Vol. 5, No. 3, p. p. 525-547,September 2009

SOME w-P PROPERTIES FOR LINEAR TRANSFORMATIONS ON EUCLIDEAN JORDAN ALGEBRAS*

Jiyuan Tao

Abstract

In this paper, we introduce the concepts of w-P and w-uniqueness properties for a linear transformation defined on a Euclidean Jordan algebra V and study some interconnections between these concepts. We also specialize them to the space \mathcal{S}^{n} of all $n \times n$ real symmetric matrices with the semidefinite cone \mathcal{S}_{+}^{n} and to the space R^{n} with the Lorentz cone \mathcal{L}_{+}^{n}.

Key words: Euclidean Jordan algebra, P-property, w-P property, column sufficient property, column competent property, complementarity problem, Z-property, w-uniqueness

Mathematics Subject Classification: 90C33, 17C20, $17 C 55$

1 Introduction

For a given matrix $M \in R^{n \times n}$ and a vector $q \in R^{n}$, the linear complementarity problem [2], $\operatorname{LCP}(M, q)$, is to find a vector $z \in R^{n}$ such that

$$
\begin{equation*}
z \geq 0, \quad w:=M z+q \geq 0, \quad \text { and } \quad\langle z, w\rangle=0 \tag{1.1}
\end{equation*}
$$

This problem has been well studied in the literature [2], [3].
A pair of vectors (w, z) satisfying (1.1) is called a solution of the $\operatorname{LCP}(M, q)$. A vector z is called a z-solution if there exists a vector w such that (w, z) is solution of the $\operatorname{LCP}(M, q)$. Similarly, A vector w is called a w-solution if there exists a vector z such that (w, z) is solution of the $\operatorname{LCP}(M, q)$.

In [5], Fiedler and Pták introduced the notion of P-matrix: A real square matrix M is a P-matrix if all principal minors of M are positive. It is well known (see [2]) that the P-matrix property can be equivalently described by the following condition:

$$
x \in R^{n}, \quad x * M x \leq 0 \Rightarrow x=0,
$$

where the asterisk denotes the componentwise product. The equivalence of the P-matrix property and the existence of a unique z-solution for all linear complementarity problems $\operatorname{LCP}(M, q)$ was established in Murty [14]. Motivated by a study of dynamical systems

[^0]subject to smooth unilateral constraints, Ingleton [12] studied the uniqueness of w-solutions to LCP problems, and showed that the $\operatorname{LCP}(M, q)$ has the uniqueness of w-solutions for all $q \in R^{n}$ if and only if the following condition holds:
\[

$$
\begin{equation*}
z * M z \leq 0 \Rightarrow M z=0 \tag{1.2}
\end{equation*}
$$

\]

We may call a matrix M satisfying (1.2) as w-P matrix. We note that P-matrix and w-P matrix concepts coincide when M is invertible.

Generalizing the P-property of a matrix, in [10], Gowda, Sznajder and Tao introduced and studied P and globally uniquely solvable (GUS) properties for linear transformations on Euclidean Jordan algebras. Motivated by these results, as a counterpart of P-matrix and z-uniqueness, we generalize the w-P property of a matrix and study w-P and w-uniqueness properties for linear transformations on Euclidean Jordan algebras in this paper.

Here is an outline of the paper. In Section 2, we cover the basic material dealing with the complementarity properties and Euclidean Jordan algebras. In Section 3, we introduce the Order w-P property, the Jordan w-P property, and the w-P property, and study some interconnections between them. In Section 4, we describe the w-P and the w-uniqueness properties. In Section 5, we specialize the w-P and the w-uniqueness properties for Lyapunov transformations L_{A} defined by $L_{A}(X):=A X+X A^{T}$ for a real $n \times n$ matrix A on the space \mathcal{S}^{n} of all $n \times n$ real symmetric matrices. In Section 6 , we describe the w-P and the w-uniqueness properties for Lyapunov-like transformations. In Section 7, we specialize the w-P property for Stein transformations defined by $S_{A}(X):=X-A X A^{T}$ on \mathcal{S}^{n}. In Section 8, we specialize our results to symmetric linear transformations, to monotone transformations, to polyhedral cones and finally to algebra automorphisms on the Lorentz cone \mathcal{L}_{+}^{n}. In Section 9, we study the column competence property of linear transformations defined on V, and give some interconnections between the column competence property and finiteness of w-solutions of the $\operatorname{LCP}(\mathrm{L}, \mathrm{q})$ for $q \in V$.

2 Preliminaries

2.1 Euclidean Jordan Algebras

In this subsection, we recall some concepts, properties, and results from Euclidean Jordan algebras. Most of these can be found in Refs. [4], [10], [16].

A Euclidean Jordan algebra is a triple $(V, \circ,\langle\cdot, \cdot\rangle)$ where $(V,\langle\cdot, \cdot\rangle)$ is a finite dimensional inner product space over R and $(x, y) \mapsto x \circ y: V \times V \rightarrow V$ is a bilinear mapping satisfying the following conditions for all x and $y: x \circ y=y \circ x, x \circ\left(x^{2} \circ y\right)=x^{2} \circ(x \circ y)$, where $x^{2}:=x \circ x$, and $\langle x \circ y, z\rangle=\langle y, x \circ z\rangle$. In addition, an element $e \in V$ is called the unit element if $x \circ e=x$ for all $x \in V$. Henceforth, V denotes a Euclidean Jordan algebra.

In V, the set of squares

$$
K:=\left\{x^{2}: x \in V\right\}
$$

is a symmetric cone ([4], page 46). This means that K is a self-dual closed convex cone and for any two elements $x, y \in K^{o}(=$ interior $(K))$, there exists an invertible linear transformation $\Gamma: V \rightarrow V$ such that $\Gamma(K)=K$ and $\Gamma(x)=y$. We defined

$$
z^{+}:=\Pi_{K}(z) \quad \text { and } \quad z^{-}:=z^{+}-z
$$

where $\Pi_{K}(z)$ denotes the (orthogonal) projection of z onto K. Finally, for any two elements $x, y \in V$, we let

$$
x \sqcap y:=x-(x-y)^{+} \quad \text { and } \quad x \sqcup y:=y+(x-y)^{+} .
$$

For an element $z \in V$, we write

$$
z \geq 0 \quad(z>0) \quad \text { if and only if } \quad z \in K \quad\left(z \in K^{o}\right)
$$

and $z \leq 0(z<0)$ when $-z \geq 0(z>0)$.
An element $c \in V$ such that $c^{2}=c$ is called an idempotent in V; it is a primitive idempotent if it is nonzero and cannot be written as a sum of two nonzero idempotents. We say a finite set $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of primitive idempotents in V is a Jordan frame if

$$
e_{i} \circ e_{j}=0 \text { if } i \neq j, \text { and } \sum_{1}^{m} e_{i}=e .
$$

Given $x \in V$, there exists a Jordan frame $\left\{e_{1}, \ldots, e_{r}\right\}$ and real numbers $\lambda_{1}, \ldots, \lambda_{r}$ such that

$$
\begin{equation*}
x=\lambda_{1} e_{1}+\cdots+\lambda_{r} e_{r} \tag{2.1}
\end{equation*}
$$

The numbers λ_{i} are called the eigenvalues of x, and the representation (2.1) is called the spectral decomposition (or the spectral expansion) of x.

Given (2.1), we have

$$
x=\sum_{1}^{r} \lambda_{i}{ }^{+} e_{i}-\sum_{1}^{r} \lambda_{i}{ }^{-} e_{i} \quad \text { and } \quad\left\langle\sum_{1}^{r} \lambda_{i}{ }^{+} e_{i}, \sum_{1}^{r} \lambda_{i}{ }^{-} e_{i}\right\rangle=0,
$$

where for a real number $\alpha, \alpha^{+}:=\max \{0, \alpha\}$ and $\alpha^{-}:=(\alpha)^{+}-\alpha$.
From this we easily verify that

$$
x^{+}=\sum_{1}^{r} \lambda_{i}{ }^{+} e_{i} \quad \text { and } \quad x^{-}=\sum_{1}^{r} \lambda_{i}{ }^{-} e_{i},
$$

and so

$$
x=x^{+}-x^{-} \quad \text { with } \quad\left\langle x^{+}, x^{-}\right\rangle=0 .
$$

For an $x \in V$, a linear transformation $L_{x}: V \rightarrow V$ is defined by $L_{x}(z)=x \circ z$, for all $z \in V$. We say that two elements x and y operator commute if $L_{x} L_{y}=L_{y} L_{x}$.

It is known that x and y operator commute if and only if x and y have their spectral decompositions with respect to a common Jordan frame (Lemma X.2.2, Faraut and Korányi [4]).

Here are some standard examples.

