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Abstract: The classical Remez algorithm was developed for constructing the best polynomial approxi-
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The goal of this paper is to generalise the classical Remez algorithm (see [9]), developed
for constructing the best polynomial approximation to continuous and discrete functions,
and the famous Vallée Poussin theorem (see [3, 8]) to the case of polynomials spline approx-
imation.

The original Remez algorithm requires the construction of a polynomial of degree m,
such that the sign of the deviation function is alternating at basis points (a predefined set
of m + 2 points) and the absolute deviation is the same at these points. This polynomial
is always unique (see [3, 9]). Then the basis should be updated according to a certain rule,
such that the new polynomial, constructed over the new basis, has higher deviation at the
new basis points and the deviation signs are alternating. This rule is based on the results
of the Vallée Poussin theorem. In this paper the results of this theorem are generalised to
the case of polynomial spline approximation.

Since its first appearing in 1950s the original Remez algorithm has been generalised to
some particular cases. Among them:

• approximation by more than one polynomial (see [1, 2]);

• approximation by polynomial splines of defect one with fixed knots [7] and free knots
[5].

The main advantage of the original Remez method is that at each iteration it requires
the solving of one-dimensional subproblems. Therefore, there is minimal dependence on the
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dimension of the original problem. Of course, in the case of a higher dimension of the original
optimisation problem, the subproblems are more complex; however, the dimension of these
problems remains one. All the above generalisations of the Remez algorithm preserve this
important characteristic to a certain extend.

The paper is organised as follows. In section 1 we introduce necessary definitions and
formulate the optimisation problem. In section 2 we present a basis update rule for poly-
nomial spline approximation. In section 3 we prove a theorem which is a generalisation of
the Vallée-Poussin theorem to the case of polynomial spline approximation. In section 4
we propose an algorithm which is a generalisation of the Remaz algorithm to the case of
polynomial splines. In section 5 we present the results of numerical experiments, with the
proposed generalisation of the Remez algorithm. In section 6 we give conclusions to the
conducted research and identify future research directions.

1 Preliminaries

1.1 Definitions

Definition 1.1. A function S(t), determined in [a, b], is called a polynomial spline of degree
m with internal knots θi (i = 1, 2, . . . , n − 1; a = θ0 < θ1 < θ2 < . . . < θn−1 < θn = b),
if in each segment [θi−1; θi], i = 1, . . . , n the function S(t) is a polynomial of a degree not
exceeding m, and at each point θi, 1 = 1, 2, . . . , n − 1 the derivative S(ν) (1 ≤ ν ≤ mi, i =
1, . . . , n) may be discontinuous.

Definition 1.2. The difference between the degree of the spline and the order of the highest
continuous derivative is called the defect of the spline.

Most researchers work with smooth polynomial splines. In this paper the research is
concentrated on highest defect splines, namely, the splines of defect equals the degree of the
spline. Such splines are continuous functions which may be nonsmooth at their knots.

Consider an example of polynomial spline construction (see [12]).

Sm(A, t) = a0 +
n∑

i=1

m∑

j=m−d+1

aij(t− θi−1)
j
+, (1.1)

where m is the spline degree, d is the spline defect, θi, i = 0, . . . , n are the spline knots,
A = (a0, a11, . . . , anm) ∈ IRmn+1 is a vector of spline parameters,

(ξ(x))+ =
{

ξ(x), ξ(x) > 0,
0, ξ(x) ≤ 0.

Remark 1.3. Notice also that according to Haar theorem (see [4] and references within) in
the case of polynomial approximation the best polynomial approximation is unique, since
1, x, x2, . . . , xn form a Chebyshev system. In the case of polynomial spline approximation
the best polynomial spline approximation is not necessarily unique, since

(t− θi−1)
j
+, i = 1, . . . , n, j = 1, . . . , m

does not form a Chebyshev system.

