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1 Introduction

For a given matrix M ∈ Rn×n and a vector q ∈ Rn, the linear complementarity problem [2],
LCP(M, q), is to find a vector z ∈ Rn such that

z ≥ 0, w := Mz + q ≥ 0, and 〈z, w〉 = 0. (1.1)

This problem has been well studied in the literature [2], [3].

A pair of vectors (w, z) satisfying (1.1) is called a solution of the LCP(M, q). A vector z
is called a z-solution if there exists a vector w such that (w, z) is solution of the LCP(M, q).
Similarly, A vector w is called a w-solution if there exists a vector z such that (w, z) is
solution of the LCP(M, q).

In [5], Fiedler and Pták introduced the notion of P-matrix: A real square matrix M
is a P-matrix if all principal minors of M are positive. It is well known (see [2]) that the
P-matrix property can be equivalently described by the following condition:

x ∈ Rn, x ∗Mx ≤ 0 ⇒ x = 0,

where the asterisk denotes the componentwise product. The equivalence of the P-matrix
property and the existence of a unique z-solution for all linear complementarity problems
LCP(M, q) was established in Murty [14]. Motivated by a study of dynamical systems
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subject to smooth unilateral constraints, Ingleton [12] studied the uniqueness of w-solutions
to LCP problems, and showed that the LCP(M, q) has the uniqueness of w-solutions for all
q ∈ Rn if and only if the following condition holds:

z ∗Mz ≤ 0 ⇒ Mz = 0. (1.2)

We may call a matrix M satisfying (1.2) as w-P matrix. We note that P-matrix and w-P
matrix concepts coincide when M is invertible.

Generalizing the P-property of a matrix, in [10], Gowda, Sznajder and Tao introduced
and studied P and globally uniquely solvable (GUS) properties for linear transformations
on Euclidean Jordan algebras. Motivated by these results, as a counterpart of P-matrix and
z-uniqueness, we generalize the w-P property of a matrix and study w-P and w-uniqueness
properties for linear transformations on Euclidean Jordan algebras in this paper.

Here is an outline of the paper. In Section 2, we cover the basic material dealing with
the complementarity properties and Euclidean Jordan algebras. In Section 3, we introduce
the Order w-P property, the Jordan w-P property, and the w-P property, and study some
interconnections between them. In Section 4, we describe the w-P and the w-uniqueness
properties. In Section 5, we specialize the w-P and the w-uniqueness properties for Lya-
punov transformations LA defined by LA(X) := AX + XAT for a real n × n matrix A on
the space Sn of all n×n real symmetric matrices. In Section 6, we describe the w-P and the
w-uniqueness properties for Lyapunov-like transformations. In Section 7, we specialize the
w-P property for Stein transformations defined by SA(X) := X −AXAT on Sn. In Section
8, we specialize our results to symmetric linear transformations, to monotone transforma-
tions, to polyhedral cones and finally to algebra automorphisms on the Lorentz cone Ln

+. In
Section 9, we study the column competence property of linear transformations defined on
V , and give some interconnections between the column competence property and finiteness
of w-solutions of the LCP(L, q) for q ∈ V .

2 Preliminaries

2.1 Euclidean Jordan Algebras

In this subsection, we recall some concepts, properties, and results from Euclidean Jordan
algebras. Most of these can be found in Refs. [4], [10], [16].

A Euclidean Jordan algebra is a triple (V, ◦, 〈·, ·〉) where (V, 〈·, ·〉) is a finite dimensional
inner product space over R and (x, y) 7→ x ◦ y : V × V → V is a bilinear mapping satisfying
the following conditions for all x and y: x ◦ y = y ◦ x, x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where
x2 := x ◦ x, and 〈x ◦ y, z〉 = 〈y, x ◦ z〉. In addition, an element e ∈ V is called the unit
element if x ◦ e = x for all x ∈ V . Henceforth, V denotes a Euclidean Jordan algebra.

In V , the set of squares
K := {x2 : x ∈ V }

is a symmetric cone ( [4], page 46). This means that K is a self-dual closed convex cone and
for any two elements x, y ∈ Ko(=interior (K)), there exists an invertible linear transforma-
tion Γ : V → V such that Γ(K) = K and Γ(x) = y. We defined

z+ := ΠK(z) and z− := z+ − z,
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where ΠK(z) denotes the (orthogonal) projection of z onto K. Finally, for any two elements
x, y ∈ V , we let

x u y := x− (x− y)+ and x t y := y + (x− y)+.

For an element z ∈ V , we write

z ≥ 0 (z > 0) if and only if z ∈ K (z ∈ Ko),

and z ≤ 0 (z < 0) when −z ≥ 0 (z > 0).

An element c ∈ V such that c2 = c is called an idempotent in V ; it is a primitive
idempotent if it is nonzero and cannot be written as a sum of two nonzero idempotents. We
say a finite set {e1, e2, . . . , em} of primitive idempotents in V is a Jordan frame if

ei ◦ ej = 0 if i 6= j, and
m∑
1

ei = e.

Given x ∈ V , there exists a Jordan frame {e1, . . . , er} and real numbers λ1, . . . , λr such
that

x = λ1e1 + · · ·+ λrer. (2.1)

The numbers λi are called the eigenvalues of x, and the representation (2.1) is called the
spectral decomposition (or the spectral expansion) of x.

Given (2.1), we have

x =
r∑
1

λi
+ei −

r∑
1

λi
−ei and 〈

r∑
1

λi
+ei,

r∑
1

λi
−ei〉 = 0,

where for a real number α, α+ := max{0, α} and α− := (α)+ − α.

From this we easily verify that

x+ =
r∑
1

λi
+ei and x− =

r∑
1

λi
−ei,

and so

x = x+ − x− with 〈x+, x−〉 = 0.

For an x ∈ V , a linear transformation Lx : V → V is defined by Lx(z) = x ◦ z, for all
z ∈ V . We say that two elements x and y operator commute if LxLy = LyLx.

It is known that x and y operator commute if and only if x and y have their spectral
decompositions with respect to a common Jordan frame (Lemma X.2.2, Faraut and Korányi
[4]).

Here are some standard examples.
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Example 2.1. Rn is a Euclidean Jordan algebra with inner product and Jordan product
defined respectively by

〈x, y〉 =
n∑

i=1

xiyi and x ◦ y = x ∗ y.

Here Rn
+ is the corresponding symmetric cone.

Example 2.2. Sn, the set of all n × n real symmetric matrices, is a Euclidean Jordan
algebra with the inner and Jordan product given by

〈X, Y 〉 := trace(XY ) and X ◦ Y :=
1
2
(XY + Y X).