Example 2.1. R^{n} is a Euclidean Jordan algebra with inner product and Jordan product defined respectively by

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i} \quad \text { and } \quad x \circ y=x * y
$$

Here R_{+}^{n} is the corresponding symmetric cone.
Example 2.2. \mathcal{S}^{n}, the set of all $n \times n$ real symmetric matrices, is a Euclidean Jordan algebra with the inner and Jordan product given by

$$
\langle X, Y\rangle:=\operatorname{trace}(X Y) \quad \text { and } \quad X \circ Y:=\frac{1}{2}(X Y+Y X)
$$

In this setting, the symmetric cone \mathcal{S}_{+}^{n} is the set of all positive semidefinite matrices in \mathcal{S}^{n}. Also, X and Y operator commute if and only if $X Y=Y X$.
Example 2.3. Consider $R^{n}(n>1)$ where any element x is written as

$$
x=\left[\begin{array}{c}
x_{0} \\
\bar{x}
\end{array}\right]
$$

with $x_{0} \in R$ and $\bar{x} \in R^{n-1}$. The inner product in R^{n} is the usual inner product. The Jordan product $x \circ y$ in R^{n} is defined by

$$
x \circ y=\left[\begin{array}{c}
x_{0} \\
\bar{x}
\end{array}\right] \circ\left[\begin{array}{c}
y_{0} \\
\bar{y}
\end{array}\right]:=\left[\begin{array}{c}
\langle x, y\rangle \\
x_{0} \bar{y}+y_{0} \bar{x}
\end{array}\right] .
$$

We shall denote this Euclidean Jordan algebra $\left(R^{n}, \circ,\langle\cdot, \cdot\rangle\right)$ by \mathcal{L}^{n}. In this algebra, the cone of squares, denoted by \mathcal{L}_{+}^{n}, is called the Lorentz cone (or the second-order cone). It is given by

$$
\mathcal{L}_{+}^{n}=\left\{x:\|\bar{x}\| \leq x_{0}\right\} .
$$

The unit element in \mathcal{L}^{n} is $e=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. We note the spectral decomposition of any x with $\bar{x} \neq 0$:

$$
x=\lambda_{1} e_{1}+\lambda_{2} e_{2}
$$

where

$$
\lambda_{1}:=x_{0}+\|\bar{x}\|, \lambda_{2}:=x_{0}-\|\bar{x}\|
$$

and

$$
e_{1}:=\frac{1}{2}\left[\begin{array}{c}
\frac{1}{x} \\
\|\bar{x}\|
\end{array}\right], \text { and } e_{2}:=\frac{1}{2}\left[\begin{array}{c}
1 \\
-\frac{\bar{x}}{\|\mid \boldsymbol{x}\|}
\end{array}\right] .
$$

In this setting, x and y operator commute if and only if either \bar{y} is a multiple of \bar{x} or \bar{x} is a multiple of \bar{y}.

We recall the following propositions from Gowda, Sznajder and Tao (see [10]):
Proposition 2.1. For $x, y \in V$, the following conditions are equivalent:
(i) $x \geq 0, y \geq 0$, and $\langle x, y\rangle=0$.
(ii) $x \geq 0, y \geq 0$, and $x \circ y=0$.

In each case, the elements x and y operator commute.
Proposition 2.2. For $x, y \in V$, consider the following statements:
(i) x and y operator commute and $x \circ y \leq 0$.
(ii) $x \circ y \leq 0$.
(iii) $x \sqcap y \leq 0 \leq x \sqcup y$.
(iv) $\langle x, y\rangle \leq 0$.

$$
\text { Then }(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i v) .
$$

Peirce Decomposition Fix a Jordan frame $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ in a Euclidean Jordan algebra V. For $i, j \in\{1,2, \ldots, r\}$, define the eigenspaces

$$
V_{i i}:=\left\{x \in V: x \circ e_{i}=x\right\}=R e_{i} \text { (where } \mathrm{R} \text { is the set of all real numbers) }
$$

and when $i \neq j$,

$$
V_{i j}:=\left\{x \in V: x \circ e_{i}=\frac{1}{2} x=x \circ e_{j}\right\} .
$$

Then, we have the following theorem
Theorem 2.3 (see [4], Theorem IV.2.1)). The space V is the orthogonal direct sum of the spaces $V_{i j}(i \leq j)$. Furthermore,

$$
\begin{aligned}
& V_{i j} \circ V_{i j} \subset V_{i i}+V_{j j} \\
& V_{i j} \circ V_{j k} \subset V_{i k} \text { if } i \neq k \\
& V_{i j} \circ V_{k l}=\{0\} \text { if }\{i, j\} \cap\{k, l\}=\emptyset .
\end{aligned}
$$

Thus, given any Jordan frame $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$, we can write any element $x \in V$ as

$$
x=\sum_{i=1}^{r} x_{i} e_{i}+\sum_{i<j} x_{i j}
$$

where $x_{i} \in R$ and $x_{i j} \in V_{i j}$.
A Euclidean Jordan algebra is said to be simple if it is not a direct sum of two Euclidean Jordan algebras. The classification theorem (See Faraut and Korányi, Chapter V, [4]) says that every simple Euclidean Jordan algebra is isomorphic to one of the algebras below:
(i) the algebra \mathcal{S}^{n} of $n \times n$ real symmetric matrices;
(ii) The algebra \mathcal{L}^{n};
(iii) The algebra \mathcal{H}_{n} of all $n \times n$ complex Hermitian matrices with trace inner product and $X \circ Y=\frac{1}{2}(X Y+Y X)$;
(iv) The algebra \mathcal{Q}_{n} of all $n \times n$ quaternion Hermitian matrices with (real) trace inner product and $X \circ Y=\frac{1}{2}(X Y+Y X)$;
(v) The algebra \mathcal{O}_{3} of all 3×3 octonion Hermitian matrices with (real) trace inner product and $X \circ Y=\frac{1}{2}(X Y+Y X)$.

The following result characterizes all Euclidean Jordan algebras.
Theorem 2.4 (See Faraut and Korányi, Prop. III.4.4, Prop. III.4.5, Thm. V.3.7, [4]). Any Euclidean Jordan algebra is, in a unique way, a direct sum of simple Euclidean Jordan algebras. Moreover, the symmetric cone in a given Euclidean Jordan algebra is, in a unique way, a direct sum of symmetric cones in the constituent simple Euclidean Jordan algebras.

2.2 Linear Complementarity Concepts

Throughout this paper, we assume that V is an Euclidean Jordan algebra with the corresponding symmetric cone K and $L: V \rightarrow V$ is a linear transformation. Given L on V and $q \in V$, the linear complementarity problem, $\operatorname{LCP}(L, q)$, is to find an $z \in V$ such that

$$
\begin{equation*}
z \in K, w:=L(z)+q \in K, \text { and }\langle z, w\rangle=0 \tag{2.2}
\end{equation*}
$$

A pair of elements (w, z) satisfying (2.2) is called a solution of the $\operatorname{LCP}(L, q)$. A vector z is called a z-solution if there exists a vector w such that (w, z) is solution of the $\operatorname{LCP}(L, q)$. Similarly, A vector w is called a w-solution if there exists a vector z such that (w, z) is solution of the $\operatorname{LCP}(L, q)$.

This problem is a particular case of a variational inequality problem [3]. Given L on V, we say that L has/is:
(a) monotone (strictly $=$ strongly) if $\langle L(x), x\rangle \geq 0$ (respectively, >0) for any $0 \neq x \in V$;
(b) the GUS (globally uniquely solvable) property on V if $\operatorname{LCP}(L, q)$ has a unique zsolution for all $q \in V$;
(c) has the Order P-property if

$$
x \sqcap L(x) \leq 0 \leq x \sqcup L(x) \Rightarrow x=0
$$

where $x \sqcap L(x):=x-(x-L(x))^{+}$and $x \sqcup L(x):=L(x)+(x-L(x))^{+}$;
(d) the Jordan P-property if

$$
x \circ L(x) \leq 0 \Rightarrow x=0
$$

(e) the P-property if

$$
\left.\begin{array}{r}
x \quad \text { and } \quad L(x) \quad \text { operator commute } \\
x \circ L(x) \leq 0
\end{array}\right\} \Rightarrow x=0 ;
$$

(f) the P_{0}-property if $L+\epsilon I$ has the P-property for every $\epsilon>0$;
(g) nondegenerate if

$$
\left.\begin{array}{r}
x \text { and } \quad L(x) \quad \text { operator commute } \\
x \circ L(x)=0
\end{array}\right\} \Rightarrow x=0 ;
$$

(h) the Q-property if $\operatorname{LCP}(L, q)$ has a solution for all $q \in V$.

These properties have been well studied, see e.g., [7], [10]. In particular, we always have the implications $(a)($ strictly $) \Rightarrow(b) \Rightarrow(e) \Rightarrow(f)$ and $(c) \Rightarrow(d) \Rightarrow(e) \Rightarrow(g),(e) \Rightarrow(h)$.

Definition 2.5 (see Definition 13, [10]). L is said to have the Cross Commutative property if for any $q \in V$ and for any two solutions x_{1} and x_{2} of $\operatorname{LCP}(L, q), x_{1}$ operator commutes with y_{2} and x_{2} operator commutes with y_{1}, where $y_{i}=L\left(x_{i}\right)+q(i=1,2)$.

