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Abstract: In this paper, we focus on the all together model of the support vector machine (SVM) for
multiclass classification, which constructs a piece-wise linear discriminant function. It is formulated as a
single-objective optimization problem maximizing the sum of margins between all pairs of classes, which is
defined as the distance between two normalized support hyperplanes parallel to the corresponding discrim-
inant hyperplane where any sample is not contained. However, it is not necessarily equal to the geometric
margin defined as the minimal distance of patterns in a pair of classes to the corresponding discriminant
hyperplanes. Then, we formulate the proposed model as a multiobjective problem which maximizes all of the
margins simultaneously. Moreover, we derive two kinds of single-objective second order cone programming
(SOCP) problems based on scalarization approaches, Benson’s method and ε-constraint method to solve the
proposed multiobjective model, and show that the methods can find Pareto optimal solutions of the model.
Furthermore, through numerical experiments we verify the generalization ability of discriminant functions
obtained by the proposed SOCP problems.
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1 Introduction

The support vector machine (SVM) is a powerful machine learning method for binary-
class classification problems. Some kinds of extensions to multiclass classification have been
investigated [1, 9], which can be mainly classified into two kinds of approaches. One is
constructing a discriminant function by training multiple binary SVMs and combining them
and the other is finding a discriminant function directly by solving an optimization problem
with all patterns. As the former approach, one against others and one against one methods
are more commonly used [4, 11, 14], while as the latter approach, all together method is most
popular [5, 8, 17, 18]. In this paper we focus on the all together method, where all patterns
are classified into the corresponding classes by using a piece-wise linear function. Moreover,
several improved or decomposition methods have been proposed [6, 9, 10, 15]. This model
is formulated as a single-objective optimization problem of maximizing the sum of margins
between all of the pairs of classes. The margin between each pair of classes is defined
as the distance between two normalized support hyperplanes parallel to the corresponding
discriminant hyperplane where any pattern is not contained.

However, as we point out in this paper, the margin is not always equal to the geomet-
ric margin which is defined as the minimal distance of patterns in a pair of classes to the



116 K. TATSUMI, K. HAYASHIDA, R. KAWACHI AND T. TANINO

corresponding discriminant hyperplane classifying all patterns in both classes correctly, and
thus, the geometric margin can exactly indicate the relation between each pattern and the
discriminant function. Therefore, in this paper, we emphasize that maximizing the geomet-
ric margins is important for the generalization of multiclass classification, and propose a
SVM model which maximizes all of the geometric margins of all pairs of classes. Moreover,
since the multiclass classification can be essentially regarded as an optimization problem of
maximizing all of the margins simultaneously, we formulate the proposed model as a mul-
tiobjective problem. However, since the multiobjective model is difficult to solve directly,
we derive two kinds of single-objective optimization problems by using two scalarization
approaches for multiobjective optimization, Benson’s method and ε-constraint method, and
transform them into single-objective second-order cone programming (SOCP) problems,
respectively, which are solvable convex programming problems. Furthermore, we show the-
oretically that the proposed models can find Pareto optimal solutions of the multiobjective
problem and apply them to some examples to demonstrate that the proposed models can
achieve maximization of the geometric margins and to verify their generalization abilities.

This paper consists of six sections. In Section 2, we introduce the multiclass classifi-
cation problem and the existing all together model. Next, in Section 3 we propose a new
multiobjective SVM model, and in Section 4 we derive the proposed SOCP models based
on the scalarization approaches. In Section 5, we verify the results shown in Sections 4 and
5 through numerical examples. Finally, we conclude in Section 6.

2 Multiclass Classification

2.1 All Together Model

In this paper, we consider the following multiclass classification problem: For given data:
D = {xi, yi}, i = 1, . . . , m, where xi ∈ <n is an input pattern and yi ∈ K := {1, . . . , k}
denotes the corresponding class, we construct a classifier which divides all patterns into the
corresponding classes:

f(x) = arg max
p
{wp>x + bp}.

where wp ∈ <n and bp, p ∈ K are decision variables and the linear function wp>x + bp

indicates the degree of confidence when a point x is classified into class p. Now, suppose
that data D are piecewise linearly separable, which means that for all q 6= p, p, q ∈ K, there
exists w = (w1>, . . . , wk>)>, b = (b1, . . . , bk)> such that

(wp − wq)>xi + (bp − bq) > 0, i ∈ Ip, (2.1)

where Ip denotes an index set defined by Ip := {i ∈ {1, . . . , m} | yi = p}. Here,

(wp − wq)>x + (bp − bq) = 0, q 6= p, p, q ∈ K, (2.2)

is the discriminant hyperplane which distinguishes between classes p and q. Note that the
representation of discriminant hyperplanes (2.2) is not unique. For any constants t(6= 0), s
∈ < and any vector v ∈ <n, (w1>, . . . , wk>), (b1, . . . , bk) and (tw1> + v>, . . . , twk> + v>),
(tb1 + s, . . . , tbk + s) are different representations of the same discriminant function.

Furthermore, there exist an infinite number of discriminant functions to distinguish all
classes correctly. In the binary classification, the discriminant hyperplane (2.2) is selected
by maximizing 1/‖w1−w2‖ subject to w1 +w2 = 0, which is equivalent to minimization of
‖w1‖2, that is, the standard binary SVM model. Then, it is guaranteed that the discriminant
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hyperplane (2.2) maximizes the margin defined as the minimal distance of patterns in two
classes 1 and 2 to the hyperplane, and thus the obtained discriminant function has the high
generalization ability [13].

Therefore, in the multiclass classification, on the analogy of the binary SVM, the model
maximizing 1/‖wp − wq‖ for each pair {p, q} of all classes was proposed [17].

(O)
min
w,b

fo(w) =
1
2

k∑
p=1

k∑

q=1,q 6=p

‖wp − wq‖2

s.t (wp − wq)>xi + (bp − bq) = 1, i ∈ Ip, q 6= p, p, q ∈ K.

In addition, different models have been investigated from similar viewpoints, respectively
[5, 8, 18], however, it is shown that these models are equivalent to the model (O) [8]. In this
paper, we discuss only the model (O).

The model (O) can be interpreted as maximizing the margins called the functional mar-
gins in this paper:

df
pq(w, b) :=

{
1

‖wp − wq‖

∣∣∣∣ (wp − wq)>xi + (bp − bq) = 1, xi ∈ Ip,

(wq − wp)>xi + (bq − bp) = 1, xi ∈ Iq

}
, q 6= p, p, q ∈ K.

Note that if D is piecewise linearly separable, (2.1) guarantees that ‖wp − wq‖ > 0, q 6=
p, p, q ∈ K and thus the margins df

pq(w, b) are bounded. The functional margin denotes a
half of the distance between the following two normalized support hyperplanes,

(wp − wq)>x + (bp − bq) = 1 and (wq − wp)>x + (bq − bp) = 1, (2.3)

where any pattern is not contained between the hyperplanes. However, the functional margin
is not necessarily equal to the geometric margin defined as the distance of the nearest pattern
in a pair of classes to the corresponding discriminant hyperplane classifying all patterns in
both classes correctly.

dg
pq(w, b) := min

{
min
i∈Ip

|(wp − wq)>xi + (bp − bq)|
‖wp − wq‖ , min

i∈Iq

|(wp − wq)>xi + (bp − bq)|
‖wp − wq‖

}
,

q > p, p, q ∈ K,

which denote a half of the distance between the following two support hyperplanes

(wp − wq)>x + (bp − bq) = σpq(w, b),
(wq − wp)>x + (bq − bp) = σpq(w, b),

and σpq(w, b) is defined by

σpq(w, b) := min
{

min
i∈Ip

|(wp − wq)>xi + (bp − bq)|, min
i∈Iq

|(wq − wp)>xi + (bq − bp)|
}

,

q > p, p, q ∈ K.

Note that the right-hand sides of these equalities are different from those in (2.3). Thus, al-
though by minimizing ‖wp−wq‖, q 6= p ∈ K in the model (O), we can obtain the discriminant
function having at least one pair (r, s) such that df

rs(w, b) is equal to the geometric margin
dg

rs(w, b), it cannot guarantee that all df
pq(w, b) are equal to the corresponding dg

pq(w, b),
which can be shown in the following theorem.
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Theorem 2.1. For any discriminant function (2.1) which correctly classifies a piecewise
linearly separable data D,

dg
pq(w, b) = df

pq(w, b), q > p, p, q ∈ K,

holds. We have the equalities if and only if the following normalization condition holds:

σpq(w, b) = 1, q > p, p, q ∈ K. (2.4)

Proof. This result is easily verified by noticing the definitions of two kinds of margins.

