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Abstract: In this paper, we introduce the concepts of w-P and w-uniqueness properties for a linear transfor-
mation defined on a Euclidean Jordan algebra V' and study some interconnections between these concepts.
We also specialize them to the space S™ of all n x n real symmetric matrices with the semidefinite cone S%
and to the space R™ with the Lorentz cone Li.
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Introduction

For a given matrix M € R™*™ and a vector ¢ € R™, the linear complementarity problem [2],
LCP(M,q), is to find a vector z € R™ such that

2>0, w:=Mz+¢>0, and (z,w)=0. (1.1)
This problem has been well studied in the literature [2], [3].

A pair of vectors (w, z) satisfying (1.1) is called a solution of the LCP(M, q). A vector z
is called a z-solution if there exists a vector w such that (w, z) is solution of the LCP(M, q).
Similarly, A vector w is called a w-solution if there exists a vector z such that (w,z) is
solution of the LCP(M, q).

In [5], Fiedler and Ptdk introduced the notion of P-matrix: A real square matrix M
is a P-matrix if all principal minors of M are positive. It is well known (see [2]) that the
P-matrix property can be equivalently described by the following condition:

reR", z+xMzx<0=1z=0,

where the asterisk denotes the componentwise product. The equivalence of the P-matrix
property and the existence of a unique z-solution for all linear complementarity problems
LCP(M,q) was established in Murty [14]. Motivated by a study of dynamical systems
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subject to smooth unilateral constraints, Ingleton [12] studied the uniqueness of w-solutions
to LCP problems, and showed that the LCP(M, ¢) has the uniqueness of w-solutions for all
q € R™ if and only if the following condition holds:

z¥xMz<0= Mz=0. (1.2)

We may call a matrix M satisfying (1.2) as w-P matrix. We note that P-matrix and w-P
matrix concepts coincide when M is invertible.

Generalizing the P-property of a matrix, in [10], Gowda, Sznajder and Tao introduced
and studied P and globally uniquely solvable (GUS) properties for linear transformations
on Euclidean Jordan algebras. Motivated by these results, as a counterpart of P-matrix and
z-uniqueness, we generalize the w-P property of a matrix and study w-P and w-uniqueness
properties for linear transformations on Euclidean Jordan algebras in this paper.

Here is an outline of the paper. In Section 2, we cover the basic material dealing with
the complementarity properties and Euclidean Jordan algebras. In Section 3, we introduce
the Order w-P property, the Jordan w-P property, and the w-P property, and study some
interconnections between them. In Section 4, we describe the w-P and the w-uniqueness
properties. In Section 5, we specialize the w-P and the w-uniqueness properties for Lya-
punov transformations L4 defined by La(X) := AX + X AT for a real n x n matrix A on
the space 8™ of all n x n real symmetric matrices. In Section 6, we describe the w-P and the
w-uniqueness properties for Lyapunov-like transformations. In Section 7, we specialize the
w-P property for Stein transformations defined by Sa(X) := X — AX AT on S™. In Section
8, we specialize our results to symmetric linear transformations, to monotone transforma-
tions, to polyhedral cones and finally to algebra automorphisms on the Lorentz cone L. In
Section 9, we study the column competence property of linear transformations defined on
V', and give some interconnections between the column competence property and finiteness
of w-solutions of the LCP(L, q) for g € V.

Preliminaries

Euclidean Jordan Algebras

In this subsection, we recall some concepts, properties, and results from FEuclidean Jordan
algebras. Most of these can be found in Refs. [4], [10], [16].

A Fuclidean Jordan algebra is a triple (V, o, (-,-)) where (V,(-,-)) is a finite dimensional
inner product space over R and (x,y) — zoy: V x V — V is a bilinear mapping satisfying
the following conditions for all z and y: zoy = yoxz, zo (2?2 oy) = x? o (x 0 y), where
2?2 ;= 2oz, and (xoy,z) = (y,r o z). In addition, an element e € V is called the unit

element if x o e = x for all x € V. Henceforth, V' denotes a Euclidean Jordan algebra.

In V, the set of squares
K:={z*:2€V}
is a symmetric cone ( [4], page 46). This means that K is a self-dual closed convex cone and

for any two elements z,y € K°(=interior (K)), there exists an invertible linear transforma-
tion I' : V' — V such that I'(K) = K and I'(z) = y. We defined

2t =Tl (2) and 27 =2 — 2,
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where IIx (z) denotes the (orthogonal) projection of z onto K. Finally, for any two elements
x,y €V, we let

+ +

zNy:=z—(x—y)" and zUy:=y+(z—y)".
For an element z € V, we write
2>0 (#>0) ifandonlyif ze K (z¢€ K°),
and z <0 (z <0) when —z >0 (z > 0).

An element ¢ € V such that ¢> = c is called an idempotent in V; it is a primitive
idempotent if it is nonzero and cannot be written as a sum of two nonzero idempotents. We
say a finite set {e1,ea,..., e, } of primitive idempotents in V is a Jordan frame if

m
e;oe; =0if i # j, and 261‘:@-
1

Given = € V, there exists a Jordan frame {e,...,e,} and real numbers Aq,..., A, such
that

T =Aey+-+ Aep. (2.1)

The numbers \; are called the eigenvalues of z, and the representation (2.1) is called the
spectral decomposition (or the spectral expansion) of x.

Given (2.1), we have

Tr = zr:/\iJr@i —zr:/\iiei and <zr: )\i+6i,zr:)\i7€i> :0,
1 1 1 1

where for a real number a, a := max{0,a} and o™ = ()" — a.

From this we easily verify that

T s
xt = Z)\["ei and T = Z)\fei,
1 1
and so
r=z" -2~ with (xT,27) =0.

For an z € V, a linear transformation L, : V — V is defined by L,(z) = z o 2, for all
z € V. We say that two elements x and y operator commute if L, L, = L,L,.

It is known that = and y operator commute if and only if x and y have their spectral
decompositions with respect to a common Jordan frame (Lemma X.2.2, Faraut and Kordnyi

[4])-

Here are some standard examples.



