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A NEW GENERALIZED PROJECTION METHOD OF
STRONGLY SUB-FEASIBLE DIRECTIONS FOR GENERAL
CONSTRAINED OPTIMIZATION *
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Abstract: In this paper, a class of optimization problems with equality and inequality constraints is
discussed. Firstly, the original problem is transformed into an associated simpler problem with a penalty
term and only inequality constraints, then a strongly sub-feasible algorithm is presented. At each iteration of
the proposed algorithm, the search direction is generated by only one simple explicit formula of generalized
projection. Under some mild assumptions, the globally and the strongly convergent properties are obtained.
Another important feature of the proposed algorithm is that the iteration points can enter into the feasible
region of the equivalent problem after finite iterations. Finally, some preliminary numerical results are
reported.
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Introduction

In this work, we consider the following general constrained optimization problems with
nonlinear inequality and equality constraints

min  fo(x)
st. fi(x) <0, jeLi={1,...,m'}, (1.1)
fi@) =0, jeLo={m +1,...,m},

where z € R" and functions f; : R* — R (j =0,1,...,m) are continuously differentiable.
We denote the feasible set of the problem (1.1) as follows: X = {z € R" : f;(z) <0,j €
Ly; fi(x) =0,j € La}.

It is well-known that the method of feasible directions (MFD) is a kind of efficient
methods for solving inequality constrained optimization problems (Refs. [2], [7], [10], [12],
[13]), but it is difficult for MFD to deal with optimization problems with nonlinear equality
constraints directly.
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In order to employ the MFD to solve optimization problems with equality constraints,
Mayne and Polak [11] transformed the problem (1.1) into the following optimization problem
with only inequality constraints

min F(z;¢) £ fo(z) —c Y. fi(z)
JEL2 (12)
s.t. fj(.’lf) <0, jELéLl U Lo,

where parameter ¢ > 0, which is updated by a simple procedure. Especially, if Ly = 0,
define F(z;¢) = fo(x). The feasible set of the problem (1.2) is denoted by X+ = {z € R"™ :
fi(z) <0, j e L.

Mayne and Polak [11] showed that the simplified problem (1.2) is equivalent to the
original problem (1.1) if ¢ is sufficiently large (but finite), and then presented a feasible
direction algorithm for solving the problem (1.2), so for the problem (1.1). More details
and advantages were discussed by Lawrence and Tits [10], some further applications of this
technique are presented by Herkovits [7], and Jian [2] also showed that Mayne and Polak’s
scheme bring many advantages.

On the other hand, the gradient projection method introduced by Rosen [15] is an
important class of MEFD for solving inequality constrained optimization. For a given iteration
point %, the search direction d(z*) in [15] is generated by a so-called gradient projection
operation

d(z") = —P(@")Vfo(z"), P(a*)= E, — A(a")(A(«")TA@«")) "t A®")T,

where E,, is the n order identity matrix and matrix A(z*) consists of the gradients of the
active constraints at z¥. In fact, —P(z*)V fo(2*) is the projection of —V fo(x*) onto the
null-space {d € R" : A(z*)Td = 0}. The gradient projection method is further researched
and extended to the generalized gradient projection method (GGPM) (Refs. [4], [6], [9]). In
most globally convergent GGPMs, the search direction d(z*) has the form of
d(z*) = —P(a*)V fo(z") + Q") v(a"), P(a*) = B, — A(a")Q(a"),
Q(z*) = (A(*)T A(z") + D(*)) Tt A@h)T,

where matrix A(z*) consists of part or all gradients of the constraints, D(z*) is a suitable
diagonal and positive semi-definite matrix, and v(z*) is a suitable vector.

In 1995, Jian [3] improved the combined Phase I-Phase II algorithm [14] and proposed
a strongly sub-feasible direction method, which not only unifies automatically the processes
of initialization (Phase I) and optimization (Phase II), but also guarantees that the number
of the functions satisfying inequality constraints is nondecreasing. Based on the strongly
sub-feasible method and the generalized projection technique, Jian and Zhang [6] presented
a new algorithm with arbitrary initial point. Compare with algorithm in [3], this algorithm
possesses not only global convergence but also strong convergence.

In this paper, motivated by the techniques in [6,11] and the generalized projection
method, we present a new strongly sub-feasible direction algorithm for solving general non-
linearly constrained optimization problems. The main features of the proposed algorithm
are summarized as follows:

e the objective function of the simplified problem is used directly as the merit function;

e the initial point is arbitrary;

e the parameter is adjusted automatically only for a finite number of times;

e the iteration points always enter into the feasible set X+ after finite iterations;

e at each iteration, the search direction is generated by only one explicit formula of
generalized projection and the line search technique is some different from others.
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Description of Algorithm

For convenience of presentation, we use the following notation throughout this paper with
x € R™ and parameter p > 0

9j(x) =V fj(z), j € {0} U L;

(&)= € Ls f(a) <0}, IH(a) = {j e L: @) > O) o)
Y(z) = max{0, f;(x), j € L} = max{0, f;(z), j € I (x)}; :
Ly(x)={jeLi: fi(x) =0}, Li (z) ={j € LinIT(x): f;(x)=1(x)}.
(—fi(@))P, j eI (z)N Ly
Dj(z) = (¥(x)— fi(x))P, j €It (z)N Ly; (2.2)
0, j € Lo.

The following basic assumption is assumed to be satisfied.

Assumption Al The gradient vectors {g;(x) : Dj(z) = 0} are linearly independent.

It is easy to see that Assumption Al can be reduced to the usual linear independence
whenever x € X ™.