Definition 1.4. The borders of the approximation interval [a, b] are called the external
knots, the points θi, i = 1, . . . , n−1 are called the internal knots of the polynomial spline.
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Definition 1.5. A function S(t), determined in [a, b], is called a polynomial spline of gen-
eralised (vector) degree M = (m1,m2, . . . , mn) with internal knots θi (i = 1, 2, . . . , n − 1;
a = θ0 < θ1 < θ2 < . . . < θn−1 < θn = b), if in each interval [θi−1; θi], i = 1, . . . , n the func-
tion S(t) is a polynomial of degree not exceeding mi, and at each point θi, i = 1, 2, . . . , n−1
the derivative S(ν) (1 ≤ ν ≤ m) may be discontinuous.

A spline of generalised degree M = (m1, . . . , mn) may be constructed as follows: in each
segment Ti it is represented by a polynomial Pi(t), such that

P1(t) =
m1∑

j=1

a1j(t− θ0)j + a0, Pi(t) =
mi∑

j=1

aij(t− θi−1)j + Pi−1(θi−1), i = 2, . . . , n.

Definition 1.6. The vector A = (a0, a11, a12, . . . , a1m1 , a21, . . . a2m2 , . . . , anmn
)

is called a vector of spline parameters (VSP).

In some applications it is required that polynomial splines have certain conditions at one
or both end point of the approximation interval [a, b].

Definition 1.7. If the value of the spline is fixed at the left (right) end point then this
spline is called a spline with fixed left (right) tail.

Definition 1.8. A function g(t) alternates p times in an interval [a, b] if there exist p + 1
points ti < ti+1 ∈ [a, b], such that

g(ti) = −g(ti+1) = ± max
t∈[a,b]

|g(t)|.

Definition 1.9. Alternance points are the points where the absolute value of the deviation
is maximal and the sign of the deviation at any two consequent points is opposite.

1.2 Optimisation Problem

Suppose that a continuous function f(t) is approximated in the interval [a, b], which has been
divided into n sub-intervals, by a fixed knots polynomial spline of generalised degree M =
(m1, . . . , mn). The polynomial spline S(A, t), used in the approximation, is a polynomial
spline with the knots Θ = (θ0, . . . , θn) ∈ IRn+1, such that a = θ0, and b = θn and the
vector of spline parameters A = (a0, a11, . . . , anmn

) ∈ IRγ+1, where γ =
∑n

k=1 mk. Then the
optimisation problem for finding an optimal polynomial spline is as follows

minimise max
t∈[a,b]

|f(t)− S(A, t)| subject to A ∈ IRγ+1. (1.2)

Problem (1.2) is a polynomial spline Chebyshev approximation problem. If Θ = (a, b) in
(1.2) then problem (1.2) is a polynomial Chebyshev approximation problem.

1.3 Optimality Conditions

Necessary and sufficient optimality conditions for polynomial spline approximation have
been obtained in [6, 12]. The following theorem holds.

Theorem 1.10 (Tarashnin). Necessary and sufficient optimality conditions for the spline
S(A∗, t) of degree m and defect m are as follows:
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(i) in one of the sub-intervals [θi−1, θi] there exist at least m+2 alternance points t1, . . . , tm+2,

or

(ii) there exist sub-intervals [θi−1, θi] and (θj−1, θj ], such that 1 ≤ i < j ≤ n and on the
chain

[θi−1, θi], (θi, θi+1], . . . , (θj−1, θj ]

there exist (m(j − i + 1) + 2) alternance points which are distributed as follows:

• there exist at least m + 1 alternance points in the i−th interval,

• there exist at least m + 1 alternance points in the j−th and

• there exist at least m alternance points in the k−th interval (i < k < j).

Definition 1.11. A minimal length chain of sub-intervals, where the conditions of the
Tarashnin theorem are satisfied is called a minimal chain (see [12]).

The length of the minimal chain is 1 if the first condition of the Tarashnin theorem is
satisfied or (j − i + 1) if the second condition is satisfied.

