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1 Introduction

In the last two decades, many results on the existence of solutions to various kinds of
vector variational inequalities and vector equilibrium problems have been established, see
[6, 9] and the references therein. Recently, the semicontinuity, especially, the lower semi-
continuity of the solution sets to parametric vector variational inequalities and paramet-
ric vector equilibrium problems has been studied intensively in the literature, such as
[1, 2, 4, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20].

Lower semicontinuity and upper semicontinuity are both required in the continuity of
a solution set mapping. Generally speaking, the lower semicontinuity of the solution set
mapping for a parametric vector variational inequality or a parametric vector equilibrium
problem is much stronger than upper semicontinuity, and consequently, it is much more
difficult to derive conditions that guarantee lower semicontinuity because of the complexity
of the problem structure. In the literature there are several approaches to study the lower
semicontinuity and continuity of solution set mappings for parametric vector variational in-
equalities and parametric vector equilibrium problems. Cheng and Zhu [7] obtained a result
on the lower semicontinuity of the solution set map to a parametric vector variational in-
equality in finite-dimensional spaces based on a scalarization method. Recently, by virtue of
a density result and scalarization technique, Gong and Yao [13] have first discussed the lower
semicontinuity of the efficient solutions to parametric vector equilibrium problems, which
are called generalized systems in their paper. By using the ideas of Cheng and Zhu [7],
Gong [11] has discussed the continuity of the solution set mapping for a class of parametric
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weak vector equilibrium problems in topological vector spaces. Anh and Khanh [2], Kimura
and Yao [17] discussed the semicontinuity of solution mappings of parametric vector quasi-
equilibrium problems by virtue of the closedness or openness assumptions for some certain
sets. Huang et al.[14] used local existence results of the models considered and additional
assumptions to establish the lower semicontinuity of solution mappings for parametric im-
plicit vector equilibrium problems. Li and Chen [19] discussed the continuity and Hausdorff
continuity of the solution set map for a parametric weak vector variational inequality by
using a key assumption in virtue of the so-called parametric gap functions. Based on similar
assumptions, both results on the upper semicontinuity and the lower semicontinuity of more
general vector variational inequalities and a dual weak vector variational inequality were
also obtained, see [4, 5, 20].

In this paper, we discuss and improve the results on lower semicontinuity and continuity
of the efficient and weak efficient solution sets to parametric generalized systems given in
the aforementioned papers [13] and [11], respectively. Based on a well-known conclusion
with respect to the upper semicontinuity of a set-valued mapping (see Proposition 2.2), we
show that the uniform compactness assumptions used in proving the lower semicontinuity
of the efficient solution set in [13] and the weak efficient solution set in [11] are superfluous.
Furthermore, we point out that under the assumptions of lower semicontinuity theorems,
the solution set mappings are continuous actually. The upper semicontinuity of the solution
set mappings are derived by scalarization methods and without using uniform compactness
assumptions. In addition, we also give some continuity results of various proper efficient
solution sets to parametric generalized systems.

The rest of the paper is organized as follows. In Section 2, we introduce the parametric
generalized system (PGS), and recall some concepts and their properties. In Sections 3, 4
and 5, we discuss the continuity of the efficient solution set, the weak efficient solution set
and various proper efficient solution sets for (PGS), respectively.

2 Preliminaries

Throughout this paper, let X be a real Hausdorff topological vector space, let Y be a real
locally convex Hausdorff topological vector space and let Z be a metric space. Let Y ∗ be
the topological dual space of Y . Let C be a pointed closed convex cone in Y with intC 6= ∅.
Let C∗ := {f ∈ Y ∗ | f(y) ≥ 0,∀y ∈ C} be the dual cone of C. Denote the quasi-interior of
C∗ by C], i.e., C] := {f ∈ Y ∗ | f(y) > 0,∀y ∈ C\{0}}. Let D be a nonempty subset of Y .
The cone hull of D is defined as cone(D) := {td | t ≥ 0, d ∈ D}. Denote the closure of D by
cl(D) and the interior of D by intD. A nonempty convex subset M of the convex cone C is
called a base of C if C = cone(M) and 0 6∈ cl(M). It is easy to see that C] 6= ∅ if and only
if C has a base.