If k = 2, that is, in the binary classification, the condition (2.4) always holds for any
discriminant function. On the other hand, in the multiclass classification there often exist
discriminant functions having no representation satisfying (2.4), as we will show in the next
subsection. Therefore, it often cannot guarantee that the model (O) achieves maximization
of the geometric margins. Meanwhile, the geometric margin can exactly represent the dis-
tance of each class to the corresponding discriminant hyperplane in comparison with the
functional margin.

Therefore, in this paper we emphasize that maximizing geometric margins is important
for the generalization of multiclass classification and propose a new SVM which maximizes
them. Moreover, since the multiclass classification means maximizing all margins simulta-
neously, it should be essentially regarded as a multiobjective optimization problem. Hence,
we formulate the proposed model as a multiobjective problem.

2.2 Examples

Example 1:
Consider data D1 =

{
x1 = (0, 1)>, y1 = 1, x2 = (1, 0)>, y2 = 1, x3 = (2, 0)>, y3 = 2,

x4 = (0, 2)>, y4 = 3 }. Then, the optimal solution of model (O) for D1 is w1
o = (−1,−1)>,

w2
o = (1, 0)> , w3

o = (0, 1)> and bo = (2,−1,−1)>. The obtained discriminant hyperplanes
are shown in Figure 1, where the dashed lines denote the obtained discriminant hyperplanes
and the circle, square and triangle denote patterns with label 1, 2 and 3, respectively. Now,

Figure 1: Model (O) for Example 1
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the corresponding functional margins for the obtained discriminant function are

df
12(wo, bo) = 0.447, df

13(wo, bo) = 0.447, df
23(wo, bo) = 0.707,

while its geometric margins are

dg
12(wo, bo) = 0.447, dg

13(wo, bo) = 0.447, dg
23(wo, bo) = 1.414.

Hence, we can see dg
23(wo, bo) > df

23(wo, bo), which indicates that two kinds of margins are
not equal. At the same time, we can observe that there exists no representation of these
discriminant hyperplanes satisfying (2.4).

Next, we show the case that model (O) cannot maximize the geometric margins.

Figure 2: Model (O) for Example 2

Example 2:
Let us consider data D2 =

{
x1 = (0, 0)>, y1 = 1, x2 = (1, 0)>, y2 = 2, x3 = (0, 1)>,

y3 = 3}. The optimal solution for model (O) for D2 is w1
o = (−1,−1)>, w2

o = (1, 0)>,
w3

o = (0, 1)> and bo = (2,−1,−1)>. Figure 2 shows an obtained discriminant hyperplanes,
where functional and geometric margins are given by

df
12(wo, bo) = dg

12(wo, bo) = 0.447, df
13(wo, bo) = dg

13(wo, bo) = 0.447,

df
23(wo, bo) = dg

23(wo, bo) = 0.707.

In this case two kinds of margins are equal at (wo, bo). However, there exists another
discriminant function with larger geometric margins given by w1∗ = 2

3 (−1 − 1)>, w2∗ =
2
3 (2 − 1)>, w3∗ = 2

3 (−1 2)> and b∗ = 1
3 (2,−1,−1)>, as shown in Figure 3, where the

functional and geometric margins are given by

df
12(w

∗, b∗) = 0.5, df
13(w

∗, b∗) = 0.5, df
23(w

∗, b∗) = 0.354,

dg
12(w

∗, b∗) = 0.5, dg
13(w

∗, b∗) = 0.5, dg
23(w

∗, b∗) = 0.707.

This fact shows that two kinds of margins are not equal at (w∗, b∗) and that (wo, bo) is
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g

g

g

Figure 3: The best discriminant hyperplanes for Example 2

not optimal in the sense of maximization of the sum of geometric margins, which can be
also verified from fo(wo) = 12 < 16 = fo(w∗). Furthermore, note that the solution (w∗, b∗)
is complete optimal in the sense of Pareto optimality for maximizing geometric margins
and thus it dominates the solution (wo, bo), which implies that the multiclass classification
problem should be formulated as a multiobjective optimization problem.

Therefore, in the next section, we propose a new model which can maximize the geometric
margins in terms of the multiobjective optimization.

3 Multiobjective Model Maximizing Geometric Margins

In this and the following sections, we shall use the following notations for the orders of x, y
∈ <n:

x 5 y, if xi 5 yi, i = 1, . . . , n,

x ≤ y, if xi 5 yi, i = 1, . . . , n, and x 6= y,

x < y, if xi < yi, i = 1, . . . , n.

First, as we mentioned in the previous section, we formulate the multiclass classification
problem as the following multiobjective optimization problem which maximizes multiple
geometric margins.

(M1)
max
w,b

d(w, b)

s.t. (wp − wq)>xi + (bp − bq) = 1, i ∈ Ip, q 6= p, p, q ∈ K,

where d(w, b) is defined by

d(w, b) =
(
dg
12(w, b), dg

13(w, b), . . . , dg
(k−1)k(w, b)

)>
.

The model (M1) maximizes the geometric margins of all pairs of classes subject to correct
classification for all patterns. Although this formulation is natural, it is difficult to solve
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it directly because of its complexity. Thus, we propose the following model (M2) using a
vector σ ∈ <k(k−1)/2 and a function θ(w, σ):

(M2)

max
w,b,σ

θ(w, σ)

s.t. (wp − wq)>xi + (bp − bq) = σpq, i ∈ Ip, q > p, p, q ∈ K,
(wq − wp)>xi + (bq − bp) = σpq, i ∈ Iq, q > p, p, q ∈ K,
σpq = 1, q > p, p, q ∈ K,

where the objective function is defined by

θ(w, σ) =
(
θ12(w, σ), θ13(w, σ), . . . , θ(k−1)k(w, σ)

)>
,

and
θpq(w, σ) =

σpq

‖wp − wq‖ , q > p, p, q ∈ K.

In addition, for convenience, F (M1) and F (M2) represent the feasible regions of (M1) and
(M2), respectively. Notice that if data D is piecewise linearly separable, F (M1) and F (M2)
are not empty, respectively, and thus, ‖wp −wq‖ > 0, q > p, p, q ∈ K, as mentioned in the
previous section.

Now, let us consider the relation between two models (M1) and (M2). We begin to
discuss the boundedness of objective function d(w, b) of (M1). Thus, we define the minimal
distance between classes p and q by

dm
pq := min{‖xi − xj‖ | i ∈ Ip, j ∈ Iq}, q > p, p, q ∈ K.

Then, it is easily shown that dm
pq/2 is the upper bound of dg

pq(w, b) for feasible solutions
(w, b) of (M1) for any q > p, p, q ∈ K.

Next, we show some lemmas to see the boundedness of θ(w, σ) for feasible solutions
(w, b, σ) of (M2).

Lemma 3.1. If (w, b, σ) is feasible for (M2), then (w, b) is feasible for (M1).

Proof. Since (w, b, σ) ∈ F (M2), we have

(wp − wq)>xi + (bp − bq) = σpq = 1, i ∈ Ip, q > p, p, q ∈ K,

and
(wq − wp)>xi + (bq − bp) = σpq = 1, i ∈ Ip, q > p, p, q ∈ K.

Thus, (w, b) is feasible for (M1).

Now, we define σ(w, b) by using σpq(w, b) as

σ(w, b) :=
(
σ12(w, b), σ13(w, b), . . . , σ(k−1)k(w, b)

)>
.

Lemma 3.2. If (w, b) is feasible for (M1), then (w, b, σ(w, b)) is feasible for (M2) and we
have d(w, b) = θ(w, σ(w, b)).

Proof. Since (w, b) is feasible for (M1), (w, b) satisfies

(wp − wq)>xi + (bp − bq) = 1, i ∈ Ip, q 6= p, p, q ∈ K.



122 K. TATSUMI, K. HAYASHIDA, R. KAWACHI AND T. TANINO

Thus, from the definition of σ(w, b) we have that for any xi, i ∈ Ip, q > p, p, q ∈ K,

(wp − wq)>xi + (bp − bq)

= min
{

min
i∈Ip

∣∣(wp − wq)>xi + (bp − bq)
∣∣ , min

i∈Iq

∣∣(wq − wp)>xi + (bq − bp)
∣∣
}

= σpq(w, b) = 1, i ∈ Ip,

and similarly we have

(wq − wp)>xi + (bq − bp) = σpq(w, b) = 1, i ∈ Iq, q > p, p, q ∈ K.

Therefore, (w, b, σ(w, b)) is feasible for (M2). Moreover, we have for any q > p, p, q ∈ K

dg
pq(w, b) = min

{
min
i∈Ip

|(wp − wq)>xi + (bp − bq)|
‖wp − wq‖ , min

i∈Iq

|(wq − wp)>xi + (bq − bp)|
‖wq − wp‖

}

=
σpq(w, b)
‖wp − wq‖ = θpq(w, σ(w, b)).

Lemma 3.3. If (w, b, σ) is feasible for (M2), then (w, b, σ(w, b)) is also feasible for (M2)
and θ(w, σ(w, b)) = θ(w, σ).