Remark 1.12. In the case of generalised degree polynomial splines the necessary and suffi-
cient optimality conditions are the same, but for each interval m should be replaced by the
corresponding mi (see [11]).

Remark 1.13. In the case of polynomial splines with fixed left (right) tails the necessary and
sufficient optimality conditions are similar, but the number of alternance points is reduced
by one if the first (last) interval is included in the minimal chain. If the left (right) tail is
fixed and a (b) is a maximal deviation point then the obtained spline is optimal.

Consider now the splines only within their minimal chains. Then assume for simplicity
that minimal chains contain n intervals.

Definition 1.14. A set of points {tij}, i = 1, . . . , n, j = 1, . . . , ki, such that

θ0 ≤ t11 < t12 < · · · < t1m1+1 < θ1 < t21 < · · · < t2m2 < θ2 < · · · < tn1 < · · · < tnmn+1 ≤ θn,
(1.3)

is called a basis of a polynomials spline of generalised degree M = (m1, . . . , mn).
If the left (right) tail is fixed then basis can be obtained from the free tails basis by

removing one of the point from the first (last) interval.

For minimal chains which contain exactly n intervals we use the following notation.
S0

1 , S0
2 , . . . , S0

n are the polynomials which correspond to the spline constructed on the ini-
tial basis. The parameters of the polynomials can be obtained as a solution of a linear
nonhomogeneous system with a full rank matrix (see [10]). The spline is continuous, the
degrees of the corresponding polynomials are less than or equal to m1,m2, . . . , mn respec-
tively. S1

1 , S2
1 , . . . , S1

n are the polynomials which correspond to the spline constructed on the
updated basis. The spline is continuous, the degrees of the corresponding polynomials are
less than or equal to m1,m2, . . . , mn respectively. t01i, . . . , t

0
kii

are the points of the initial
basis located in the i-th interval, i = 1, . . . , n, t11i, . . . , t

1
kii

are the points of the updated basis
located in the i-th interval, i = 1, . . . , n, ki is the number of the basis points located in the
i−th interval (mi or mi + 1).



VALLÉE POUSSIN THEOREM AND REMEZ ALGORITHM 107

2 A Generalisation of Basis Exchange Rules

Suppose that there exists an interval i such that the initial basis is represented by the points
T 0

i = {t0i , . . . , t0mi
} for 1 < i < n (internal intervals) or by the points T 0

i = {t01, . . . , t0mi+1}
for i = 1 or i = n (end intervals).

Assume that in this interval there exists a point t∗ /∈ T 0
i such that the absolute deviation

in this point is higher than it is at basis points. Assume also that t∗ is not an internal
spline knot. If in this interval there exists a basis point t̄ ∈ T 0

i (the nearest to t∗ from the
left or from the right) such that the sign of the deviation in this basis point coincides with
the deviation sign in the point t∗, then t∗ has to replace t̄ in the new basis, the other basis
points remain the same. Consider following examples.

Example 2.1. t∗ is located between two basis of the same sub-interval of the minimal
chain (e.g., t′ and t′′). Assume that the deviation signs at t∗ and t′ coincide. Then t∗ should
replace t′.

Example 2.2. t∗ is located to the right (left) of all the other basis points. t′ is the nearest
basis point to t∗ and the deviation signs at these points are the same. Then t∗ should replace
t′.

Example 2.3. t∗ is located to the right (left) of all the other basis points. t′ is the nearest
basis point to t∗ and the deviation signs at these points are not the same. Then t∗ should
not replace t′.

3 A Generalisation of the Vallée-Poussin Theorem and Remez Al-
gorithm

First of all, we have to prove several auxiliary theorems.

Theorem 3.1. The basis exchange rules established in the previous section preserve the
deviation signs at the basis points.

Proof. Assume that the deviation sign may change (proof by contradiction).
Consider the interval where the basis points have been replaced. First assume that it is

one of the end intervals. Without loss of generality it is enough to present the proof for the
case of the first interval.