Let A be a nonempty subset of X and let F : A× A → Y be a bifunction. We consider
the following generalized system (GS): find x ∈ A such that

F (x, y) 6∈ −K, ∀y ∈ A,

where K ∪ {0} is a convex cone in Y .
(GS) includes as a special case a vector variational inequality (VVI) involving

F (x, y) = 〈T (x), y − x〉,

where T is a map from A to L(X, Y ), the space of all continuous linear operators from X
to Y .
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When the set A and the function F are perturbed by a parameter µ which varies over a
set Λ of Z, we can consider the following parametric generalized system (PGS): find x ∈ A(µ)
such that

F (x, y, µ) 6∈ −K, ∀y ∈ A(µ),

where A : Λ → 2X is a set-valued mapping, F : B × B × Λ → Y is a trifunction with
A(µ) ⊂ B for all µ ∈ Λ and K ∪ {0} is a convex cone in Y .

In this paper, we will discuss the continuity of the efficient solution set, the weak efficient
solution set and various proper efficient solution sets of (PGS).

Let ϕ : A×A → Y . The mapping ϕ is called C-monotone on A×A if ϕ(x, y)+ϕ(y, x) ∈
−C, for all x, y ∈ A. The mapping ϕ is called C-strictly monotone on A × A if ϕ is
C-monotone and, if x, y ∈ A, x 6= y, then ϕ(x, y) + ϕ(y, x) ∈ −intC.

Let ψ : A → Y . The mapping ψ is called C-convex if, for every x1, x2 ∈ A, t ∈ [0, 1],
tψ(x1) + (1− t)ψ(x2) ∈ ψ(tx1 + (1− t)x2) + C.

We say that D ⊂ Y is a C-convex set if D + C is a convex set in Y .
Let Λ, Ω be Hausdorff topological spaces and let G : Λ → 2Ω be a set-valued mapping

with nonempty values. In what follows, the symbol 0Ω denotes the origin of the space Ω.

Definition 2.1. (i) G is called lower semicontinuous (l.s.c) at λ̄ ∈ Λ if for any open set
Q ⊂ Ω with G(λ̄)∩Q 6= ∅, there exists a neighborhood N(λ̄) of λ̄ such that G(λ)∩Q 6=
∅, for all λ ∈ N(λ̄). Remark that G is l.s.c at λ̄ if and only if for any net {λα} ⊂ Λ
with λα → λ̄ and any x̄ ∈ G(λ̄), there exists xα ∈ G(λα) such that xα → x̄.

(ii) G is called upper semicontinuous (u.s.c) at λ̄ if for any open set Q ⊂ Ω with G(λ̄) ⊂ Q,
there exists a neighborhood N(λ̄) of λ̄ such that G(λ) ⊂ Q, for all λ ∈ N(λ̄).

(iii) G is called Hausdorff lower semicontinuous (H-l.s.c) at λ̄ if for each neighborhood B0 of
0Ω, there is a neighborhood N(λ̄) of λ̄ such that for every λ ∈ N(λ̄), G(λ̄) ⊂ G(λ)+B0.

(iv) G is called Hausdorff upper semicontinuous (H-u.s.c) at λ̄ if for each neighborhood B0 of
0Ω, there is a neighborhood N(λ̄) of λ̄ such that for every λ ∈ N(λ̄), G(λ) ⊂ G(λ̄)+B0.

(v) G is called closed at λ̄ if for each net (λα, xα) ∈ graph(G) := {(λ, x) | λ ∈ Λ, x ∈ G(λ)},
(λα, xα) → (λ̄, x̄), it follows that (λ̄, x̄) ∈ graph(G).

(vi) G is called uniformly compact near λ̄, if there exists a neighborhood U of λ̄ such that
cl(

⋃
λ∈U G(λ)) is compact.

We say G is l.s.c (resp. u.s.c, H-l.s.c, H-u.s.c, closed) on Λ, if it is l.s.c (resp. u.s.c,
H-l.s.c, H-u.s.c, closed) at each λ ∈ Λ. G is said to be continuous (resp. H-continuous) on
Λ if it is both l.s.c (resp. H-l.s.c) and u.s.c (resp. H-u.s.c) on Λ. Moreover, we say that G
has compact (resp. closed, convex) values, if G(λ) is a compact (resp. closed, convex) set
for each λ ∈ Λ.

The following proposition is a well-known fact in the literature, for instance, we can refer
to [8, p.23], [22, Proposition 1] and [21, Lemma 2.1]. For its importance in this paper and
for the convenience of the reader, we shall give its proof.

Proposition 2.2. If G has compact values, then G is u.s.c at λ̄ if and only if for any net
{λα} ⊂ Λ with λα → λ̄ and for any xα ∈ G(λα), there exist x̄ ∈ G(λ̄) and a subnet {xβ} of
{xα}, such that xβ → x̄.



