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1 Introduction

Variational inequality theory has become an effective and powerful tool to study and in-
vestigate a wide class of problems arising in pure and applied sciences including partial
differential equations, mechanics, contact problems in elasticity, optimization and control
problems, management science, operations research, general equilibrium problems in eco-
nomics and transportation, and structure analysis. Because of its important applicability,
variational inequality problems have been extensively studied and generalized in various
directions by many authors. For more details, the reader is refereed to [1–7, 9–15] and
references therein.

Generalized monotonicity concepts like quasimonotonicity, pseudomonotonicity, relaxed
monotonicity, p-monotonicity, semimonotonicity, relaxed η − α monotonicity, and relaxed
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η − α semimonotonicity, have been introduced and studied in the context of variational
inequalities and complementarity problems; See for instance [2–4,6,7,12–14] and references
therein. In 1997, Verma [12] studied a class of nonlinear variational inequalities with p-
monotone and p-Lipschitz mappings in reflexive Banach spaces and gave some existence
theorems of solutions. Subsequently, Chen [3] introduced a class of variational inequalities
with semimonotone mappings in nonreflexive Banach spaces and obtained existence theorems
of solutions by using the Kakutani-Fan-Glicksberg fixed-point theorem. Recently, Fang
and Huang [4] introduced two concepts of relaxed η − α monotonicity and relaxed η − α
semimonotonicity as well as two classes of variational-like inequalities with relaxed η − α
monotone mappings and relaxed η−α semimonotone mappings. Using the KKM technique,
they proved the existence of solutions for variational-like inequalities with relaxed η − α
monotone mappings in reflexive Banach spaces. Moreover, they also derived the solvability of
variational-like inequalities with relaxed η−α semimonotone mappings in arbitrary Banach
spaces by means of the Kakutani-Fan-Glicksberg fixed-point theorem.

In this paper, we introduce and consider a class of generalized mixed variational-like
inequalities with compositely pseudomonotone multifunctions in Banach spaces. Utilizing
the Brouwer’s fixed point theorem and the Nadler’s result, we prove the existence of so-
lutions for generalized mixed variational-like inequalities with compositely relaxed η − α
pseudomonotone multifunctions in reflexive Banach spaces. On the other hand we also
derive the solvability of generalized mixed variational-like inequalities with compositely re-
laxed η−α semi-pseudomonotone multifunctions in arbitrary Banach spaces by virtue of the
method of finite-dimensional successive approximation. The results presented in this paper
extend and improve some earlier and recent results in the literature including [2–5,11–13].

Throughout this paper, we denote by “→”, “⇀” and “⇀∗” the strong convergence, weak
convergence and weak∗ convergence, respectively. We also denote by 2X the collection of all
nonempty subsets of X.

2 Generalized Mixed Variational-like Inequalities in Reflexive Ba-
nach Spaces

Throughout the paper, unless otherwise specified, let X be a real Banach space with dual
space X∗ and K be a nonempty closed convex subset of X. Also, let A : X∗ ×X∗ → X∗,
g : K → X∗, f : K → R∪{+∞} and η : K×K → X be mappings and let V : K → 2X and
H : K × K → 2X∗

be vector multifunctions. We consider the following generalized mixed
variational-like inequality problem (for short, GMVLIP):

(GMVLIP)
{

Find x̂ ∈ K, ẑ ∈ V (x̂) and ξ̂ ∈ H(x̂, ẑ) such that
〈A(g(x̂), ξ̂), η(y, x̂)〉+ f(y)− f(x̂) ≥ 0, ∀y ∈ K.

(2.1)

The GMVLIP is a generalization of many problems studied in [4,11,14–17] and references
therein.

Let us recall the following definitions and results which will be used in the sequel.