In this setting, the symmetric cone Sn
+ is the set of all positive semidefinite matrices in Sn.

Also, X and Y operator commute if and only if XY = Y X.

Example 2.3. Consider Rn (n > 1) where any element x is written as

x =
[

x0

x

]

with x0 ∈ R and x ∈ Rn−1. The inner product in Rn is the usual inner product. The Jordan
product x ◦ y in Rn is defined by

x ◦ y =
[

x0

x

]
◦

[
y0

y

]
:=

[ 〈x, y〉
x0y + y0x

]
.

We shall denote this Euclidean Jordan algebra (Rn, ◦, 〈·, ·〉) by Ln. In this algebra, the cone
of squares, denoted by Ln

+, is called the Lorentz cone (or the second-order cone). It is given
by

Ln
+ = {x : ||x|| ≤ x0}.

The unit element in Ln is e =
[

1
0

]
. We note the spectral decomposition of any x with

x 6= 0:

x = λ1e1 + λ2e2

where
λ1 := x0 + ||x||, λ2 := x0 − ||x||

and

e1 :=
1
2

[
1
x
||x||

]
, and e2 :=

1
2

[
1

− x
||x||

]
.

In this setting, x and y operator commute if and only if either y is a multiple of x or x
is a multiple of y.

We recall the following propositions from Gowda, Sznajder and Tao (see [10]):

Proposition 2.1. For x, y ∈ V , the following conditions are equivalent:

(i) x ≥ 0, y ≥ 0, and 〈x, y〉 = 0.

(ii) x ≥ 0, y ≥ 0, and x ◦ y = 0.
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In each case, the elements x and y operator commute.

Proposition 2.2. For x, y ∈ V , consider the following statements:

(i) x and y operator commute and x ◦ y ≤ 0.

(ii) x ◦ y ≤ 0.

(iii) x u y ≤ 0 ≤ x t y.

(iv) 〈x, y〉 ≤ 0.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Peirce Decomposition Fix a Jordan frame {e1, e2, . . . , er} in a Euclidean Jordan algebra
V . For i, j ∈ {1, 2, . . . , r}, define the eigenspaces

Vii := {x ∈ V : x ◦ ei = x} = R ei (where R is the set of all real numbers)

and when i 6= j,

Vij := {x ∈ V : x ◦ ei =
1
2
x = x ◦ ej}.

Then, we have the following theorem

Theorem 2.3 (see [4], Theorem IV.2.1)). The space V is the orthogonal direct sum of
the spaces Vij (i ≤ j). Furthermore,

Vij ◦ Vij ⊂ Vii + Vjj

Vij ◦ Vjk ⊂ Vik if i 6= k
Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

Thus, given any Jordan frame {e1, e2, . . . , er}, we can write any element x ∈ V as

x =
r∑

i=1

xiei +
∑

i<j

xij

where xi ∈ R and xij ∈ Vij .

A Euclidean Jordan algebra is said to be simple if it is not a direct sum of two Euclidean
Jordan algebras. The classification theorem (See Faraut and Korányi, Chapter V, [4]) says
that every simple Euclidean Jordan algebra is isomorphic to one of the algebras below:

(i) the algebra Sn of n× n real symmetric matrices;

(ii) The algebra Ln;

(iii) The algebra Hn of all n × n complex Hermitian matrices with trace inner product
and X ◦ Y = 1

2 (XY + Y X);

(iv) The algebra Qn of all n × n quaternion Hermitian matrices with (real) trace inner
product and X ◦ Y = 1

2 (XY + Y X);

(v) The algebra O3 of all 3×3 octonion Hermitian matrices with (real) trace inner product
and X ◦ Y = 1

2 (XY + Y X).
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The following result characterizes all Euclidean Jordan algebras.

Theorem 2.4 (See Faraut and Korányi, Prop. III.4.4, Prop. III.4.5, Thm. V.3.7,
[4]). Any Euclidean Jordan algebra is, in a unique way, a direct sum of simple Euclidean
Jordan algebras. Moreover, the symmetric cone in a given Euclidean Jordan algebra is, in
a unique way, a direct sum of symmetric cones in the constituent simple Euclidean Jordan
algebras.

2.2 Linear Complementarity Concepts

Throughout this paper, we assume that V is an Euclidean Jordan algebra with the corre-
sponding symmetric cone K and L : V → V is a linear transformation. Given L on V and
q ∈ V , the linear complementarity problem, LCP(L, q), is to find an z ∈ V such that

z ∈ K, w := L(z) + q ∈ K, and 〈z, w〉 = 0. (2.2)

A pair of elements (w, z) satisfying (2.2) is called a solution of the LCP(L, q). A vector z
is called a z-solution if there exists a vector w such that (w, z) is solution of the LCP(L, q).
Similarly, A vector w is called a w-solution if there exists a vector z such that (w, z) is
solution of the LCP(L, q).

This problem is a particular case of a variational inequality problem [3]. Given L on V ,
we say that L has/is:

(a) monotone (strictly = strongly) if 〈L(x), x〉 ≥ 0 (respectively, > 0) for any 0 6= x ∈ V ;

(b) the GUS (globally uniquely solvable) property on V if LCP(L, q) has a unique z-
solution for all q ∈ V ;

(c) has the Order P-property if

x u L(x) ≤ 0 ≤ x t L(x) ⇒ x = 0,

where x u L(x) := x− (x− L(x))+ and x t L(x) := L(x) + (x− L(x))+;

(d) the Jordan P-property if
x ◦ L(x) ≤ 0 ⇒ x = 0;

(e) the P-property if

x and L(x) operator commute
x ◦ L(x) ≤ 0

}
⇒ x = 0;

(f) the P0-property if L + εI has the P-property for every ε > 0;

(g) nondegenerate if

x and L(x) operator commute
x ◦ L(x) = 0

}
⇒ x = 0;

(h) the Q-property if LCP(L, q) has a solution for all q ∈ V .

These properties have been well studied, see e.g., [7], [10]. In particular, we always have
the implications (a)(strictly) ⇒ (b) ⇒ (e) ⇒ (f) and (c) ⇒ (d) ⇒ (e) ⇒ (g), (e) ⇒ (h).
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Definition 2.5 (see Definition 13, [10]). L is said to have the Cross Commutative
property if for any q ∈ V and for any two solutions x1 and x2 of LCP(L, q), x1 operator
commutes with y2 and x2 operator commutes with y1, where yi = L(xi) + q (i = 1, 2).