The first interval contains m1 + 1 basis points. Consider the polynomial S̄1 = S0
1 − S1

1 .
Recall that the polynomial S0

1 is a polynomial of degree m1 which represents the initial spline
in the first interval, S1

1 is a polynomial of degree m1 which represents the new spline obtained
after basis exchange, in the first interval. Also notice that the degree of the polynomial S̄1

does not exceed m1.
Assume that the index j ∈ {1, . . . , m1 +1} represents the point which was removed from

the basis, therefore t1j = t̄ and t∗ replaced t1j . Also assume that f(t11) − S0
1(t1) > 0. In

the case of the opposite inequality sign the proof is similar. Then consider the following
inequality system:

{
(−1)i−1(f(t1i )− S0

1(t1i )) > 0, i = 1, . . . , m1 + 1, i 6= j,
(−1)j−1(f(t∗)− S0

1(t∗)) > 0.
(3.1)

Notice that (−1)j−1(f(t1j ) − S0
1(t1j )) > 0. Suppose that at the next iteration the deviation

signs are changing. Then consider the following system:
{

(−1)i(f(t1i )− S1
1(t1i )) > 0, i = 1, . . . , m1 + 1, i 6= j

(−1)j(f(t∗)− S1
1(t∗)) > 0.

(3.2)
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From (3.1) and (3.2) obtain
{

(−1)i−1(S1
1(t1i )− S0

1(t1i )) = (−1)iS̄1(t1i ) > 0, i = 1, . . . , m1 + 1, i 6= j
(−1)j−1(S1

1(t∗)− S0
1(t∗)) = (−1)iS̄1(t∗) > 0.

(3.3)

From (3.3) obtain that S̄1 changes its sign at least m1 + 1 times in the interval [a, θ1). The
degree of the polynomial S̄1 does not exceed m1, then

sign (S̄1(θ1)) = sign (S̄1(t1m1+1)), if j 6= m1 + 1,

sign (S̄1(θ1)) = sign (S̄1(t∗)), if j = m1 + 1.

Now consider the second interval. According to our assumption the deviation sign
changed (the basis points remain the same). Then the following inequality system holds
(similar to (3.1) and (3.2)):

(−1)m1+i(f(t2i )− S0
2(t2i )) > 0, i = 1, . . . , m2, (3.4)

(−1)m1+i+1(f(t2i )− S1
2(t2i )) > 0, i = 1, . . . , m2. (3.5)

Again, the degree of the polynomial S̄2 = S1
2 − S0

2 does not exceed m2, therefore this
polynomial changes its sign no more than m2 times in the interval [θ1, θ2]. Similar to (3.3)
obtain the following system:

(−1)m1+i(S1
2(t2i )− S0

2(t2i )) = (−1)m1+iS̄2(t2i ) > 0, i = 1, . . . , m2, (3.6)

Since the spline is continuous in its knots

S1
2(θ1) = S1

1(θ1) ⇒ S1
2(θ1)− S0

2(θ1) = S1
1(θ1)− S0

1(θ1) ⇒ S̄2(θ1) = S̄1(θ1) (3.7)

Combine (3.6) and (3.7): from (3.6) obtain that S̄2 changes its sign at least m2 times in the
interval (θ1, θ2); from (3.7) obtain that sign (S̄2(θ1)) = −sign (S̄2(t21)).

Therefore,
sign (S̄2(θ2)) = sign (S̄2(t2m2

)). (3.8)

Continue the process till the last interval. Obtain the following equations

sign (S̄n(θn−1)) = (−1)isign (S̄n(tni )), i = 1, . . . , mn + 1. (3.9)

Therefore, in the n−th interval there exist at least mn + 1 roots of the polynomial
S̄n = S̄1

n − S̄0
n. However, the degree of this polynomial does not exceed mn. The obtained

contradiction proves our theorem for the case when basis exchange occurred in one of the
end intervals.