144 C.R. CHEN AND S.J. LI

Proof. “⇒” Suppose that there is no subnet of the net {xα} converges to a point in G(λ̄).
Then for each x ∈ G(λ̄), there exist an open neighborhood N(x) of x and some α(x) such
that xα 6∈ N(x), ∀α º α(x). Clearly, G(λ̄) ⊂ ⋃

x∈G(λ̄) N(x). By the compactness of G(λ̄),
there exist xi ∈ G(λ̄), i = 1, · · · , n such that

G(λ̄) ⊂
n⋃

i=1

N(xi) =: U.

Moreover, xα 6∈ U , ∀α ≥ max{α(xi) : i = 1, · · · , n}.
On the other hand, since G(·) is u.s.c at λ̄, there exists an open neighborhood V of λ̄

such that G(V ) :=
⋃

λ∈V G(λ) ⊂ U . It follows from λα → λ̄ that λα ∈ V eventually, and
hence G(λα) ⊂ U . Consequently, we get xα ∈ G(λα) ⊂ U eventually, which leads to a
contradiction.

“⇐” Suppose that G(·) is not u.s.c at λ̄. Then there exist an open set V satisfying
G(λ̄) ⊂ V , and nets λα → λ̄ and xα ∈ G(λα), such that xα 6∈ V , ∀α. Whence, there exist
x̄ ∈ G(λ̄) and a subnet {xβ} of {xα} such that xβ → x̄. Since x̄ ∈ V , there exists β1 such
that xβ ∈ V when β ≥ β1, a contradiction.

Proposition 2.3. (i) If G is u.s.c at λ̄, then G is H-u.s.c at λ̄. Conversely if G is H-u.s.c
at λ̄ and G(λ̄) is compact, then G is u.s.c at λ̄.

(ii) If G is H-l.s.c at λ̄, then G is l.s.c at λ̄. Conversely if G is l.s.c at λ̄ and cl(G(λ̄)) is
compact, then G is H-l.s.c at λ̄.

(iii) If G(λ̄) is compact, then G is u.s.c at λ̄ if and only if G is H-u.s.c at λ̄, and G is l.s.c
at λ̄ if and only if G is H-l.s.c at λ̄.

Proof. (i) See Proposition 3.1(i) of [1].
(ii) The first implication is obvious from the definition.
For the inverse suppose to the contrary that G is not H-l.s.c at λ̄. Then there exists a

neighborhood B0 of 0Ω, nets {λα} ⊂ Λ with λα → λ̄ and {xα} such that xα ∈ G(λ̄) but
xα 6∈ G(λα) + B0, ∀α.

Since cl(G(λ̄)) is compact, we may assume that there exists x0 ∈ cl(G(λ̄)) such that
xα → x0. Because x0 ∈ cl(G(λ̄)), so for any neighborhood V (x0) of x0, V (x0) ∩G(λ̄) 6= ∅.
Hence, there exist y0 ∈ G(λ̄) and a neighborhood U of 0Ω satisfying U ⊂ B0 such that
x0 − y0 ∈ U .

For λα → λ̄ and y0 ∈ G(λ̄), by the lower semicontinuity of G at λ̄, there exists yα ∈ G(λα)
such that yα → y0. It follows from xα − yα → x0 − y0 that there exists some α1 such that
xα−yα ∈ U whenever α ≥ α1. Consequently, we get that xα ∈ yα +U ⊂ G(λα)+B0, which
leads to a contradiction.

(iii) It follows from (i) and (ii) readily.

We remark that the second implication of Proposition 2.3(ii) improves Proposition 2.1(b)
of [16], where the compactness of G(λ̄) but not cl(G(λ̄)) is required.

3 Continuity of the Efficient Solution Set

For each µ ∈ Λ, let V (A,F, µ) denote the efficient solution set of (PGS), i.e.,

V (A,F, µ) = {x ∈ A(µ) | F (x, y, µ) 6∈ −C\{0}, ∀y ∈ A(µ)}.
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In this section, we discuss the continuity of V (A,F, ·) as a set-valued mapping from the set
Λ into X.

For each f ∈ C∗\{0} and for each µ ∈ Λ, let Vf (A,F, µ) denote the set of f -efficient
solutions to (PGS), i.e.,

Vf (A,F, µ) = {x ∈ A(µ) | f(F (x, y, µ)) ≥ 0, ∀y ∈ A(µ)}.
The following lemma is an improvement of Lemma 2.2 in [13] (also Lemma 4.2 in [11]),

which plays an important role in proving the lower semicontinuity of V (A,F, ·), because the
uniform compactness of the mapping A used in Lemma 2.2 of [13] (also Lemma 4.2 in [11])
is not required here.