Lemma 2.1 ([10]). Let X, Y and Z be real topological vector spaces, K and C be nonempty
subsets of X and Y , respectively. Let H : K × C → 2Z and V : K → 2Y be multifunctions.
If both H and V are upper semicontinuous with compact values, then the multifunction
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T : K → 2Z defined as
T (x) =

⋃

z∈V (x)

H(x, z) = H(x, V (x))

is upper semicontinuous with compact values.

Lemma 2.2 (Nadler’s fixed point theorem [9]). Let (Y, ‖ · ‖) be a normed vector space
and H̃(·, ·) be a Hausdorff metric on the collection CB(Y ) of all nonempty, closed and
bounded subsets of Y , induced by a metric d in terms of d(u, v) = ‖u− v‖, which is defined
by

H̃(∆,Λ) = max
(

sup
u∈∆

inf
v∈Λ

‖u− v‖, sup
v∈Λ

inf
u∈∆

‖u− v‖
)

,

for all ∆ and Λ in CB(Y ). If ∆ and Λ are two nonempty, closed and bounded subsets in
Y , then for each ε > 0 and each u ∈ ∆, there exists v ∈ Λ such that

‖u− v‖ ≤ (1 + ε)H̃(∆,Λ).

In particular, if ∆ and Λ are two compact subsets in Y , then for each u ∈ ∆, there exists
v ∈ Λ such that

‖u− v‖ ≤ H̃(∆,Λ).

Lemma 2.3 (Brouwer’s fixed point theorem [1]). Let D be a nonempty, compact and
convex subset of a finite dimensional space and h : D → D be a continuous mapping. Then
there exists x ∈ D such that h(x) = x.

Definition 2.4. (i) [15] Let T : K → X∗ and η : K × K → X be two mappings. T is
said to be η-hemicontinuous if for any fixed x, y ∈ K, the mapping f : [0, 1] → R defined by
f(t) = 〈T (x + t(y − x)), η(y, x)〉 is continuous at 0+;

(ii) [18] A nonempty compact-valued multifunction T : K → 2X∗
is called H̃-hemicontinuous

if for any fixed x, y ∈ K, the mapping f : [0, 1] → R defined by f(t) = H̃(T (x+t(y−x)), T (x))
is continuous at 0+, where H̃ is the Hausdorff metric defined on CB(X∗).

Now we first present some concepts and results.

Definition 2.5. Let A : X∗×X∗ → X∗, g : K → X∗, f : K → R∪{+∞} and η : K×K →
X be mappings, V : K → 2X and H : K ×K → 2X∗

vector multifunctions and α : X → R
a real valued function such that lim inf

t→0+
α(tx)/t = 0, ∀x ∈ X. Then H and V are said to

be compositely relaxed η− α pseudomonotone with respect to (A, f, g) if there exist x0 ∈ K,
z0 ∈ V (x0), ξ0 ∈ H(x0, z0) such that

〈A(g(x0), ξ0), η(y, x0)〉+ f(y)− f(x0) ≥ 0, ∀y ∈ K,

implies

〈A(g(x0), ξ), η(y, x0)〉+ f(y)− f(x0) ≥ α(y − x0), ∀y ∈ K, z ∈ V (y), ξ ∈ H(y, z).

Definition 2.6. Let A : X∗×X∗ → X∗, g : K → X∗, f : K → R∪{+∞} and η : K×K →
X be mappings and V : K → 2X and H : K ×K → 2X∗

be multifunctions.

(i) Let Ω be a nonempty subset of K. The pair (H, V ) is said to be η-completely semi-
continuous on Ω with respect to (A, f, g) if for each y ∈ Ω,

{x ∈ Ω : 〈A(g(x), ξ), η(y, x)〉+ f(y)− f(x) < 0, ∀z ∈ V (x), ξ ∈ H(x, z)}
is open in Ω with respect to σ(X, X∗);
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(ii) H and V are said to be of locally complete semicontinuity on K if for any finite subset
B of K, H and V are η-completely semicontinuous on coB with respect to (A, f, g),
where coB denotes the convex hull of B.