For a given arbitrary iteration point ¥ € R™ and parameter ¢, > 0, in order to generate
the search direction, we define generalized projection matrix P(x*), multiplier functions
7(2*) and mw(z¥;cx) as follows:

Dy = D(a*) = diag(D; (%), € L), Ay = A(a*) = (g;(*),f €
Pk = P(ij) = En - Aka, Qk = Q(xk) = (AgAk + Dk)_lA{; (23)
ak 2 2k ) = —QpVF(2%;¢p), 7 = n(2¥) = (wj(mk),j cL

It is not difficult to know that
k
AL T\ =T
;-‘ = Wj(xk;ck) = { i)

: 2.4
mi(@%) +op = 7 +ex, j € Lo (24)

From [11], we know that the simplified problem (1.2) is equivalent to the original problem
(1.1) when ¢ is sufficiently large (but finite). In order to check that whether the current
iteration point 2* is a KKT point of the problem (1.1) or not, we introduce the following
identifying function p(z*):

_ [Pego@®)|? + w(a®) + (")

— (o
pr = p(z") 1+ |oT 7| ’ (2.5)
where @ = (1,...,1)T € R™ and
w@h) = ¥ max{-n}, miD;(x")+ X wFw(") - f(@h)
= JEb L0 (2.6)

+ X (=wfhER).

JE€L2, f;(z*)<0
The following lemma gives some properties of the formulas defined above.

Lemma 2.1. Suppose that Assumption A1 holds and iteration point ¥ € R™. Then
(i)  The matriz (AT Ay + Dy) is nonsingular and positive definite.
(11) Agpk = Dka, AgQg = En - Dk(AEAk —+ Dk)il.
(iii) If Dj(z*) =0, then g;(z*)T P, = 0 and g;(z*)TQT = w!, where
@ =(0,...,0,1;,0,...,0T € R™.
(iv)  go(2")" Prgo(z*) = | Pugo(a®)||* + %:L(Wf)sz-
J

(v) Ifex > ‘7‘(‘;"‘, Vj € Ly, then x* is a KKT point of the problem (1.1) if and only if py, = 0.
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Proof. The proof of (i), (ii), (iii) and (iv) is similar to Lemma 1 in [6], and the proof of (v)
is similar to Lemma 2.2 in [5] and Lemma 2 in [6], thus they are all omitted here. O

For a current iteration point ¥ € R™ and & > 0, we construct the search direction d* as
follows:

d* = d(a*) = pi[—Prgo(@*) + QL v*] — r(a*)Qf =, (2.7)
with
=1 - pg, if jelL, nf<0;
k k Dj(a*) — pr, if jely, n}>0;
oF = . (2F) = g 2.8
3= =0 k) < it j € L, f)(a*) <0 28)

(k) = fi(@*) = pr, if j € La, fi(a¥)>0.
Based on Lemma 2.1 and (2.7)-(2.8), we show some properties of d* in the following lemma.
Lemma 2.2. Let 2% € R*. Then (i) VF(z¥;c)d* < w(xk)pi — T (M) @R, and
(i) g;(@*)Td* < —p ™ —r(ah), Vi€ {j e L: fi(a*) = 0or fi(a*) = v(ah)}.
Proof. (i) From (2.7) and Lemma 2.1(iii, iv) as well as (2.4), we get

VF@k o) @ = (go(oh) — e 3 gy )T {Al-Pionla) + QFv¥] — ri(et)Qf

=0} {—Pkgo(w’“)H? -z (79)2D; (a*) — (%) Tk

+er Yo g5(@F) T Pego(a®) — i Y g;(aF)TQF vk
JjEL2 JjEL>

+rp ()@’ Tt +repp(ah) 3 g;(=") T Qfw
JjE€L2
=} {kago(ff’“)l2 — 2 (mf)?D;(a") = X i — 3 (7 + e
jeL jeLy j€L>

+er > 9j($k>TPkgo(fﬂk)} + rip(aF)oT 7k
JjEL2

So, in view of (2.8) and (2.4), we further have

T
VE(z";cx) d¥ _Pi{—HPkgo(fk)z— > (m})2Dy(a*) + pe 3o )
JjeEL JjeEL,

- X =mH+ X mDiEN )+ X wfEh)

JEL1,mE<O JEL1,mE>0 JEL2,f;(x*)<0
toe oAy — X mWER) - fE0) o + @)= 7
JjEL> JELa, fj(xz*)>0

—Pi{_HPkgo(ffk)Q— > (D) + (2 7+ 3 A)
jEL JjeEL, JjELo

- X =+ X ompiEh)+ X w(=fiEh)
JEL1,mE<O JEL1,mE>0 JEL2, f;(x*)<0

+ 2. i ((a*) — fj(ffk))> } + ()T 7k,

jELg,fj(m"')>0
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Therefore, according to (2.5)-(2.6), we obtain

T .
VE(a*icr) d* < pf & — || Prgo(a®)||? — ZL(Wf)sz(l"k) + pr|wt 7| —w(ﬂﬁk)}
je
+rp (R T 7k

< (") — pr) + r(@h) 7R,
(ii) From (2.2)—(2.3) and Lemma 2.1(ii), it follows that

ATdE = p¢ {—AT Pogo(a®) + ATQT "} — rip AT QT @
= p {—~DrQurgo(a*) + vF — D (AT Ay + Dy)~ 10} (2.9)
—T%/J(xk)w =+ Ti/)(xk)Dk(A{Ak + Dk)flw,

Forje{jeL: fj(a¥) =0 or f;(*) =(a*)}, the formula (2.2) shows that Df =0,
furthermore, (2.8) implies that vf < —pk- So (2.9) gives that g;(z*)Td* = pivf —rip(zk) <
—pp T = (). 0

Based on the analysis above and the search direction d* defined by (2.7), we can describe
our algorithm as follows.
Algorithm A Parameters: r,& > 0, a,3 € (0,1), p,c_1,7v,70 > 0. Data: 2" € R™. Set
k:=0.