Proof. If (w, b, σ) ∈ F (M2), then (w, b) ∈ F (M1) from Lemma 3.1. In addition, from Lemma
3.2 (w, b, σ(w, b)) is feasible for F (M2), and from constraints of (M2) we can derive

min
i∈Ip

{|(wp − wq)>xi + (bp − bq)|} = σpq, q > p ∈ K,

min
i∈Iq

{|(wq − wp)>xi + (bq − bp)|} = σpq, q > p ∈ K,

which, together with the definition of σpq(w, b), yields that

σpq(w, b)
‖wp − wq‖ = σpq

‖wp − wq‖ , q > p, p, q ∈ K.

Therefore, we have θ(w, σ(w, b)) = θ(w, σ).

By applying these lemmas, the boundedness of θ(w, σ) for feasible solutions (w, b, σ) of
(M2) can be shown as follows.

Lemma 3.4. A set {θ(w, b) |(w, b, σ) ∈ F (M2)} is bounded.

Proof. From Lemmas 3.1–3.3, we have that for any feasible solution (w, b, σ) of (M2), (w, b)
∈ F (M1) and θ(w, σ) 5 θ(w, σ(w, b)) = d(w, b). Here, since dg

pq(w, b) for all feasible solutions
of (M1) is bounded above by the constant dm

pq/2 for any q > p, p, q ∈ K and θ(w, b) = 0, we
can see that {θ(w, b)| (w, b, σ) ∈ F (M2)} is also bounded.

Next, we present the conditions which guarantee the existence of Pareto optimal solutions
of (M2). Hence, let us define Fw̄,b̄,σ̄(M2) for a feasible solution (w̄, b̄, σ̄) of (M2) by

Fw̄,b̄,σ̄(M2) := {(w, b, σ) ∈ F (M2) | θ(w̄, σ̄) 5 θ(w, σ)},

and consider the following assumption.
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Assumption 3.5. For any feasible solution (w̄, b̄, σ̄) of (M2), a set {θ(w, σ) | (w, b, σ)∈
Fw̄,b̄,σ̄(M2)} is closed.

Then, we can show the following theorem.

Theorem 3.6. Suppose that Assumption 3.5 holds. Then there exist Pareto optimal solu-
tions of (M2).

Proof. Lemma 3.4 and Assumption 3.5 yield that {θ(w, b)| (w, b, σ) ∈ Fw̄,b̄,σ̄(M2)} is closed
and bounded, which guarantees the existence of Pareto optimal solutions of (M2) [7].

In practice, we can expect that the assumption holds for almost all classification prob-
lems. Hence, throughout this and the following sections we suppose that Assumption 3.5
holds.

Finally, we show that the optimal solutions of (M2) can be considered to be equivalent
to those of (M1).

Lemma 3.7. If (w∗, b∗, σ∗) is Pareto optimal for (M2), then we have θ(w∗, σ∗) = θ(w∗,
σ(w∗, b∗)).

Proof. Since (w∗, b∗, σ∗) ∈ F (M2), we have θ(w∗, σ∗) 5 θ(w∗, σ(w∗, b∗)) from Lemma 3.3.
Moreover, if θ(w∗, σ∗) ≤ θ(w∗, σ(w∗, b∗)) holds, then it contradicts the Pareto optimality of
(w∗, b∗, σ∗) . Therefore, we have θ(w∗, σ∗) = θ(w∗, σ(w∗, b∗)).

Theorem 3.8. If (w∗, b∗, σ∗) is Pareto optimal for (M2), (w∗, b∗) is Pareto optimal for
(M1). Conversely, if (w∗, b∗) is Pareto optimal for (M1), (w∗, b∗, σ(w∗, b∗)) is Pareto optimal
for (M2).

Proof. Frist, we show that (w∗, b∗) is Pareto optimal for (M1) if (w∗, b∗, σ∗) is Pareto optimal
for (M2). We assume that (w∗, b∗) is not Pareto optimal for (M1). In view of Lemma 3.1,
(w∗, b∗) is feasible for (M1) and hence there exists a feasible solution (w, b) for (M1) such
that

d(w∗, b∗) ≤ d(w, b). (3.1)

Then, Lemma 3.2 leads to
d(w∗, b∗) = θ(w∗, σ(w∗, b∗)). (3.2)

From the Pareto optimality of (w∗, b∗, σ∗) for (M2) and Lemma 3.7, we have

θ(w∗, σ∗) = θ(w∗, σ(w∗, b∗)). (3.3)

By using the feasibility of (w, b) and Lemma 3.2,

d(w, b) = θ(w, σ(w, b)). (3.4)

Then, from (3.1), (3.2), (3.3) and (3.4) we can derive

θ(w, σ(w, b)) = d(w, b) ≥ d(w∗, b∗) = θ(w∗, σ(w∗, b∗)) = θ(w∗, σ∗).

This fact contradicts the Pareto optimality of (w∗, b∗, σ∗). Therefore, we conclude that
(w∗, b∗) is Pareto optimal for (M1).

Secondly, we show that (w∗, b∗, σ(w∗, b∗)) is Pareto optimal for (M2) if (w∗, b∗) is Pareto
optimal for (M1). We assume that (w∗, b∗, σ(w∗, b∗)) is not Pareto optimal for (M2). From
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the feasibility of (w∗, b∗) for (M1) and Lemma 3.2, (w∗, b∗, σ(w∗, b∗)) is feasible for (M2).
Then, there exists a feasible solution (w, b, σ) for (M2) such that

θ(w∗, σ(w∗, σ∗)) ≤ θ(w, σ), (3.5)

and
d(w∗, b∗) = θ(w∗, σ(w∗, b∗)). (3.6)

Since (w, b) is feasible for (M1), by Lemma 3.2 we have

d(w, b) = θ(w, σ(w, b)). (3.7)

Moreover, by Lemma 3.3 we have

θ(w, σ) 5 θ(w, σ(w, b)). (3.8)

Thus, from (3.5), (3.6), (3.7) and (3.8), we can derive

d(w∗, b∗) = θ(w∗, σ(w∗, b∗)) ≤ θ(w, σ) 5 θ(w, σ(w, b)) = d(w, b).

This fact contradicts the Pareto optimality of (w∗, b∗). Therefore, we conclude that
(w∗, b∗, σ(w∗, b∗)) is Pareto optimal for (M2).

Theorem 3.9. If (w∗, b∗, σ∗) is weakly Pareto optimal for (M2), (w∗, b∗) is weakly Pareto
optimal for (M1). Conversely, if (w∗, b∗) is weakly Pareto optimal for (M1), (w∗, b∗, σ(w∗, b∗))
is weakly Pareto optimal for (M2).

Proof. This theorem can be easily shown similarly to Theorem 3.8.

Theorems 3.6 and 3.8 show the existence of Pareto optimal solutions of (M1) and (M2).
In addition, Theorems 3.8 and 3.9 imply that we can solve (M2) instead of (M1). However,
since (M2) is multiobjective, in the next section we derive two kinds of single-objective
optimization problems by scalarization approaches to multiobjective optimization, Benson’s
method and ε-constraint method, and furthermore transform them into solvable problems.

4 Single-objective Model

4.1 SOCP Model Based on Benson’s Method

In this subsection, we first consider the following single-objective problem which is derived
from a scalarization approach to multiobjective optimization called Benson’s method.

(Pmax-sum)

max
w,b,σ,l

∑

q∈K

∑

q>p∈K

lpq

s.t. lpq = 0, q > p, p, q ∈ K,
σpq

‖wp − wq‖ −
σ̄pq

‖w̄p − w̄q‖ = lpq, q > p, p, q ∈ K,

(wp − wq)>xi + (bp − bq) = σpq, i ∈ Ip, q > p, p, q ∈ K,
(wq − wp)>xi + (bq − bp) = σpq, i ∈ Iq, q > p, p, q ∈ K,
σpq = 1, q > p, p, q ∈ K.

This method improves some initial feasible solution (w̄, b̄, σ̄), by maximizing the sum of
nonnegative deviation variables lpq = θpq(w, b, σ)− θpq(w̄, b̄, σ̄), q > p, p, q ∈ K. It is known
that an optimal solution of (Pmax-sum) is Pareto optimal for (M2) [7].
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However, (Pmax-sum) is still difficult to solve because of its fractional constraints. Thus,
secondly, we consider the following solvable problem in which some constraints of (Pmax-
sum), σpq

‖wp−wq‖−
σ̄pq

‖w̄p−w̄q‖ = lpq and σpq = 1, are replaced with σpq− σ̄pq

‖w̄p−w̄q‖‖wp − wq‖ = lpq

and 1 5 σpq 5 cpq by using constants cpq, respectively.