Now we introduce the following definition.

Definition 2.6. Given L on V , let K(L) denote the set of all q ∈ V for which SOL(L, q) 6= ∅,
where SOL(L, q) denotes the z-solution set of LCP(L, q). K(L) is closed in standard LCP
problems, but not necessarily closed in general setting (see Example 2.5.14, [3]). We say
that L:

(i) has the w-uniqueness property if for any q ∈ K(L), L(x1) = L(x2) whenever x1 and
x2 are two z-solutions of LCP(L, q);

(ii) is column sufficient if

x and L(x) operator commute
x ◦ L(x) ≤ 0

}
⇒ x ◦ L(x) = 0;

(iii) is column competent if

x and L(x) operator commute
x ◦ L(x) = 0

}
⇒ L(x) = 0.

We note that the column sufficient property was introduced for standard LCP problems
in [2], it is equivalent to the convexity of SOL(L, q). Gowda and Song [7] defined the column
sufficient property as the convexity of SOL(L, q) when V = Sn. Recently, Qin, Kong and
Han [15] extended the column sufficient property from Rn to the setting of Euclidean Jordan
algebras, and they showed that the column sufficient property with the Cross Commutative
property is equivalent to the convexity of SOL(L, q); column competent was introduced for
LCP in [19].

3 Order w-P, Jordan w-P, and w-P Properties

Motivated by implications (see [10]) of

OrderP ⇒ JordanP ⇒ P,

in this section, we ask if analogous implications hold for w-P properties.

Definition 3.1. Given L on V , we say that L has:

(i) the Order w-P property if

x u L(x) ≤ 0 ≤ x t L(x) ⇒ L(x) = 0;

(ii) the Jordan w-P property if

x ◦ L(x) ≤ 0 ⇒ L(x) = 0;
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(iii) the w-P property if

x and L(x) operator commute
x ◦ L(x) ≤ 0

}
⇒ L(x) = 0.

Theorem 3.2. Given L on V , we have Order w-P ⇒ Jordan w-P ⇒ w-P.
Moreover, if L has the w-P property, then every real eigenvalue of L is nonnegative and the
determinant of L is nonnegative.

Proof. The implications follow immediately from Proposition 2.2. Now suppose that L has
the w-P property. If λ is a real, negative eigenvalue of L, then there exists a nonzero u ∈ V
such that L(u) = λu. It follows that u and L(u) operator commute and u ◦L(u) = λu2 ≤ 0.
Then we have L(u) = 0 by the w-P property of L, hence λu = 0 ⇒ u = 0. This is
a contradiction. Therefore all real eigenvalues of L are nonnegative. It follows that the
determinant of L (being the products of all eigenvalues) is also nonnegative.

Remark 3.3. (1) Zero transformation always satisfies the above properties.
(2) When L is invertible, the above properties reduce to the Order P, the Jordan P and

the P properties.

In standard LCP theory, the Jordan w-P property is the same as the w-P property.
However, as the following example shows, this result is not necessarily true on a Euclidean
Jordan algebra.

Example 3.1. Let L =




1 4 1
0 1 0
−1 0 1


 : L3 → L3.

Then L has the w-P property but not the Jordan w-P property. The justification is given
in Appendix.

4 w-Uniqueness and w-P Properties

In this section, we study the w-uniqueness, the w-P properties and some other properties
related to these two properties.

Lemma 4.1. If L is monotone, then L has the Cross Commutative property.

Proof. For a given q ∈ K(L), let x1 and x2 be two solutions of LCP(L, q). Letting x :=
x1 − x2 and yi = L(xi) + q (i = 1, 2), we see that x ◦ L(x) = −[x1 ◦ y2 + x2 ◦ y1]. Since L is
monotone, thus we have

0 ≤ 〈x, L(x)〉 = 〈x ◦ L(x), e〉
= 〈−[x1 ◦ y2 + x2 ◦ y1], e〉
= −[〈x1, y2〉+ 〈x2, y1〉] ≤ 0.

It follows that 〈x1, y2〉 = 〈x2, y1〉 = 0. By Proposition 2.1, x1 (x2) operator commutes with
y2 (respectively, y1).
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Theorem 4.2. Given L on V , w-uniqueness = w-P + Cross Commutative.

Proof. Suppose that L has the w-uniqueness property. Let x and L(x) operator commute,
and x ◦ L(x) ≤ 0. Then there exists a Jordan frame {e1, . . . , er} such that x =

∑
xiei and

L(x) =
∑

yiei. From x ◦ L(x) ≤ 0, we have
∑

xiyiei ≤ 0. It follows that xiyi ≤ 0 for all i.
This implies that xi

+yi
+ = xi

−yi
− = 0 for all i. Thus we have x+◦[L(x)]+ = x−◦[L(x)]− =

0. Now define q := [L(x)]+−L(x+). We see that q = [L(x)]−−L(x−). Obviously x+ and x−

are two solutions of LCP(L, q). Thus L(x+) = L(x−) ⇒ L(x+ − x−) = 0 ⇒ L(x) = 0. This
proves the w-P property. By the w-uniqueness of solution, the cross commutative property
is obvious.

Now for the converse. Suppose L has the w-P and the cross commutative properties.
For any q ∈ K(L), let x1 and x2 be two solutions of LCP(L, q) and yi = L(xi)+ q (i = 1, 2).
Since x1 operator commutes with y2, it follows that x1 ◦ y2 ≥ 0. Similarly, x2 ◦ y1 ≥ 0.
Now x1 − x2 operator commutes with L(x1 − x2) = y1 − y2 and (x1 − x2) ◦ L(x1 − x2) =
−[x1 ◦ y2 + x2 ◦ y1] ≤ 0. By the w-P property, L(x1) = L(x2). This argument shows that L
has the w-uniqueness property.

In standard LCP problems, the w-uniqueness and w-P properties coincide (see Theorem
3.4.4, [2]). However, the following example shows that the w-P property does not imply the
w-uniqueness property.

Example 4.1. When V = Sn, for a real n × n matrix A, the Lyapunov transformation is
defined by

LA(X) := AX + XAT .

Now consider the matrices A =
[ −1 2
−2 2

]
and Q =

[
2 2
2 4

]
. Then A is positive stable

(every eigenvalue of A has positive real part) and Q is positive definite. Thus LA has
the P-property (see Theorem 5, [7]). Hence LA has the w-P property. It can be easily

verified that zero matrix and X =
[

1 0
0 0

]
are two solutions of LCP(LA, Q). However

LA(X) =
[ −2 −2
−2 0

]
6= LA(0).