528 JIYUAN TAO

Example 2.1. R" is a Fuclidean Jordan algebra with inner product and Jordan product
defined respectively by

n
(z,y) :inyi and zoy=1xx*y.
i=1

Here R is the corresponding symmetric cone.
Example 2.2. 8™, the set of all n X n real symmetric matrices, is a FKuclidean Jordan

algebra with the inner and Jordan product given by

1
(X,Y) :=trace(XY) and XoY :=

5 (XY +YX).

In this setting, the symmetric cone S} is the set of all positive semidefinite matrices in S™.
Also, X and Y operator commute if and only if XY =Y X.

Example 2.3. Consider R™ (n > 1) where any element x is written as

(2]

with 2o € Rand T € R"~!. The inner product in R" is the usual inner product. The Jordan
product x oy in R™ is defined by

Zo Yo <JJ7 y>
=| 2 |o| T |:= h _ .
vey {x] {y} {xoyﬂLyox}
We shall denote this Euclidean Jordan algebra (R™, o, (-,-)) by £™. In this algebra, the cone
of squares, denoted by L', is called the Lorentz cone (or the second-order cone). It is given
by
LY =A{x:||7]| < z0}.

The unit element in L™ is e = [ ] . We note the spectral decomposition of any = with

0
T # 0O
Tr = )\161 + )\262
where
A1 =29 + Hf”, Ao 1= 20 — ||f||
and

o

|y a3 g ]
€1 = < T , and €g ‘= — o .
2| Tar 20 T

In this setting, x and y operator commute if and only if either 7 is a multiple of T or T
is a multiple of 7.

B

We recall the following propositions from Gowda, Sznajder and Tao (see [10]):
Proposition 2.1. For z, y € V, the following conditions are equivalent:
(i) >0,y >0, and (x,y) = 0.

(i) x >0,y >0, and xoy = 0.
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In each case, the elements © and y operator commute.

Proposition 2.2. For x, y € V, consider the following statements:

(i) = and y operator commute and x oy < 0.
(ii) zoy <0.

(iil) zMNy <0<z Uy.

(

iv) (z,y) <0.
Then (i) = (ii) = (i4i) = (iv).
Peirce Decomposition Fix a Jordan frame {e1,es,...,e,} in a Euclidean Jordan algebra
V. For i,j € {1,2,...,r}, define the eigenspaces
Viii={z €V :zoe; =x}= Re; (where R is the set of all real numbers)
and when i # j,
1
Vij={z€eV:zoe = ix:xoej}.
Then, we have the following theorem

Theorem 2.3 (see [4], Theorem IV.2.1)). The space V is the orthogonal direct sum of
the spaces Vij (i < j). Furthermore,

VijoVi; C Vi +Vy;
VijoVik CVip ifi £ k

Thus, given any Jordan frame {ej, es, ..., €.}, we can write any element x € V as
T
Xr = E x;e; + E Lij
i=1 i<j

where z; € R and z;; € Vj;.

A Euclidean Jordan algebra is said to be simple if it is not a direct sum of two Euclidean
Jordan algebras. The classification theorem (See Faraut and Kordnyi, Chapter V, [4]) says
that every simple Euclidean Jordan algebra is isomorphic to one of the algebras below:

(i) the algebra 8™ of n x n real symmetric matrices;
(ii) The algebra L;

(iii) The algebra H,, of all n x n complex Hermitian matrices with trace inner product
and X oY = (XY + Y X);

(iv) The algebra Q, of all n x n quaternion Hermitian matrices with (real) trace inner
product and X oY = (XY + Y X);

(v) The algebra O3 of all 3x 3 octonion Hermitian matrices with (real) trace inner product
and X oY = (XY + YV X).
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The following result characterizes all Euclidean Jordan algebras.

Theorem 2.4 (See Faraut and Koranyi, Prop. 111.4.4, Prop. I11.4.5, Thm. V.3.7,
[4]). Any Fuclidean Jordan algebra is, in a unique way, a direct sum of simple Euclidean
Jordan algebras. Moreover, the symmetric cone in a given Fuclidean Jordan algebra is, in
a unique way, a direct sum of symmetric cones in the constituent simple Euclidean Jordan
algebras.

Linear Complementarity Concepts

Throughout this paper, we assume that V' is an Euclidean Jordan algebra with the corre-
sponding symmetric cone K and L : V — V is a linear transformation. Given L on V and
g € V, the linear complementarity problem, LCP(L, q), is to find an z € V such that

ze€K,w:=L(z)+q€ K, and (z,w) =0. (2.2)

A pair of elements (w, z) satisfying (2.2) is called a solution of the LCP(L,q). A vector z
is called a z-solution if there exists a vector w such that (w, z) is solution of the LCP(L, q).
Similarly, A vector w is called a w-solution if there exists a vector z such that (w,z) is
solution of the LCP(L, q).

This problem is a particular case of a variational inequality problem [3]. Given L on V,
we say that L has/is:
(a) monotone (strictly = strongly) if (L(z),z) > 0 (respectively, > 0) for any 0 # x € V;

(b) the GUS (globally uniquely solvable) property on V if LCP(L,q) has a unique z-
solution for all g € V;

(¢) has the Order P-property if
xMNL(x) <0<zUL(x) =2 =0,
where 2 M L(z) := 2 — (z — L(z))" and 2 U L(z) := L(z) + (x — L(x))™;

(d) the Jordan P-property if
zoL(x) <0=z=0;

(e) the P-property if

x and L(xz) operator commute O
zoL(xz) <0 =0

(f) the Py-property if L + €I has the P-property for every € > 0;

(g) nondegenerate if

x and L(z) operator commute =0
xoL(x)=0 o

(h) the Q-property if LCP(L, q) has a solution for all ¢ € V.