(P2max-sum)

max
w,b,σ,l

∑

q∈K

∑

q>p∈K

lpq

s.t. lpq = 0, q > p, p, q ∈ K,

σpq − ‖wp − wq‖ σ̄pq

‖w̄p − w̄q‖ = lpq, q > p, p, q ∈ K,

(wp − wq)>xi + (bp − bq) = σpq, i ∈ Ip, q > p, p, q ∈ K,
(wq − wp)>xi + (bq − bp) = σpq, i ∈ Iq, q > p, p, q ∈ K,
1 5 σpq 5 cpq, q > p, p, q ∈ K.

This model can be regarded as a second-order cone programming problem (SOCP), as shown
in the following transformation. By defining

vpq := wp − wq, q > p, p, q ∈ K,

ρpq := σpq − 1, q > p, p, q ∈ K,

mpq :=
‖w̄p − w̄q‖

σ̄pq
(σpq − lpq), q > p, p, q ∈ K,

ξpqi := (wp − wq)>xi + (bp − bq)− σpq, i ∈ Ip, q > p, p, q ∈ K,

ξqpi := (wq − wp)>xi + (bq − bp)− σpq, i ∈ Iq, q > p, p, q ∈ K,

(P2max-sum) can be transformed into the following second-order cone programming problem
(SOCP1):

(SOCP1)

max
v,m,b,ρ,l,ξ,η

∑

q∈K

∑

q>p∈K

lpq

s.t. mpq = ‖vpq‖, q > p, p, q ∈ K,

mpq − ‖w̄p−w̄q‖
σ̄pq

(1 + ρpq − lpq) = 0, q > p, p, q ∈ K,

(vpq)>xi + (bp − bq)− ρpq − ξpqi = 1, i ∈ Ip,
q > p, p, q ∈ K,

(−vpq)>xi + (bq − bp)− ρpq − ξqpi = 1, i ∈ Iq,
q > p, p, q ∈ K,

cpq − ρpq − ηpq = 1, q > p, p, q ∈ K,
vpq = vpκ + vκq, κ ∈ K \ {p, q}, q > p, p, q ∈ K,
ξpqi = 0, i ∈ Ip, p 6= q, p, q ∈ K,
lpq = 0, ρpq = 0, ηpq = 0, q > p, p, q ∈ K,
bp = 0, p ∈ K.

The SOCP is a convex programming problem having a linear objective function and linear
and second-order cone constraints, which can be efficiently solved by a number of methods
such as the primal-dual interior point method within the almost same time as a quadratic
programming problem of the same size [2]. Moreover, several commercial and noncommercial
solvers have been developed [3, 12].

Next, let us consider what kind of solution we can obtain by solving (P2max-sum). Here,
by focusing on the constraints of (P2max-sum) and (M2), we can easily confirm that for
any feasible solution (w, b, σ, l) of (P2max-sum), (w, b, σ) is always feasible for (M2), while
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for any feasible solution (w, b, σ) of (M2), σ does not necessarily satisfy the constraints of
(P2max-sum), 1 5 σpq 5 cpq, q > p, p, q ∈ K. Thus, let us consider the relation between
feasible solutions of (M2) and (P2max-sum).

Now, we define t(σ) by

t(σ) := max{1/σpq | q > p, p, q ∈ K}.

Then, for any feasible solution (w, b, σ) for (M2), t(σ) is the minimal t > 0 such that
(tw, tb, tσ) ∈ F (M2) and θ(t(σ)w, t(σ)σ) = θ(w, σ). Next, we define cM

w̄,b̄,σ̄
by using Fw̄,b̄,σ̄(M2)

cM
w̄,b̄,σ̄ := sup{t(σ)σpq | q > p, p, q ∈ K, (w, b, σ) ∈ Fw̄,b̄,σ̄(M2)}.

Then, the relation between two feasible solutions is shown in the following lemma.

Lemma 4.1. If parameters cpq in (P2max-sum) satisfy cpq = cM
w̄,b̄,σ̄

for any q > p, p, q ∈
K, then for any solution (w, b, σ) ∈ Fw̄,b̄,σ̄(M2), (t(σ)w, t(σ)b, t(σ)σ, l(w, σ)) is feasible for
(P2max-sum), where l(w, σ) is defined by

lpq(w, σ) := t(σ)σpq − ‖t(σ)(wp − wq)‖ σ̄pq

‖w̄p − w̄p‖ , q > p, p, q ∈ K,

and we have θ(w, σ) = θ(t(σ)w, t(σ)σ).

Proof. Since (w, b, σ) ∈ Fw̄,b̄,σ̄(M2), we have θ(w, σ) = θ(w̄, σ̄). Thus,

lpq(w, σ) = ‖t(σ)(wp − wq)‖
(

σpq

‖(wp − wq)‖ −
σ̄pq

‖w̄p − w̄p‖
)

= ‖t(σ)(wp − wq)‖ (θpq(w, σ)− θpq(w̄, σ̄)) = 0, q > p, p, q ∈ K.

From the definitions of t(σ) and cM
w̄,b̄,σ̄

, and the assumption of the lemma, we have 1 5
t(σ)σpq 5 cM

w̄,b̄,σ̄
5 cpq, for any q > p, p, q ∈ K. In addition, since (t(σ)w, t(σ)b, t(σ)σ, l(w, σ))

satisfies other constraints of (P2max-sum), it is feasible for (P2max-sum). Moreover, from
the definition of θ(w, b) we have θ(w, b) = θ(t(σ)w, t(σ)b).

From this lemma we can see that cM
w̄,b̄,σ̄

< ∞ is required and cpq should be selected
appropriately. Hence, let us consider the following assumption.

Assumption 4.2. For any feasible (w̄, b̄, σ̄) ∈ F (M2), cM
w̄,b̄,σ̄

< ∞ and cpq in (P2max-sum)
satisfy cpq = cM

w̄,b̄,σ̄
for any q > p, p, q ∈ K.

In general, it can be expected that cM
w̄,b̄,σ̄

< ∞ for any feasible (w̄, b̄, σ̄) ∈ F (M2) in all
classification problems because any feasible solution (w, b, σ) is constrained to classify all
patterns correctly. Throughout this subsection, we suppose that Assumption 4.2 is satisfied.

Theorem 4.3. If the optimal value of (P2max-sum) is 0 and its optimal solution is
(w∗, b∗, σ∗, l∗), then (w∗, b∗, σ∗) is Pareto optimal for (M2) and θ(w∗, σ∗) = θ(w̄, σ̄). Con-
versely, if (w̄, b̄, σ̄) is Pareto optimal for (M2), then the optimal value of (P2max-sum) is 0,
and (t(σ̄)w̄, t(σ̄)b̄, t(σ̄)σ̄, 0) is optimal for (P2max-sum).

Proof. First, we show that if the optimal value of (P2max-sum) is 0 and its optimal solution
is (w∗, b∗, σ∗, l∗), then (w∗, b∗, σ∗) is Pareto optimal for (M2). Thus, assume that (w∗, b∗, σ∗)
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is not Pareto optimal for (M2). Then, since (w∗, b∗, σ∗) is feasible for (M2), there exists a
feasible solution (ŵ, b̂, σ̂) of (M2) such that θ(w∗, σ∗) ≤ θ(ŵ, σ̂). Now, let us define

l̂pq := t(σ̂)σ̂pq − ‖t(σ̂)(ŵp − ŵq)‖ σ̄pq

‖w̄p − w̄p‖ , q > p, p, q ∈ K.

Then, we have
∑

q∈K

∑
q>p∈K l̂pq > 0. In addition, (t(σ̂)ŵ, t(σ̂)b̂, t(σ̂)σ̂, l̂) is feasible for

(P2max-sum) from Lemma 4.1. These facts contradict that the optimal value of (P2max-
sum) is 0. Therefore, (w∗, b∗, σ∗) is Pareto optimal for (M2). Moreover, since σ∗pq −

σ̄pq

‖w̄p−w̄q‖‖wp∗ − wq∗‖ = 0, p < q, p, q ∈ K, we have θ(w̄, σ̄) = θ(w∗, σ∗).
Next, we show that if (w̄, b̄, σ̄) is Pareto optimal for (M2), then the optimal value of

(P2max-sum) is 0. Assume that (w∗, b∗, σ∗, l∗) is an optimal solution for (P2max-sum) and∑
q∈K

∑
q>p∈K l∗pq > 0. Then, for some s > r ∈ K

σ∗rs − ‖wr∗ − ws∗‖ σ̄rs

‖w̄r − w̄s‖ = l∗rs > 0,

and for any q > p, p, q ∈ K

σ∗pq − ‖wp∗ − wq∗‖ σ̄pq

‖w̄p − w̄q‖ = l∗pq = 0,

These inequalities yield that θ(w̄, σ̄) ≤ θ(w∗, σ∗) and (w∗, b∗, σ∗) is feasible
for (M2). Thus, the facts contradict the Pareto optimality of (w̄, b̄, σ̄). Therefore, the
optimal value

∑
q∈K

∑
q>p∈K l∗pq of (P2max-sum) is 0. Moreover, we define l̄pq := t(σ̄)σ̄pq−

‖t(σ̄)(w̄p − w̄q)‖ σ̄pq

‖w̄p−w̄p‖ , q > p, p, q ∈ K. Then, from l̄ = 0 and Lemma 4.1, (t(σ̄)w̄, t(σ̄)b̄,
t(σ̄)σ̄, 0) is optimal for (P2max-sum).