As we see from Theorem 4.2, the w-uniqueness property is tied to the w-P property and
the cross commutative property. However, we do not know how to describe, apart from the
definition, the cross commutative property. In what follows, we give a necessary condition
for the w-uniqueness property.

It has been observed in Theorem 4.1 of [18] that if L has the GUS-property on V , then
〈L(c), c〉 ≥ 0 for any primitive idempotent c ∈ V . By modifying the proof, we get the
following:

Theorem 4.3. If L has the w-uniqueness property , then for any primitive idempotent
c ∈ V , 〈L(c), c〉 ≥ 0.

As an illustration of Theorem 4.3, we provide the following examples.

Example 4.2. When V = Sn, for a real n× n matrix A, LA is defined in Example 4.1. It
can be easily verified that 〈LA(c), c〉 ≥ 0 for all primitive idempotents c on Sn

+ if and only
if A is positive semidefinite.
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Example 4.3. When V = Sn, for a real n×n matrix A, the Stein transformation is defined
by

SA(X) = X −AXAT .

It can be easily verified that 〈SA(c), c〉 ≥ 0 for all primitive idempotents c on Sn
+ if and only

if I ±A are positive semidefinite, where I is the identity matrix.

In what follows, we give some interconnections between the concepts introduced in Sec-
tion 2.2.

Lemma 4.4. Given L on V , consider the following statements:

(a) L has the w-uniqueness property.

(b) L has the w-P property.

(c) L has the column sufficiency property.

(d) L has the P0-property.

(e) L has the column competence property.

(f) L + εI has the P-property for all ε > 0 .

Then (a) ⇒ (b) ⇒ (c) ⇒ (d) and (b) ⇒ (e), (b) ⇒ (f).

Proof. The implication (a) ⇒ (b) follows from Theorem 4.2.
The implication (b) ⇒ (c) is obvious.
(c) ⇒ (d): Suppose that x operator commutes with (L + εI)(x) for every ε > 0 and x ◦
(L + εI)(x) ≤ 0. Then x ◦ (L + εI)(x) ≤ 0 ⇒ x ◦ L(x) ≤ −εx2 ≤ 0 and x and L(x)
operator commute. Thus x ◦ L(x) = 0 by the column sufficiency property of L. Hence
x ◦ (L + εI)(x) ≤ 0 ⇒ εx2 ≤ 0 ⇒ x = 0. Therefore L has the P0-property.
The implication (b) ⇒ (e) is obvious.
(b) ⇒ (f): Suppose that x operator commutes with (L + εI)(x) for every ε > 0 and x ◦ (L +
εI)(x) ≤ 0. Then x ◦ (L + εI)(x) ≤ 0 ⇒ x ◦ L(x) ≤ −εx2 ≤ 0 and x and L(x) operator
commute. Thus L(x) = 0 by the w-P property of L. Hence x ◦ (L + εI)(x) ≤ 0 ⇒ εx2 ≤
0 ⇒ x = 0. Therefore L + εI has the P-property.

Remark 4.5. In general, the P0-property does not imply the w-P property even in standard

LCP problems: An example is M =
[

1 −1
1 0

]
.

In the next section, we specialize the w-uniqueness and the w-P properties to Lyapunov
transformations defined on Sn.

5 The w-Uniqueness and w-P Properties for Lyapunov Transfor-
mations

It is well known (see [7]) that LA has the P-property if and only if A is positive stable
and LA has the GUS-property if and only if A is positive stable and semidefinite. As the
counterpart of the P and the GUS properties, in this section, we give a characterization of
the w-P property and the w-uniqueness property for LA.
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Theorem 5.1. For A ∈ Rn×n, consider LA on Sn. Then LA has the w-P property if and
only if A is semipositive stable, i.e., all eigenvalues of A lie in the closed right half-plane.

Proof. The technique used here is similar to the proof of Theorem 5 in [7]. Since the w-P
property implies the P0-property by Lemma 4.4, and

(LA + εI)(X) = AX + XAT + εX = LA+ ε
2 I(X),

we see that LA has the P0- property if and only A is semipositive stable. Thus the w-P
property of LA implies that A is semipositive stable. Therefore we only need to show the
“if” part. Let A is semipositive stable and suppose that LA does not have the w-P property.
Then there is a nonzero X which commutes with nonzero LA(X) and X ◦ LA(X) ¹ 0.
Because of commutativity, we can write

X = UT DU, LA(X) = UT EU and B = UAUT ,

where U is some orthogonal matrix and D and E are diagonal matrices. Then we have
E = BD + DBT and DE ¹ 0. Without loss of generality, we can write

D =
[

D1 0
0 0

]
B =

[
B1 B2

B3 B4

]
and E =

[
E1 0
0 E2

]
,

where D1 is invertible and the sizes of B1 and E1 agree with that of D1. Then from
E = BD + DBT , we have

E =
[

E1 0
0 E2

]
=

[
B1D1 + D1B1

T D1B3
T

B3D1 0

]
.

We see that E2 = 0 and B3D1 = 0 ⇒ B3 = 0. Then every eigenvalue of B1 is an eigenvalue
of B. Since B is semipositive stable, B1 is also semipositive stable, thus tr(B1) ≥ 0. From
E1 = B1D1 + D1B1

T , we have the ith diagonal entry of B1 as 1
2eii

1
dii

where eii and dii

denote the ith diagonal entries of E1 and D1 respectively. Then from DE ¹ 0, we have
1
2eii

1
dii

≤ 0 ⇒ tr(B1) ≤ 0. Therefore, tr(B1) = 0 ⇒ 1
2eii

1
dii

= 0 for all i; this implies that
eii = 0 for all i, thus E1 = 0. Hence LA(X) = 0 contradicts our assumption. Therefore, the
“if” part holds.

Lemma 4.4 and Theorem 5.1 immediately yield the following corollary.

Corollary 5.2. For A ∈ Rn×n, the following statements are equivalent:

(a) A is semipositive stable.

(b) LA has the w-P property.

(c) LA has the column sufficiency property.

(d) LA has the P0-property.

Remark 5.3. Since LA has the Q-property if and only if LA has the P-property (see
Theorem 5, [7]), the w-P property does not imply the Q-property.

Theorem 5.4. For A ∈ Rn×n, the following statements are equivalent:

(a) LA has the w-uniqueness property.
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(b) A is semipositive stable and positive semidefinite.