Now we introduce the following definition.
Definition 2.6. Given L on V, let $K(L)$ denote the set of all $q \in V$ for which $\operatorname{SOL}(L, q) \neq \emptyset$, where $\operatorname{SOL}(L, q)$ denotes the z-solution set of $\operatorname{LCP}(L, q) . K(L)$ is closed in standard LCP problems, but not necessarily closed in general setting (see Example 2.5.14, [3]). We say that L :
(i) has the w-uniqueness property if for any $q \in K(L), L\left(x_{1}\right)=L\left(x_{2}\right)$ whenever x_{1} and x_{2} are two z-solutions of $\operatorname{LCP}(L, q)$;
(ii) is column sufficient if

$$
\left.\begin{array}{r}
x \text { and } \quad L(x) \quad \text { operator commute } \\
x \circ L(x) \leq 0
\end{array}\right\} \Rightarrow x \circ L(x)=0 ;
$$

(iii) is column competent if

$$
\left.\begin{array}{r}
x \text { and } \quad L(x) \quad \text { operator } \quad \text { commute } \\
x \circ L(x)=0
\end{array}\right\} \Rightarrow L(x)=0 .
$$

We note that the column sufficient property was introduced for standard LCP problems in [2], it is equivalent to the convexity of $\operatorname{SOL}(L, q)$. Gowda and Song [7] defined the column sufficient property as the convexity of $\operatorname{SOL}(L, q)$ when $V=\mathcal{S}^{n}$. Recently, Qin, Kong and Han [15] extended the column sufficient property from R^{n} to the setting of Euclidean Jordan algebras, and they showed that the column sufficient property with the Cross Commutative property is equivalent to the convexity of $\operatorname{SOL}(L, q)$; column competent was introduced for LCP in [19].

3 Order w-P, Jordan w-P, and w-P Properties

Motivated by implications (see [10]) of

$$
\text { Order } P \Rightarrow \operatorname{Jordan} P \Rightarrow P,
$$

in this section, we ask if analogous implications hold for w-P properties.
Definition 3.1. Given L on V, we say that L has:
(i) the Order w-P property if

$$
x \sqcap L(x) \leq 0 \leq x \sqcup L(x) \Rightarrow L(x)=0
$$

(ii) the Jordan w-P property if

$$
x \circ L(x) \leq 0 \Rightarrow L(x)=0
$$

(iii) the w-P property if

$$
\left.\begin{array}{rr}
x & \text { and } \quad L(x) \quad \text { operator commute } \\
x \circ L(x) \leq 0
\end{array}\right\} \Rightarrow L(x)=0 .
$$

Theorem 3.2. Given L on V, we have Order $w-P \Rightarrow$ Jordan $w-P \Rightarrow w-P$.
Moreover, if L has the w - P property, then every real eigenvalue of L is nonnegative and the determinant of L is nonnegative.

Proof. The implications follow immediately from Proposition 2.2. Now suppose that L has the w-P property. If λ is a real, negative eigenvalue of L, then there exists a nonzero $u \in V$ such that $L(u)=\lambda u$. It follows that u and $L(u)$ operator commute and $u \circ L(u)=\lambda u^{2} \leq 0$. Then we have $L(u)=0$ by the w-P property of L, hence $\lambda u=0 \Rightarrow u=0$. This is a contradiction. Therefore all real eigenvalues of L are nonnegative. It follows that the determinant of L (being the products of all eigenvalues) is also nonnegative.

Remark 3.3. (1) Zero transformation always satisfies the above properties.
(2) When L is invertible, the above properties reduce to the Order P , the Jordan P and the P properties.

In standard LCP theory, the Jordan w-P property is the same as the w-P property. However, as the following example shows, this result is not necessarily true on a Euclidean Jordan algebra.

Example 3.1. Let $L=\left[\begin{array}{ccc}1 & 4 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]: \mathcal{L}^{3} \rightarrow \mathcal{L}^{3}$.
Then L has the w-P property but not the Jordan w-P property. The justification is given in Appendix.

4 w-Uniqueness and w-P Properties

In this section, we study the w-uniqueness, the w-P properties and some other properties related to these two properties.

Lemma 4.1. If L is monotone, then L has the Cross Commutative property.
Proof. For a given $q \in K(L)$, let x_{1} and x_{2} be two solutions of $\operatorname{LCP}(L, q)$. Letting $x:=$ $x_{1}-x_{2}$ and $y_{i}=L\left(x_{i}\right)+q(i=1,2)$, we see that $x \circ L(x)=-\left[x_{1} \circ y_{2}+x_{2} \circ y_{1}\right]$. Since L is monotone, thus we have

$$
\begin{aligned}
0 & \leq\langle x, L(x)\rangle=\langle x \circ L(x), e\rangle \\
& =\left\langle-\left[x_{1} \circ y_{2}+x_{2} \circ y_{1}\right], e\right\rangle \\
& =-\left[\left\langle x_{1}, y_{2}\right\rangle+\left\langle x_{2}, y_{1}\right\rangle\right] \leq 0
\end{aligned}
$$

It follows that $\left\langle x_{1}, y_{2}\right\rangle=\left\langle x_{2}, y_{1}\right\rangle=0$. By Proposition 2.1, $x_{1}\left(x_{2}\right)$ operator commutes with y_{2} (respectively, y_{1}).

Theorem 4.2. Given L on V, w-uniqueness $=w-P+$ Cross Commutative.
Proof. Suppose that L has the w-uniqueness property. Let x and $L(x)$ operator commute, and $x \circ L(x) \leq 0$. Then there exists a Jordan frame $\left\{e_{1}, \ldots, e_{r}\right\}$ such that $x=\sum x_{i} e_{i}$ and $L(x)=\sum y_{i} e_{i}$. From $x \circ L(x) \leq 0$, we have $\sum x_{i} y_{i} e_{i} \leq 0$. It follows that $x_{i} y_{i} \leq 0$ for all i. This implies that $x_{i}{ }^{+} y_{i}{ }^{+}=x_{i}{ }^{-} y_{i}{ }^{-}=0$ for all i. Thus we have $x^{+} \circ[L(x)]^{+}=x^{-} \circ[L(x)]^{-}=$ 0 . Now define $q:=[L(x)]^{+}-L\left(x^{+}\right)$. We see that $q=[L(x)]^{-}-L\left(x^{-}\right)$. Obviously x^{+}and x^{-} are two solutions of $\operatorname{LCP}(L, q)$. Thus $L\left(x^{+}\right)=L\left(x^{-}\right) \Rightarrow L\left(x^{+}-x^{-}\right)=0 \Rightarrow L(x)=0$. This proves the w-P property. By the w-uniqueness of solution, the cross commutative property is obvious.

Now for the converse. Suppose L has the w-P and the cross commutative properties. For any $q \in K(L)$, let x_{1} and x_{2} be two solutions of $\operatorname{LCP}(L, q)$ and $y_{i}=L\left(x_{i}\right)+q(i=1,2)$. Since x_{1} operator commutes with y_{2}, it follows that $x_{1} \circ y_{2} \geq 0$. Similarly, $x_{2} \circ y_{1} \geq 0$. Now $x_{1}-x_{2}$ operator commutes with $L\left(x_{1}-x_{2}\right)=y_{1}-y_{2}$ and $\left(x_{1}-x_{2}\right) \circ L\left(x_{1}-x_{2}\right)=$ $-\left[x_{1} \circ y_{2}+x_{2} \circ y_{1}\right] \leq 0$. By the w-P property, $L\left(x_{1}\right)=L\left(x_{2}\right)$. This argument shows that L has the w-uniqueness property.

In standard LCP problems, the w-uniqueness and w-P properties coincide (see Theorem $3.4 .4,[2]$). However, the following example shows that the w-P property does not imply the w-uniqueness property.

Example 4.1. When $V=\mathcal{S}^{n}$, for a real $n \times n$ matrix A, the Lyapunov transformation is defined by

$$
L_{A}(X):=A X+X A^{T}
$$

Now consider the matrices $A=\left[\begin{array}{ll}-1 & 2 \\ -2 & 2\end{array}\right]$ and $Q=\left[\begin{array}{ll}2 & 2 \\ 2 & 4\end{array}\right]$. Then A is positive stable (every eigenvalue of A has positive real part) and Q is positive definite. Thus L_{A} has the P-property (see Theorem 5, [7]). Hence L_{A} has the w-P property. It can be easily verified that zero matrix and $X=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ are two solutions of $\operatorname{LCP}\left(L_{A}, Q\right)$. However $L_{A}(X)=\left[\begin{array}{cc}-2 & -2 \\ -2 & 0\end{array}\right] \neq L_{A}(0)$.

As we see from Theorem 4.2, the w-uniqueness property is tied to the w-P property and the cross commutative property. However, we do not know how to describe, apart from the definition, the cross commutative property. In what follows, we give a necessary condition for the w-uniqueness property.

It has been observed in Theorem 4.1 of [18] that if L has the GUS-property on V, then $\langle L(c), c\rangle \geq 0$ for any primitive idempotent $c \in V$. By modifying the proof, we get the following:

Theorem 4.3. If L has the w-uniqueness property, then for any primitive idempotent $c \in V,\langle L(c), c\rangle \geq 0$.

As an illustration of Theorem 4.3, we provide the following examples.
Example 4.2. When $V=\mathcal{S}^{n}$, for a real $n \times n$ matrix A, L_{A} is defined in Example 4.1. It can be easily verified that $\left\langle L_{A}(c), c\right\rangle \geq 0$ for all primitive idempotents c on \mathcal{S}_{+}^{n} if and only if A is positive semidefinite.