Theorem 4.4. Let (w∗, b∗, σ∗, l∗) be an optimal solution of (P2max-sum). If its optimal
value

∑
q∈K

∑
q>p∈K l∗pq is greater than 0, then θ(w̄, σ̄) ≤ θ(w∗, σ∗).

Proof. From the assumption of theorem, we have l∗ ≥ 0. Since we have σ∗pq− σ̄
‖w̄p−w̄q‖

‖wp∗ − wq∗‖= l∗pq, q > p, p, q ∈ K from optimality of (w∗, b∗, σ∗), we can derive the result
of the theorem.

Theorems 4.3 and 4.4 imply that if an obtained optimal value for (P2max-sum) is 0,
the obtained solution is Pareto optimal for (M2), and otherwise, the obtained solution
(w∗, b∗, σ∗) dominates the initial solution (w̄, b̄, σ̄). Furthermore, we propose the following
iterative method of solving (M2) by exploiting these properties of (P2max-sum).

Iterative method based on Benson’s method: IMB

Step 0. Set τ := 0 and (w(0), b(0), σ(0)) = (w̄, b̄, σ̄).

Step 1. Solve (P2max-sum) using (w(τ), b(τ), σ(τ)) as an initial solution and c
(τ)
pq > 0, q >

p ∈ K, and obtain the optimal solution (w∗, b∗, σ∗, l∗).

Step 2. Set (w(τ+1), b(τ+1), σ(τ+1), l(τ+1)) := (w∗, b∗, σ∗, l∗).

If
∑

q∈K

∑

q>p∈K

l(τ+1)
pq 5 δ, then terminate. Otherwise, τ := τ + 1 and go to Step 1.
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Here, δ is a sufficiently small positive constant.
If

∑
q∈K

∑
q>p∈K l

(τ+1)
pq = 0 holds at some τ , then IMB obtains a Pareto optimal solution

for (M2). Otherwise, the method may generate an infinite sequence {w(τ), b(τ), σ(τ)}, τ =
0, . . .. Thus, let us consider the case where the condition

∑
q∈K

∑
q>p∈K l

(τ)
pq = 0 does not

hold at any τ .

Theorem 4.5. Assume that c
(τ)
pq in IMB satisfies that c

(τ)
pq = cM

w(τ),b(τ),σ(τ) , q > p ∈ K for
any τ = 0. If δ = 0 and l(τ) ≥ 0 for any τ in IMB, then a sequence {θ(w(τ), σ(τ))} generated
by IMB converges to a point θ(ŵ, σ̂) such that (ŵ, b̂, σ̂) ∈ Fw̄,b̄,σ̄(M2) is Pareto optimal for

(M2). In addition,
{∑

q∈K

∑
q>p∈K l

(τ)
pq

}
converges to 0.

Proof. First, we show the convergence of the sequences {θ(w(τ), σ(τ))} and
{∑

q∈K

∑
q>p∈K

l
(τ)
pq

}
. Since (P2max-sum) solved at iteration τ in IMB uses (w(τ), b(τ), σ(τ)) as an initial

solution and the obtained optimal solutions is given by (w(τ+1), b(τ+1), σ(τ+1)), we have
θ(w(τ), σ(τ)) ≤ θ(w(τ+1), σ(τ+1)) from Theorem 4.4. In addition, the sequence {θ(w(τ), σ(τ))}
is monotone nondecreasing and included in {θ(w, σ) | (w, b, σ) ∈ Fw̄,b̄,σ̄(M2)}, which is
bounded and closed from Lemma 3.4 and Assumption 3.5. Therefore, {θ(w(τ), σ(τ))} con-
verges to a point θ(ŵ, σ̂) such that (ŵ, b̂, σ̂) ∈ Fw̄,b̄,σ̄(M2).

Furthermore, since θ(w̄, σ̄) = θ(w(0), σ(0)) ≤ θ(w(τ), σ(τ)) and σ
(τ)
pq 5 c

(τ)
pq from the

feasibility of (w(τ), b(τ), σ(τ), l(τ)) for (P2max-sum), we have

‖wp(τ) − wq(τ)‖ 5 σ
(τ)
pq

θpq(w̄, σ̄)
5

max
τ

c(τ)
pq

θpq(w̄, σ̄)
, q > p, p, q ∈ K.

Thus, ‖wp(τ) − wq(τ)‖ is bounded from above. At the same time, we have

l(τ)
pq = σ(τ) − ‖wp(τ) − wq(τ)‖ σ

(τ−1)
pq

‖wp(τ−1) − wq(τ−1)‖
= ‖wp(τ) − wq(τ)‖

(
θpq(w(τ), θ(τ))− θpq(w(τ−1), θ(τ−1))

)
,

q < p, p, q ∈ K, τ = 1, . . .,

which, together with the upper boundedness of ‖wp(τ) − wq(τ)‖ and the convergence of
{θ(w(τ), σ(τ))}, yields that

∑
q∈K

∑
p<q∈K l

(τ)
pq → 0 as τ →∞.

Next, we show (ŵ, b̂, σ̂) is Pareto optimal for (M2). Assume that (ŵ, b̂, σ̂) is not Pareto
optimal. Then, let us consider the problem (P2max-sum) using (ŵ, b̂, σ̂) as an initial solution
and suppose that (w, b, σ, l) is its optimal solution. Then, we have

∑
q∈K

∑
p<q∈K lpq > 0,

l ≥ 0 and

σpq − ‖wp − wq‖ σ̂pq

‖ŵp − ŵq‖ = lpq, q > p, p, q ∈ K.

Moreover, from Theorem 4.4 we have σ̂pq/‖ŵp − ŵq‖ = σ
(τ)
pq /‖wp(τ) − wq(τ)‖ for any τ ≥ 0

and any q > p ∈ K. Thus, we have

σpq − ‖wp − wq‖ σ
(τ)
pq

‖wp(τ) − wq(τ)‖ = lpq, τ ≥ 0, q > p, p, q ∈ K,
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which means (w, b, σ, l) satisfies the second constraints of (P2sum-max) using (w(τ), b(τ),
σ(τ)) as an initial solution. In addition, since (w, b, σ, l) satisfies other constraints, it is feasi-
ble. Furthermore, since

∑
q∈K

∑
p<q∈K l

(τ+1)
pq → 0 as τ →∞, we have

∑
q∈K

∑
p<q∈K l

(τ+1)
pq

<
∑

q∈K

∑
p<q∈K lpq for a sufficiently large τ . However, the result contradicts the fact that

(w(τ+1), b(τ+1), σ(τ+1)) is optimal for (P2sum-max) using (w(τ), b(τ), σ(τ)) as an initial solu-
tion. Therefore, (ŵ, b̂, σ̂) is Pareto optimal for (M2).

Theorem 4.5 implies that if the constant δ is small positive, then IMB terminates
within a finite number of iterations. Additionally if

∑
q∈K

∑
q>p∈K l

(τ+1)
pq = 0, the ob-

tained solution is Pareto optimal for (M2). Otherwise, the obtained solution is approx-
imately Pareto optimal. Moreover, since θ(w(τ), b(τ), σ(τ)) ≤ θ(w(τ+1), b(τ+1), σ(τ+1)), we
have cM

w(τ),b(τ),σ(τ) = cM
w(τ+1),b(τ+1),σ(τ+1) from the definition of cM

w,b,σ for any τ = 0. Thus, we
can use the same constant vector c̄ such that c̄ = cM

w̄,b̄,σ̄
as c(τ) at each iteration τ .

In this subsection, we have shown that the proposed method IMB can obtain a Pareto
optimal solution. In order to obtain various Pareto optimal solutions, we can extend (P2max-
sum) by replacing the objective function with

∑
q∈K

∑
q>p∈K ωpqlpq, where ωpq is a positive

weight for each lpq, q > p ∈ K. In the next subsection, we discuss another scalarization
approach which is more suitable to finding many kinds of Pareto optimal solutions.

4.2 SOCP Model Based on ε-constraint Method

Here, we propose another model based on the ε-constraint method. By applying the ε-
constraint approach to (M2), the following problem can be derived:

(ε-P)

max
w,b,σ

g1(w, σ) =
σrs

‖wr − ws‖
s.t.