Step 1 (Update parameter cg): Compute ¢ by

o = { 21:1:?%, ck—1+ 7} g z: 2 2::1: Sk = rnax{|71'§“|7 J € Lo} +1p. (2.10)
Step 2 (Yield search direction): Compute pj and d* according to (2.2)—(2.8). If p = 0,
then stop and 2* is a KKT point of the problem (1.1); otherwise, go to Step 3.
Step 3 (Do line search): If ¢)(z¥) > 0 and f;(«* +d*) <0, for all j € L, then let \;, = 1
and go to Step 4; otherwise, compute the step-size Ay which is the first value of A in the
sequence {1, 3, 32,...} that satisfies the following inequalities:

SpF (2" 4+ 2dF;cp) < Jk{F(xk;ck)+a/\VF(ask;ck)Tdk+(1—a))\1/)(xk)(pi+er7?k)}, (2.11)

fi(@* 4+ Ad") < max{0,¢(a*) — aX(p " +ro(@h))}, Vie IF 2T (), (2.12)
fi@®+2d¥) <0, Vjel; &1 (ab), (2.13)

where 6 = 1 if ¥(z¥) = 0 and §; > 0 if ¥(2*) > 0.
Step 4 (Update): Let 2**! = 2% 4 \j.d*, k :== k + 1, and go back to Step 1.

Remark 1 (i) In order to obtain the global convergence of Algorithm A, it is sufficient
that the parameters are restricted by p > 0, » > 0 and £ > 0. Furthermore, to get
strong convergence and ensure the iteration points enter into the feasible set X T after finite
iterations, the parameters have to be restricted by p > 1, r > 1 and & > 1.

(ii) It does not influence any of our analysis if J; is always set to be a positive constant,
and the line search (2.11) of Algorithm A will be reduced to

F(z® + A% c) < F(z*;c) + aAVF (2, cp)Td" + (1 - a))\w(xk)(pi +rw? 7).
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The purpose that we allow d, = 0 in the case of ¥ (z¥) > 0 (i.e., z¥ ¢ XT) is to further
reduce the computational cost of the line search, because the line search (2.11) does not
work in this case, and the number of objective function evaluations will be reduced, then
the numerical effect is expected to be improved.

(iii) The line search technique (2.12) is some different from others. It can ensure that the
value of A can be accepted as a step-size and complete the line search as long as z* + \d* €
X, in the case of §; = 0.

The lemma given below shows that the proposed algorithm above is well defined.

Lemma 2.3. Suppose that Assumption A1 holds. Then the line search in Step 8 can be
carried out, i.e., the inequalities (2.11)-(2.13) holds for X\ > 0 sufficiently small.

Proof. (1) Analyze the inequality (2.11): Using Taylor expansion and Lemma 2.2(i), we have

ap(A) = 0 {F(x* + /\dk; cx) — F(zF;er) — oz/\VF(xk; cp)tdd — (1 — a)\(z )(p,C +rwlT#k)}
< 5{(1 — A (@F)pf — i + 1 (k)T 7] — (1= a)\p(ah) (o, + raa™ %) + o(A[|d¥ )}
= 5 {—(1—a)Ap, ™" + O(AHdkH)}

This together with « € (0,1) and pj > 0 implies that ax(A) <0 for A > 0 sufficiently small.

(2) Analyze the inequality (2.12): For convenience of analysis, we denote
BE(N) £ f(2" + Ad") — max{0, («*) — ad(p"C +ru(a*))}, e TT(a").

(2-i) For j € I'T(2*) and f;(2*) < ¢(2*), by using Taylor expansion, one gets for A > 0
sufficiently small

BEA) < fi(ak 4+ AdF) — p(2) + aX(p T+ re(zh)
= fi(@®) = ¥(x®) + Agj (") Td* + aX(p)"* + rip(aF)) + o(A]|d¥]])
= fi(@*) —(zF) + O(N||d¥||) < 0.

(2-ii) For j € I'*(2%) and f;(2*) = ¢ (2*), by expanding f;(z*+Ad*) at 2* and combining
Lemma 2.2(ii), for A > 0 sufficiently small, one has
by () fj(xk +AdF) = (a*) + aX(p"E + ri(ah))
F(a4) = 0(24) + dgy (270 + @M +rs(a) + o)
A" A rb(ah)) +ad(p" + roet) +o(Alld )
(@ = DA + rip(aF)) + o(Al[d*]]) < 0.

Il I/\ IIIA

(3) Analyze the inequality (2.13): First, for j € I~ (z*) and f;(2*) < 0, it follows that
fi(z* + Ad¥) <0 for A > 0 sufficiently small, since f;(z*) is continuously differentiable.

Second, for j € I~ (2*) and f;(2*) = 0, using Taylor expansion and Lemma 2.2(ii), one
gets

Fi(@b £ AdF) = f5(28) + Ag; (2F)TdF + o(N|dF|l) < =A™ + rib(ah)) + o(Al|dF).

So, f;(z* + Ad¥) < 0 for A > 0 sufficiently small.
Summarizing the analysis above, we conclude that there exits a constant A > 0 such that
the inequalities (2.11)—(2.13) are satisfied for all A € (0, A] and Lemma 2.3 follows. O
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Remark 2 From the line search conditions (2.11)-(2.13), it holds that one of the following
two cases must happen:

Case A. There exists an iteration index s such that (x*) = 0, then 1 (z*) =0, 6 =1
and

F(a" 1 e) < F(2®;cx) + a i VE(2%; cp)Tdb < F(2%;¢p) — ozAkaE < F(z*;¢1), Vk > s.
(2.14)

Case B. For any k =0,1,..., ¥(z¥) >0, 6 >0 and
P(ak +1) < Pa®) — adn(p T+ r(ah)) < (k). (2.15)

According to Remark 2, it is easy to know that the sets It (xF), I~ (2*), LT (2%) 2 {j €

2 fi(@®) > 0} and L; (2*) = Lo\ L3 (2*) are all monotone, furthermore, in view of they

are all being subsets of the fixed and finite set L, thus, these subsets can be fixed if k is
sufficiently large. For k large enough, we denote

It =17 17 (") =17, L («*) =L, Ly («F) = L;.