Assume now that basis exchange occurred in one of the internal intervals. Suppose that
it is the k−th interval (1 < k < n). Then the degree of the polynomial S̄k = S̄1

k − S0
k does

not exceed mk, and this polynomial has at least mk−1 roots in the interval (θk−1, θk). Two
situations are possible.

(i) The following conditions hold:

• sign (S̄k(θk−1)) 6= sign (S̄k(tk1));

• sign (S̄k(θk−1)) 6= sign (S̄k(tkmk
)).
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In this case S̄k, has at least mk + 1 roots in the interval [θk−1, θk], which contradicts
to the fact that the degree of this polynomial does not exceed mk.

(ii) At least one of the above conditions does not hold.

Without loss of generality suppose that the second condition of the situation (i) does
not hold. In this case we are in conditions similar to (10) (when the basis was updated
in one of the end intervals). In this case, following the same scheme, moving to the
n−th interval, obtain the same contradiction (a polynomial of degree less than or equal
to mn has at least mn + 1 root in the interval (θn−1, b]).

Theorem 3.2. The absolute deviation in the points of each successive basis does not de-
crease.

Proof of this theorem is also based on the analysis of the behaviour of the polynomials which
compose the spline. The techniques for the proof of this theorem are similar to those used
in Theorem 3.1, therefore we omit the proof of the theorem.

Corollary 3.3. Since none of the basis points coincides with an internal knots (see defini-
tion 1.14), then the absolute deviation value in the points of each successive basis increases.

Proof. It was already proven that the absolute deviation value in the points of each successive
basis does not decrease. Therefore, we only have to prove that the deviation cannot remain
the same.

First assume that the basis exchange occurred in one of the end intervals. Suppose that
it is the last interval (in the case of the first interval the reasonings are similar). Then in
the first interval the new and the old polynomials coincide in m1 or more points, therefore,
these polynomials are identical. Then in the second interval the new and the old polynomials
coincide in m2 + 1 points (m2 basis points and the knot θ1, which does not coincide with
any of the basis points). Continue this process, in the last interval the old and the new
polynomials coincide in mn + 2 points (the knot θn−1 and mn basis points, which were not
affected by basis exchange). Therefore, these polynomials are identical, however, they cannot
coincide in the basis point which replaced the old basis point. The obtained contradiction
proves that the deviation is increasing.

Assume now that the basis exchange occurred in one of the internal intervals. Then
using the same reasonings as they are in the case of end intervals, moving from both sides
to this internal interval, obtain the same contradiction.

Therefore, in both cases the absolute deviation value in the points of each successive
basis increases.

The next step is to generalise the well know Vallée-Poussin theorem ([8]), which plays
a very important role in the theory of Chebyshev approximation (best polynomial approxi-
mation).

Theorem 3.4 (Vallée-Poussin). Let f ∈ C[a,b]. If for a polynomial P ∗m(t) of degree m
there exists a set of m + 2 points t1, . . . , tm+2, such that a ≤ t1 < t2 < · · · < tm+2 ≤ b, and
the sign of the deviation ∆(t) = f(t)− P ∗m(t) alternates at these points, then

inf
Pm

‖f − Pm‖C[a,b] ≥ min
1≤k≤m+2

|∆(tk)|.

Now we generalise this theorem to the case of polynomial spline approximation.
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Theorem 3.5 (Generalisation of Vallée-Poussin theorem). Assume that a minimal
chain is known. Assume also that it consists of n intervals and the spline within the minimal
chain has a generalised degree M = (m1, . . . , mn). If for a polynomial spline S̄M (t) there
exists a basis