Theorem 2.7. Let K be a nonempty, closed and convex subset of a real Banach space X.
Let g : K → X∗ be a mapping, A(ζ, ·) : X∗ → X∗ a continuous map from the σ(X∗, X)-
topology to itself for each fixed ζ ∈ X∗, f : K → R ∪ {+∞} a proper convex function
and η : K × K → X a mapping such that (a) 〈A(g(x), ξ), η(·, x)〉 : K → R is convex
for each fixed (x, ξ) ∈ K × X∗ and (b) 〈A(g(x), ξ), η(x, x)〉 = 0, ∀(x, ξ) ∈ K × X∗. Let
V : K → 2X take weakly compact values in X and be upper semicontinuous from the
σ(X, X∗)-topology to itself, and let H : K×K → 2X∗

take weak∗ compact values in X∗ and
be upper semicontinuous from the product topology of σ(X, X∗) and itself to the σ(X∗, X)-
topology. If H and V are compositely relaxed η−α pseudomonotone with respect to (A, f, g),
and the multifunction T : K → 2X∗

defined by

T (x) =
⋃

z∈V (x)

H(x, z) = H(x, V (x))

is H̃-hemicontinuous, then the following are equivalent:

(i) there exist x0 ∈ K, z0 ∈ V (x0) and ξ0 ∈ H(x0, z0) such that

〈A(g(x0), ξ0), η(y, x0)〉+ f(y)− f(x0) ≥ 0, ∀y ∈ K; (2.2)

(ii) there exists x0 ∈ K such that

〈A(g(x0), ξ), η(y, x0)〉+ f(y)− f(x0) ≥ α(y − x0), ∀y ∈ K, z ∈ V (y), ξ ∈ H(x, z).
(2.3)

Proof. Suppose that there exist x0 ∈ K, z0 ∈ V (x0) and ξ0 ∈ H(x0, z0) such that

〈A(g(x0), ξ0), η(y, x0)〉+ f(y)− f(x0) ≥ 0, ∀y ∈ K.

Since H and V are compositely relaxed η− α pseudomonotone with respect to (A, f, g), we
have

〈A(g(x0), ξ), η(y, x0)〉+ f(y)− f(x0) ≥ α(y − x0)

for all y ∈ K, z ∈ V (y) and ξ ∈ H(y, z).
Conversely, suppose that there exists x0 ∈ K such that

〈A(g(x0), ξ), η(y, x0)〉+ f(y)− f(x0) ≥ α(y − x0)

for all y ∈ K, z ∈ V (y) and ξ ∈ H(y, z). For any given y ∈ K, we know that yt = ty + (1−
t)x0 ∈ K, ∀t ∈ (0, 1) since K is convex. Replacing y by yt in the left-hand side of the above
inequality, one deduces from assumptions (a) – (b) that for each ξt ∈ T (yt) = H(yt, V (yt))

α(t(y − x0)) = α(yt − x0)
≤ 〈A(g(x0), ξt), η(yt, x0)〉+ f(yt)− f(x0)
= 〈A(g(x0), ξt), η(ty + (1− t)x0, x0)〉+ f(ty + (1− t)x0)− f(x0)
≤ t〈A(g(x0), ξt), η(y, x0)〉+ (1− t)〈A(g(x0), ξt), η(x0, x0)〉+ tf(y)

+(1− t)f(x0)− f(x0)
= t[〈A(g(x0), ξt), η(y, x0)〉+ f(y)− f(x0)], (2.4)
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which hence implies that

〈A(g(x0), ξt), η(y, x0)〉+ f(y)− f(x0) ≥ α(t(y − x0))/t, ∀ξt ∈ T (yt), t ∈ (0, 1). (2.5)

We remark that according to Lemma 2.1 the multifunction T : K → 2X∗
defined as

T (x) =
⋃

z∈V (x)