σpq

‖wp − wq‖ = εpq, q > p, (p, q) 6= (r, s), p, q ∈ K,

(wp − wq)>xi + (bp − bq) = σpq, i ∈ Ip, q > p, p, q ∈ K,
(wq − wp)>xi + (bq − bp) = σpq, i ∈ Iq, q > p, p, q ∈ K,
σpq = 1, q > p, p, q ∈ K,

where a pair (r, s) and constants εpq, q > p, (p, q) 6= (r, s), p, q ∈ K are appropriately
selected such that the feasible reagin of (ε-P) is not empty. This method maximizes only
one of the objectives of (M2) while the others are transformed to constraints with εpq. Then,
the following theorems are known about ε-constraint method.

Theorem 4.6 ([7]). Let (w, b, σ) be an optimal solution of (ε-P) for some (r, s). Then
(w, b, σ) is weakly Pareto optimal for (M2).

Theorem 4.7 ([7]). (w, b, σ) is Pareto optimal for (M2) if and only if there exists an ε−rs

such that (w, b, σ) is optimal for (ε-P) for any (r, s) ⊂ K.

Here ε−rs denotes a vector in which the element εrs is removed from ε. These theorems
show that we can obtain any Pareto optimal solution of (M2) by solving (ε-P) with an
appropriate choice of ε−rs.

However, (ε-P) is also difficult to solve because of its fractional constraints and objective
functions. Hence, by making use of one degree of freedom of (ε-P), we add a constraint
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σrs = crs with an appropriate constant crs = 1 to obtain the following model:

(ε-P2)

max
w,b,σ−rs

g2(w) =
crs

‖wr − ws‖
s.t.

σpq

‖wp − wq‖ = εpq, q > p, (p, q) 6= (r, s), p, q ∈ K,

(wr − ws)>xi + (br − bs) = crs, i ∈ Ir,
(ws − wr)>xi + (bs − br) = crs, i ∈ Is,
(wp − wq)>xi + (bp − bq) = σpq, i ∈ Ip, q > p,

(p, q) 6= (r, s), p, q ∈ K,
(wq − wp)>xi + (bq − bp) = σpq, i ∈ Iq, q > p,

(p, q) 6= (r, s), p, q ∈ K,
σpq = 1, q > p, (p, q) 6= (r, s), p, q ∈ K,

where (w, b, σ−rs) denotes the vector in which the element σrs is removed from (w, b, σ).
Moreover, for a solution (w, b, σ−rs) of (ε-P2), we define a vector (w, b, (σ−rs, crs)) whose
element σrs is crs and other elements are equal to (w, b, σ−rs).

Then, similarly to (P2max-sum), we can show that (ε-P2) is equivalent to the SOCP.
Now, we define

vpq := wp − wq, q > p, p, q ∈ K

ρpq := σpq − 1, q > p, p, q ∈ K

ξpqi := (wp − wq)>xi + (bp − bq)− σpq, i ∈ Ip, q > p, p, q ∈ K,

ξqpi := (wq − wp)>xi + (bq − bp)− σpq, i ∈ Iq, q > p, p, q ∈ K.

By using these variables, (ε-P2) can be transformed to the following problem:

(SOCP2)

min
v,b,σ−rs,l,ρ−rs,ξ

l

s.t. l = ‖vrs‖,
σpq = εpq‖vpq‖, (p, q) 6= (r, s), q > p, p, q ∈ K,
σpq − ρpq = 1, (p, q) 6= (r, s), q > p, p, q ∈ K,
(vpq)>xi + (bp − bq)− σpq − ξpqi = 0, i ∈ Ip,

(p, q) 6= (r, s), q > p, p, q ∈ K,
(−vpq)>xi + (bq − bp)− σpq − ξqpi = 0, i ∈ Iq,

(p, q) 6= (r, s), q > p, p, q ∈ K,
(vrs)>xi + (br − bs)− ξrsi = crs, i ∈ Ir,
(−vsr)>xi + (bs − br)− ξsri = crs, i ∈ Is,
vpq = vpκ + vκq, κ ∈ K \ {p, q}, q > p, p, q ∈ K,
ξpqi = 0, i ∈ Ip, p 6= q, p, q ∈ K,
ρpq = 0, (p, q) 6= (r, s), q > p, p, q ∈ K,
bp = 0, p ∈ K.

Therefore, (ε-P2) can be effectively solved similarly to (P2max-sum).
Next, let us consider the properties of optimal solutions of (ε-P2). Here, we define cM

ε

by using t(σ).

cM
ε := sup{t(σ)σpq | q > p, p, q ∈ K, (w, b, σ) ∈ Ω(ε-P)},

where Ω(ε-P) denotes the set of all optimal solutions of (ε-P). Moreover, we consider the
following assumption:
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Assumption 4.8. For any ε−rs such that Ω(ε-P) 6= ∅, cM
ε < ∞ and crs in (ε-P2) satisfy

crs = cM
ε .

Note that this assumption is similar to Assumption 4.2 mentioned in the previous sub-
section. Since we can also expect that cM

ε < ∞ for any classification problem, we suppose
that this assumption holds throughout this subsection. Then we can show the following
theorems.

Theorem 4.9. Let (w∗, b∗, σ∗) be an optimal solution of (ε-P), then
crs

σ∗rs

(w∗, b∗, σ∗−rs) is

optimal for (ε-P2).

Proof. First, we show that crs

σ∗rs
(w∗, b∗, σ∗−rs) is feasible for (ε-P2). From the feasibility of

(w∗, b∗, σ∗) for (ε-P), Assumption 4.8 and the definition of cM
ε , we have t(σ∗)σ∗rs 5 cM

ε 5 crs.
From the definition of t(σ), we have

t(σ∗)σ∗pq = max
q>p∈K

{
1

σ∗pq

}
σ∗pq = 1, q > p, p, q ∈ K.

Thus,
crs

σ∗rs

σ∗pq =
crs

t(σ∗)σ∗rs

t(σ∗)σ∗pq = 1, (p, q) 6= (r, s), q > p, p, q ∈ K.

Moreover, the feasibility of (w∗, b∗, σ∗) for (ε-P) yields that

crs

σ∗rs

(w∗r − w∗s)>xi +
crs

σ∗rs

(b∗r − b∗s) = crs

σ∗rs

σ∗rs = crs, i ∈ Ir,

crs

σ∗rs

(w∗s − w∗r)>xi +
crs

σ∗rs

(b∗s − b∗r) = crs

σ∗rs

σ∗rs = crs, i ∈ Is.

In addition, it is easily shown that other constraints of (ε-P2) are satisfied by crs

σ∗rs
(w∗, b∗,

σ∗−rs). Therefore, crs

σ∗rs
(w∗, b∗, σ∗−rs) is feasible for (ε-P2).

Next, we show that crs

σ∗rs
(w∗, b∗, σ∗−rs) is optimal for (ε-P2). It is easily confirmed that for

any feasible solution (w, b, σ−rs) of (ε-P2), (w, b, (σ−rs, crs)) is feasible for (ε-P) and

g1(w, (σ−rs, crs)) =
crs

‖wr − ws‖ = g2(w). (4.1)

In addition, since (w∗, b∗, σ∗) is optimal for (ε-P), we have

σ∗rs

‖w∗r − w∗s‖ = g1(w∗, σ∗) = g1(w, (σ−rs, crs)). (4.2)

At the same time, we have

g2

(
crs

σ∗rs

w∗
)

=
σ∗rs

‖w∗r − w∗s‖ , (4.3)

Therefore, from (4.1), (4.2) and (4.3) we can derive that

g2

(
crs

σ∗rs

w∗
)

= g2(w),

for any feasible solution (w, b, σ−rs) of (ε-P2). Therefore, crs

σ∗rs
(w∗, b∗, σ∗) is optimal for

(ε-P2).
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Theorem 4.10. Let (w∗, b∗, σ∗−rs) be an optimal solution of (ε-P2). Then (w∗, b∗, (σ∗−rs,
crs)) is optimal for (ε-P).

Proof. It is obvious that if (w∗, b∗, σ∗−rs) is feasible for (ε-P2), (w∗, b∗, (σ∗−rs, crs)) is feasible
for (ε-P). Now, let us suppose that (w∗, b∗, (σ∗−rs, crs)) is not optimal for (ε-P). Then, there
exists an optimal solution (ŵ, b̂, σ̂) such that g1(ŵ, σ̂) > g1(w∗, (σ∗−rs, crs)), which means

σ̂rs

‖ŵr − ŵs‖ >
crs

‖w∗r − w∗s‖ . (4.4)

Now, since crs

σ̂rs
(ŵ, b̂, σ̂−rs) is optimal for (ε-P2) from Theorem 4.9 and (w∗, b∗, σ∗−rs) is also

optimal for (ε-P2), we have

σ̂rs

‖ŵr − ŵs‖ = g2

(
crs

σ̂rs
ŵ

)
= g2(w∗) =

crs

‖w∗r − w∗s‖ . (4.5)

Thus, (4.4) and (4.5) contradict. Therefore, (w∗, b∗, (σ∗−rs, crs)) is optimal for (ε-P).