Lemma 3.1. Let B be a nonempty set such that A(µ) ⊂ B for all µ ∈ Λ. Let ψ : B×Λ → Y
and ϕ : B ×B × Λ → Y be mappings. Suppose that the following conditions are satisfied:

(i) A is continuous with nonempty compact convex values on Λ;

(ii) ψ is continuous on B × Λ and ϕ is continuous on B ×B × Λ;

(iii) For any given µ ∈ Λ, ϕ(x, x, µ) ∈ C for all x ∈ A(µ) and ϕ(·, ·, µ) is C-strictly mono-
tone on A(µ)×A(µ);

(iv) For each µ ∈ Λ and for each x ∈ A(µ), ψ(·, µ) + ϕ(x, ·, µ) is C-convex on A(µ).

Then, for each f ∈ C∗\{0}, Vf (A,F, ·) is a singleton and is continuous on Λ, where
F (x, y, µ) = ψ(y, µ) + ϕ(x, y, µ)− ψ(x, µ).

Proof. Since all conditions of Lemma 2.1 of [13] are satisfied, Vf (A,F, µ) is a singleton for
each µ ∈ Λ and for each f ∈ C∗\{0}.

Now we show that ∀µ ∈ Λ, Vf (A,F, ·) is continuous at µ. Given any net µα → µ. Let
{x} = Vf (A,F, µ) since Vf (A,F, µ) is a singleton. Then, x ∈ A(µ) and

f(ψ(y, µ)) + f(ϕ(x, y, µ))− f(ψ(x, µ)) ≥ 0, ∀y ∈ A(µ). (3.1)

Since A is l.s.c at µ, there exists xα ∈ A(µα) such that xα → x. Let {zα} = Vf (A,F, µα).
Then zα ∈ A(µα) and

f(ψ(y, µα)) + f(ϕ(zα, y, µα))− f(ψ(zα, µα)) ≥ 0, ∀y ∈ A(µα). (3.2)

It follows from (3.2) and xα ∈ A(µα) that

f(ψ(xα, µα)) + f(ϕ(zα, xα, µα))− f(ψ(zα, µα)) ≥ 0. (3.3)

Since A is u.s.c at µ with compact values, by Proposition 2.2, for the nets {µα} and
{zα}, there exist z ∈ A(µ) and a subnet {zβ} of {zα} such that zβ → z.

It follows from (3.1) that

f(ψ(z, µ)) + f(ϕ(x, z, µ))− f(ψ(x, µ)) ≥ 0. (3.4)

By (3.3) and the continuity of f, ψ, ϕ, taking limit on both sides of (3.3), we get

f(ψ(x, µ)) + f(ϕ(z, x, µ))− f(ψ(z, µ)) ≥ 0. (3.5)

From (3.4) and (3.5), we obtain

f(ϕ(x, z, µ) + ϕ(z, x, µ)) ≥ 0.
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Assume that z 6= x. Since ϕ(·, ·, µ) is C-strictly monotone, we have

ϕ(x, z, µ) + ϕ(z, x, µ) ∈ −intC.

Thus, it follows from f ∈ C∗\{0} that

f(ϕ(x, z, µ) + ϕ(z, x, µ)) < 0,

which leads to a contradiction. Therefore z = x and consequently, Vf (A,F, µβ) → Vf (A,F, µ).
Hence, by Proposition 2.2 we see that, Vf (A,F, ·) is continuous at µ since Vf (A,F, ·) is single-
valued.

The following result on the lower semicontinuity of V (A,F, ·) has been obtained by Gong
and Yao [13] recently, see Theorem 2.1 in [13]. However, noting that the well-known fact of
Proposition 2.2, we see that the uniform compactness of A in Theorem 2.1 of [13] can be
removed actually.

Theorem 3.2. Suppose that all conditions of Lemma 3.1 are satisfied. Moreover, assume
that ψ(A(µ)) and D = {ϕ(x, y, µ) | x, y ∈ A(µ)} are bounded subsets of Y for each µ ∈ Λ,
C] 6= ∅ and intC 6= ∅. Then, V (A,F, ·) is l.s.c on Λ.

Furthermore, we point out that under the assumptions of Theorem 3.2, the solution
mapping V (A,F, ·) is continuous.