Proof. (a) ⇒ (b): If LA has the w-uniqueness property, then LA has the w-P property by
Theorem 4.2. Hence A is semipositive stable by Theorem 5.1. A is positive semidefinite
following from Theorem 4.3 and Example 4.2.
(b) ⇒ (a): If A is positive semidefinite, then LA is monotone. Thus LA has the cross
commutative property by Lemma 4.1. Therefore (a) holds by Corollary 5.2 and Theorem
4.2.

6 The w-Uniqueness and w-P Properties for Lyapunov-like Trans-
formations

Motivated by the equivalence between the w-P property together with positive semidefinite-
ness and the w-uniqueness property for LA on Sn, one may ask if this equivalence holds on
symmetric cones for transformations that are similar to a Lyapunov transformation. Below,
we will provide an answer to this question in the positive.

We say that L has the Z-property if

x, y ∈ K, and 〈x, y〉 = 0 ⇒ 〈L(x), y〉 ≤ 0.

Recently, Gowda and Tao ( [11]) introduced and studied the properties of such transforma-
tions.

Remark 6.1. It can be easily verified that LA and SA have the Z-property on Sn
+.

Definition 6.2. see ( [9]) Given L on V , it is said to be a Lyapunov-like transformation if
both L and −L have the Z-property, that is,

x, y ≥ 0, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 = 0.

Theorem 6.3. Let L be a Lyapunov-like transformation. Then the following are equivalent:

(a) L has the w-P property.

(b) L has the column sufficiency property.

Proof. The implication (a) ⇒ (b) is obvious.
(b) ⇒ (a): Suppose x and L(x) operator commute and x ◦ L(x) ≤ 0. Then x ◦ L(x) = 0 by
the column sufficiency property. Without loss of generality, we can write

x =
k∑
1

xiei and L(x) =
r∑

k+1

yiei,

where {e1, . . . , er} is a Jordan frame. Then we have L(x) =
∑k

1 xiL(ei). Thus 〈L(x), L(x)〉 =
〈∑k

1 xiL(ei),
∑r

k+1 yiei〉 =
∑

i<j xiyj〈L(ei), ej〉 = 0. The last equality holds because L is
Lyapunov-like transformation. Thus L(x) = 0. Therefore, L has the w-P property.

Theorem 6.4. Let L be a Lyapunov-like transformation. Then the following are equivalent:
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(a) L has the w-uniqueness property.

(b) 〈L(c), c〉 ≥ 0 for any primitive idempotent c ∈ V .

Proof. The implication (a)⇒ (b) follows from Theorem 4.3.
(b)⇒ (a): Fix q ∈ K(L) and suppose that x1 and x2 are two solutions of LCP(L, q) so that

xi ≥ 0, yi = L(xi) + q ≥ 0, and 〈xi, yi〉 = 0 (i = 1, 2).

Now if (b) holds, then L is monotone by Theorem 7.1 in [9]. Thus the solution set of
LCP(L, q) is convex by Theorem 2.3.5, [3]. Therefore for any t ∈ [0, 1], tx1 + (1 − t)x2 is
also a solution of LCP(L, q). Writing out the complementarity conditions, we have

〈x1, y2〉 = 0 = 〈x2, y1〉.

Hence we have that x1 and x2 operator commute with both y1 and y2 by Proposition 2.1, and
x1◦y2 = 0 = x2◦y1; hence z := x1−x2 operator commutes with y1−y2 = L(x1−x2) = L(z),
and z ◦ L(z) = 0. Without loss of generality, we may assume that there exists a Jordan
{e1, . . . , er} such that

z =
k∑
1

λiei and L(z) =
r∑

k+1

µiei.

Thus L(z) =
∑k

1 λiL(ei) =
∑r

k+1 µiei. Hence 〈L(z), L(z)〉 = 〈∑k
1 λiL(ei),

∑r
k+1 µiei〉 =∑

i<j λiµj〈L(ei), ej〉 = 0. The last equality holds because L is Lyapunov-like transformation.
This implies that L(z) = 0. Therefore L has the w-uniqueness property.

In the next section, we specialize the w-P property to Stein transformations defined on
Sn.

7 The w-P Property for Stein Transformations

It is well known (see [6]) that SA has the P- property if and only if A is Schur stable (all
eigenvalues of A lie in the open unit disk). As the counterpart of the P-property, in this
section, we give a characterization of the w-P property for SA.

Theorem 7.1. For A ∈ Rn×n and the corresponding SA. Then SA has the w-P property if
and only if ρ(A) ≤ 1, i.e., all eigenvalues of A lie in the closed unit disk.

Proof. The technique used here is similar to the proof of Theorem 11 in [6]. Since the w-P
property implies P0-property by Lemma 4.4, also

(SA + εI)(X) = X −AXAT + εX = (1 + ε)S 1√
1+ε

A(X),

we see that SA has the P0-property if and only all eigenvalues of A lie in the closed unit
disk. Thus the w-P property of SA implies that ρ(A) ≤ 1. Therefore we only need to show
the “if” part. Let ρ(A) ≤ 1 and suppose that SA does not have the w-P property. Then
there is a nonzero X which commutes with nonzero SA(X) and X ◦ SA(X) ¹ 0. Because of
commutativity, we can write

X = UT DU, SA(X) = UT EU and B = UAUT ,
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where U is some orthogonal matrix and D and E are diagonal matrices. Then we have
E = D −BDBT , DE ¹ 0, and ρ(B) ≤ 1.
Case 1: D is invertible. Then

D−1E = I −D−1BDBT ¹ 0. (7.1)

Since D−1E is diagonal matrix, D−1BDBT is symmetric. Now we claim that every eigen-
value of D−1BDBT is equal to one. Let λ be an eigenvalue of D−1BDBT and a nonzero
vector u such that (D−1BDBT )u = λu. From (7.1), we get ||u||2 − λ||u||2 ≤ 0 ⇒ λ ≥ 1.
Since det(D−1BDBT ) ≤ 1, we have that every eigenvalue of D−1BDBT is equal to 1. Again
from (7.1), we get every eigenvalue of D−1E is zero. Since D is invertible, we have every
eigenvalue of E is zero. Thus E = 0. Hence SA(X) = 0.
Case 2: D is not invertible. Without loss of generality, we can write

D =
[

D1 0
0 0

]
B =

[
B1 B2

B3 B4

]
and E =

[
E1 0
0 E2

]
,

where D1 is invertible and D1E1 ¹ 0. Then from E = D −BDBT , we have

E =
[

E1 0
0 E2

]
=

[
D1 −B1D1B1

T −B1D1B3
T

−B3D1B1
T −B3D1B3

T

]
⇒

E1 = D1 −B1D1B1
T , B1D1B3

T = 0 andE2 = −B3D1B3
T . (7.2)

We claim that B1 is invertible. If not, let B1
T u = 0 for some nonzero u. Then E1u = D1u

and so 0 < 〈D1
2u, u〉 = 〈D1E1u, u〉 ≤ 0 leading to a contradiction. Hence B1 is invertible.