These properties have been well studied, see e.g., [7], [10]. In particular, we always have
the implications (a)(strictly) = (b) = (e) = (f) and (¢) = (d) = (e) = (g), (e) = (h).
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Definition 2.5 (see Definition 13, [10]). L is said to have the Cross Commutative
property if for any ¢ € V' and for any two solutions x; and zo of LCP(L,q), x; operator
commutes with yo and zo operator commutes with y;, where y; = L(z;) + q (i = 1, 2).

Now we introduce the following definition.

Definition 2.6. Given L on V, let K (L) denote the set of all ¢ € V for which SOL(L, q) # 0,
where SOL(L, q) denotes the z-solution set of LCP(L,q). K(L) is closed in standard LCP
problems, but not necessarily closed in general setting (see Example 2.5.14, [3]). We say
that L:

(i) has the w-uniqueness property if for any ¢ € K(L), L(z1) = L(x2) whenever z; and
x9 are two z-solutions of LCP(L, q);

(ii) is column sufficient if

x and L(x) operator commute

o L(z) < 0 }:>xoL(96)=0§

(iii) is column competent if

x and L(z) operator commute _
2o L(z) =0 L(z) = 0.

We note that the column sufficient property was introduced for standard LCP problems
in [2], it is equivalent to the convexity of SOL(L, ¢q). Gowda and Song [7] defined the column
sufficient property as the convexity of SOL(L,q) when V' = S8™. Recently, Qin, Kong and
Han [15] extended the column sufficient property from R™ to the setting of Euclidean Jordan
algebras, and they showed that the column sufficient property with the Cross Commutative
property is equivalent to the convexity of SOL(L, q); column competent was introduced for
LCP in [19].

Order w-P, Jordan w-P, and w-P Properties
Motivated by implications (see [10]) of
Order P = Jordan P = P,
in this section, we ask if analogous implications hold for w-P properties.
Definition 3.1. Given L on V, we say that L has:
(i) the Order w-P property if
xMNL(z) <0<zUL(x)= L(z) =0;

(ii) the Jordan w-P property if

zoL(z) <0= L(z) =0;
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(iii) the w-P property if

x and L(z) operator commute .
2o L) <0 L(z) =0.

Theorem 3.2. Given L on V, we have Order w-P = Jordan w-P = w-P.
Moreover, if L has the w-P property, then every real eigenvalue of L is nonnegative and the
determinant of L is nonnegative.

Proof. The implications follow immediately from Proposition 2.2. Now suppose that L has
the w-P property. If A is a real, negative eigenvalue of L, then there exists a nonzero u € V
such that L(u) = Au. It follows that u and L(u) operator commute and uo L(u) = Au? < 0.
Then we have L(u) = 0 by the w-P property of L, hence A\u = 0 = u = 0. This is
a contradiction. Therefore all real eigenvalues of L are nonnegative. It follows that the
determinant of L (being the products of all eigenvalues) is also nonnegative. O

Remark 3.3. (1) Zero transformation always satisfies the above properties.
(2) When L is invertible, the above properties reduce to the Order P, the Jordan P and
the P properties.

In standard LCP theory, the Jordan w-P property is the same as the w-P property.
However, as the following example shows, this result is not necessarily true on a Euclidean
Jordan algebra.

1
Example 3.1. Let L = 0

1
0 |:L%— L3
—1 1

o O =

Then L has the w-P property but not the Jordan w-P property. The justification is given

in Appendix.

w-Uniqueness and w-P Properties

In this section, we study the w-uniqueness, the w-P properties and some other properties
related to these two properties.

Lemma 4.1. If L is monotone, then L has the Cross Commutative property.

Proof. For a given ¢ € K(L), let 1 and z2 be two solutions of LCP(L,q). Letting x :=
z1 — g and y; = L(x;) + ¢ (i = 1, 2), we see that x o L(z) = —[z1 0 y2 + x2 0 y1]. Since L is
monotone, thus we have
0 < (z,L(x)) = (roL(x)e)
= (~[r1oy2+m20U1],€)
= —[(z1,92) + (22,51)] <0.

It follows that (x1,y2) = (x2,y1) = 0. By Proposition 2.1, 21 (x2) operator commutes with
y2 (respectively, y1). O
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Theorem 4.2. Given L on V, w-uniqueness = w-P + Cross Commutative.

Proof. Suppose that L has the w-uniqueness property. Let = and L(x) operator commute,
and z o L(z) < 0. Then there exists a Jordan frame {ej,...,e.} such that z = > x;e; and
L(z) = > yse;. From z o L(z) < 0, we have Y z;y;e; < 0. It follows that x;y; < 0 for all 4.
This implies that z;ty;* = 2,7y~ = 0 for all i. Thus we have 2+ o[L(z)]* = 2~ o[L(z)]” =
0. Now define ¢ := [L(z)]" —L(zT). We see that ¢ = [L(z)]” —L(z~). Obviously z* and z~
are two solutions of LCP(L,q). Thus L(z%) = L(z~) = L(z" —2~) = 0= L(z) = 0. This
proves the w-P property. By the w-uniqueness of solution, the cross commutative property
is obvious.

Now for the converse. Suppose L has the w-P and the cross commutative properties.
For any q € K (L), let 1 and z2 be two solutions of LCP(L, q) and y; = L(z;) +¢ (i = 1,2).
Since x7 operator commutes with ys, it follows that xy o yo > 0. Similarly, zo o y; > 0.
Now z7 — x2 operator commutes with L(z; — x2) = y1 — y2 and (x1 — x2) o L(z1 — 29) =
—[x1 0y2 + 22 0y1] < 0. By the w-P property, L(x1) = L(x2). This argument shows that L
has the w-uniqueness property. O

In standard LCP problems, the w-uniqueness and w-P properties coincide (see Theorem
3.4.4, [2]). However, the following example shows that the w-P property does not imply the
w-uniqueness property.