Theorem 3.3. Suppose that all conditions of Theorem 3.2 are satisfied. Then, V (A,F, ·)
is continuous on Λ.

Proof. We need to prove that for each µ ∈ Λ, V (A,F, ·) is u.s.c at µ. Suppose that there
exists some µ0 ∈ Λ such that V (A,F, ·) is not u.s.c at µ0. Then there exist an open set M
satisfying V (A,F, µ0) ⊂ M , and nets µα → µ0 and xα ∈ V (A,F, µα), such that xα 6∈ M ,
∀α.

By Lemma 1.2 of [13] (or Theorem 2.1 of [12]), for each fixed µ ∈ Λ, we have
⋃

f∈C]

Vf (A,F, µ) ⊂ V (A,F, µ) ⊂ cl(
⋃

f∈C]

Vf (A,F, µ)).

Since xα ∈ V (A,F, µα) ⊂ cl(
⋃

f∈C] Vf (A,F, µα)), for any neighborhood U(0) of 0X we have

(xα + U(0)) ∩
⋃

f∈C]

Vf (A,F, µα) 6= ∅.

Thus, there exist a symmetric neighborhood U1(0) of 0X (i.e., U1(0) = −U1(0)) such that
U1(0) + U1(0) ⊂ U(0), and zα ∈

⋃
f∈C] Vf (A,F, µα) such that zα − xα ∈ U1(0). Then there

exists f ′ ∈ C] such that {zα} = Vf ′(A,F, µα). Let {x0} = Vf ′(A,F, µ0). Since Vf ′(A,F, ·)
is continuous at µ0 by Lemma 3.1, it follows from the above U1(0) that there exists a
neighborhood U(µ0) of µ0 such that for all µ ∈ U(µ0), Vf ′(A,F, µ) ∈ Vf ′(A,F, µ0) + U1(0).
Because µα → µ0, there exists α1 such that µα ∈ U(µ0) when α ≥ α1. Whence,

Vf ′(A,F, µα) ∈ Vf ′(A,F, µ0) + U1(0).

That is, zα − x0 ∈ U1(0). Consequently, we get

xα − x0 = xα − zα + zα − x0 ∈ −U1(0) + U1(0) = U1(0) + U1(0) ⊂ U(0).

By the arbitrariness of U(0), we obtain xα → x0. Note that x0 ∈
⋃

f∈C] Vf (A,F, µ0) ⊂
V (A,F, µ0) ⊂ M . It follows from xα 6∈ M and the openness of M that x0 6∈ M , which leads
to a contradiction.
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Corollary 3.4. Let Y be a real metric space. Suppose that all conditions of Lemma 3.1 are
satisfied, C] 6= ∅ and intC 6= ∅. Then, V (A,F, ·) is continuous on Λ.

Proof. It follows from the continuity of ψ, ϕ and the compactness of A(µ) for each µ ∈ Λ
that ψ(A(µ)) and D = {ϕ(x, y, µ) | x, y ∈ A(µ)} are compact subsets of Y for each µ ∈ Λ.
Since Y is a metric space, ψ(A(µ)) and D are bounded subsets of Y for each µ ∈ Λ. Thus,
all conditions are satisfied and hence V (A,F, ·) is continuous on Λ.

4 Continuity of the Weak Efficient Solution Set

For each µ ∈ Λ, let VW (A,F, µ) denote the weak efficient solution set of (PGS), i.e.,

VW (A,F, µ) = {x ∈ A(µ) | F (x, y, µ) 6∈ −intC, ∀y ∈ A(µ)}.
In this section, we discuss the continuity and closedness of VW (A,F, ·) as a set-valued map-
ping from the set Λ into X.

Very recently, Gong [11] has obtained the following result on the lower semicontinuity of
VW (A,F, ·), see Theorem 4.1 in [11]. Here, by virtue of Lemma 3.1, we point out that the
uniform compactness of A in Theorem 4.1 of [11] is also superfluous.

Theorem 4.1. Suppose that all conditions of Lemma 3.1 are satisfied and intC 6= ∅. Then,
VW (A,F, ·) is l.s.c on Λ.

Furthermore, we point out that under the assumptions of Theorem 4.1, the solution
mapping VW (A,F, ·) is continuous and closed. We remark that the upper semicontinuity
of VW (A,F, ·) is derived as follows by a scalarization method and without using uniform
compactness assumption, which is totally different from the proof of Theorem 3.1 in [11]
with respect to the upper semicontinuity of the solution mapping. Our result improves
Theorem 4.2 of [11].