H(x, z) = H(x, V (x))

takes weak∗ compact values in X∗ and is upper semicontinuous from σ(X, X∗) to σ(X∗, X).
Thus, T (yt) and T (x0) are weak∗ compact and hence are nonempty, bounded and closed
subsets in X∗. So from Lemma 2.2, it follows that for each fixed ξt ∈ T (yt) there exists an
ζt ∈ T (x0) such that

‖ξt − ζt‖ ≤ (1 + t)H̃(T (yt), T (x0)),

where H̃(·, ·) is the Hausdorff metric on CB(X∗). Since T (x0) is weak∗ly compact, without
loss of generality, we may assume that ζt ⇀∗ ξ0 ∈ T (x0) as t → 0+. Since T is H̃-
hemicontinuous, H̃(T (yt), T (x0)) → 0 as t → 0+. Consequently one derives for each u ∈ X

|〈ξt − ξ0, u〉| ≤ |〈ξt − ζt, u〉|+ |〈ζt − ξ0, u〉|
≤ ‖ξt − ζt‖‖u‖+ |〈ζt − ξ0, u〉|
≤ ‖u‖ · H̃(T (yt), T (x0)) + |〈ζt − ξ0, u〉| → 0 as t → 0+.

Note that A(g(x0), ·) : X∗ → X∗ is continuous from σ(X∗, X) to itself. Then A(g(x0), ξt) ⇀∗

A(g(x0), ξ0) as t → 0+. Thus letting t → 0+, we obtain

〈A(g(x0), ξt), η(y, x0)〉 → 〈A(g(x0), ξ0), η(y, x0)〉.
Consequently, from (2.5) we deduce that for any given y ∈ K,

〈A(g(x0), ξ0), η(y, x0)〉+ f(y)− f(x0) ≥ 0.

Since ξ0 ∈ T (x0) =
⋃

z∈V (x0)
H(x0, z) = H(x0, V (x0)), there exists z0 ∈ V (x0) such that

ξ0 ∈ H(x0, z0). This completes the proof.

Remark 2.8. Theorem 2.7 generalizes Theorem 2.1 of Fang and Huang [4], Theorem 2.1
of Verma [12] and Theorem 2.1 of Verma [13].

Utilizing the Brouwer’s fixed point theorem and Nadler’s fixed point theorem, we now
establish the existence of solutions of GMVLIP with compositely relaxed η−α pseudomono-
tone multifunctions in reflexive Banach spaces.

Theorem 2.9. Let K be a nonempty, bounded, closed and convex subset of a real reflexive
Banach space X, and let X∗ be the dual space of X. Assume that the following conditions
are satisfied:

(i) 〈A(g(x), ξ), η(x, x)〉 = 0, ∀(x, ξ) ∈ K ×X∗;
(ii) 〈A(g(x), ξ), η(·, x)〉 : K → R is convex for each fixed (x, ξ) ∈ K ×X∗;
(iii) η(x, ·) : K → X is continuous from σ(X, X∗) to σ(X, X∗) for each fixed x ∈ K;
(iv) f : K → R ∪ {+∞} is a proper convex lower semicontinuous function;
(v) A(ζ, ·) : X∗ → X∗ is continuous from σ(X∗, X) to itself for each fixed ζ ∈ X∗;
(vi) A(g(·), ξ) : K → X∗ is continuous from σ(X, X∗) to the norm topology of X∗ for each

fixed ξ ∈ X∗;



482 L.-C. CENG, Q.H. ANSARI AND J.C. YAO

(vii) H and V are of locally complete semicontinuity on K.

Suppose additionally that V : K → 2X takes weakly compact values in X and is upper
semicontinuous from σ(X, X∗) to itself, and that H : K ×K → 2X∗

takes weak∗ compact
values in X∗ and is upper semicontinuous from the product topology of σ(X, X∗) and itself
to σ(X∗, X). If H and V are compositely relaxed η − α pseudomonotone with respect to
(A, f, g), and the multivalued map T : K → 2X∗

defined by

T (x) =
⋃

z∈V (x)

H(x, z) = H(x, V (x))

is H̃-hemicontinuous, then GMVILP has a solution.