Example 4.3. When $V=\mathcal{S}^{n}$, for a real $n \times n$ matrix A, the Stein transformation is defined by

$$
S_{A}(X)=X-A X A^{T}
$$

It can be easily verified that $\left\langle S_{A}(c), c\right\rangle \geq 0$ for all primitive idempotents c on \mathcal{S}_{+}^{n} if and only if $I \pm A$ are positive semidefinite, where I is the identity matrix.

In what follows, we give some interconnections between the concepts introduced in Section 2.2.

Lemma 4.4. Given L on V, consider the following statements:
(a) L has the w-uniqueness property.
(b) L has the w-P property.
(c) L has the column sufficiency property.
(d) L has the P_{0}-property.
(e) L has the column competence property.
(f) $L+\epsilon I$ has the P-property for all $\epsilon>0$.

Then $(a) \Rightarrow(b) \Rightarrow(c) \Rightarrow(d)$ and $(b) \Rightarrow(e),(b) \Rightarrow(f)$.
Proof. The implication (a) \Rightarrow (b) follows from Theorem 4.2.
The implication $(\mathrm{b}) \Rightarrow(\mathrm{c})$ is obvious.
(c) $\Rightarrow(\mathrm{d})$: Suppose that x operator commutes with $(L+\epsilon I)(x)$ for every $\epsilon>0$ and $x \circ$ $(L+\epsilon I)(x) \leq 0$. Then $x \circ(L+\epsilon I)(x) \leq 0 \Rightarrow x \circ L(x) \leq-\epsilon x^{2} \leq 0$ and x and $L(x)$ operator commute. Thus $x \circ L(x)=0$ by the column sufficiency property of L. Hence $x \circ(L+\epsilon I)(x) \leq 0 \Rightarrow \epsilon x^{2} \leq 0 \Rightarrow x=0$. Therefore L has the P_{0}-property.
The implication (b) $\Rightarrow(\mathrm{e})$ is obvious.
(b) \Rightarrow (f): Suppose that x operator commutes with $(L+\epsilon I)(x)$ for every $\epsilon>0$ and $x \circ(L+$ $\epsilon I)(x) \leq 0$. Then $x \circ(L+\epsilon I)(x) \leq 0 \Rightarrow x \circ L(x) \leq-\epsilon x^{2} \leq 0$ and x and $L(x)$ operator commute. Thus $L(x)=0$ by the w-P property of L. Hence $x \circ(L+\epsilon I)(x) \leq 0 \Rightarrow \epsilon x^{2} \leq$ $0 \Rightarrow x=0$. Therefore $L+\epsilon I$ has the P-property.

Remark 4.5. In general, the P_{0}-property does not imply the w-P property even in standard LCP problems: An example is $M=\left[\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right]$.

In the next section, we specialize the w-uniqueness and the w-P properties to Lyapunov transformations defined on \mathcal{S}^{n}.

5 The w-Uniqueness and w-P Properties for Lyapunov Transformations

It is well known (see [7]) that L_{A} has the P -property if and only if A is positive stable and L_{A} has the GUS-property if and only if A is positive stable and semidefinite. As the counterpart of the P and the GUS properties, in this section, we give a characterization of the w-P property and the w-uniqueness property for L_{A}.

Theorem 5.1. For $A \in R^{n \times n}$, consider L_{A} on \mathcal{S}^{n}. Then L_{A} has the w-P property if and only if A is semipositive stable, i.e., all eigenvalues of A lie in the closed right half-plane.

Proof. The technique used here is similar to the proof of Theorem 5 in [7]. Since the w-P property implies the P_{0}-property by Lemma 4.4 , and

$$
\left(L_{A}+\epsilon I\right)(X)=A X+X A^{T}+\epsilon X=L_{A+\frac{\epsilon}{2} I}(X)
$$

we see that L_{A} has the $P_{0^{-}}$property if and only A is semipositive stable. Thus the w- P property of L_{A} implies that A is semipositive stable. Therefore we only need to show the "if" part. Let A is semipositive stable and suppose that L_{A} does not have the w-P property. Then there is a nonzero X which commutes with nonzero $L_{A}(X)$ and $X \circ L_{A}(X) \preceq 0$. Because of commutativity, we can write

$$
X=U^{T} D U, \quad L_{A}(X)=U^{T} E U \quad \text { and } \quad B=U A U^{T}
$$

where U is some orthogonal matrix and D and E are diagonal matrices. Then we have $E=B D+D B^{T}$ and $D E \preceq 0$. Without loss of generality, we can write

$$
D=\left[\begin{array}{cc}
D_{1} & 0 \\
0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right] \text { and } E=\left[\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right]
$$

where D_{1} is invertible and the sizes of B_{1} and E_{1} agree with that of D_{1}. Then from $E=B D+D B^{T}$, we have

$$
E=\left[\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right]=\left[\begin{array}{cc}
B_{1} D_{1}+D_{1} B_{1}{ }^{T} & D_{1} B_{3}{ }^{T} \\
B_{3} D_{1} & 0
\end{array}\right] .
$$

We see that $E_{2}=0$ and $B_{3} D_{1}=0 \Rightarrow B_{3}=0$. Then every eigenvalue of B_{1} is an eigenvalue of B. Since B is semipositive stable, B_{1} is also semipositive stable, thus $\operatorname{tr}\left(B_{1}\right) \geq 0$. From $E_{1}=B_{1} D_{1}+D_{1} B_{1}^{T}$, we have the i th diagonal entry of B_{1} as $\frac{1}{2} e_{i i} \frac{1}{d_{i i}}$ where $e_{i i}$ and $d_{i i}$ denote the i th diagonal entries of E_{1} and D_{1} respectively. Then from $D E \preceq 0$, we have $\frac{1}{2} e_{i i} \frac{1}{d_{i i}} \leq 0 \Rightarrow \operatorname{tr}\left(B_{1}\right) \leq 0$. Therefore, $\operatorname{tr}\left(B_{1}\right)=0 \Rightarrow \frac{1}{2} e_{i i} \frac{1}{d_{i i}}=0$ for all i; this implies that $e_{i i}=0$ for all i, thus $E_{1}=0$. Hence $L_{A}(X)=0$ contradicts our assumption. Therefore, the "if" part holds.

Lemma 4.4 and Theorem 5.1 immediately yield the following corollary.
Corollary 5.2. For $A \in R^{n \times n}$, the following statements are equivalent:
(a) A is semipositive stable.
(b) L_{A} has the w-P property.
(c) L_{A} has the column sufficiency property.
(d) L_{A} has the P_{0}-property.

Remark 5.3. Since L_{A} has the Q-property if and only if L_{A} has the P-property (see Theorem $5,[7]$), the w-P property does not imply the Q-property.

Theorem 5.4. For $A \in R^{n \times n}$, the following statements are equivalent:
(a) L_{A} has the w-uniqueness property.
(b) A is semipositive stable and positive semidefinite.

Proof. (a) \Rightarrow (b): If L_{A} has the w-uniqueness property, then L_{A} has the w-P property by Theorem 4.2. Hence A is semipositive stable by Theorem 5.1. A is positive semidefinite following from Theorem 4.3 and Example 4.2.
(b) \Rightarrow (a): If A is positive semidefinite, then L_{A} is monotone. Thus L_{A} has the cross commutative property by Lemma 4.1. Therefore (a) holds by Corollary 5.2 and Theorem 4.2.

6 The w-Uniqueness and w-P Properties for Lyapunov-like Transformations

Motivated by the equivalence between the w-P property together with positive semidefiniteness and the w-uniqueness property for L_{A} on \mathcal{S}^{n}, one may ask if this equivalence holds on symmetric cones for transformations that are similar to a Lyapunov transformation. Below, we will provide an answer to this question in the positive.

We say that L has the Z-property if

$$
x, y \in K, \quad \text { and }\langle x, y\rangle=0 \Rightarrow\langle L(x), y\rangle \leq 0
$$

Recently, Gowda and Tao ([11]) introduced and studied the properties of such transformations.

Remark 6.1. It can be easily verified that L_{A} and S_{A} have the Z-property on \mathcal{S}_{+}^{n}.
Definition 6.2. see ($[9]$) Given L on V, it is said to be a Lyapunov-like transformation if both L and $-L$ have the Z-property, that is,

$$
x, y \geq 0,\langle x, y\rangle=0 \Rightarrow\langle L(x), y\rangle=0
$$

Theorem 6.3. Let L be a Lyapunov-like transformation. Then the following are equivalent:
(a) L has the w-P property.
(b) L has the column sufficiency property.