Example 4.1. When V = 8™, for a real n x n matrix A, the Lyapunov transformation is
defined by

La(X):=AX + X A",
. . -1 2 2 2 . .
Now consider the matrices A = 9 9 and Q = 9 4| Then A is positive stable

(every eigenvalue of A has positive real part) and @ is positive definite. Thus L, has
the P-property (see Theorem 5, [7]). Hence L, has the w-P property. It can be easily

L0 } are two solutions of LCP(L4, Q). However

verified that zero matrix and X = [ 0 0

L =| 5 7] # o

As we see from Theorem 4.2, the w-uniqueness property is tied to the w-P property and
the cross commutative property. However, we do not know how to describe, apart from the
definition, the cross commutative property. In what follows, we give a necessary condition
for the w-uniqueness property.

It has been observed in Theorem 4.1 of [18] that if L has the GUS-property on V', then
(L(¢),c¢) > 0 for any primitive idempotent ¢ € V. By modifying the proof, we get the
following:

Theorem 4.3. If L has the w-uniqueness property , then for any primitive idempotent
ceV, (L(c),c) > 0.

As an illustration of Theorem 4.3, we provide the following examples.

Example 4.2. When V = 8", for a real n x n matrix A, L4 is defined in Example 4.1. It
can be easily verified that (L a(c),c) > 0 for all primitive idempotents ¢ on S% if and only
if A is positive semidefinite.
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Example 4.3. When V = 8", for a real n x n matrix A, the Stein transformation is defined
by
Sa(X)=X - AXAT,

It can be easily verified that (S4(c),c) > 0 for all primitive idempotents ¢ on S7 if and only
if I + A are positive semidefinite, where I is the identity matrix.

In what follows, we give some interconnections between the concepts introduced in Sec-
tion 2.2.

Lemma 4.4. Given L on V', consider the following statements:

a) L has the w-uniqueness property.

b) L has the w-P property.

¢) L has the column sufficiency property.
d) L has the Py-property.

e) L has the column competence property.

(
(
(
(
(
(f

)
) L+ el has the P-property for all e > 0 .

Then (a) = (b) = (c) = (d) and (b) = (e), (b) = (f).

Proof. The implication (a) = (b) follows from Theorem 4.2.

The implication (b) = (c) is obvious.

(¢) = (d): Suppose that x operator commutes with (L + eI)(z) for every ¢ > 0 and z o
(L+el)(z) <0. Then o (L+el)(z) <0 = zo0L(x) < —exr? < 0 and z and L(z)
operator commute. Thus z o L(xz) = 0 by the column sufficiency property of L. Hence
ro(L+el)(xr) <0=ex? <0= z=0. Therefore L has the P,-property.

The implication (b) = (e) is obvious.

(b) = (f): Suppose that = operator commutes with (L + €I)(x) for every ¢ > 0 and x o (L +
el)(z) < 0. Then zo (L +el)(x) < 0= z0L(x) < —ex? <0 and x and L(z) operator
commute. Thus L(z) = 0 by the w-P property of L. Hence z o (L +el)(z) < 0 = ex? <

0 = = = 0. Therefore L + €I has the P-property. O
Remark 4.5. In general, the Py-property does not imply the w-P property even in standard
LCP problems: An example is M = 1 _01

In the next section, we specialize the w-uniqueness and the w-P properties to Lyapunov
transformations defined on S™.

The w-Uniqueness and w-P Properties for Lyapunov Transfor-
mations

It is well known (see [7]) that L4 has the P-property if and only if A is positive stable
and L4 has the GUS-property if and only if A is positive stable and semidefinite. As the
counterpart of the P and the GUS properties, in this section, we give a characterization of
the w-P property and the w-uniqueness property for L 4.
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Theorem 5.1. For A € R"*™, consider Ly on S8™. Then L4 has the w-P property if and
only if A is semipositive stable, i.e., all eigenvalues of A lie in the closed right half-plane.

Proof. The technique used here is similar to the proof of Theorem 5 in [7]. Since the w-P
property implies the Py-property by Lemma 4.4, and

(La+el)(X) = AX + XAT 4 eX = Lay 51(X),

we see that L4 has the Py- property if and only A is semipositive stable. Thus the w-P
property of L4 implies that A is semipositive stable. Therefore we only need to show the
“if” part. Let A is semipositive stable and suppose that L 4 does not have the w-P property.
Then there is a nonzero X which commutes with nonzero L4(X) and X o L4(X) = 0.
Because of commutativity, we can write

X =UTDU, Ls(X)=UTEU and B=UAUT,

where U is some orthogonal matrix and D and E are diagonal matrices. Then we have
E = BD+ DBT and DE < 0. Without loss of generality, we can write

| D1 0 | B1 B | E1 O
D_[O O}B_{Bg B4}andE—{0 E2:|’

where D is invertible and the sizes of B; and E; agree with that of D;. Then from
E = BD + DBT, we have

E = El 0 _ B1D1+DlBlT DlBgT
0 E, | B3D; 0 '

We see that Fs =0 and B3D; = 0= B3 = 0. Then every eigenvalue of Bj is an eigenvalue
of B. Since B is semipositive stable, B; is also semipositive stable, thus ¢r(B;) > 0. From
FE, = B1D; + DlBlT, we have the ith diagonal entry of By as %eiid%i where e;; and d;;
denote the ith diagonal entries of Fy and D;p respectively. Then from DFE < 0, we have
%eiid% < 0= tr(By) <0. Therefore, tr(B;) =0 = %eiid% = 0 for all ¢; this implies that
e;; = 0 for all 4, thus Eq = 0. Hence L4(X) = 0 contradicts our assumption. Therefore, the
“if” part holds. O
Lemma 4.4 and Theorem 5.1 immediately yield the following corollary.

Corollary 5.2. For A € R™*"™, the following statements are equivalent:

(a) A is semipositive stable.

(b) La has the w-P property.

(¢c) La has the column sufficiency property.

(d) La has the Py-property.

Remark 5.3. Since L4 has the Q-property if and only if L4 has the P-property (see
Theorem 5, [7]), the w-P property does not imply the Q-property.

Theorem 5.4. For A € R™*", the following statements are equivalent:

(a) La has the w-uniqueness property.