Global Convergence

Taking into account Lemma 2.1(v) and Step 2 as well as ¢, > |7r;“| (Vj € Lg), one knows
that z* is a KKT point of the problem (1.1) if Algorithm A stops at {*}. Now, we assume
that an infinite sequence of iteration points is yielded by Algorithm A and we will show that
each accumulation point z* of {#*} is a KKT point of the problem (1.1).

Suppose that z* is a given accumulation point of the sequence {2*}. Then there exists

an infinite index set K, such that z¥ - z*. Denote

(—f (m*)) jeI~NLy
Dy =9 ()= fi(z*))P, jeltnLy;
0, j € Lo.

D, = D(z*) = diag(Dj, j € L), Ax = A(z") = (g;(z%), j € L).

The following basic assumption is necessary to ensure the global convergence of Algorithm

A.
Assumption A2 The sequence {x*} yielded by Algorithm A is bounded.

Lemma 3.1. Suppose that Assumptions A1-A2 hold. Then matriz (AT A, 4 D) is positive
definite. Furthermore, there exists a constant € > 0, such that ||(AL A + Dy)71|| < € holds
for all k large enough.

Lemma 3.2. Suppose that Assumptions A1-A2 hold. Then there exists an integer kg > 0,
such that ¢, = ¢ 2 Cr, holds for all k > ky.

The proof of the above two lemmas is similar to Lemma 3.1 in [4] and Lemma 3.1 in [5],
respectively. Thus, they are all omitted here.

Due to Lemma 3.2, we always assume that ¢, = ¢ for all £ in the rest analysis. Now, let
us further define

Q.= (AIA* + D*)_lA:{a P, =FE, - AQ. 7= _Q*go(‘r*)7 = _Q*VF( )
= Y max{-n}, @D+ 3 (7 +o)((a*) — fi(2*)) + Z ( fi(@™)) (75 + o}

VIS5 j€L2+ jeLy



514 J.-B. JIAN, C.-H. GUO AND L.-F. YANG

_ IPugo (@)1 + ws + 9(a%)
1+ || '

(3.1)

*

Then (Y(2*), Di, pr) N (Y(x*), D, ps), {v*}x and {d*¥}x are all bounded.
Lemma 3.3. If z* is not a KKT point of the problem (1.1), then p, > 0 and pr > 0.5p.
for k € K large enough.

Proof. In view of py i p*7 we only need to show p, > 0. First, if ¢¥(z*) = 0, then
D, = D(z*), wye =w(z*), 7 =7(z*), ps = p(z*), from Lemmas 2.1(v) and 3.2, we obtain
ps > 0 since ¢ > |77|, Vj € La. Second, if ¢(z*) > 0, we get p, > 0 from (3.1). O

Lemma 3.4. If z* is not a KKT point of the problem (1.1), then \y > A, = inf{\; : k
K} >0, Vke K.

Proof. Tt is sufficient to show that the inequalities (2.11)—(2.13) hold for k¥ € K large enough
and A > 0 small enough.

(1) Analyze the inequality (2.11): Using Taylor expansion, the boundedness of {d*} g,
Lemmas 2.1(v) and 3.3, from part (1) in the proof of Lemma 2.3 and « € (0, 1), we have

ar(N) = 8 {—(1 = a)Ap T + 0N} < 8, {—0.5"(1 — a)Apitt +o(N)} < 0.

Therefore, the inequality (2.15) holds for k € K large enough and A\ > 0 sufficiently small.
To simply and finish the rest analysis, the relationship

g;(@®)Td" = ppof — ry(a*) + O(DF), if DF — o0, (3.2)
is important, and which can be obtained from (2.9).
(2) Analyze the inequality (2.12): We divide the proof into three cases:
Case (2a): For j € I'T and f;(z*) < ¢(z*), then we have from Lemma 3.3
tim (£, (o + Ad¥) — maxe{0,15(e%) — aA (o} + rs(at))))
< lim (f5(2* + Ad¥) = 9 (a*) + ad(p " + 1 (a4))) (3:3)
= fi(z%) —(@*) < 0.5(f;(z") — ¥(z*)) < 0.

Case (2b): For j € I N Ly and fj(z*) = ¢(a*), then Df — 0, k € K. Therefore,
using Taylor expansion, we obtain

fi(@* +Ad*) — max{0, ¥ (2*) — aX(p, " + 1 (@ >>}
sfj<xk+Adk)—w< )+ aX(p i (at)
= f;(a*) + Ag;(z >Tdk B(a®) + aX(p T+ r(ak)) + o(N)
< aX(p "+ rp(a?)) + Agj (aF)TdP + o(N).

On the other hand, from (3.2) and (2.8), one has
gi(a™)Td" = piof —r(a®) + O(DF) < —p* —ri(a*) + O(DY).
So, this together with e € (0,1) shows that

file" +Ad") —max{0, 9 (a") — ad(py " +rip(a*))}
< =T = rp(ak) + AO(DF) + aX(py T + re(a?)) + o(N) (3.4)
< A1—a)p ™+ o)) < 051+5/\( a)piT +o(N) < 0.
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Case (2c): For j € I'T N Ly and fj(z*) = ¢(a*), then D;-“ =0 and (a*) — f;(z*) —
0, k € K. In view of (3.2) and (2.8), we get,

g;(")TdF = pruk — rp(a®) = pf(b(aF) — f5(aF)) — p ¢ = rip(aF).

So, from Lemma 3.3 and « € (0, 1), in the same fashion of Case (2b), we obtain

fi(a® +Xd*) — max{0,(a*) — aA(p;fww(xk))}
< Ag;(@®)Td" + aX(p, T + 1 (@h)) + o(N)
ot = rap(x >+aA(pk+f+rw(xk>> + A0 (W (@F) — f5(zF) +o(N)  (3.5)

< A1 = a)ph 4 A (k) — £5(25)) + o()
< —0.5"EN(1 — a)pit 4 o(N) < 0.

/\

Combining (3.3), (3.4) and (3.5), we conclude that the inequality (2.12) holds for k € K
large enough and A > 0 sufficiently small.

(3) The analysis of inequality (2.13) is similar to the above analysis of inequality (2.12),
S0, it is omitted here.