Proof. The implication (a) $\Rightarrow(\mathrm{b})$ is obvious.
(b) $\Rightarrow(\mathrm{a})$: Suppose x and $L(x)$ operator commute and $x \circ L(x) \leq 0$. Then $x \circ L(x)=0$ by the column sufficiency property. Without loss of generality, we can write

$$
x=\sum_{1}^{k} x_{i} e_{i} \quad \text { and } \quad L(x)=\sum_{k+1}^{r} y_{i} e_{i}
$$

where $\left\{e_{1}, \ldots, e_{r}\right\}$ is a Jordan frame. Then we have $L(x)=\sum_{1}^{k} x_{i} L\left(e_{i}\right)$. Thus $\langle L(x), L(x)\rangle=$ $\left\langle\sum_{1}^{k} x_{i} L\left(e_{i}\right), \sum_{k+1}^{r} y_{i} e_{i}\right\rangle=\sum_{i<j} x_{i} y_{j}\left\langle L\left(e_{i}\right), e_{j}\right\rangle=0$. The last equality holds because L is Lyapunov-like transformation. Thus $L(x)=0$. Therefore, L has the w-P property.

Theorem 6.4. Let L be a Lyapunov-like transformation. Then the following are equivalent:
(a) L has the w-uniqueness property.
(b) $\langle L(c), c\rangle \geq 0$ for any primitive idempotent $c \in V$.

Proof. The implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ follows from Theorem 4.3.
$(\mathrm{b}) \Rightarrow(\mathrm{a}):$ Fix $q \in K(L)$ and suppose that x_{1} and x_{2} are two solutions of $\operatorname{LCP}(L, q)$ so that

$$
x_{i} \geq 0, y_{i}=L\left(x_{i}\right)+q \geq 0, \text { and }\left\langle x_{i}, y_{i}\right\rangle=0(i=1,2)
$$

Now if (b) holds, then L is monotone by Theorem 7.1 in [9]. Thus the solution set of $\operatorname{LCP}(L, q)$ is convex by Theorem 2.3.5, [3]. Therefore for any $t \in[0,1], t x_{1}+(1-t) x_{2}$ is also a solution of $\operatorname{LCP}(L, q)$. Writing out the complementarity conditions, we have

$$
\left\langle x_{1}, y_{2}\right\rangle=0=\left\langle x_{2}, y_{1}\right\rangle .
$$

Hence we have that x_{1} and x_{2} operator commute with both y_{1} and y_{2} by Proposition 2.1, and $x_{1} \circ y_{2}=0=x_{2} \circ y_{1}$; hence $z:=x_{1}-x_{2}$ operator commutes with $y_{1}-y_{2}=L\left(x_{1}-x_{2}\right)=L(z)$, and $z \circ L(z)=0$. Without loss of generality, we may assume that there exists a Jordan $\left\{e_{1}, \ldots, e_{r}\right\}$ such that

$$
z=\sum_{1}^{k} \lambda_{i} e_{i} \text { and } L(z)=\sum_{k+1}^{r} \mu_{i} e_{i}
$$

Thus $L(z)=\sum_{1}^{k} \lambda_{i} L\left(e_{i}\right)=\sum_{k+1}^{r} \mu_{i} e_{i}$. Hence $\langle L(z), L(z)\rangle=\left\langle\sum_{1}^{k} \lambda_{i} L\left(e_{i}\right), \sum_{k+1}^{r} \mu_{i} e_{i}\right\rangle=$ $\sum_{i<j} \lambda_{i} \mu_{j}\left\langle L\left(e_{i}\right), e_{j}\right\rangle=0$. The last equality holds because L is Lyapunov-like transformation. This implies that $L(z)=0$. Therefore L has the w-uniqueness property.

In the next section, we specialize the w-P property to Stein transformations defined on \mathcal{S}^{n}.

7 The w-P Property for Stein Transformations

It is well known (see [6]) that S_{A} has the P-property if and only if A is Schur stable (all eigenvalues of A lie in the open unit disk). As the counterpart of the P-property, in this section, we give a characterization of the w-P property for S_{A}.

Theorem 7.1. For $A \in R^{n \times n}$ and the corresponding S_{A}. Then S_{A} has the w - P property if and only if $\rho(A) \leq 1$, i.e., all eigenvalues of A lie in the closed unit disk.

Proof. The technique used here is similar to the proof of Theorem 11 in [6]. Since the w-P property implies P_{0}-property by Lemma 4.4, also

$$
\left(S_{A}+\epsilon I\right)(X)=X-A X A^{T}+\epsilon X=(1+\epsilon) S_{\frac{1}{\sqrt{1+\epsilon}} A}(X),
$$

we see that S_{A} has the P_{0}-property if and only all eigenvalues of A lie in the closed unit disk. Thus the w-P property of S_{A} implies that $\rho(A) \leq 1$. Therefore we only need to show the "if" part. Let $\rho(A) \leq 1$ and suppose that S_{A} does not have the w-P property. Then there is a nonzero X which commutes with nonzero $S_{A}(X)$ and $X \circ S_{A}(X) \preceq 0$. Because of commutativity, we can write

$$
X=U^{T} D U, \quad S_{A}(X)=U^{T} E U \quad \text { and } \quad B=U A U^{T}
$$

where U is some orthogonal matrix and D and E are diagonal matrices. Then we have $E=D-B D B^{T}, D E \preceq 0$, and $\rho(B) \leq 1$.
Case 1: D is invertible. Then

$$
\begin{equation*}
D^{-1} E=I-D^{-1} B D B^{T} \preceq 0 . \tag{7.1}
\end{equation*}
$$

Since $D^{-1} E$ is diagonal matrix, $D^{-1} B D B^{T}$ is symmetric. Now we claim that every eigenvalue of $D^{-1} B D B^{T}$ is equal to one. Let λ be an eigenvalue of $D^{-1} B D B^{T}$ and a nonzero vector u such that $\left(D^{-1} B D B^{T}\right) u=\lambda u$. From (7.1), we get $\|u\|^{2}-\lambda\|u\|^{2} \leq 0 \Rightarrow \lambda \geq 1$. Since $\operatorname{det}\left(D^{-1} B D B^{T}\right) \leq 1$, we have that every eigenvalue of $D^{-1} B D B^{T}$ is equal to 1 . Again from (7.1), we get every eigenvalue of $D^{-1} E$ is zero. Since D is invertible, we have every eigenvalue of E is zero. Thus $E=0$. Hence $S_{A}(X)=0$.
Case 2: D is not invertible. Without loss of generality, we can write

$$
D=\left[\begin{array}{cc}
D_{1} & 0 \\
0 & 0
\end{array}\right] B=\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right] \text { and } E=\left[\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right]
$$

where D_{1} is invertible and $D_{1} E_{1} \preceq 0$. Then from $E=D-B D B^{T}$, we have

$$
\begin{align*}
E & =\left[\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right]=\left[\begin{array}{cc}
D_{1}-B_{1} D_{1} B_{1}^{T} & -B_{1} D_{1} B_{3}{ }^{T} \\
-B_{3} D_{1} B_{1}{ }^{T} & -B_{3} D_{1} B_{3}{ }^{T}
\end{array}\right] \Rightarrow \\
E_{1} & =D_{1}-B_{1} D_{1} B_{1}^{T}, B_{1} D_{1} B_{3}{ }^{T}=0 \text { and } E_{2}=-B_{3} D_{1} B_{3}{ }^{T} \tag{7.2}
\end{align*}
$$

We claim that B_{1} is invertible. If not, let $B_{1}{ }^{T} u=0$ for some nonzero u. Then $E_{1} u=D_{1} u$ and so $0<\left\langle D_{1}{ }^{2} u, u\right\rangle=\left\langle D_{1} E_{1} u, u\right\rangle \leq 0$ leading to a contradiction. Hence B_{1} is invertible. Therefore $B_{3}=0$. It follows (from $\rho(B) \leq 1$) that $\rho\left(B_{1}\right) \leq 1$ and $E_{2}=0$. This, together with (7.2), as in the Case 1, leads to $E_{1}=0$. Hence $S_{A}(X)=0$. Thus if $\rho(A) \leq 1$, then S_{A} has the w-P property.

Lemma 4.4 and Theorem 7.1 immediately yield the following corollary.
Corollary 7.2. For $A \in R^{n \times n}$ and the corresponding S_{A}. Then the following statements are equivalent:
(a) $\rho(A) \leq 1$.
(b) S_{A} has the w-P property.
(c) S_{A} has the column sufficiency property.
(d) S_{A} has the P_{0}-property.

8 Some Special Cases

In this section, we study some special cases of the linear transformations, in particular, L is monotone and/or self-adjoint.

Lemma 8.1. Suppose L is self-adjoint and monotone. Then L has the w-uniqueness property.

Proof. For any $q \in K(L)$, let $y_{0}=L\left(x_{0}\right)+q$ and $y=L(x)+q$, where x_{0} is a given solution and x an arbitrary solution. Then $y-y_{0}=L\left(x-x_{0}\right)$. Since L is monotone, we have that L has the cross commutative property by Lemma 4.1. Thus $\left(x-x_{0}\right) \circ L\left(x-x_{0}\right)=$ $-\left[x \circ y_{0}+x_{0} \circ y\right] \leq 0 \Rightarrow\left(x-x_{0}\right)^{T} L\left(x-x_{0}\right) \leq 0 \Rightarrow\left(x-x_{0}\right)^{T} L\left(x-x_{0}\right)=0$. The last equality follows by monotonicity of L. Since L is self-adjoint and monotone, we have $L\left(x-x_{0}\right)=0$. Hence $L(x)=L\left(x_{0}\right)$.