Theorem 4.10 shows that for an optimal solution (w∗, b∗, σ∗−rs) of (ε-P2), (w∗, b∗, (σ∗−rs,
crs)) is optimal for (ε-P). Thus, Theorem 4.6 implies that the optimal solution is weakly
Pareto optimal for (M2). In addition, the result, together with Theorems 4.7 and 4.9,
suggests that we can obtain any (weakly) Pareto optimal solution of (M2) by solving (ε-P2)
with an appropriate choice of ε−rs. Consequently, we can conclude that various discriminant
functions maximizing the geometric margins can be obtained by solving (ε-P2) as a pair (r, s)
and the corresponding parameter ε−rs are varied.

Finally, in the next section, we apply the proposed models to some examples as mentioned
in Section 3 and other examples.

5 Numerical Examples

In this section, we report the results of numerical experiments, where we compared the
proposed models based on Benson’s and ε-constraint methods with the existing model (O).
We used the optimization tools in MathWorks Matlab 7.0.1 ∗ and Mosek version 5.0 † to
solve the QP and SOCP problems.

We applied the existing and proposed models to examples mentioned in Section 2, an
example having no complete optimal solution, and real-world data sets.

5.1 Examples 1 and 2

For Examples 1 and 2, we classified D1 and D2 by using IMB and (ε-P2). For both examples,
we set (r, s) = (1, 2) and c12 = 10 in (ε-P2). Parameters ε13 and ε23 were set as ε−12 =
θ−12(wo, σo), where (wo, bo, σo) is the solution obtained by the existing model (O) for D1

and D2, respectively, as shown in Section 2.2. In addition, IMB used δ = 10−6, cpq = 10,
q > p, p, q ∈ {1, 2, 3} and (wo, bo, σo) as an initial solution (w̄, b̄, σ̄) for both examples.

For Example 1, (ε-P2) obtained a solution: w1 = (−6.6552,−6.6804)>, w2 =
(13.3448,−6.6806)>, w3 = (−6.6896, 13.3610)>, b = (20.0024,−9.9976,−10.0048)>, σ13 =
9.4524, σ23 = 40.0757. The corresponding geometric margins for the solution were given by

dg
12(w, b) = 0.5000, dg

13(w, b) = 0.4973, dg
23(w, b) = 1.4142.

∗http://www.mathworks.com/
†http://www.mosek.com/
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Besides, for Examples 1, IMB obtained the following solution in four iterations.
w1 = (−0.6673, −0.6673)>, w2 = (1.3345,−0.6673)>, w3 = (−0.6673, 1.3345)>, b =
(2.0018,−1.0009,−1.0009)>, σ = (1.0009, 1.0009, 4.0036)>. The corresponding geometric
margins of the solution were

dg
12(w, b) = 0.5000, dg

13(w, b) = 0.5000, dg
23(w, b) = 1.4142.

Table 1 shows the geometric margins obtained at each iteration in IMB, which indicates
that margins obtained finally were achieved at iteration 2.

Table 1: Obtained geometric margins at each iteration in IMB

Iteration dg
12 dg

13 dg
23

1 0.4900 0.4960 1.4142
2 0.5000 0.5000 1.4142
3 0.5000 0.5000 1.4142
4 0.5000 0.5000 1.4142

The discriminant hyperplanes obtained in two models are shown in Figures 4(a) and
4(b), where the dashed lines denote the discriminant hyperplanes and the circle, square and
triangle denote patterns with label 1, 2 and 3, respectively, similarly to Figures 1-3. We
can observe that the geometric margins and the corresponding discriminant hyperplanes for
the solution obtained by both methods are almost same. Moreover note that the obtained
solution is the complete optimal solution of (M1), which dominates the geometric margins
obtained by solving model (O) (cf. Figure 1).

g

g

g

0.4973
g

g

g

(a) (ε-P2) (b) IMB

Figure 4: Proposed models for Example 1

For Example 2, (ε-P2) obtained w1 = (−6.6603,−6.6746)>, w2 = (13.3397,−6.6742)>,
w3 = (−6.6794, 13.3488)>, b = (6.6673,−3.3327,−3.3347)>, σ13 = 9.3116, σ23 = 20.0209.
The corresponding geometric margins for the solution are

dg
12(w, b) = 0.5000, dg

13(w, b) = 0.4995, dg
23(w, b) = 0.7071.

Besides, IMB obtained the following solution in five iterations, w1 = (−0.6667, −0.6668)>,
w2 = (1.3333,−0.6665)>, w3 = (−0.6667, 1.3333)>, b = (0.6667, −0.3333, −0.3334)>,
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σ = (1.0000, 1.0001, 2.0000)>. The corresponding geometric margins for the solution are
given by

dg
12(w, b) = 0.5000, dg

13(w, b) = 0.4995, dg
23(w, b) = 0.7071.

We can see that the geometric margins and the corresponding discriminant hyperplanes
for the solution obtained by both methods are same, additionally, which are the same ones
shown in the Figure 3. Note that the obtained solution is also the complete optimal solution
of (M1).

These results show that the proposed model can obtain a Pareto optimal solution of
(M1) which is better than the solution obtained by solving (O) in the sense of maximizing
the geometric margins.

5.2 Example 3

Next, we consider Example 3 given by D3 =
{
x1 = (0, 1)>, y1 = 1, x2 = (2, 0)>, y2 = 1,

x3 = (3, 0)>, y3 = 2, x4 = (0, 3)>, y4 = 3
}
, which has also only three points but has no

complete optimal solution. Thus, the problem has many Pareto optimal solutions.
We applied the existing model (O) and proposed models to this problem. In both pro-

posed models, similarly to the previous subsection, we set cpq = 10, q > p, p, q ∈ {1, 2, 3}
and used the solution obtained by the model (O) as an initial solution (w̄, b̄, σ̄) in IMB, while
we executed (ε-P) with all combinations of pairs of classes as the fixed pair (r, s), that is,
(r, s) = (1, 2), (1, 3), (2, 3), and set ε−rs = θ−rs(w̄, b̄, σ̄).

Obtained results are shown in Figures 5–6 and Table 2, where (ε-P2)(1,2) denotes the
model (ε-P2) with (r, s) = (1, 2). The table shows that the geometric margins for the
discriminant hyperplanes obtained by the model (O) are smaller than those obtained by any
proposed model. In particular, the margin dg

23 obtained by the model (O) is considerably
small, while there is no large difference of obtained margins among proposed models.

Table 2: Results of each methods for Example 3

Model Parameters dg
12 dg

13 dg
23

(O) − 0.4851 0.8944 0.9487
IMB c = 10 0.4919 0.9996 2.1181

(ε-P2)(1,2) c12 = 10 0.5000 0.9940 1.7645
(ε-P2)(1,3) c13 = 10 0.4991 1.0000 1.8990
(ε-P2)(2,3) c23 = 10 0.4980 0.9856 2.1213

Furthermore, we applied (ε-P2) to Example 3 so as to obtain various solutions, where
we set (r, s) = (2, 3) and c23 = 10, and varied (ε12, ε13) in [0.01, 0.5]×[0.01, 1.0]. Figure 7
(a) indicates that many kinds of weakly Pareto optimal solutions were obtained by (ε-P2).
Figure 7 (b) shows the magnified region of the Pareto curve near to the point (0.5, 1.0, 2.12),
which is a set of Pareto optimal solutions. We can observe that many Pareto optimal
solutions were obtained. Therefore, it can be concluded that (ε-P2) can obtain many kinds
of Pareto optimal solutions by appropriate choices of ε−rs.

5.3 Real-world Data Sets

Finally, in this subsection, we applied models (O), IMB and (ε-P2) to two real-world data
sets from the UCI machine learning repository [16], Wine and DNA. For model (ε-P2)
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Figure 5: Model (O) for Example 3
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(c) (ε-P2)(1,3) (c) (ε-P2)(2,3)

Figure 6: Proposed models, IMB and (ε-P2), for Example 3
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Figure 7: Proposed model (ε-P2) for Example 3

we set (r, s) = (1, 2), (1, 3) or (2, 3) and crs = 10, and determined constants ε−rs by
ε−rs = θ−rs(wo, σ(wo, bo)), while for model IMB we used (c12, c13, c23) = (100, 100, 100)
and (wo, bo, σ(wo, bo)) as an initial solution (w̄, b̄, σ̄), where (wo, bo) was a solution obtained
by the model (O) for each problem. In addition, we executed IMB using a solution obtained
by model (ε-P2) as an initial solution, which is called the hybrid model. If a solution ob-
tained by (ε-P2) is weakly Pareto optimal, this model can improve the solution to obtain
a Pareto otpimal solution. However, we could not obtain the satisfactory solution by IMB
for DNA data, where IMB required solving a large number of problems (P2max-sum) iter-
atively, and the optimal solutions of some problems were not properly obtained. That is
attributed to the fact the problem (P2max-sum) gradually becomes ill-conditioned because
DNA data has a large number of instances and attributes. Meanwhile, the difficulty was not
observed in model (ε-PS2) because a weakly Pareto optimal solution is obtained by solving
a single problem.