T = {t11, . . . , t1m1+1, t21, . . . , t2m2 , . . . , tn1, . . . , tmn+1}, (3.10)

such that the sign of the deviation ∆(t) = f(t)− S̄M (t) is alternating, then

inf
SM

‖f − SM‖C[a,b] ≥ ∆̄(T ), (3.11)

where ∆̄(T ) = min{|∆(t1m1+1)|, |∆(tnmn+1)|, |∆(ti,j)|, i = 1, . . . , n, j = 1, . . . , mi}
Proof. assume that the opposite condition holds:

inf
S∗M

‖f − SM‖C[a,b] < ∆̄(T ), (3.12)

where S∗M is the best polynomial spline approximation. Then the following inequality holds
at the basis points (3.10):

|f(t)− S∗M (t)| < ∆̄(T ), ∀t ∈ T. (3.13)

Then
|f(t)− S∗M (t)| < |f(t)− SM (t)|, ∀t ∈ T. (3.14)

Let S̄Mi
be a polynomial, which corresponds to the spline S̄M in the i−th interval,

i = 1, . . . , n. Assume that f(t11)− S̄M (t11) > 0, then

f(t11)− S̄∗M (t11) < f(t11)− S̄M (t11) ⇒ S̄M (t11)− S∗M (t11) < 0. (3.15)

The following inequality holds:

f(t12)− S̄M (t12) < 0,

then
S̄∗M (t12)− f(t12) < S̄M (t12)− f(t12) ⇒ S̄M (t12)− S∗M (t12) > 0. (3.16)

Continue the process, then obtain the following result:

sign (S̄M1(t1m1+1)) = sign (S̄M1(θ1)) = −sign (S̄M1(t21)) (3.17)

Similar to the proof of the Theorem 3.1, obtain a contradiction, which proves that (3.12)
does not hold.

Remark 3.6. In the case of polynomial splines with fixed tails all the proofs are similar, the
additional root appears in the point a (left tail) or b (right tail). If the maximal deviation
point is exactly a (left tail) or b (right tail) then the obtained spline is already optimal.

4 Generalized Remez Algorithm

The classical Remez algorithm can be adopted to the case of generalised degree polynomial
splines (fixed or free tails) in the following way:

Generalised Remez algorithm (GRA)
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• Step 0 Choose an initial basis, which satisfies 1.3.

• Step 1 Construct the polynomial spline which deviates by the same absolute value from
the function to be approximated in the basis points, the deviation signs are alternating.
The coefficients of this spline can be found as a solution of a full rank nonhomogeneous
linear system (see [10]).

• Step 2 Update the basis using the basis exchange rules, presented in section 2.

(i) If the obtained spline satisfies necessary and sufficient optimality conditions then
Stop (EXIT 1).

(ii) If the proposed basis exchange rules cannot be applied (Example 3) or an internal
knot should be included in the basis then Stop (EXIT 2).

(iii) Otherwise, go to Step 1.

One can see that the proposed algorithm cannot have cycles (corollary 3.3). Also, if this
algorithm terminates with EXIT 1, then the obtained spline is optimal.

If this algorithm terminates with EXIT 2 then the minimal chain was not chosen correctly
or the initial basis was not chosen efficiently. These two obstacles limit the practical value
of the current version of the algorithm, since the procedure has to be repeated many times
before an optimal spline would be obtained. However, this procedure is interesting from the
theoretical point of view (as a generalisation of the classical results, developed for the case
of polynomial approximation) and also as a first step to the development of an algorithm,
which would be also practically efficient.

At the current stage, this algorithm can be used in the following two-step procedure:

• Use one of convex optimisation methods to minimise the objective function in (1.2).

• Apply GRA to refine the obtained solution.

In the above procedure the choice of the minimal chain and the efficient initial basis is much
easier than in most general cases.

5 Numerical Experiments

In our experiments we use GRA, described in section 4. If at least one of the spline tails is
fixed then the procedure is the same. The only difference is that in the case of fixed tails
bases are determined differently (see Definition 1.14). In this case the algorithm is called
the Generalised Remez Algorithm for Fixed Tails (GRAFT).