Theorem 8.2. Let L be self-adjoint. Then the following are equivalent:
(a) L is monotone.
(b) L has the Order w-P property.
(c) L has the Jordan w-P property.
(d) L has the w-P property.
(e) L has the w-uniqueness property.

Proof. (a) \Rightarrow (b): Suppose $x \sqcap L(x) \leq 0 \leq x \sqcup L(x)$. Then $\langle x, L(x)\rangle \leq 0$ by Proposition 2.2. Since L is monotone, we have $\langle x, L(x)\rangle=0$. Since L is self-adjoint and monotone, we have $L(x)=0$.
The implications $(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d})$ follow from Theorem 3.2.
Since $(\mathrm{a}) \Rightarrow(\mathrm{e})$ by Lemma 8.1 and $(\mathrm{e}) \Rightarrow(\mathrm{d})$ by Theorem 4.2 , we only need to show that $(\mathrm{d}) \Rightarrow(\mathrm{a})$. Suppose (d) holds, since L is self-adjoint, all eigenvalues of L are real. We claim that all eigenvalues of L are nonnegative. Suppose not, then there exists a eigenvalue $\lambda<0$ and corresponding eigenvector u, such that $L(u)=\lambda u$. Thus we have $u \circ L(u)=\lambda u^{2} \leq 0$, this implies that $L(u)=0$ by the w-P property of L, Thus $\lambda u=0 \Rightarrow u=0$, this is a contradiction. Hence the claim is true. Therefore L is monotone.

Corollary 8.3. Given any element a in V, the quadratic representation of a is defined by $P_{a}(x):=2 a \circ(a \circ x)-a^{2} \circ x$. Then the following are equivalent:
(a) P_{a} is positive semidefinite on V.
(b) P_{a} has the w-uniqueness property.
(c) P_{a} has the w-P property.

If, in addition, V is simple, then the above conditions are further equivalent to
(d) $\pm a \in K$.

Proof. Since P_{a} is self-adjoint, we only need to show (a) is equivalent to (d) when V is simple. For a given $a \in V$, there exists a Jordan frame $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ such that

$$
a=a_{1} e_{1}+a_{2} e_{2}+\ldots+a_{r} e_{r}
$$

For any $x \in V$, write the Peirce decomposition of x with respect to this Jordan frame as

$$
x=\sum_{i=1}^{r} x_{i} e_{i}+\sum_{i<j} x_{i j}
$$

(with $x_{i} \in R$ and $x_{i j} \in V_{i j}$). Then it can be easily verified that

$$
P_{a}(x)=\sum_{i=1}^{r} a_{i}^{2} x_{i} e_{i}+\sum_{i<j} a_{i} a_{j} x_{i j}
$$

When V is simple, $V_{i j}$ is nonzero for each $i \leq j$ (see Corollary IV.2.4 in [4]), so we have

$$
\begin{aligned}
0 \leq\left\langle x, P_{a}(x)\right\rangle & =\sum_{i=1}^{r} a_{i}^{2} x_{i}^{2}\left\|e_{i}\right\|^{2}+\sum_{i<j} a_{i} a_{j}\left\|x_{i j}\right\|^{2}(\forall x \in V) \\
& \Leftrightarrow a_{i} a_{j} \geq 0(i \leq j) \\
& \Leftrightarrow a_{i} \geq 0 \text { or } a_{i} \leq 0, \forall i
\end{aligned}
$$

Hence P_{a} is positive semidefinite on V if and only if $\pm a \in K$ when V is simple.

Remark 8.4. When $V=\mathcal{S}^{n}$, for a real $n \times n$ matrix A, the two sided multiplicative transformation is defined by

$$
M_{A}(X):=A X A^{T}
$$

If we specialize P_{a} on \mathcal{S}^{n}, then it can be easily verified that $P_{A}(X)=A X A$ for $A \in \mathcal{S}^{n}$. Thus for M_{A}, the following are equivalent when A is a real symmetric square matrix.
(a) A is either positive semidefinite or negative semidefinite.
(b) M_{A} has the w-uniqueness property.
(c) M_{A} has the w-P property.

The following two theorems are modifications of Theorem 22 and Theorem 23 in [10].
Theorem 8.5. When L is monotone,

$$
\text { Order } w-P=\operatorname{Jordan} w-P \quad \text { and } \quad w-P=w-\text { uniqueness. }
$$

Theorem 8.6. When K is polyhedral,

$$
\text { Order } w-P=\operatorname{Jordan} w-P=w-P=w-\text { uniqueness. }
$$

Now we consider $\operatorname{Aut}\left(\mathcal{L}^{n}\right)$, the set of all invertible linear transformations L such that $L(x \circ y)=L(x) \circ L(y)$ for all $x, y \in \mathcal{L}^{n}$. Such linear transformations are called algebra automorphisms on \mathcal{L}^{n}. In [9], Gowda and Sznajder showed that the GUS and P properties coincide for all $L \in \operatorname{Aut}\left(\mathcal{L}^{n}\right)$. The w-P and P properties coincide for an $L \in \operatorname{Aut}\left(\mathcal{L}^{n}\right)$ coincide as any such L is invertible. Therefore it is easy to get the following result by using Theorem 5.1 in [9].

Theorem 8.7. For $L \in \operatorname{Aut}\left(\mathcal{L}^{n}\right)$, the following are equivalent:
(a) L has the P-property.
(b) L has the GUS-property on V.
(c) L has the w-uniqueness property.
(d) L has the w-P property.
(e) L has the R_{0}-property.
(f) L has the Q-property.
(g) $-1 \notin \sigma(L)(=$ spectrum of $L)$.

9 The Column Competence Property and the Finiteness of wSolutions of the $\operatorname{LCP}(L, q)$

In the standard LCP theory, the nondegeneracy of a matrix M and finiteness of $\operatorname{SOL}(M, q)$ coincide (see [2]). However, this need not be true when $V=\mathcal{S}^{n}$ (see [8]). In [8], Gowda and Song introduced the concepts of nondegeneracy for a linear transformation defined on \mathcal{S}^{n} and the locally-star-like property of a solution point of an $\operatorname{SDLCP}(L, Q)$ for $Q \in \mathcal{S}^{n}$ and showed that nondegeneracy together with the locally-star-like property is equivalent to finiteness of SDLCP solution sets. In [13], Malik extended this result to any Euclidean Jordan algebra. In [19], Xu introduced the concept of the column competence for the standard LCP problems and showed that the column competence of a matrix M and finiteness of w-solutions property of $\operatorname{LCP}(\mathrm{L}, \mathrm{q})$ coincide. Motivated by these results, in the first part of this section, we study the column competence property of L defined on V, and then we give some interconnections between the column competence property and finiteness of w-solutions property of $\mathrm{LCP}(\mathrm{L}, \mathrm{q})$ for all $q \in V$.

Recall that L has the column competence property if

$$
\left.\begin{array}{rrr}
x & \text { and } \quad L(x) & \text { operator } \\
& \text { commute } \\
& \circ L(x)=0
\end{array}\right\} \Rightarrow L(x)=0 .
$$

Theorem 9.1. If L is a Lyapunov-like transformation, then L is column competent.
Proof. Suppose x and $L(x)$ operator commute and $x \circ L(x)=0$. Without loss of generality, we can write

$$
x=\sum_{1}^{k} x_{i} e_{i} \quad \text { and } \quad L(x)=\sum_{k+1}^{r} y_{i} e_{i},
$$

where $\left\{e_{1}, \ldots, e_{r}\right\}$ is a Jordan frame. Then we have $L(x)=\sum_{1}^{k} x_{i} L\left(e_{i}\right)$. Thus $\langle L(x), L(x)\rangle=$ $\left\langle\sum_{1}^{k} x_{i} L\left(e_{i}\right), \sum_{k+1}^{r} y_{i} e_{i}\right\rangle=\sum_{i<j} x_{i} y_{j}\left\langle L\left(e_{i}\right), e_{j}\right\rangle=0$. The last equality holds because L is Lyapunov-like transformation. Thus $L(x)=0$.

Example 9.1. L_{A} has the column competence property for any $A \in R^{n \times n}$.
Theorem 9.2. S_{A} has the column competence property for any $A \in R^{n \times n}$.
Proof. Suppose a nonzero X which commutes with nonzero $S_{A}(X)$ and $X \circ S_{A}(X)=0$. Then because of commutativity, we can write

$$
X=U^{T} D U, \quad S_{A}(X)=U^{T} E U \quad \text { and } \quad B=U A U^{T}
$$

where U is some orthogonal matrix and D and E are diagonal matrices. Then we have $E=D-B D B^{T}$ and $D E=0$. Without loss of generality, we can write

$$
D=\left[\begin{array}{cc}
D_{1} & 0 \\
0 & 0
\end{array}\right] B=\left[\begin{array}{cc}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right] \text { and } E=\left[\begin{array}{cc}
0 & 0 \\
0 & E_{2}
\end{array}\right]
$$

where D_{1} is invertible. Then from $E=D-B D B^{T}$, we have

$$
\begin{gathered}
E=\left[\begin{array}{cc}
0 & 0 \\
0 & E_{2}
\end{array}\right]=\left[\begin{array}{cc}
D_{1}-B_{1} D_{1} B_{1}^{T} & -B_{1} D_{1} B_{3}{ }^{T} \\
-B_{3} D_{1} B_{1}^{T} & -B_{3} D_{1} B_{3}^{T}
\end{array}\right] \Rightarrow \\
D_{1}=B_{1} D_{1} B_{1}^{T}, B_{1} D_{1} B_{3}^{T}=0 \text { and } E_{2}=-B_{3} D_{1} B_{3}^{T} .
\end{gathered}
$$

We claim that B_{1} is invertible. If this is not the case, let $B_{1}{ }^{T} u=0$ for some nonzero u. Then $D_{1} u=B_{1} D_{1} B_{1}^{T} u=0 \Rightarrow u=0$ leading to a contradiction because D_{1} is invertible. Hence B_{1} is invertible. From $B_{1} D_{1} B_{3}^{T}=0$, we have $B_{3}=0$. Thus $E_{2}=-B_{3} D_{1} B_{3}^{T}=0$. Therefore $S_{A}(X)=0$.