Therefore B3 = 0. It follows (from ρ(B) ≤ 1) that ρ(B1) ≤ 1 and E2 = 0. This, together
with (7.2), as in the Case 1, leads to E1 = 0. Hence SA(X) = 0. Thus if ρ(A) ≤ 1, then SA

has the w-P property.

Lemma 4.4 and Theorem 7.1 immediately yield the following corollary.

Corollary 7.2. For A ∈ Rn×n and the corresponding SA. Then the following statements
are equivalent:

(a) ρ(A) ≤ 1.

(b) SA has the w-P property.

(c) SA has the column sufficiency property.

(d) SA has the P0-property.

8 Some Special Cases

In this section, we study some special cases of the linear transformations, in particular, L is
monotone and/or self-adjoint.

Lemma 8.1. Suppose L is self-adjoint and monotone. Then L has the w-uniqueness prop-
erty.



w-P PROPERTIES 539

Proof. For any q ∈ K(L), let y0 = L(x0) + q and y = L(x) + q, where x0 is a given solution
and x an arbitrary solution. Then y − y0 = L(x − x0). Since L is monotone, we have
that L has the cross commutative property by Lemma 4.1. Thus (x − x0) ◦ L(x − x0) =
−[x◦y0 +x0 ◦y] ≤ 0 ⇒ (x−x0)T L(x−x0) ≤ 0 ⇒ (x−x0)T L(x−x0) = 0. The last equality
follows by monotonicity of L. Since L is self-adjoint and monotone, we have L(x− x0) = 0.
Hence L(x) = L(x0).

Theorem 8.2. Let L be self-adjoint. Then the following are equivalent:

(a) L is monotone.

(b) L has the Order w-P property.

(c) L has the Jordan w-P property.

(d) L has the w-P property.

(e) L has the w-uniqueness property.

Proof. (a) ⇒ (b): Suppose xuL(x) ≤ 0 ≤ xtL(x). Then 〈x, L(x)〉 ≤ 0 by Proposition 2.2.
Since L is monotone, we have 〈x, L(x)〉 = 0. Since L is self-adjoint and monotone, we have
L(x) = 0.
The implications (b) ⇒ (c) ⇒ (d) follow from Theorem 3.2.
Since (a) ⇒ (e) by Lemma 8.1 and (e) ⇒ (d) by Theorem 4.2, we only need to show that
(d) ⇒ (a). Suppose (d) holds, since L is self-adjoint, all eigenvalues of L are real. We claim
that all eigenvalues of L are nonnegative. Suppose not, then there exists a eigenvalue λ < 0
and corresponding eigenvector u, such that L(u) = λu. Thus we have u ◦ L(u) = λu2 ≤ 0,
this implies that L(u) = 0 by the w-P property of L, Thus λu = 0 ⇒ u = 0, this is a
contradiction. Hence the claim is true. Therefore L is monotone.

Corollary 8.3. Given any element a in V , the quadratic representation of a is defined by
Pa(x) := 2a ◦ (a ◦ x)− a2 ◦ x. Then the following are equivalent:

(a) Pa is positive semidefinite on V .

(b) Pa has the w-uniqueness property.

(c) Pa has the w-P property.

If, in addition, V is simple, then the above conditions are further equivalent to

(d) ±a ∈ K.

Proof. Since Pa is self-adjoint, we only need to show (a) is equivalent to (d) when V is
simple. For a given a ∈ V , there exists a Jordan frame {e1, e2, . . . , er} such that

a = a1e1 + a2e2 + . . . + arer.

For any x ∈ V , write the Peirce decomposition of x with respect to this Jordan frame as

x =
r∑

i=1

xiei +
∑

i<j

xij
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(with xi ∈ R and xij ∈ Vij). Then it can be easily verified that

Pa(x) =
r∑

i=1

ai
2xiei +

∑

i<j

aiajxij .

When V is simple, Vij is nonzero for each i ≤ j (see Corollary IV.2.4 in [4]), so we have

0 ≤ 〈x, Pa(x)〉 =
r∑

i=1

ai
2xi

2||ei||2 +
∑

i<j

aiaj ||xij ||2 (∀x ∈ V )

⇔ aiaj ≥ 0 (i ≤ j)
⇔ ai ≥ 0 or ai ≤ 0,∀i.

Hence Pa is positive semidefinite on V if and only if ±a ∈ K when V is simple.

Remark 8.4. When V = Sn, for a real n × n matrix A, the two sided multiplicative
transformation is defined by

MA(X) := AXAT .

If we specialize Pa on Sn, then it can be easily verified that PA(X) = AXA for A ∈ Sn.
Thus for MA, the following are equivalent when A is a real symmetric square matrix.

(a) A is either positive semidefinite or negative semidefinite.

(b) MA has the w-uniqueness property.

(c) MA has the w-P property.

The following two theorems are modifications of Theorem 22 and Theorem 23 in [10].

Theorem 8.5. When L is monotone,

Order w − P = Jordan w − P and w − P = w − uniqueness.

Theorem 8.6. When K is polyhedral,

Orderw − P = Jordanw − P = w − P = w − uniqueness.

Now we consider Aut(Ln), the set of all invertible linear transformations L such that
L(x ◦ y) = L(x) ◦ L(y) for all x, y ∈ Ln. Such linear transformations are called algebra
automorphisms on Ln. In [9], Gowda and Sznajder showed that the GUS and P properties
coincide for all L ∈ Aut(Ln). The w-P and P properties coincide for an L ∈ Aut(Ln)
coincide as any such L is invertible. Therefore it is easy to get the following result by using
Theorem 5.1 in [9].

Theorem 8.7. For L ∈ Aut(Ln), the following are equivalent:

(a) L has the P-property.

(b) L has the GUS-property on V .

(c) L has the w-uniqueness property.
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(d) L has the w-P property.

(e) L has the R0-property.

(f) L has the Q-property.

(g) −1 /∈ σ(L)(= spectrum of L).