536 JIYUAN TAO
(b) A is semipositive stable and positive semidefinite.

Proof. (a) = (b): If L4 has the w-uniqueness property, then L4 has the w-P property by
Theorem 4.2. Hence A is semipositive stable by Theorem 5.1. A is positive semidefinite
following from Theorem 4.3 and Example 4.2.

(b) = (a): If A is positive semidefinite, then L, is monotone. Thus L4 has the cross
commutative property by Lemma 4.1. Therefore (a) holds by Corollary 5.2 and Theorem
4.2. O

@ The w-Uniqueness and w-P Properties for Lyapunov-like Trans-
formations

Motivated by the equivalence between the w-P property together with positive semidefinite-
ness and the w-uniqueness property for L4 on §", one may ask if this equivalence holds on
symmetric cones for transformations that are similar to a Lyapunov transformation. Below,
we will provide an answer to this question in the positive.

We say that L has the Z-property if
xz,y € K, and (z,y) =0= (L(x),y) <0.

Recently, Gowda and Tao ( [11]) introduced and studied the properties of such transforma-
tions.

Remark 6.1. It can be easily verified that L4 and 5S4 have the Z-property on S%.

Definition 6.2. see ( [9]) Given L on V, it is said to be a Lyapunov-like transformation if
both L and —L have the Z-property, that is,

2,y >0, (z,y) = 0= (L(z),y) = 0.

Theorem 6.3. Let L be a Lyapunov-like transformation. Then the following are equivalent:

(a) L has the w-P property.
(b) L has the column sufficiency property.
Proof. The implication (a) = (b) is obvious.

(b) = (a): Suppose x and L(z) operator commute and z o L(z) < 0. Then z o L(x) =0 by
the column sufficiency property. Without loss of generality, we can write

k r
T = Zmiei and L(z) = Zyieu
1 E+1

where {e1,...,e,} isa Jordan frame. Then we have L(z) = Zlf x;L(e;). Thus (L(x), L(z)) =
(Z’f ziL(ei), Y i1 Vi€i) = > icjriyj(L(ei),e;) = 0. The last equality holds because L is
Lyapunov-like transformation. Thus L(z) = 0. Therefore, L has the w-P property. O

Theorem 6.4. Let L be a Lyapunov-like transformation. Then the following are equivalent:
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(a) L has the w-uniqueness property.

(b) (L(c),c) > 0 for any primitive idempotent c € V.

Proof. The implication (a)=- (b) follows from Theorem 4.3.
(b)= (a): Fix ¢ € K(L) and suppose that x; and z3 are two solutions of LCP(L, q) so that

x; >0, y; = L(x;) + ¢ >0, and (z;,y;) =0(i =1,2).

Now if (b) holds, then L is monotone by Theorem 7.1 in [9]. Thus the solution set of
LCP(L,q) is convex by Theorem 2.3.5, [3]. Therefore for any ¢ € [0, 1], tz1 + (1 — t)xo is
also a solution of LCP(L, ¢). Writing out the complementarity conditions, we have

<x1,y2> =0= <l‘2,y1>-

Hence we have that 21 and x5 operator commute with both y; and y» by Proposition 2.1, and
x10ys = 0 = x90y;; hence z := x1 —x2 operator commutes with y; —ye = L(z1 —2x2) = L(2),
and z o L(z) = 0. Without loss of generality, we may assume that there exists a Jordan
{e1,...,e,} such that

k T
z = Z Aie; and L(z) = Zﬂiei-
1

k+1

k T k r
Thus L(z) = > 1 AiL(ei) = > p 4y piei- Hence (L(2), L(z)) = (327 AiL(ei), X oppq pi€i) =
> iy Niktj{L(ei), ej) = 0. The last equality holds because L is Lyapunov-like transformation.
This implies that L(z) = 0. Therefore L has the w-uniqueness property. O

In the next section, we specialize the w-P property to Stein transformations defined on

S™.

The w-P Property for Stein Transformations

It is well known (see [6]) that S4 has the P- property if and only if A is Schur stable (all
eigenvalues of A lie in the open unit disk). As the counterpart of the P-property, in this
section, we give a characterization of the w-P property for Sa.

Theorem 7.1. For A € R™*" and the corresponding Sa. Then S has the w-P property if
and only if p(A) <1, i.e., all eigenvalues of A lie in the closed unit disk.

Proof. The technique used here is similar to the proof of Theorem 11 in [6]. Since the w-P
property implies Py-property by Lemma 4.4, also

(Sa+e)(X)=X —AXAT +eX = (1+ €)S_1_4(X),
we see that Sy has the Py-property if and only all eigenvalues of A lie in the closed unit
disk. Thus the w-P property of S4 implies that p(A) < 1. Therefore we only need to show
the “if” part. Let p(A) < 1 and suppose that S4 does not have the w-P property. Then
there is a nonzero X which commutes with nonzero S4(X) and X o S4(X) < 0. Because of
commutativity, we can write

X =UTDU, Sa(X)=UTEU and B=UAUT,
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where U is some orthogonal matrix and D and E are diagonal matrices. Then we have
E=D-BDBT, DE <0, and p(B) < 1.
Case 1: D is invertible. Then

D'E=I-D'BDBT <0. (7.1)

Since D™ E is diagonal matrix, D~'BDB7 is symmetric. Now we claim that every eigen-
value of D"'BDBT is equal to one. Let A be an eigenvalue of D"'BDBT and a nonzero
vector u such that (D"'BDBT)u = Au. From (7.1), we get |[ul|*> — M[u||> < 0= X > 1.
Since det(D~'BDBT) < 1, we have that every eigenvalue of D"'BDBT is equal to 1. Again
from (7.1), we get every eigenvalue of D™1E is zero. Since D is invertible, we have every
eigenvalue of E is zero. Thus E = 0. Hence S4(X) = 0.