Theorem 9.3. Suppose L is monotone. Then the following are equivalent:
(a) L has the w-uniqueness property.
(b) L has the w-P property.
(c) L is column competent.

Proof. The implication (a) \Leftrightarrow (b) follows from Theorem 8.5.
The implication $(\mathrm{b}) \Rightarrow(\mathrm{c})$ is obvious.
$(\mathrm{c}) \Rightarrow(\mathrm{b})$: Suppose that x and $L(x)$ operator commute, and $x \circ L(x) \leq 0$. We have

$$
0 \geq\langle x \circ L(x), e\rangle=\langle x, L(x)\rangle \geq 0
$$

The last inequality is from monotonicity of L. Thus we have $\langle x, L(x)\rangle=0$. Since x and $L(x)$ operator commute, we may write $x=\sum_{1}^{r} \lambda_{i} e_{i}$ and $L(x)=\sum_{1}^{r} \mu_{i} e_{i}$, where $\left\{e_{1}, \ldots, e_{r}\right\}$ is a Jordan frame. Then $x \circ L(x) \leq 0$ yields $\sum_{1}^{r} \lambda_{i} \mu_{i} e_{i} \leq 0$, which further implies $\lambda_{i} \mu_{i} \leq 0$ for all i. Now $\langle x, L(x)\rangle=0$ yields $\sum_{1}^{r} \lambda_{i} \mu_{i}\left\|e_{i}\right\|^{2}=0$. It follows that $\lambda_{i} \mu_{i}=0$ for all i. This implies $x \circ L(x)=0$. Since x and $L(x)$ operator commute, we have $L(x)=0$ from the column competence property of L. Thus L has the w-P property.

Theorem 9.4. Let L be copositive on K (i.e., $\langle L(x), x\rangle \geq 0$ for all $x \in K$). Then L is the column competent only if L has the w-uniqueness property for all $q \in K$.

Proof. Fix a $q \in K$, suppose that there exists $x \geq 0$, such that $y=L(x)+q \geq 0$ and $\langle x, y\rangle=0$. Then x and y operator commute by Proposition 2.1. Since L is copositive on K, we have $\langle x, q\rangle=0$, this implies that x and q operator commute by Proposition 2.1. Thus x and $L(x)=y-q$ operator commute, and $x \circ L(x)=0$. By the column competence property of L, we have $L(x)=0$.

In view of the LCP result for column competence of a matrix mentioned at the beginning of the section, we may ask whether or not the LCP w-solution sets corresponding to a column competent transformation are finite. The following example shows that the answer is negative.

Example 9.2. In $R^{2 \times 2}$, let $A=-\frac{1}{2} I$ and $Q=I$, where I is the identity matrix. Then L_{A} is column competent by Example 9.1. It can be easily verified that the solution set of the $\operatorname{LCP}\left(L_{A}, Q\right)$, consisting of all matrices of the form

$$
\left[\begin{array}{cc}
\frac{1+\sqrt{1-4 \lambda^{2}}}{2} & \lambda \\
\lambda & \frac{1-\sqrt{1-4 \lambda^{2}}}{2}
\end{array}\right]
$$

with λ real and $4 \lambda^{2} \leq 1$, is infinite. Thus the w-solution set of the $\operatorname{LCP}\left(L_{A}, Q\right)$, consisting of all matrices of the form

$$
\left[\begin{array}{cc}
\frac{1-\sqrt{1-4 \lambda^{2}}}{2} & -\lambda \\
-\lambda & \frac{1+\sqrt{1-4 \lambda^{2}}}{2}
\end{array}\right]
$$

with λ real and $4 \lambda^{2} \leq 1$, is infinite.

Now, to address the finiteness issue, we introduce the following definitions.
Definition 9.5. A w-solution y_{0} of the $\operatorname{LCP}(L, q)$ is said to be locally w-unique if there exists a neighborhood of y_{0} within which y_{0} is the only w-solution.

Definition 9.6. A w-solution y_{0} of the $\operatorname{LCP}(L, q)$ is said to be locally-star-like if there exists a ball $\mathrm{B}\left(y_{0}, r\right)$ such that for all $y \in B\left(y_{0}, r\right) \bigcap \mathrm{w}-\mathrm{SOL}(L, q),\left[y_{0}, y\right] \subseteq \mathrm{w}-\mathrm{SOL}(L, q)$, or, equivalently,

$$
\left(t x_{0}+(1-t) x\right) \circ\left(t y_{0}+(1-t) y\right)=0 \forall t \in[0,1]
$$

where w-SOL (L, q) denotes the w-solution set of $\operatorname{LCP}(L, q), y=L(x)+q$ and $y_{0}=L\left(x_{0}\right)+q$.
We note that if $\operatorname{SOL}(L, q)$ is convex, then every w-solution in w-SOL (L, q) has the locally-star-like property.

Theorem 9.7. Given L on V, consider the following statements:
(a) For all $q \in V$, the $L C P(L, q)$ has a finite number (possible zero) of w-solutions.
(b) For all $q \in V$, any w-solution of the $L C P(L, q)$, if exists, must be locally w-unique.
(c) L is column competent, and for all $q \in V$, each w-solution of $L C P(L, q)$ is locally-starlike.

Then $(a) \Rightarrow(b) \Rightarrow(c)$.
Proof. The implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is obvious.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$: To show the column competent part, let x and $L(x)$ operator commute, and $x \circ L(x)=0$. Then

$$
x^{+} \circ(L(x))^{+}=x^{-} \circ(L(x))^{-}=x^{+} \circ(L(x))^{-}=x^{-} \circ(L(x))^{+}=0 .
$$

If $L(x) \neq 0$, then $(L(x))^{+} \neq(L(x))^{-}$. Defining $q:=(L(x))^{+}-L\left(x^{+}\right)=(L(x))^{-}-L\left(x^{-}\right)$, we see that the $\operatorname{LCP}(L, q)$ has two distinct w-solutions $(L(x))^{+}$and $(L(x))^{-}$with

$$
\left(t x^{+}+(1-t) x^{-}\right) \circ\left(t(L(x))^{+}+(1-t)(L(x))^{-}\right)=0, \quad \forall t \in[0,1] .
$$

i.e., $\left[(L(x))^{-},(L(x))^{+}\right] \subseteq \mathrm{w}-\mathrm{SOL}(L, q)$. This contradicts (b). Thus $L(x)=0$. Hence L is column competent. Now take any $q \in V$. For a $y_{0} \in \mathrm{w}-\operatorname{SOL}(L, q)$, the locally-star-like property is trivially satisfied since y_{0} is locally w-unique.

Remark 9.8. When K is polyhedral, the reverse implications in above theorem hold.

Remark 9.9. When L has the R_{0}-property (i.e., when $\operatorname{LCP}(L, 0)$ has only zero solution), we claim that the reverse implications in above theorem hold.
(b) \Rightarrow (a): Since L has the R_{0}-property, the solution set of $\operatorname{LCP}(L, q)$ is compact (possibly empty) for all $q \in V$ (see Observation 1.2 .1 in [13]). Thus the w-solution set of $\operatorname{LCP}(L, q)$ is compact for all $q \in V$. Hence $\operatorname{LCP}(L, q)$ has a finite number of w-solutions for all $q \in V$. $(\mathrm{c}) \Rightarrow(\mathrm{b})$: Suppose for some $q \in V$, a w-solution y_{0} of $\operatorname{LCP}(L, q)$ is not locally w-unique. Then there exists a sequence $\left\{y_{k}\right\} \subseteq$ w- $\operatorname{SOL}(L, q)$ which converges to y_{0} with $y_{k} \neq y_{0}$ for all k. By the locally-star-like condition, $\left[y_{0}, y_{k}\right] \subseteq \mathrm{w}-\operatorname{SOL}(L, q)$ for all large k, i.e.,

$$
\left(t x_{0}+(1-t) x_{k}\right) \circ\left(t y_{0}+(1-t) y_{k}\right)=0 \forall t \in[0,1]
$$

for all large k, where $y_{k}=L\left(x_{k}\right)+q$ and $y_{0}=L\left(x_{0}\right)+q$. This yields

$$
\left\langle x_{0}, y_{k}\right\rangle=0=\left\langle x_{k}, y_{0}\right\rangle .
$$

Hence we have that $x_{0}\left(x_{k}\right)$ operator commutes with y_{k} (respectively, y_{0}), and $x_{0} \circ y_{k}=$ $0=x_{k} \circ y_{0}$ for all large k by Corollary 2.1; Therefore $x_{k}-x_{0}$ operator commutes with $y_{k}-y_{0}=L\left(x_{k}-x_{0}\right)$, and $\left(x_{k}-x_{0}\right) \circ L\left(x_{k}-x_{0}\right)=0$. But from the column competence property, this implies that $y_{k}=y_{0}$ for all large k, contradicting our assumption. Therefore, for all $q \in V$, any w-solution of $\operatorname{LCP}(L, q)$, if it exists, must be locally w-unique. This proves the claim.