Theorem 4.2. Suppose that all conditions of Theorem 4.1 are satisfied. Then, VW (A,F, ·)
is continuous and closed on Λ.

Proof. We shall first prove that for each µ ∈ Λ, VW (A,F, ·) is u.s.c at µ. Suppose that there
exists some µ0 ∈ Λ such that VW (A,F, ·) is not u.s.c at µ0. Then there exist an open set M
satisfying VW (A,F, µ0) ⊂ M , and nets µα → µ0 and xα ∈ VW (A,F, µα), such that xα 6∈ M ,
∀α.

For each µ ∈ Λ and for each x ∈ A(µ), since ψ(·, µ) + ϕ(x, ·, µ) is C-convex on A(µ),
F (x,A(µ), µ) = {F (x, y, µ) | y ∈ A(µ)} is a C-convex set. Then by Theorem 2.1(iii) of
[10] (or Theorem 2.1 of [11]), we have that xα ∈ VW (A,F, µα) =

⋃
f∈C∗\{0} Vf (A,F, µα),

thus there exists f ′ ∈ C∗\{0} such that {xα} = Vf ′(A,F, µα). Let {x0} = Vf ′(A,F, µ0).
Since Vf ′(A,F, ·) is continuous at µ0 by Lemma 3.1, we have xα → x0. Note that x0 ∈⋃

f∈C∗\{0} Vf (A,F, µ0) = VW (A,F, µ0) ⊂ M . It follows from xα 6∈ M and the openness of
M that x0 6∈ M , which yields a contradiction. Thus, we prove that VW (A,F, ·) is u.s.c at µ.
By the arbitrariness of µ, we have that VW (A,F, ·) is u.s.c on Λ.

Next, we prove that VW (A,F, ·) has closed values on Λ. Take arbitrary µ0 ∈ Λ and
xα ∈ VW (A,F, µ0) with xα → x0. It follows from xα ∈ VW (A,F, µ0) that xα ∈ A(µ0)
and F (xα, y, µ0) 6∈ −intC, ∀y ∈ A(µ0). Since A(µ0) is a compact set, x0 ∈ A(µ0). By
the continuity of ψ and ϕ, we get for any fixed y ∈ A(µ0), F (xα, y, u0) → F (x0, y, u0).
Thus, F (x0, y, u0) 6∈ −intC, ∀y ∈ A(µ0). This shows that x0 ∈ VW (A,F, µ0) and hence
VW (A,F, µ0) is a closed set.

Since VW (A,F, ·) is u.s.c on Λ with closed values, VW (A,F, ·) is closed on Λ by virtue of
Proposition 7 of [3, p.110].
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Now we give a sufficient condition of Hausdorff continuity and closedness for the solution
mapping VW (A,F, ·).
Corollary 4.3. Suppose that the conditions of Theorem 4.2 are satisfied. Then VW (A,F, ·)
is H-continuous and closed on Λ.

Proof. From the proof of Theorem 4.2 we see, VW (A,F, µ) is a closed set for each µ ∈ Λ.
It follows from VW (A,F, µ) ⊂ A(µ) and the compactness of A(µ) that VW (A,F, µ) is a
compact set for each µ ∈ Λ.

In view of Theorem 4.2, VW (A,F, ·) is continuous and closed on Λ. Since VW (A,F, ·) has
compact values on Λ, by virtue of Proposition 2.3, the continuity of VW (A,F, ·) is equivalent
to the Hausdorff continuity of VW (A,F, ·).
Remark 4.4. Let X = Rn, Y = Rp and C = Rp

+. Let gi : B × Λ → Rn, i = 1, 2, · · · , p,
be mappings. Let ϕ(x, y, µ) = (〈g1(x, µ), y − x〉, · · · , 〈gp(x, µ), y − x〉), where 〈·, ·〉 denotes
the inner product in the Euclidean space. Then VW (A,F, ·) reduces to the solutions set of
the parameterized weak vector variational inequality (WV V I)µ considered in [11]. Theo-
rem 4.2 improves Corollary 5.1 of [11], because the uniform compactness is not required.
Furthermore, let ψ ≡ 0. Theorem 4.2 also improves Theorem 3.1 of [7].

5 Continuity of Proper Efficient Solution Sets

Let M be a base of C. Set

C4 = {f ∈ C] | ∃ t > 0 such that f(b) ≥ t, ∀ b ∈ M}.
By the separation theorem of convex sets, we know that C4 6= ∅. It is clear that C4 ⊂ C].
Since M is a base of C, 0 6∈ cl(M). By the separation theorem of convex sets, there exists
f ∈ Y ∗\{0} such that r = inf{f(b) | b ∈ M} > f(0) = 0. Set

VM = {y ∈ Y | |f(y)| < r/2}.
Then, VM is an open convex circled neighborhood of 0Y .