Summarizing the discussion above, the proof of Lemma 3.4 is completed. O

Now, based on Lemmas 3.3 and 3.4, we can present the global convergence of Algo-
rithm A.

Theorem 3.5. Suppose that Assumptions A1-A2 hold. Then Algorithm A either stops at
a KKT point of the problem (1.1) after finite iterations, or generates an infinite sequence
{x*} such that each accumulation point x* of {x*} is a KKT point of the problem (1.1).

Proof. In view of ¢, > s > |7rf| + 70, Vj € Lo, therefore, if Algorithm A stops at the k-th
iteration, then from Step 2 and Lemma 2.1(v), we know that x* is a KKT point of the
problem (1.1). Now, we suppose that Algorithm A generates an infinite sequence {z*} and
x* is a given accumulation point of it. Suppose by contradiction that x* is not a KKT point
of the problem (1.1). In view of Remark 2, it follows that one of the two following Cases
must happen:

(i) If Case A of Remark 2 happens, then {F(2*;¢)}x>s is decreasing, furthermore, com-
bining ]116131{ F(z*;c) = F(x*;¢), it follows that kli_)ngo F(z¥;c¢) = F(x*;c). Therefore, from

relationships (2.14) and Lemmas 3.3, 3.4, we get
F(z*¢) < F(a¥;¢) — ahgpy ™8 < F(aF;e) — 0.5 adpitt, s<ke K.

So, passing to the limit in the inequality above, it follows that _)\*p*+g > 0, which contra-
dicts Ay > 0 and p, > 0.
(ii) If Case B of Remark 2 happens, then {1(z*)} is decreasing, and combining ’111?( P(ak) =
€
(x*), it follows that klim P(x*) = 9(z*). Furthermore, from (2.15) and Lemmas 3.3 as
—00

well as 3.4, it is easy to get

Y@ < () = adi(pp T+ (k) < v(ak) — adeptt < Y(a) - 0.5 e pl T
keK.

Similarly, taking limit in the inequality above, it follows that —)\*p*+£ > 0, which is a
contradiction too. So, we conclude that z* is a KKT point of the problem (1.1), and the
proof is completed. O
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Strong Convergence

In this section, under an additional suitable assumption, we further show that Algorithm
A has the following important features: (1) The algorithm is strongly convergent, i.e., the
whole sequence {z*} is convergent; (2) The iteration points always enter into the feasible
set X1 after finite iterations.

Assumption A3 (i) The sequence {z*} of iteration points yielded by Algorithm A pos-
sesses an isolated accumulation point x*, and (ii) the functions f; (j € L) are second-order
differentiable.

Now, we establish the following strongly convergent theorem for Algorithm A.

Theorem 4.1. Suppose that Assumptions A1-A8 hold and the parameter £ > 0. Then
(1) klim Y(zk) = 0; (ii) klim |z**t — 2¥|| = 0; and

k:

(iii) lim =z x*, that is, Algorithm A is strongly convergent.

k—o0

Proof. (i) By Theorem 3.5, it follows that the given accumulation point z* is a KKT point
of the problem (1.1), so ¥ (z*) = 0. On the other hand, the whole sequence {1(z*)} is
convergent from the monotone properties and boundedness of {t)(z*)}, so Jim P(xk) =
Y(x*) =0.

(ii) First, we show that klim Ak pij{ = 0. Similarly to the proof of Theorem 3.5, we can

also divide the proof into two cases according to Remark 2.
If Case A of Remark 2 occurs, then {F(2*;c)}i>s is decreasing and bounded, so

klim F(z¥;c) = F(z*;¢). Therefore, one has klim /\kpllc"_é =0 from (2.14).
—00 — 00

If Case B of Remark 2 takes place, then klim )\kplljg = 0 follows from (2.15) and
Jim Y(z*) = 0.

Then, from (2.7) and Lemma 3.1, there exist two positive constants M and N, such that

lim b+ —2F| = lim Ag|d¥| = lim A} {—Prgo(a") + QF 0"} — rio(a")Qf w|
k—o0 k—o00 k—o00
< lim (M5, + NApip(zF))
= lim {M[(p} )% - M + N (a4))}
=0.
(iii) Taking into account klim |z¥*! — 2%|| = 0 and Assumption A3(i), it follows that
klim o = 2* (see Theorem 4.1 in [5]). O

Lemma 4.2. Suppose that Assumptions A1-A3 hold and the parameter £ > 1. Then

Jim pp =0, lim d* =0, [|d"] = O(}) + O(w(a")), [[d"]* = o(p, ™€) + o(eo(a")).
Proof. First, let p, be defined by (3.1). In view of ¢(z*) = 0 and z¥ — z*, it is easy
to get pr — p« and p. = p(z*). On the other hand, in view of z* is a KKT point of
the problem (1.1), we have p(z*) = 0 from Lemma 2.1(v) and ¢ > |7}|, Vj € La. So,
klim pr = 0. Furthermore, from (2.7) and Lemma 3.1, we have lim d* = 0. Second, The

k—oo

rest two conclusions follow immediately from (2.7) and Lemma 3.1. O
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Theorem 4.3. Suppose that Assumptions A1-A3 hold and the parameters &, p,r > 1. Then,
fi(x®+d*) <0 (Vj € L) holds for k large enough, therefore, )(x**1) =0, i.e., the iteration
points generated by Algorithm A always enter into the feasible set Xt after finite iterations.

Proof. Taking into account Step 3 and Cases A as well as B stated in Remark 2, it is sufficient
to show that f;(z¥+d*) <0 (Vj € L) for k large enough. Denote L* = {j € L: f;(z*) = 0}.
First, for j ¢ L*, that is, f;(z*) < 0. In view of (2%, d*) — (2*,0), we have f;(z* +d¥) <0
for k large enough.

Second, for j € L*, i.e., fj(z*) = 0, one knows that 1 (z*) — f;(z*) — ¢(z*) — f;(2*) =0
We divide the proof into following four cases.