Tables 3 shows classification rates and objective function values of solutions obtained by
(O), IMB, (ε-P2) and the hybrid model for Wine, and those obtained by (O) and (ε-P2) for
DNA, where “# of Ite.” denotes the number of iterations in which problems (P2max-sum)
were solved by IMB and the hybrid model, and hybrid(1,2) denotes the hybrid model, that
is, IMB using a solution obtained by (ε-PS2)(1,2) as an initial solution. We can observe that
all solutions obtained by the proposed three models dominate ones by the existing model
and that test classification rates of proposed models are better than or equal to those of
the existing model. On the other hand, although Theorem 4.6 guarantees that a solution
obtained by the hybrid model dominate the corresponding initial solution, which is obtained
by (ε-PS2), the results of Table 3 are slightly inconsistent with it. They can be considered to
be due to the numerical instability of IMB. However, the numerical error is small enough to
neglect in practical use, and the hybrid model boosts the test classification rate of (ε-PS2).

In addition, we evaluated the 10-fold cross-validation estimate of four models for Wine,
and two models for DNA to compare the generalization abilities of them as shown in Tables 4
and 5, respectively, where the figure in parenthesis denotes the average number of iterations
required in IMB. The tables indicate that (ε-P2) and hybrid model are superior to (O)
and IMB in the sense of the generalization, and that in the hybrid model, IMB improved
the solution obtained by (ε-P2) for Wine. Therefore, we can conclude that there exist
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Table 3: Comparison of results obtained by four models

Data Model
Classification rate Geometric margins #
(training) (test) dg

12 dg
13 dg

23 of Ite.
(O) 100.00 88.89 0.3812 0.4858 0.4368 -
IMB 100.00 88.89 0.3812 0.8451 0.4368 2

(ε-P2)(1,2) 100.00 88.89 0.3875 0.5130 0.4479 -

Wine
(ε-P2)(1,3) 100.00 88.89 0.3811 0.8452 0.4368 -
(ε-P2)(2,3) 100.00 94.44 0.3816 0.4889 0.5127 -
hybrid(1,2) 100.00 94.44 0.3857 0.7155 0.4478 2
hybrid(1,3) 100.00 88.89 0.3811 0.8455 0.4368 2
hybrid(2,3) 100.00 94.44 0.3799 0.5186 0.5119 10

(O) 100.00 93.00 0.1148 0.1241 0.1194 -

DNA
(ε-P2)(1,2) 100.00 93.00 0.1178 0.1241 0.1194 -
(ε-P2)(1,3) 100.00 93.50 0.1148 0.1263 0.1194 -
(ε-P2)(2,3) 100.00 93.00 0.1148 0.1241 0.1213 -

Table 4: 10-fold Cross-validation results of four models for Wine

(O) (ε-PS2)(1,2) (ε-PS2)(1,3) (ε-PS2)(2,3)

95.51 96.07 95.51 96.63
IMB hybrid(1,2) hybrid(1,3) hybrid(2,3)

95.51 (2.1) 96.63 (4.2) 95.51 (3.4) 96.07 (5.2)

Table 5: 10-fold Cross-validation results of two models for DNA

(O) (ε-PS2)(1,2) (ε-PS2)(1,3) (ε-PS2)(2,3)

92.15 92.25 92.25 92.15
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discriminant functions better than those obtained by (O), and they can be found by (ε-P2)
and the hybrid model. On the other hand, since IMB is numerically instable, especially for
large-scale problem, (ε-P2) is comprehensively superior to other models.

Besides, in this experiment, the initial solutions (w̄, b̄, σ̄) required in IMB were set by
solutions obtained by (O) or (ε-P2), while constants ε−rs for (ε-P2) were determined on
the basis of the solutions obtained by (O). However, we can obtain many (weakly) Pareto
optimal solutions of the proposed multiobjective model (M2) by using other various initial
solutions or constants. In particular, we can find various kinds of weakly Pareto optimal
solutions by (ε-P2) as constants ε−rs are varied as mentioned at 4.2. Therefore, note that
the proposed model may have better discriminant functions as (weakly) Pareto optimal
solutions of (M2).

6 Conclusion

In this paper, we have focused on the all together model of the support vector machine
(SVM) for multiclass classification, which uses a piece-wise linear function to construct a
discriminant function. We have pointed out that for each pair of classes, the functional
margin maximized in the original all together method is not necessarily equal to the geo-
metric margin which is defined as the minimal distance of patterns of a pair of classes to
the corresponding discriminant hyperplane classifying all patterns in both classes correctly,
and that maximizing geometric margins is important for the generalization of multiclass
classification. Moreover, although the sum of functional margins between all pairs of classes
is maximized in the existing model, we have emphasized that the multiclass classification
should be essentially formulated as a multiobjective optimization problem which maximizes
all of the geometric margins simultaneously.

Therefore, we have proposed a multiobjective SVM model whose objective functions rep-
resent exactly the geometric margins of discriminant hyperplanes. In order to solve the mul-
tiobjective model, we have derived single-objective models by the scalarization approaches,
ε-constraint and Benson’s methods, and transformed them into solvable second-order cone
programming (SOCP) problems, (ε-P2) and (P2max-sum), which can be efficiently solved by
several interior point methods. Moreover, we have theoretically shown that a weakly Pareto
optimal solution of the multiobjective problem is obtained by solving a single (ε-P2), while
a Pareto optimal solution is obtained by solving (P2max-sum) iteratively, which is called
IMB, and we have verified those results through some numerical examples. In particular, we
have observed that many kinds of weakly Pareto optimal solutions can be found by solving
(ε-P2) as the parameter vector ε is varied. In addition, we have applied the existing and
two proposed models and a hybrid model of them to two classification problems using real-
world data sets. The results show that the three proposed models can maximize geometric
margins, and that (ε-P2) and the hybrid model are better than IMB and the existing model
in the sense of generalization for those data sets, while IMB and the hybrid model are not
suitable for a large-scaled problem. Thus, we can conclude that (ε-P2) is comprehensively
superior to other models.

In this paper, we have mainly focused on the analysis of solutions obtained by the existing
and proposed models in the sense of Pareto optimality. Therefore, for further tasks we should
investigate various kinds of Pareto optimal solutions of the proposed multiobjective model
to evaluate its potential ability properly, and, moreover, we should apply them to a wide
variety of classification problems. Additionally, we have to develop the proposed models
further in order to apply it to classification problems including noisy data or outliers. At
the same time, through numerical experiments, we need to inspect the relation between the
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geometric or functional margin and the generalization ability, which is an issue in the future.

Acknowledgment

The authors are grateful to the two anonymous referees whose comments and suggestions
led to an improved version of this paper.

References

[1] S. Abe, Support Vector Machines for Pattern Classification, Springer, London, 2005

[2] F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathematical Program-
ming Ser. B, 95 (2003) 3–51.

[3] E. D. Andersen, C. Roos and T. Terlaky, On implementing a primal-dual interior-point
method for conic quadratic optimization, Mathematical Programming Ser. B, 95 (2003)
249–277.

[4] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller,
E. Sackinger, P. Simard, and V. Vapnik, Comparison of classifier methods: A case
study in handwriting digit recognition, in Proc. Int. Conf. Pattern Recognition, IEEE
Computer Society Press, 1994, pp. 77–87.

[5] E. J. Bredensteiner and K. P. Bennett, Multicategory classification by support vector
machines, Computational Optimization and Applications 12 (1999) 53-79.

[6] K. Crammer and Y. Singer, On the learnability and design of output codes for multiclass
problems, Machine Learning 47 (2002) 201–233.

[7] M. Ehrgott, Multicriteria optimization, Springer, Berlin, 2005.

[8] Y. Guermeur, Combining discriminant models with new multiclass SVMs, Neuro
COLT2 Technical Report Series (2000)

[9] C. W. Hsh and C. J. Lin, A comparison of methods for multiclass support vector
machines, IEEE Transactions on Neural Networks 13 (2002) 181–201.

[10] C. W. Hsu and C. J. Lin, A simple decomposition method for support vector machines,
Machine Learning 46 (2002) 291–314.

[11] U. Kressel, Pairwise classification and support vector machines, in Advances in kernel
methods – Support vector learning, B. Schölkopf, C. Burges, and A. J. Smola (eds),
MIT Press, Cambridge, 1999, pp. 255–268,

[12] H.D. Mittelmann, An independent benchmarking of SDP and SOCP solvers, Mathe-
matical Programming Ser. B, 95 (2003) 407–430.
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