Now we define some concepts of proper efficient solutions to (PGS). Let µ ∈ Λ and
x ∈ A(µ). Define F (x,A(µ), µ) := {F (x, y, µ) | y ∈ A(µ)}.

A vector x ∈ A(µ) is called a globally efficient solution to (PGS) if there exists a point
convex cone H ⊂ Y , with C\{0} ⊂ intH, such that

F (x,A(µ), µ) ∩ ((−H)\{0}) = ∅.
The set of globally efficient solutions to (PGS) is denoted by VG(A,F, µ).

A vector x ∈ A(µ) is called a Henig efficient solution to (PGS) if there exists some
neighborhood U of 0Y with U ⊂ VM such that

cone(F (x,A(µ), µ)) ∩ (−int cone(U + M)) = ∅.
The set of Henig efficient solutions to (PGS) is denoted by VH(A,F, µ).

A vector x ∈ A(µ) is called a super efficient solution to (PGS) if, for each neighborhood
V of 0Y , there exists some neighborhood U of 0Y such that

cone(F (x,A(µ), µ)) ∩ (U − C) ⊂ V.

The set of super efficient solutions to (PGS) is denoted by VS(A,F, µ).
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A vector x ∈ A(µ) is called a cone-Benson efficient solution to (PGS) if

cl(cone(F (x,A(µ), µ) + C)) ∩ (−C) = {0}.

The set of cone-Benson efficient solutions to (PGS) is denoted by Vc−B(A,F, µ).
When A(µ) ≡ A, where A is a nonempty subset of X, and F (x,A(µ), µ) = F (x,A), the

above concepts of proper efficient solutions of (PGS) reduce to the corresponding concepts
of proper efficient solutions of (GS) introduced in [10].

Theorem 5.1. Suppose that all conditions of Lemma 3.1 are satisfied and C has a base.
Then, VG(A,F, ·) and VH(A,F, ·) are continuous on Λ.

Proof. For each µ ∈ Λ and for each x ∈ A(µ), since ψ(·, µ) + ϕ(x, ·, µ) is C-convex on
A(µ), F (x,A(µ), µ) = {F (x, y, µ) | y ∈ A(µ)} is a C-convex set. Thus, in view of Theorem
2.1(i)-(ii) of [10], for each fixed µ ∈ Λ, we have that

VG(A,F, µ) =
⋃

f∈C]

Vf (A,F, µ),

and
VH(A,F, µ) =

⋃

f∈C4

Vf (A,F, µ).

For each fixed µ ∈ Λ, take arbitrary x ∈ VG(A,F, µ) =
⋃

f∈C] Vf (A,F, µ) and {µα}
with µα → µ. Then there exists f ′ ∈ C] such that {x} = Vf ′(A,F, µ). By Lemma 3.1,
Vf ′(A,F, ·) is continuous at µ. Hence, there exists {xα} = Vf ′(A,F, µα) such that xα → x.
Since xα = Vf ′(A,F, µα) ∈ ⋃

f∈C] Vf (A,F, µα) = VG(A,F, µα), we obtain VG(A,F, ·) is l.s.c
at µ. On the other hand, by the similar proof of Theorem 4.2, we can prove that VG(A,F, ·)
is u.s.c at µ. By the arbitrariness of µ, we have VG(A,F, ·) is continuous on Λ.

The continuity of VH(A,F, ·) can be deduced by the similar proof of VG(A,F, ·).
Theorem 5.2. Suppose that all conditions of Lemma 3.1 are satisfied and C has a bounded
base. Then, VS(A,F, ·) is continuous on Λ.

Proof. Since F (x,A(µ), µ) = {F (x, y, µ) | y ∈ A(µ)} is a C-convex set, in view of Theorem
2.1(iv) of [10], for each fixed µ ∈ Λ, we have that

VS(A,F, µ) =
⋃

f∈intC∗
Vf (A,F, µ),

where intC∗ denotes the interior of C∗ (with respect to the strong topology β(Y ∗, Y ) for
Y ∗). Then, the continuity result can be deduced by the similar proof of Theorem 5.1.

Theorem 5.3. Suppose that all conditions of Lemma 3.1 are satisfied and C has a weakly
compact base. Then, Vc−B(A,F, ·) is continuous on Λ.