(Case 1) For j € L* NI* N Ly, from (2.2), we have D} = (¢(a*) — f;(a*))P — 0.
Therefore, using Taylor expansion and (3.2), (2.8) as well as Lemma 4.2, we get

fia® +d¥) = fi(x )+gg( B)Td" + O(ld"|?)
< fi(@") + ppof = r(a¥) + O(DF) + O(||d"||?)
< fi(=") = py 1“ —r(a*) + O(Df) + O(IId’“II )
= (f;(a*) —(a ))+0(f;( ") —w(a*)) -
+o(py, ") = (r = (™) + o(vp(ah))

<0.

(Case 2) For j € L* NIt N Ly, according to (2.2) we have D;? = 0. Using Taylor
expansion, in view of (2.8), (3.2) as well as Lemma 4.2, we get

fia® +d¥) = fj(x’“) +9j(l”“)Td’“ +O(|ld*||*)

= [z )+pk{¢( )—fj(x’“)—pk}—rw(x’“HO(lldkHQ)

= (1= pp)fi(w ) ot =i )+pk¢( )+0(p;1€+£) +o(y(a*))
<= +olp ") - rw@:) (z*)) <

o(¢
(Case 3) For j € L* NI~ N Ly, in view of (2.2), (2.8), (3.2) and Lemma 4.2, we have
Db = (—f;(z")? = 0, and

fi(at +d¥) = fi(a*) +g;(x )Td’“+0(||d’“||2)
= fi(a®) = p " = ry(a®) + O(DF) + O(|ld*|1?)
< fi(a*) - ”E = rp(a®) + o( = fi (")) + o(py ) + o(t(a¥))

<0.

(Case 4) For j € L* NI~ N Ly, in view of (2.2), (2.8) and Lemma 4.2, we have D;-“ =0.
Using Taylor expansion, from (3.2), one has

fi@t +d") = fi(x )+9g( )Td’“+0(||dk||)
= fi(@®) + pi (= f3(@*) = pi) = rp(a¥) + O(|ld¥(|?)

g—p}ﬁ—rw(x) o(¥(a*)) + o(p, ")
<0.

Summarizing the discussion above, we conclude that f;(z*+d*) < 0 (V4 € L) holds for k
large enough. Thus, 1 (2*+1) = 0 for k sufficiently large. The whole proof is completed. [

Numerical Experiments

In this section, the numerical experiments of Algorithm A are implemented in MATLAB 7.0
and performed on a PC with 1.81GHZ CPU and windows XP OS. The preliminary results
show that Algorithm A is promising.
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During the numerical experiments, the parameters are selected as follows:
p=r=£(=1001, a=06=ry=05, c.; =15 =1

Additionally, in order to further show the influence of d; on Algorithm A, we report and
compare the numerical results of Algorithm A in two cases:

0, if ¥(z*) > 0;

1, if ¢(2F) = 0. (5.1)

Casel: 6L =1; Case 11 : 5k{

Execution is terminated if ||px|| < 1072 and o5 = 0. The tested problems HS7, HS14,
HS32, HS63, HS71, HS81, HS107, HS111 and HS113 are selected from [8], and S217, S225,
S252, S263, S325 and S388 are selected from [16]. Moreover, the initial points are all
infeasible for the problem (1.2). The columns of the following tables have the following
meanings:

n, |L1],|La|: n is the number of variables of the problem, |L;] is the number of inequality
constraints and |Lz| is the number of equality constraints;

Case: Cases I and IT means that the choice of §, according to (5.1);

INO: the number of iterations out of the feasible set;

NII: the number of iterations within the feasible set;

N fo: the number of objective function evaluations;

N f: the number of all constraint functions f; (j € L) evaluations;

Time: the CPU time (second);

FV: the objective function value at the final iteration point.

The numerical results are reported in Table 1-Table 2. In Table 2, the approximately
optimal solutions and objective values yielded by Algorithm A under Case I and Case II are
listed, respectively.

According to the numerical results in Table 1 and Table 2, we see that Algorithm A in
Case II is better than in Case I, especially for test problems HS81 and HS113.

All of the test problems in Table 1 are small. In order to test the effectiveness of our
algorithm, we further test the problem selected from the CUTE collection [1], where the
parameters for Algorithm A are selected as p = » = 1.001, £ = 1.01, a« = § = ry =
0.5, c_1 = 1.5, v = 1, and the execution is terminated if one of the termination criterions
is satisfied: the number of iterations less than NO or ||px|| < 1073. The initial points are
all the same and infeasible. The numerical results are given in the following Table 3. The
results show that the advantage of our algorithm when applied to solving problems with the
large number of constraints.

On the other hand, we compared Algorithm A with the algorithm (denoted by B) in
[17], as showed in the following Table 4. The initial points and tested Examples 1-3 are
selected the same as in [17]. A(I) and A(II) means that Algorithm A in Case I and Case II,
respectively. From Table 4, we can see that INO of Algorithm A is less than Algorithm B
when initial points are not feasible, especially for Example 3. The approximately optimal
solutions of Algorithm A are superior to Algorithm B.

Finally, we give some explanations about the choice of the parameters for Algorithm A.
From Theorems 4.1 and 4.3, we know that the restriction on “¢ > 0” is to ensure Algorithm
A is strongly convergent, and the restriction on “£,p,r > 1”7 is to ensure the iteration points
get into the feasible set of the problem (1.2) after finite iterations. From the results of
experiment, we also find that the parameter ¢ has an influence on INO and NII as well as
the numerical effect of Algorithm A. In the following Table 5, the numerical results of the
problem HS107 are given under the different value of £, and the value of other parameters
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are the same as above. By the way, we find that the choice of other parameters has few
influences on Algorithm A.