Case 2: D is not invertible. Without loss of generality, we can write

| D1 0 | B1 B | E1 0
D_[O O}B_{Bg B4}andE—{O E2:|’

where D; is invertible and D1 E; < 0. Then from E = D — BDBT, we have

5 E, 0] [Di-BDB" —BDB"
0 E, | —BsD1BT  —B3D1B;T
E, = Dy -BD\B,", BiD;B3" =0and F» = —B3 D, B3". (7.2)

We claim that B is invertible. If not, let BlTu = 0 for some nonzero u. Then Fiu = Diu
and so 0 < (D;?u,u) = (D1 Eju,u) < 0 leading to a contradiction. Hence B is invertible.
Therefore Bz = 0. It follows (from p(B) < 1) that p(B;) < 1 and Es = 0. This, together
with (7.2), as in the Case 1, leads to E; = 0. Hence S4(X) = 0. Thus if p(A) < 1, then S4
has the w-P property. O

Lemma 4.4 and Theorem 7.1 immediately yield the following corollary.

Corollary 7.2. For A € R™*™ and the corresponding Sa. Then the following statements
are equivalent:

a) p(4) <
b)

S4a has the w-P property.

¢) Sa has the column sufficiency property.

(
(
(
(d) Sa has the Py-property.

Some Special Cases

In this section, we study some special cases of the linear transformations, in particular, L is
monotone and/or self-adjoint.

Lemma 8.1. Suppose L is self-adjoint and monotone. Then L has the w-uniqueness prop-
erty.
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Proof. For any q € K(L), let yo = L(xo) + ¢ and y = L(x) + ¢, where xq is a given solution
and x an arbitrary solution. Then y — yo = L(x — xp). Since L is monotone, we have
that L has the cross commutative property by Lemma 4.1. Thus (x — z9) o L(z — xg) =
—[royo+zo0oy] 0= (z—x0) ' L(z—20) <0 = (z—20)T L(x —10) = 0. The last equality
follows by monotonicity of L. Since L is self-adjoint and monotone, we have L(x — x¢) = 0.
Hence L(x) = L(xg). O

Theorem 8.2. Let L be self-adjoint. Then the following are equivalent:

a) L is monotone.
)

b) L has the Order w-P property.

(
(
(¢) L has the Jordan w-P property.
(d) L has the w-P property.

(

e) L has the w-uniqueness property.

Proof. (a) = (b): Suppose M L(x) <0 < zUL(z). Then (z, L(z)) < 0 by Proposition 2.2.
Since L is monotone, we have (x, L(x)) = 0. Since L is self-adjoint and monotone, we have
L(z) =0.

The implications (b) = (¢) = (d) follow from Theorem 3.2.

Since (a) = (e) by Lemma 8.1 and (e) = (d) by Theorem 4.2, we only need to show that
(d) = (a). Suppose (d) holds, since L is self-adjoint, all eigenvalues of L are real. We claim
that all eigenvalues of L are nonnegative. Suppose not, then there exists a eigenvalue A < 0
and corresponding eigenvector u, such that L(u) = Au. Thus we have u o L(u) = Au? < 0,
this implies that L(u) = 0 by the w-P property of L, Thus Au = 0 = w = 0, this is a
contradiction. Hence the claim is true. Therefore L is monotone. O

Corollary 8.3. Given any element a in V, the quadratic representation of a is defined by
P,(z):=2ao (aox) —a?ox. Then the following are equivalent:
(a) P, is positive semidefinite on V.
(b) P, has the w-uniqueness property.
(¢) P, has the w-P property.
If, in addition, V is simple, then the above conditions are further equivalent to
(d) +a € K.

Proof. Since P, is self-adjoint, we only need to show (a) is equivalent to (d) when V is
simple. For a given a € V, there exists a Jordan frame {ej,es,...,e,} such that

a=aie] + ases + ...+ are,.
For any x € V', write the Peirce decomposition of x with respect to this Jordan frame as

.
xr = E a:iei—&-g Tij
=1

i<j
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(with z; € R and x;; € Vj;). Then it can be easily verified that

r
§ 2 § :

Pa((E) = a;“xr;e; + aiajacij.
i=1

1<j

When V is simple, V;; is nonzero for each ¢ < j (see Corollary IV.2.4 in [4]), so we have

0 < {(z, P,(x))

T
> alzP el + ) aias|wigl)* (Ve e V)
i=1 i<j
< a; >0 (’L < ])
< a;>0ora; <0,Vi.

Hence P, is positive semidefinite on V' if and only if +a € K when V is simple. O

Remark 8.4. When V = 8", for a real n X n matrix A, the two sided multiplicative
transformation is defined by
Ma(X) := AX AT,

If we specialize P, on 8™, then it can be easily verified that P4(X) = AXA for A € S™.
Thus for M4, the following are equivalent when A is a real symmetric square matrix.

(a) A is either positive semidefinite or negative semidefinite.
(b) M4 has the w-uniqueness property.
(¢) My has the w-P property.

The following two theorems are modifications of Theorem 22 and Theorem 23 in [10].

Theorem 8.5. When L is monotone,
Order w — P = Jordanw — P and w — P = w — uniqueness.
Theorem 8.6. When K is polyhedral,
Orderw — P = Jordanw — P = w — P = w — uniqueness.

Now we consider Aut(L™), the set of all invertible linear transformations L such that
L(z oy) = L(z) o L(y) for all z,y € L™ Such linear transformations are called algebra
automorphisms on £". In [9], Gowda and Sznajder showed that the GUS and P properties
coincide for all L € Aut(L™). The w-P and P properties coincide for an L € Aut(L™)
coincide as any such L is invertible. Therefore it is easy to get the following result by using
Theorem 5.1 in [9)].

Theorem 8.7. For L € Aut(L"™), the following are equivalent:

(a) L has the P-property.
(b) L has the GUS-property on V.

(¢) L has the w-uniqueness property.
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(d) L has the w-P property.
(e)
(f) L has the Q-property.
(g) —1¢ o(L)(= spectrum of L).

L has the Ry-property.