Proof. By virtue of Theorem 2.3 of [10], we have that Vc−B(A,F, µ) = VS(A,F, µ) for each
µ ∈ Λ. Thus, it is clear that the conclusion holds because of Theorem 5.2.

Acknowledgment

The authors would like to thank Professor Liqun Qi and the anonymous referee for valuable
comments, which helped to improve the paper.



150 C.R. CHEN AND S.J. LI

References

[1] L.Q. Anh and P.Q. Khanh, Semicontinuity of the solution set of parametric multivalued
vector quasiequilibrium problems, J. Math. Anal. Appl. 294 (2004) 699–711.

[2] L.Q. Anh and P.Q. Khanh, On the stability of the solution sets of general multivalued
vector quasiequilibrium problems, J. Optim. Theory Appl. 135 (2007) 271–284.

[3] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, New York,
1984.

[4] C.R. Chen and S.J. Li, Semicontinuity of the solution set map to a set-valued weak
vector variational inequality, J. Ind. Manag. Optim. 3 (2007) 519–528.

[5] C.R. Chen, S.J. Li and Z.M. Fang, On the solution semicontinuity to a parametric
generalized vector quasivariational inequality, (2009) (submitted).

[6] G.Y. Chen, X.X. Huang and X.Q. Yang, Vector Optimization: Set-Valued and Varia-
tional Analysis, Springer, Berlin, 2005.

[7] Y.H. Cheng and D.L. Zhu, Global stability results for the weak vector variational in-
equality, J. Global Optim. 32 (2005) 543–550.

[8] F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl. 60
(1989) 19–31.

[9] F. Giannessi (ed.), Vector Variational Inequalities and Vector Equilibria: Mathematical
Theories, Kluwer Academic Publishers, Dordrecht, Holland, 2000.

[10] X.H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium
problems, J. Optim. Theory Appl. 133 (2007) 151–161.

[11] X.H. Gong, Continuity of the solution set to parametric weak vector equilibrium prob-
lems, J. Optim. Theory Appl. 139 (2008) 35–46.

[12] X.H. Gong and J.C. Yao, Connectedness of the set of efficient solutions for generalized
systems, J. Optim. Theory Appl. 138 (2008) 189–196.

[13] X.H. Gong and J.C. Yao, Lower semicontinuity of the set of efficient solutions for
generalized systems, J. Optim. Theory Appl. 138 (2008) 197–205.

[14] N.J. Huang, J. Li and H.B. Thompson, Stability for parametric implicit vector equilib-
rium problems, Math. Comput. Modelling 43 (2006) 1267–1274.

[15] P.Q. Khanh and L.M. Luu, Upper semicontinuity of the solution set to parametric
vector quasivariational inequalities, J. Global Optim. 32 (2005) 569–580.

[16] B.T. Kien, N.C. Wong and J.C. Yao, On the solution existence of generalized quasi-
variational inequalities with discontinuous multifunctions, J. Optim. Theory Appl. 135
(2007) 515–530.

[17] K. Kimura and J.C. Yao, Sensitivity analysis of solution mappings of parametric vector
quasi-equilibrium problems, J. Global Optim. 41 (2008) 187–202.

[18] S.J. Li, G.Y. Chen and K.L. Teo, On the stability of generalized vector quasivariational
inequality problems, J. Optim. Theory Appl. 113 (2002) 283–295.



ON THE SOLUTION CONTINUITY OF PGS 151

[19] S.J. Li and C.R. Chen, Stability of weak vector variational inequality, Nonlinear Anal.
70 (2009) 1528–1535.

[20] S.J. Li and Z.M. Fang, On the stability of a dual weak vector variational inequality
problem, J. Ind. Manag. Optim. 4 (2008) 155–165.

[21] E. Muselli, Upper and lower semicontinuity for set-valued mappings involving con-
straints, J. Optim. Theory Appl. 106 (2000) 527–550.

[22] C.H. Su and V.M. Sehgal, Some fixed point theorems for condensing multifunctions in
locally convex spaces, Proc. Amer. Math. Soc. 50 (1975) 150–154.

November 17, 2008. Its revision was received on April 9, 2009

Manuscript received 17 November 2008
revised 9 April 2009

accepted for publication 10 April 2009

C.R. Chen
College of Mathematics and Science, Chongqing University
Chongqing, 400030, China
E-mail address: chencr1981@163.com

S.J. Li
College of Mathematics and Science, Chongqing University
Chongqing, 400030, China
E-mail address: lisj@cqu.edu.cn


