteiro Marques, BV Periodic Solutions of an Evolution Problem Associated with continuous moving Convex Sets, *Set-Valued Analysis* 3 (1995),381–389.
- [10] C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces. With Applications in Control Theory and Probability Theory. Kluwer Academic Publishers, Dordrecht (2004).
- [11] C. Castaing, P. Raynaud de Fitte and A. Salvadori, Some variational convergence results with application to evolution inclusions, Adv. Math. Econ. 8 (2006), 33–73.
- [12] C. Castaing, A.G Ibrahim and M. Yarou, Some existence problems in second order evolution inclusions: discretization and variational approach, *Taiwanese J. Math.* 12 (2008), 1435–1477.
- [13] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lectures Notes in Mathematics, 580, Springer-Verlag, Berlin, 1977.
- [14] Y. Chen, X. Wang and H. Xu, Antiperiodic solutions for semilinear evolution equations, J. Math. Anal. Appl. 273 (2002) 627–636.
- [15] J.F Couchourou and R. Precup, Anti-periodic solution for second order differential inclusions, *Electron. J. Differential Equations* 124 (2004) 1–17.
- [16] D.J.H. Garling, Subsequence principles for vector-valued random variables, Math. Proc. Cambridge Philos. Soc. 86 (1079) 301–311.
- [17] M. Guessous, An elementary proof of Komlós-Revesz theorem in Hilbert spaces, J. Convex Anal. 4 (1997) 321–332.
- [18] A. Haraux, Anti-periodic solutions of some nonlinear evolution equations, Manuscripta. Math. 63 (1989) 479–505.
- [19] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Hungar 18 (1967) 217–229.
- [20] J.J. Moreau and M. Valadier, A chain rule involving vector functions of bounded variations, J. Funct. Anal. 74 (1987) 333–345.
- [21] H. Okochi, On the existence of periodic solution of some nonlinear abstract parabolic equations, J. Math. Soc. Japan 40(1988) 541-553.

C. CASTAING, T. HADDAD AND A. SALVADORI

- [22] H. Okochi, On the existence of anti-periodic solutions to nonlinear evolution equations associated with odd subdifferential operators, J. Funct. Anal. 91 (1990) 246–258.
- [23] R.T. Rockafellar, Integrals which are convex functionals, II, *Pacific J. Math.* 39 (1971) 439–469.

Manuscript received 25 April 2009 revised 16 June 2009 accepted for publication 27 July 2009

C. CASTAING Département de Mathématiques, Université Montpellier II 34095 Montpellier Cedex 5, France E-mail address: castaing.charles@numericable.fr

T. HADDAD Faculty of Sciences, Université de Jijel, Algerie E-mail address: haddadtr2000@yahoo.fr

A. SALVADORI Dipartimento di Matematica, Universitetà Perugia via Vanvitelli 1, 06123 Perugia, Italia E-mail address: mateas@unipg.it