In some cases the proposed exchange rule can not be used (see section 2 Example 3). In
this case more accurate techniques are required. This problem is out of the scope of this
paper. We will talk about it in the last section.

Consider f(t) = sin(t) in the interval [0, 6]. The task is to approximate this function
by a polynomial spline of generalised degree M = (2, 2, 2). determined in the sub-intervals
[0, 2], (2, 4], (4, 6].

First assume that the minimal chain contains all the subintervals. Apply GRA, ob-
tain:

• basis T = (0.21, 1.30, 1.99, 2.45, 3.51, 4.01, 4.90, 6.00);
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• absolute deviation at the basis points δ = 0.038;

• maximal absolute deviation for the whole interval [0, 6] δmax = 0.040 at the point t = 2;

• minimal absolute deviation for the whole interval [0, 6] δmin = −0.039 at the point
t = 4;

• VSP A = (0.0253, 1.1212,−0.3296,−0.7480,−0.0624,−0.4961, 0.3678)

The obtained spline is close to an optimal one (Tarashnin theorem). We can try to
improve this result.

Construct the minimal chain differently, assume that the minimal chain consists of two
intervals: [2, 4], (4, 6]. First construct an optimal spline in this chain, using GRA. Then con-
struct a polynomial in the remain interval [0, 2), such that the resulting spline is continuous
at the point 2. If the maximal deviation of the resulting spline in the first interval does not
exceed the maximal deviation in the intervals [2, 4] and (4, 6] then the resulting spline is
optimal. Otherwise the minimal chain has to be rearranged.

Applying GRA to [2, 4], (4, 6] obtain SP1(t):

• basis T = (2.0, 2.52, 3.5, 4.001, 4.82, 5.96);

• absolute deviation at the basis points δ = 0.039;

• maximal absolute deviation for the whole interval δmax = 0.039 at the point t = 2;

• minimal absolute deviation for the whole interval δmin = −0.039 at the point t = 4;

• VSP A = (−0.9480,−0.7447,−0.0636,−0.4963, 0.3676);

• SP1(2) = 0.9480.

It is easy to see that the resulting spline satisfies necessary and sufficient optimality
conditions. Applying GRAFT to [0, 2] obtain:

• basis T = (0.00, 0.45, 1.31);

• absolute deviation at the basis points δ = 0.039;

• maximal absolute deviation for the whole interval δmax = 0.039 at the point t = 2;

• minimal absolute deviation for the whole interval δmin = −0.0196 at the point t = 0;

• VSP A = (−0.0196, 1.2193,−0.3677);

• SP2(2) = 0.9480.

The obtained spline satisfies necessary and sufficient optimality conditions.

6 Conclusions

In this paper the well-known Vallée Poussin theorem and the classical Remez algorithm
for constructing the best polynomial approximations have been generalised to the case of
polynomial spline approximation (fixed and free tails). We started with the theoretical study
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of this problem, then proposed an algorithm and tested it on some practical problems. The
results are presented in this paper.

In the future we plan to continue working in the area of polynomial spline approximation.
The future research direction are included but not limited to the following:

• The problem of polynomial spline approximation with free knots. Polynomial splines
with free knots allow the construction of more precise approximations, however the
complexity of the corresponding optimisation problems is much higher. The corre-
sponding problems are nonconvex. In [5] the Remez algorithm has been generalised to
the case of free knots polynomial spline approximation of defect one. In the case of
higher defect polynomial splines the problem is still open.

• The problem of minimal chain identification. In most practical problems minimal
chains are not known in advance. Therefore, in the current versions of GRA and
GRAFT for some practical problems we have to apply the algorithm several times.
This approach is not very efficient if the number of subintervals in the original chain
is large.

• The problem of obtaining a good initial basis for GRA and GRAFT. This problem is
also very important since good initial basis allows:

(i) reach an optimal spline faster (fewer number of basis exchanges);
(ii) avoid situations similar to Example 3 section 2.
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