10 Concluding Remarks

In this paper, we have introduced some generalizations of the w-P matrix concept mentioned in Introduction for a linear transformation defined on a Euclidean Jordan algebra and studied some interconnections between these generalized concepts.

Appendix Here we justify the assertion made in Example 3.1. First we present a result from [17] (see Proposition 7.3.1); a proof is given for completeness.

Proposition 10.1. Consider

$$
L=\left[\begin{array}{lll}
a & b & c \\
0 & 1 & 0 \\
\lambda & 0 & 1
\end{array}\right]: \mathcal{L}^{3} \rightarrow \mathcal{L}^{3}
$$

If $a+|\lambda|>0, \lambda \neq 0, a>\lambda c, a>0$ and $(c+\lambda)^{2}<4 a$, then L has the P-property.
Proof. Let $x=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2}\end{array}\right]^{T}$. Then $L(x)=\left[\begin{array}{c}a x_{0}+b x_{1}+c x_{2} \\ x_{1} \\ \lambda x_{0}+x_{2}\end{array}\right]$.
Now $x \circ L(x) \leq 0$, and x and $L(x)$ operator commute if and only if (see Corollary 7 in [1])
(1) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=0$,
or
(2) $\left[\begin{array}{c}x_{1} \\ \lambda x_{0}+x_{2}\end{array}\right]=0$,
or
(3) $\left[\begin{array}{c}x_{1} \\ \lambda x_{0}+x_{2}\end{array}\right]=\alpha\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ for some $\alpha \neq 0$.

Now we analyze the above three cases.
(1) If $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=0$, then we have
$x=x_{0}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], L(x)=x_{0}\left[\begin{array}{c}a \\ 0 \\ \lambda\end{array}\right]$ and $x \circ L(x)=x_{0}{ }^{2}\left[\begin{array}{l}a \\ 0 \\ \lambda\end{array}\right] \leq 0$.
So, if $a+|\lambda|>0$, we have $x_{0}=0$.
(2) If $\left[\begin{array}{c}x_{1} \\ \lambda x_{0}+x_{2}\end{array}\right]=0$, then $x_{1}=0$ and $x_{2}=-\lambda x_{0}(\lambda \neq 0)$. We have
$x=x_{0}\left[\begin{array}{c}1 \\ 0 \\ -\lambda\end{array}\right], L(x)=(a-\lambda c) x_{0}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $x \circ L(x)=(a-\lambda c) x_{0}{ }^{2}\left[\begin{array}{c}1 \\ 0 \\ -\lambda\end{array}\right] \leq 0$.
So, if $a-\lambda c>0$, we have $x_{0}=0$.
(3) Let $\left[\begin{array}{c}x_{1} \\ \lambda x_{0}+x_{2}\end{array}\right]=\alpha\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
(i) If $\alpha=1$, then we have $x_{0}=0(\lambda \neq 0)$,

$$
L(x)=\left[\begin{array}{c}
b x_{1}+c x_{2} \\
x_{1} \\
x_{2}
\end{array}\right] \text { and } x \circ L(x)=\left[\begin{array}{c}
x_{1}^{2}+x_{2}^{2} \\
x_{1}\left(b x_{1}+c x_{2}\right) \\
x_{2}\left(b x_{1}+c x_{2}\right)
\end{array}\right] \leq 0
$$

So, we $x_{1}=x_{2}=0$.
(ii) If $\alpha \neq 1$, then we have $x_{1}=0, x_{2}=\frac{\lambda}{\alpha-1} x_{0}$,

$$
L(x)=\frac{x_{0}}{\alpha-1}\left[\begin{array}{c}
a(\alpha-1)+c \lambda \\
0 \\
\alpha \lambda
\end{array}\right]
$$

and

$$
x \circ L(x)=\frac{x_{0}{ }^{2}}{(\alpha-1)^{2}}\left[\begin{array}{c}
a(\alpha-1)^{2}+\lambda(c+\lambda)(\alpha-1)+\lambda^{2} \\
0 \\
\lambda[a(\alpha-1)+c \lambda+\alpha(\alpha-1)]
\end{array}\right] \leq 0 .
$$

Thus, we have $x_{0}=0$ or

$$
\left|\lambda \|\left|(\alpha-1)^{2}+(a+1)(\alpha-1)+c \lambda\right|+a(\alpha-1)^{2}+\lambda(c+\lambda)(\alpha-1)+\lambda^{2} \leq 0 .\right.
$$

The above inequality is violated if $a>0$ and $(c+\lambda)^{2}<4 a$ in which case we have $x_{0}=0$, hence $x_{2}=0$. Therefore, L has the P-property.

Now consider L given in Example 3.1:

$$
L=\left[\begin{array}{ccc}
1 & 4 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]: \mathcal{L}^{3} \rightarrow \mathcal{L}^{3}
$$

It can be easily verified that L has the P-property by the above proposition. Hence it has the w-P property. Take $x=\left[\begin{array}{c}-1.32 \\ 1 \\ 0\end{array}\right]$. Then we have
$x \circ L(x)=\left[\begin{array}{llll}-2.5376 & 1.36 & -1.32^{2}\end{array}\right]^{T}<0$, but $L(x)=\left[\begin{array}{lll}2.68 & 1 & 1.32\end{array}\right]^{T} \neq 0$. Therefore L has the w-P property but not the Jordan w-P property.

Acknowledgement

The author is grateful to Professor M. S. Gowda and to the referees for their valuable suggestions.

References

[1] F. Alizadeh and D. Goldfarb, Second-order cone programming, Math. Prog. Series B. 95 (2003) 3-51.
[2] R.W. Cottle, J.-S. Pang and R.E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.
[3] F. Facchinei and J.-S. Pang, Finite Dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag, New York, 2003.
[4] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994.
[5] M. Fiedler and V. Pták, On matrices with non-positive off-diagonal elements and positive principle minors, Czechoslovak Math. J. 12 (1962) 382-400.
[6] M.S. Gowda and T. Parthasarathy, Complementarity forms of theorems of Lyapunov and Stein, and related results, Linear Algebra Appl. 320 (2000) 131-144.
[7] M.S. Gowda and Y. Song, On semidefinite linear complementarity problems, Math. Prog. Series A. 88 (2000) 575-587.
[8] M.S. Gowda and Y. Song, Some new results for semidefinite linear complementarity problem, SIAM J. Matrix Anal. Appl. 24 (2002) 25-39.
[9] M.S. Gowda and R. Sznajder, Some global uniqueness and solvability results for linear complementarity problems over symmetric cones, SIAM J. Optimization 18 (2007) 461-481.
[10] M.S. Gowda, R. Sznajder, and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras, Linear Alg. Appl. 393 (2004) 203-232.
[11] M.S. Gowda and J. Tao, Z-transformations on proper and symmetric cones, Math. Program. Series B. 117 (2009) 195-221.
[12] A.W. Ingleton, A problem in linear inequalities, Proc. London Math. Soc. 16 (1966) 519-536.
[13] M. Malik, Some Geometrical Aspects of the Cone Linear Complementarity Problem, PhD Thesis, Indian Statistical Institute, New Delhi, 2004.
[14] K.G. Murty, On the number of solutions to the linear complementarity problem and spanning properties of spanning cones, Linear Algebra Appl. 5 (1972) 65-108.
[15] L. Qin, L. Kong and J. Han, Sufficiency of linear transformations on Euclidean Jordan algebras, Optim. Lett. 3 (2009) 265-276.
[16] S.H. Schmieta and F. Alizadeh, Extension of primal-dual interior point algorithms to symmetric cones, Math. Prog. Series A. 96 (2003) 409-438.
[17] J. Tao, Some P-Properties for Linear Transformations on the Lorentz Cone, PhD Thesis, University of Maryland Baltimore County, 2004.
[18] J. Tao and M.S. Gowda, Some P-properties for nonlinear transformations on Euclidean Jordan algebras, Math. Oper. Res. 30 (2005), 985-1004.
[19] S. Xu, On local w-uniqueness of solutions to linear complementarity problem, Linear Algebra Appl. 290 (1999) 23-29.

Manuscript received 25 August 2008
revised 7 January 2009
accepted for publication 8 January 2009

Jiyuan Tao
Department of Mathematical Sciences, Loyola University Maryland
Baltimore, MD 21210, USA
E-mail address: JTao@loyola.edu

[^0]: *This research was partially supported by the 2008 Summer Research Grant of Loyola College in Maryland.