9 The Column Competence Property and the Finiteness of w-
Solutions of the LCP(L, q)

In the standard LCP theory, the nondegeneracy of a matrix M and finiteness of SOL(M, q)
coincide (see [2]). However, this need not be true when V = Sn (see [8]). In [8], Gowda
and Song introduced the concepts of nondegeneracy for a linear transformation defined on
Sn and the locally-star-like property of a solution point of an SDLCP(L,Q) for Q ∈ Sn

and showed that nondegeneracy together with the locally-star-like property is equivalent to
finiteness of SDLCP solution sets. In [13], Malik extended this result to any Euclidean Jor-
dan algebra. In [19], Xu introduced the concept of the column competence for the standard
LCP problems and showed that the column competence of a matrix M and finiteness of
w-solutions property of LCP(L, q) coincide. Motivated by these results, in the first part
of this section, we study the column competence property of L defined on V , and then
we give some interconnections between the column competence property and finiteness of
w-solutions property of LCP(L, q) for all q ∈ V .

Recall that L has the column competence property if

x and L(x) operator commute
x ◦ L(x) = 0

}
⇒ L(x) = 0.

Theorem 9.1. If L is a Lyapunov-like transformation, then L is column competent.

Proof. Suppose x and L(x) operator commute and x ◦L(x) = 0. Without loss of generality,
we can write

x =
k∑
1

xiei and L(x) =
r∑

k+1

yiei,

where {e1, . . . , er} is a Jordan frame. Then we have L(x) =
∑k

1 xiL(ei). Thus 〈L(x), L(x)〉 =
〈∑k

1 xiL(ei),
∑r

k+1 yiei〉 =
∑

i<j xiyj〈L(ei), ej〉 = 0. The last equality holds because L is
Lyapunov-like transformation. Thus L(x) = 0.

Example 9.1. LA has the column competence property for any A ∈ Rn×n.

Theorem 9.2. SA has the column competence property for any A ∈ Rn×n.

Proof. Suppose a nonzero X which commutes with nonzero SA(X) and X ◦ SA(X) = 0.
Then because of commutativity, we can write

X = UT DU, SA(X) = UT EU and B = UAUT ,

where U is some orthogonal matrix and D and E are diagonal matrices. Then we have
E = D −BDBT and DE = 0. Without loss of generality, we can write

D =
[

D1 0
0 0

]
B =

[
B1 B2

B3 B4

]
and E =

[
0 0
0 E2

]
,
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where D1 is invertible. Then from E = D −BDBT , we have

E =
[

0 0
0 E2

]
=

[
D1 −B1D1B1

T −B1D1B3
T

−B3D1B1
T −B3D1B3

T

]
⇒

D1 = B1D1B1
T , B1D1B3

T = 0 andE2 = −B3D1B3
T .

We claim that B1 is invertible. If this is not the case, let B1
T u = 0 for some nonzero u.

Then D1u = B1D1B1
T u = 0 ⇒ u = 0 leading to a contradiction because D1 is invertible.

Hence B1 is invertible. From B1D1B3
T = 0, we have B3 = 0. Thus E2 = −B3D1B3

T = 0.
Therefore SA(X) = 0.

Theorem 9.3. Suppose L is monotone. Then the following are equivalent:

(a) L has the w-uniqueness property.

(b) L has the w-P property.

(c) L is column competent.

Proof. The implication (a)⇔ (b) follows from Theorem 8.5.
The implication (b)⇒ (c) is obvious.
(c)⇒ (b): Suppose that x and L(x) operator commute, and x ◦ L(x) ≤ 0. We have

0 ≥ 〈x ◦ L(x), e〉 = 〈x, L(x)〉 ≥ 0.

The last inequality is from monotonicity of L. Thus we have 〈x, L(x)〉 = 0. Since x and
L(x) operator commute, we may write x =

∑r
1 λiei and L(x) =

∑r
1 µiei, where {e1, . . . , er}

is a Jordan frame. Then x ◦ L(x) ≤ 0 yields
∑r

1 λiµiei ≤ 0, which further implies λiµi ≤ 0
for all i. Now 〈x, L(x)〉 = 0 yields

∑r
1 λiµi||ei||2 = 0. It follows that λiµi = 0 for all i.

This implies x ◦ L(x) = 0. Since x and L(x) operator commute, we have L(x) = 0 from the
column competence property of L. Thus L has the w-P property.

Theorem 9.4. Let L be copositive on K (i.e., 〈L(x), x〉 ≥ 0 for all x ∈ K). Then L is the
column competent only if L has the w-uniqueness property for all q ∈ K.

Proof. Fix a q ∈ K, suppose that there exists x ≥ 0, such that y = L(x) + q ≥ 0 and
〈x, y〉 = 0. Then x and y operator commute by Proposition 2.1. Since L is copositive on K,
we have 〈x, q〉 = 0, this implies that x and q operator commute by Proposition 2.1. Thus x
and L(x) = y− q operator commute, and x◦L(x) = 0. By the column competence property
of L, we have L(x) = 0.

In view of the LCP result for column competence of a matrix mentioned at the beginning
of the section, we may ask whether or not the LCP w-solution sets corresponding to a
column competent transformation are finite. The following example shows that the answer
is negative.

Example 9.2. In R2×2, let A = − 1
2I and Q = I, where I is the identity matrix. Then LA

is column competent by Example 9.1. It can be easily verified that the solution set of the
LCP(LA, Q), consisting of all matrices of the form

[
1+
√

1−4λ2

2 λ

λ 1−√1−4λ2

2

]
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with λ real and 4λ2 ≤ 1, is infinite. Thus the w-solution set of the LCP(LA, Q), consisting
of all matrices of the form [

1−√1−4λ2

2 −λ

−λ 1+
√

1−4λ2

2

]

with λ real and 4λ2 ≤ 1, is infinite.

Now, to address the finiteness issue, we introduce the following definitions.

Definition 9.5. A w-solution y0 of the LCP(L, q) is said to be locally w-unique if there
exists a neighborhood of y0 within which y0 is the only w-solution.

Definition 9.6. A w-solution y0 of the LCP(L, q) is said to be locally-star-like if there
exists a ball B(y0, r) such that for all y ∈ B(y0, r)

⋂
w-SOL(L, q), [y0, y] ⊆ w-SOL(L, q), or,

equivalently,
(tx0 + (1− t)x) ◦ (ty0 + (1− t)y) = 0 ∀t ∈ [0, 1],

where w-SOL(L, q) denotes the w-solution set of LCP(L, q), y = L(x)+q and y0 = L(x0)+q.

We note that if SOL(L, q) is convex, then every w-solution in w-SOL(L, q) has the locally-
star-like property.