@ The Column Competence Property and the Finiteness of w-
Solutions of the LCP(L, q)

In the standard LCP theory, the nondegeneracy of a matrix M and finiteness of SOL(M, q)
coincide (see [2]). However, this need not be true when V' = 8™ (see [8]). In [8], Gowda
and Song introduced the concepts of nondegeneracy for a linear transformation defined on
8™ and the locally-star-like property of a solution point of an SDLCP(L, Q) for Q € S
and showed that nondegeneracy together with the locally-star-like property is equivalent to
finiteness of SDLCP solution sets. In [13], Malik extended this result to any Euclidean Jor-
dan algebra. In [19], Xu introduced the concept of the column competence for the standard
LCP problems and showed that the column competence of a matrix M and finiteness of
w-solutions property of LCP(L, q) coincide. Motivated by these results, in the first part
of this section, we study the column competence property of L defined on V, and then
we give some interconnections between the column competence property and finiteness of
w-solutions property of LCP(L, q) for all g € V.

Recall that L has the column competence property if

x and L(x) operator commute

2o L{x) =0 }:>L(x):0.

Theorem 9.1. If L is a Lyapunov-like transformation, then L is column competent.

Proof. Suppose x and L(z) operator commute and x o L(z) = 0. Without loss of generality,

we can write
k r
T = g Ti€; and L(z) = E Yi€i,
1 k+1

where {e1,...,e,} isa Jordan frame. Then we have L(z) = Zlf x;L(e;). Thus (L(x), L(z)) =
(Z’f wiL(ei), Y i1 Vi€i) = > icjriyj(L(ei),e;) = 0. The last equality holds because L is
Lyapunov-like transformation. Thus L(x) = 0. O

Example 9.1. L4 has the column competence property for any A € R™"*™.
Theorem 9.2. S4 has the column competence property for any A € R"™™.

Proof. Suppose a nonzero X which commutes with nonzero S4(X) and X o S4(X) = 0.
Then because of commutativity, we can write

X =UTDU, Sa(X)=UTEU and B=UAUT,

where U is some orthogonal matrix and D and E are diagonal matrices. Then we have
E =D — BDBT and DE = 0. Without loss of generality, we can write

[Dy 0 [ B B, Jo o
D—[O O]B_[Bg BJandE_[O E}
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where D; is invertible. Then from E = D — BDB”, we have

g0 0]_ Dy, — BiD:B," —B;DB;"
N 0 E2 N —BngBlT —BngBgT

Dy = B1D1B;", BiD1BsT = 0and E> = —BsD, Bs”.

We claim that B is invertible. If this is not the case, let BlTu = 0 for some nonzero u.
Then Diu = B1D1BiTu=0=u=0 leading to a contradiction because D; is invertible.
Hence B is invertible. From B;D; B3’ = 0, we have B; = 0. Thus Fs = —B3DB;T = 0.
Therefore S4(X) = 0. O

Theorem 9.3. Suppose L is monotone. Then the following are equivalent:

(a) L has the w-uniqueness property.
(b) L has the w-P property.

(¢) L is column competent.

Proof. The implication (a)< (b) follows from Theorem 8.5.
The implication (b)=> (c) is obvious.
(¢)= (b): Suppose that x and L(x) operator commute, and x o L(x) < 0. We have

0> (¢oL(x), ¢) = {x, L()) > 0.

The last inequality is from monotonicity of L. Thus we have (x, L(z)) = 0. Since x and
L(z) operator commute, we may write z = Y | \je; and L(x) = Y| pie;, where {e1,...,e.}
is a Jordan frame. Then z o L(z) < 0 yields >_] A\jpie; < 0, which further implies A\jp; < 0
for all <. Now (z, L(z)) = 0 yields Y7 A\jpilles]|* = 0. It follows that \;u; = 0 for all .
This implies z o L(z) = 0. Since z and L(z) operator commute, we have L(xz) = 0 from the
column competence property of L. Thus L has the w-P property. O

Theorem 9.4. Let L be copositive on K (i.e., (L(x),x) >0 for allx € K). Then L is the
column competent only if L has the w-uniqueness property for all ¢ € K.

Proof. Fix a ¢ € K, suppose that there exists x > 0, such that y = L(x) + ¢ > 0 and
(z,y) = 0. Then x and y operator commute by Proposition 2.1. Since L is copositive on K,
we have (z,q) = 0, this implies that z and ¢ operator commute by Proposition 2.1. Thus z

and L(z) = y — q operator commute, and 2 o L(z) = 0. By the column competence property
of L, we have L(z) = 0. O

In view of the LCP result for column competence of a matrix mentioned at the beginning
of the section, we may ask whether or not the LCP w-solution sets corresponding to a
column competent transformation are finite. The following example shows that the answer
is negative.

Example 9.2. In R?>*? let A = —%I and @ = I, where [ is the identity matrix. Then L4
is column competent by Example 9.1. It can be easily verified that the solution set of the
LCP(L 4, @), consisting of all matrices of the form

1+v/1—4)2 A
2
A 1—v/1-—4)2
2
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with ) real and 4)\? < 1, is infinite. Thus the w-solution set of the LCP(L 4, Q), consisting

of all matrices of the form
1—vV1-—4)2 Y
2

Y 14+v/1—4X2
2

with X real and 4)\? < 1, is infinite.

Now, to address the finiteness issue, we introduce the following definitions.

Definition 9.5. A w-solution yg of the LCP(L,q) is said to be locally w-unique if there
exists a neighborhood of 39 within which yq is the only w-solution.

Definition 9.6. A w-solution yo of the LCP(L,q) is said to be locally-star-like if there
exists a ball B(yo,r) such that for all y € B(yg,r) () w-SOL(L, q), [yo,y] € w-SOL(L, q), or,
equivalently,

(txo+ (1 —t)x) o (tyo + (1 —t)y) = 0 Vt € [0, 1],
where w-SOL(L, q) denotes the w-solution set of LCP(L, q), y = L(z)+q and yo = L(zo)+g.