Table 1. Numerical results report I

Problem n,[Li],[L2| Initial point 20 Case INO NII Nfy Nf Time
HS7 2,0, 1 4,2)T I 14 8 22 109  0.03125
II 14 8 9 109 0.03125
HS14 2,1,1 (-1,-1)T I 2 9 21 61 0.01563
I 2 9 10 61 0.01563
HS32 3,4, 1 (0.5,0.5,0.5)T I 3 40 43 435  0.04688
I 3 40 41 435  0.04688
HS63 3,3,2 (2.5,2.5,2.5)T I 6 57 64 659  0.07813
11 6 57 58 659  0.07813
HS71 4,9,1 (3,4,2,4)T I 3 19 24 481  0.04688
11 3 19 20 489  0.04688
HSS81 5, 10, 3 0,1,2,-2,-2)T I 5 90 100 2643 0.34375
I 4 81 82 2350  0.28125
HS107 9,14, 0 (5,...,5)T € R? I 7 53 61 5118  0.43750
11 7 53 54 5118  0.48438
HS111 10, 20, 3 (=0.5,...,-05)T € R10O 1 32 0 6 879  0.17188
11 32 0 1 879  0.15625
HS113 10, 8, 0 9,...,9T € R0 I 23 11 65 978  0.09375
I 4 31 171 642 0.09375
S217 2,2, 1 (—14,-1)T I 19 29 40 309  0.04688
II 19 29 30 309  0.04688
S225 2,5,0 (2,5)T I 1 20 23 251  0.03125
11 1 30 53 868  0.07813
S252 3,1,1 (—4,-8,—-12)T I 5 18 38 682  0.06250
I 11 11 12 382 0.04688
S263 4,2, 2 (2,3,4,5)T I 4 67 73 633 0.09375
I 2 68 70 596  0.07813
S325 2,2,1 (—6,2)T I 3 70 74 456 0.07813
11 3 70 71 456 0.07813
(1,1,1,0,1,
S388 15, 15, 0 1,-1,1,0,1, I 2 85 88 8167  0.71875
1,-1,1,0,1)T

11 2 85 86 8167  0.76563
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Table 2. Numerical results report I1
Problem Case Approximately optimal solutions z* FV
HST7 I (—0.0534830568, 1.7291663148) T —1.726309961e + 000
11 (—0.0534830568,1.7291663148) T —1.726309961e + 000
HS14 I (0.5687519350, 0.9254296615) 7 2.054031759¢ + 000
II (0.5687519350, 0.9254296615) T 2.054031759e + 0000
HS32 I (0.0371682801, 0.0075368556, 0.8969216752) T 9.187879743e — 001
11 (0.0371682801, 0.0075368556, 0.8969216752) T 9.187879743e — 001
HS63 I (3.5096586061, 0.2138185678, 3.5527528278) T 9.617494273e + 002
11 (3.5096586061, 0.2138185678, 3.5527528278) T 9.617494273e + 002
HS71 I (1.0059662906, 4.7402123667, 3.8175943055, 1.3831840154)T 1.712497702e + 001
11 (1.0059662906, 4.7402123667, 3.8175943055, 1.3831840154) T 1.712497702e + 001
—1.7117738550,
HS81 I 5.57970111747 1.8384235442, —0.7726784340, —0.7725588868) 4.871255970¢ — 002
—1.7332849499,
I 5.60337580127 1.8004232295, —0.7589316072, —0.7792018683) 4.823824606¢ — 002
(0.6684192680,
HS107 I 1.0231853764,6.0736815151, 6.6540714895, 1.0786697141, 5.064389012e + 003
1.0881020368, 1.0225367370, 6.3890582958, 5.9319489086) T
(0.6684192680,
11 1.0231853764,6.0736815151,6.6540714895, 1.0786697141, 5.064389012¢ + 003
1.0881020368, 1.0225367370, 6.3890582958, 5.9319489086) T
(—4.9007503864, —1.4977323296,
HS111 I —0.3152789659, —4.7133495087, —0.7626199765, —4.8511504922, —4.520251036e + 001
—4.1268224932, —4.3445837123, —4.1380146813, —2.5506786613) T
(—4.9007503864, —1.4977323296,
11 —0.3152789659, —4.7133495087, —0.7626199765, —4.8511504922, —4.520251036¢e + 001
—4.1268224932, —4.3445837123, —4.1380146813, —2.5506786613) T
(2.1746118403, 2.3382248588,
HS113 I 8.7632872772,5.0919639082, 0.9907591989, 1.4664379848, 2.471145167e + 001
1.3477440525,9.8437157499, 8.2600367376, 8.3248468009) 7
(2.1670578232, 2.3566298822,
I 8.7608601887,5.0979658915, 0.9847258061, 1.4490308374, 2.473088409¢ + 001
1.3330475138,9.8319523537, 8.2505676306, 8.3505841589) T
S225 I (1.0018163479, 1.0020915800) T 2.007823530e + 000
I (2.6186092112, —1.6185752767) T 9.476900127¢e + 000
S252 I (—7.5741433214,50.3931658879, —2.5635328262) T 4.937854686e + 001
11 (—7.1121058935, 50.6827952699, —2.4720431355) T 6.682121813e — 001
S263 I (—0.1831041780,0.0137339367, 0.2965821990, 0.2964327918) T 1.831041780e — 001
11 (—0.1834079571,0.0137749445, 0.2969584566, 0.2967796402) 1.834079571e — 001
S325 I (—2.3651245341, —1.8305786602) T 3.763235402e + 000
11 (—2.3651245341, —1.8305786602) T 3.763235402e + 000
(0.6948086601, 1.3427163786, 1.4264216459,
9388 I 0.6820384904, 0.8325599882, 1.1838462680, —1.0407442392, _5.792050513¢ -+ 003

II

1.0470380672, —0.1263270590, 1.1094736897, 1.0352987701,
—1.1668929508, 0.6327427239, —0.3063730142, 0.8363253852) T
(0.6948086601, 1.3427163786, 1.4264216459,

0.6820384904, 0.8325599882, 1.1838462680, —1.0407442392,
1.0470380672, —0.1263270590, 1.1094736897, 1.0352987701,
—1.1668929508, 0.6327427239, —0.3063730142, 0.8363253852)