Theorem 9.7. Given L on V , consider the following statements:

(a) For all q ∈ V , the LCP(L, q) has a finite number (possible zero) of w-solutions.

(b) For all q ∈ V , any w-solution of the LCP(L, q), if exists, must be locally w-unique.

(c) L is column competent, and for all q ∈ V , each w-solution of LCP(L, q) is locally-star-
like.

Then (a) ⇒ (b) ⇒ (c).

Proof. The implication (a)⇒ (b) is obvious.
(b)⇒ (c): To show the column competent part, let x and L(x) operator commute, and
x ◦ L(x) = 0. Then

x+ ◦ (L(x))+ = x− ◦ (L(x))− = x+ ◦ (L(x))− = x− ◦ (L(x))+ = 0.

If L(x) 6= 0, then (L(x))+ 6= (L(x))−. Defining q := (L(x))+ − L(x+) = (L(x))− − L(x−),
we see that the LCP(L, q) has two distinct w-solutions (L(x))+ and (L(x))− with

(tx+ + (1− t)x−) ◦ (t(L(x))+ + (1− t)(L(x))−) = 0, ∀t ∈ [0, 1].

i.e., [(L(x))−, (L(x))+] ⊆ w-SOL(L, q). This contradicts (b). Thus L(x) = 0. Hence L
is column competent. Now take any q ∈ V . For a y0 ∈ w-SOL(L, q), the locally-star-like
property is trivially satisfied since y0 is locally w-unique.

Remark 9.8. When K is polyhedral, the reverse implications in above theorem hold.
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Remark 9.9. When L has the R0-property (i.e., when LCP(L, 0) has only zero solution),
we claim that the reverse implications in above theorem hold.
(b)⇒ (a): Since L has the R0-property, the solution set of LCP(L, q) is compact (possibly
empty) for all q ∈ V (see Observation 1.2.1 in [13]). Thus the w-solution set of LCP(L, q)
is compact for all q ∈ V . Hence LCP(L, q) has a finite number of w-solutions for all q ∈ V .
(c)⇒ (b): Suppose for some q ∈ V , a w-solution y0 of LCP(L, q) is not locally w-unique.
Then there exists a sequence {yk} ⊆ w-SOL(L, q) which converges to y0 with yk 6= y0 for all
k. By the locally-star-like condition, [y0, yk] ⊆ w-SOL(L, q) for all large k, i.e.,

(tx0 + (1− t)xk) ◦ (ty0 + (1− t)yk) = 0 ∀t ∈ [0, 1]

for all large k, where yk = L(xk) + q and y0 = L(x0) + q. This yields

〈x0, yk〉 = 0 = 〈xk, y0〉.
Hence we have that x0 (xk) operator commutes with yk (respectively, y0), and x0 ◦ yk =
0 = xk ◦ y0 for all large k by Corollary 2.1; Therefore xk − x0 operator commutes with
yk − y0 = L(xk − x0), and (xk − x0) ◦ L(xk − x0) = 0. But from the column competence
property, this implies that yk = y0 for all large k, contradicting our assumption. Therefore,
for all q ∈ V , any w-solution of LCP(L, q), if it exists, must be locally w-unique. This proves
the claim.

10 Concluding Remarks

In this paper, we have introduced some generalizations of the w-P matrix concept mentioned
in Introduction for a linear transformation defined on a Euclidean Jordan algebra and studied
some interconnections between these generalized concepts.

Appendix Here we justify the assertion made in Example 3.1. First we present a result
from [17] (see Proposition 7.3.1); a proof is given for completeness.

Proposition 10.1. Consider

L =




a b c
0 1 0
λ 0 1


 : L3 → L3

If a + |λ| > 0, λ 6= 0, a > λc, a > 0 and (c + λ)2 < 4a, then L has the P-property.

Proof. Let x = [x0 x1 x2]T . Then L(x) =




ax0 + bx1 + cx2

x1

λx0 + x2


.

Now x ◦ L(x) ≤ 0, and x and L(x) operator commute if and only if (see Corollary 7 in [1])

(1)
[

x1

x2

]
= 0,

or

(2)
[

x1

λx0 + x2

]
= 0,

or
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(3)
[

x1

λx0 + x2

]
= α

[
x1

x2

]
for some α 6= 0.

Now we analyze the above three cases.

(1) If
[

x1

x2

]
= 0, then we have

x = x0




1
0
0


, L(x) = x0




a
0
λ


 and x ◦ L(x) = x0

2




a
0
λ


 ≤ 0.

So, if a + |λ| > 0, we have x0 = 0.

(2) If
[

x1

λx0 + x2

]
= 0, then x1 = 0 and x2 = −λx0 (λ 6= 0). We have

x = x0




1
0
−λ


, L(x) = (a− λc)x0




1
0
0


 and x ◦ L(x) = (a− λc)x0

2




1
0
−λ


 ≤ 0.

So, if a− λc > 0, we have x0 = 0.

(3) Let
[

x1

λx0 + x2

]
= α

[
x1

x2

]
.

(i) If α = 1, then we have x0 = 0 (λ 6= 0),

L(x) =




bx1 + cx2

x1

x2


 and x ◦ L(x) =




x1
2 + x2

2

x1(bx1 + cx2)
x2(bx1 + cx2)


 ≤ 0.

So, we x1 = x2 = 0.
(ii) If α 6= 1, then we have x1 = 0, x2 = λ

α−1x0,

L(x) =
x0

α− 1




a(α− 1) + cλ
0

αλ


 ,

and

x ◦ L(x) =
x0

2

(α− 1)2




a(α− 1)2 + λ(c + λ)(α− 1) + λ2

0
λ[a(α− 1) + cλ + α(α− 1)]


 ≤ 0.

Thus, we have x0 = 0 or

|λ||(α− 1)2 + (a + 1)(α− 1) + cλ|+ a(α− 1)2 + λ(c + λ)(α− 1) + λ2 ≤ 0.

The above inequality is violated if a > 0 and (c + λ)2 < 4a in which case we have x0 = 0,
hence x2 = 0. Therefore, L has the P-property.

Now consider L given in Example 3.1:

L =




1 4 1
0 1 0
−1 0 1


 : L3 → L3.
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It can be easily verified that L has the P-property by the above proposition. Hence it

has the w-P property. Take x =



−1.32

1
0


. Then we have

x ◦ L(x)=[-2.5376 1.36 -1.322]T < 0, but L(x)=[2.68 1 1.32]T 6= 0. Therefore L has the
w-P property but not the Jordan w-P property.
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