We note that if SOL(L, q) is convex, then every w-solution in w-SOL(L, ¢) has the locally-
star-like property.

Theorem 9.7. Given L on V, consider the following statements:

(a) For all q €V, the LCP(L,q) has a finite number (possible zero) of w-solutions.
(b) For all ¢ € V, any w-solution of the LCP(L,q), if exists, must be locally w-unique.

(¢) L is column competent, and for all ¢ € V, each w-solution of LCP(L,q) is locally-star-
like.

Then (a) = (b) = (c).
Proof. The implication (a)=- (b) is obvious.
(b)= (c): To show the column competent part, let  and L(z) operator commute, and
xzo L(z) = 0. Then
et o (L(2)t =2~ o (L(2))” =2" o (L(x))” =2~ o (L(x))" =0.

If L(x) # 0, then (L(z))" # (L(z))". Defining ¢ := (L(x))" — L(z") = (L(z))” — L(z™),
we see that the LCP(L, q) has two distinct w-solutions (L(z))" and (L(z))~ with

(tat + (1 —t)z") o (H(L(x))" + (L —t)(L(z))") =0, Vtel0,1].
ie., [(L(z))",(L(z))*] € w-SOL(L,q). This contradicts (b). Thus L(xz) = 0. Hence L

is column competent. Now take any ¢ € V. For a yo € w-SOL(L, q), the locally-star-like
property is trivially satisfied since yg is locally w-unique. O

Remark 9.8. When K is polyhedral, the reverse implications in above theorem hold.
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Remark 9.9. When L has the Ry-property (i.e., when LCP(L,0) has only zero solution),
we claim that the reverse implications in above theorem hold.

(b)= (a): Since L has the Rg-property, the solution set of LCP(L, q) is compact (possibly
empty) for all ¢ € V' (see Observation 1.2.1 in [13]). Thus the w-solution set of LCP(L, q)
is compact for all ¢ € V. Hence LCP(L, ¢) has a finite number of w-solutions for all ¢ € V.
(¢)= (b): Suppose for some g € V, a w-solution yy of LCP(L,q) is not locally w-unique.
Then there exists a sequence {yr} € w-SOL(L, ¢) which converges to yo with yi # yo for all
k. By the locally-star-like condition, [yo,yx] € w-SOL(L, q) for all large k, i.e.,

(txo + (1 — t)zg) o (tyo + (1 — t)yx) =0 Vit € [0, 1]
for all large k, where y;, = L(xy) + ¢ and yo = L(zo) + ¢. This yields

(zo,yk) = 0 = (K, Yo)-

Hence we have that zy (z)) operator commutes with y; (respectively, yo), and zg o y =
0 = x o yp for all large k& by Corollary 2.1; Therefore z; — xg operator commutes with
yr — Yo = L(zr — x0), and (zp — zg) o L(xg — o) = 0. But from the column competence
property, this implies that y, = yo for all large k, contradicting our assumption. Therefore,
for all ¢ € V', any w-solution of LCP(L, q), if it exists, must be locally w-unique. This proves
the claim.

Concluding Remarks

In this paper, we have introduced some generalizations of the w-P matrix concept mentioned
in Introduction for a linear transformation defined on a Euclidean Jordan algebra and studied
some interconnections between these generalized concepts.

Appendix Here we justify the assertion made in Example 3.1. First we present a result
from [17] (see Proposition 7.3.1); a proof is given for completeness.

Proposition 10.1. Consider

a b c
L=|0 1 0|:£3->728
A0 1

Ifa+ |\ >0, \#0,a> X, a >0 and (c+ \)? < 4a, then L has the P-property.

[ azg + bri + cxs

Proof. Let x = [x9 21 x2])T. Then L(x) = T

i Axg + o

Now z o L(x) <0, and = and L(z) operator commute if and only if (see Corollary 7 in [1])
m| 7] -=o

T2

or

_ . B
(2) | Amo + T2 } =0,

or
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Ty _ 1ol
(3) {)\3704-372 } a{m ] for some o # 0.

Now we analyze the above three cases.

(1) If [ il } =0, then we have
2

1 a a
r=x0| 0 |,Lx)=20| 0 | andxoL(z) =202 | 0 | <0
0 A A
So, if a + |A] > 0, we have zo = 0.
I _ _ _
(2) If [ Az + 2 ] =0, then 1 =0 and x5 = —Axg (A # 0). We have
1 1 1
z=z¢0| 0 |,L(x)=(a—Ac)zg| 0 | and xo L(z) = (a — Ae)zo? | O <0.
-A 0 -2
So, if a — Ac > 0, we have zy = 0.
[ 1 _ T1
(3) Let | Azo + 22 ] —a[ 2 }
(i) If & = 1, then we have g =0 (A # 0),
[ by + cxo 212 + 292
L(z) = xy and zo L(z) = | z1(bxy +cxa) | <O0.
i To x2(bxy + cxa)
So, we x1 = x5 = 0.
(i) If @ # 1, then we have 1 = 0, g = ﬁzo,
ala—1)+ e
Lia) = == 0 :
@~ al

and

2 ala =12+ Ac+ A)(a—1) + \?
0 <0.

@=D* | \aa-1)+erA+al@—1)] |

xoL(z) =

Thus, we have zg = 0 or
Mo =12+ (a+1)(a—1)+cA +ala—1)?+Xc+N)(a—1)+ A2 <0.

The above inequality is violated if @ > 0 and (c + A\)? < 4a in which case we have x¢ = 0,
hence x5 = 0. Therefore, L has the P-property. O

Now consider L given in Example 3.1:

1
L= 0 03— L3

-1

O~
—_— O
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It can be easily verified that L has the P-property by the above proposition. Hence it
—1.32
has the w-P property. Take z = 1 . Then we have
0
x o L(x)=[-2.5376 1.36 -1.322]T < 0, but L(z)=[2.68 1 1.32]7 # 0. Therefore L has the
w-P property but not the Jordan w-P property.
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