—5.792050513e + 003
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Table 3. Numerical results report for Svanberg problems
Problem n,|L1],|L2] Initial point z¥ Case Nfy Nf FV Time Pk NO
Svanberg-10 10,30,0 (0.5,0.5,...,0.5)T I 204 576 15.7418 0.9531 0.0093 200
11 202 607 15.7436 0.9063 0.0145 200
Svanberg-20 20,60,0 (0.5,0.5,...,0.5)T I 203 803 32.4507 1.8281 0.0277 200
11 204 785 32.4507 1.7344 0.0305 200
Svanberg-30 30,90,0 (0.5,0.5,...,0.5)T I 205 1003  49.1956 3.0156 0.1188 200
II 203 1000  49.2113 2.8594 0.1220 200
Svanberg-40 40,120,0 (0.5,0.5,...,0.5)T I 205 996 66.0257 4.1563 0.1368 200
11 210 1010  66.0247 3.9844 0.1324 200
Svanberg-50 50,150,0 (0.5,0.5,...,0.5)T I 214 1034  82.8483 5.7813 0.3332 200
11 214 1034  82.8483 5.3438 0.3322 200
Svanberg-70 70,210,0 (0.5,0.5,...,0.5)T I 308 1609 116.3661 14.4688  0.1748 300
II 313 1606 116.4184  13.3906  0.3022 300
Svanberg-80 80,240,0 (0.5,0.5,...,0.5)T I 309 1645 133.2518  18.2500  0.2575 300
11 309 1645 133.2518  17.0156  0.2575 300
Svanberg-100 100,300,0 (0.5,0.5,...,0.5)T I 409 2346 167.0583  36.7031  0.2202 400
11 415 2315 167.0137  34.9844  0.2094 400
Svanberg-120 120,360,0 (0.5,0.5,...,0.5)T I 524 2998  200.6651  65.9219  0.2341 500
11 678 2975 200.6742  63.8125  0.2751 500
Svanberg-150 150,450,0 (0.5,0.5,...,0.5)T I 700 3013 251.3467 107.2188 0.2985 500
11 859 2990 251.3972 105.5781 0.3091 500
Table 4. The comparison of numerical results between algorithms A and B
Problem ,|L1l,[L2| Initial point 20  Algorithm INO NII x* FV Time
Example 1 2,3,0 (8,8)T A 0 15 (0.5002, 0.2500) T 0.5003  0.0313
A(IT) 0 15 (0.5002,0.2500)" 0.5003  0.0313
B 0 10 (0.5191,0.2405)T 0.5010  0.0499
(o,)T A 1 13 (0.4991,0.2502)T  0.4995  0.0469
A(II) 1 13 (0.4991,0.2502) 0.4995  0.0469
B 1 12 (0.5239,0.2382)T 0.5016  0.0499
(—11,2)T A) 4 18 (0.5012,0.2489)T 0.4990  0.0313
A(IT) 4 18 (0.5012,0.2489)T 0.4990 0.0313
B 5 14 (0.5196,0.2403)T 0.5010  0.0000
Example 2 2,2,0 0,0)T A 0 10 (0.9978,0.9988)T  1.0047 0.0156
A(IT) 0 10 (0.9978,0.9988)T 1.0047  0.0156
B 0 4 (0.9924,0.9960)T 1.0151  0.0000
(-1, -n)T A 1 14 (0.9978,0.9988)T 1.0047  0.0469
A(IT) 1 14 (0.9978,0.9988)T 1.0047  0.0469
B 1 4 (0.9873,0.9927)T 1.0255  0.0000
(1,-nT A(I) 1 8 (0.9978,0.9989)T 1.0047  0.0156
A(II) 1 8 (0.9978,0.9988)T 1.0047  0.0156
B 1 3 (0.9925,0.9971)T 1.0148  0.0000
Example 3 2,2,0 (2,007 A 3 10 (0.9925,0.0001)T 1.0001  0.0156
A(II) 3 10 (0.9925,0.0001)T 1.0001  0.0156
B 16 18 (0.9662,0.0030) 1.0011  0.0500
0,2)T A(T) 2 15 (0.9677,0.0003)T 1.0010  0.0312
A(II) 2 15 (0.9677,0.0003)" 1.0010  0.0312
B 4 12 (0.9318,—0.0034)T  1.0046  0.5000
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Table 5. The numerical results for the problem HS107 with different &
I3 Case | INO | NII | Nfo Nf FV Pk
1.001 I 7 53 61 5118 | 5.064389012e+-003 0.0086386372
11 7 53 | 54 | 5118 | 5.064389012e+003 0.0086386372
1.01 I 5 75 81 6923 | 5.064709691e+-003 0.0088909245
11 5 75 | 76 | 6923 | 5.064709691e+003 0.0088909245
1.1 1 100 0 100 6697 | 5.056168491e+-003 | 7.2216953251e-004
I 100 0 1 | 6697 | 5.056168491e+003 | 7.2216953251e-004
1.2 I 6 60 67 5406 | 5.064541747e+003 0.0087362419
11 6 60 | 61 | 5406 | 5.064541747e+003 0.0087362419
1.0001 I 9 53 63 5439 | 5.064761883e+003 0.0089633417
11 9 53 | 54 | 5439 | 5.064761883e+003 0.0089633417
1.00001 I 10 51 62 5416 | 5.064780905e+003 0.0089709173
11 10 51 | 52 | 5416 | 5.064780905e+003 0.0089709173
1.5 I 7 60 68 5418 | 5.064365286e+003 0.0086244254
11 7 60 | 61 | 5418 | 5.064365286e+003 0.0086244254
0 I 6 75 82 7765 | 5.064545528e+003 0.0086965515
11 6 75 | 76 | 7765 | 5.064545528e+003 0.0086965515
0.5 I 5 74 80 7223 | 5.064714624e+003 0.0089308238
11 5 74 75 7223 | 5.064714624e+003 0.0089308238
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