Proof. First we claim that for every finite subset E of K, there exist x̄ ∈ coE, z̄ ∈ V (x̄) and
ξ̄ ∈ H(x̄, z̄) such that

〈A(g(x̄), ξ̄), η(y, x̄)〉+ f(y)− f(x̄) ≥ 0, ∀y ∈ coE.

Indeed, suppose to the contrary that the assertion is not valid. Then for every x ∈ coE,
there exists some y0 ∈ coE such that

〈A(g(x), ξ), η(y0, x)〉+ f(y0)− f(x) < 0 (2.6)

for all z ∈ V (x) and ξ ∈ H(x, z). For every y ∈ coE, define the set Ny as follows:

Ny = {x ∈ coE : 〈A(g(x), ξ), η(y, x)〉+ f(y)− f(x) < 0, ∀z ∈ V (x), ξ ∈ H(x, z)}. (2.7)

Since H and V are of locally complete semicontinuity on K by assumption (vii), the set Ny

is open in coE with respect to σ(X, X∗) for every y ∈ coE.
Now we assert that {Ny : y ∈ coE} is an open cover of coE with respect to σ(X, X∗).

Indeed, first it is easy to see that
⋃

y∈coE

Ny ⊆ coE.

Second, for each x ∈ coE, by (2.6) there exists y0 ∈ coE such that x ∈ Ny0 . Hence
x ∈ ⋃

y∈coE Ny. This shows that coE ⊆ ⋃
y∈coE Ny. Consequently,

coE =
⋃

y∈coE

Ny.

So the assertion is valid.
The weak compactness of coE implies that there exists a finite set {v1, v2, ..., vm} ⊆ coE

such that

coE =
m⋃

i=1

Nvi
.

Hence there exists a continuous (with respect to σ(X, X∗)) partition of unity {β1, β2, ..., βm}
subordinated to {Nv1 , Nv2 , ..., Nvm

} such that βj(x) ≥ 0, ∀x ∈ coE, j = 1, 2, ..., m,

m∑

j=1

βj(x) = 1, ∀x ∈ coE,
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and

βj(x)
{

= 0, whwnever x 6∈ Nvj
,

> 0, whenever x ∈ Nvj
.

Let h : coE → X be defined as follows:

h(x) =
m∑

j=1

βj(x)vj , ∀x ∈ coE. (2.8)

Since βj is continuous with respect to σ(X, X∗) for each j, h is continuous with respect to
σ(X, X∗). Let S = co{v1, v2, ..., vm} be the convex hull of {v1, v2, ..., vm} in coE. Then S
is a simplex of a finite dimensional space and h maps S into S. By Brouwer’s fixed point
theorem (Lemma 2.3), there exists some x0 ∈ S such that h(x0) = x0. Now for any given
x ∈ coE, let

k(x) = {j : x ∈ Nvj} = {j : βj(x) > 0}.
Obviously, k(x) 6= ∅.

Utilizing assumption (i), for all z0 ∈ V (x0) and ξ0 ∈ H(x0, z0) we have

〈A(g(x0), ξ0), η(x0, x0)〉 = 0.

Since x0 is a fixed point of h, we have x0 = h(x0) =
∑m

j=1 βj(x0)vj , and hence from the
definition of Ny and assumptions (ii), (iv) we derive

0 = −〈A(g(x0), ξ0), η(x0, x0)〉+ f(x0)− f(x0)
= −〈A(g(x0), ξ0), η(h(x0), x0)〉+ f(x0)− f(h(x0))

= −〈A(g(x0), ξ0), η(
m∑

j=1

βj(x0)vj , x0)〉+ f(x0)− f(
m∑

j=1

βj(x0)vj)

≥ −
m∑

j=1

βj(x0)〈A(g(x0), ξ0), η(vj , x0)〉+ f(x0)−
m∑

j=1

βj(x0)f(vj)

= −
m∑

j=1

βj(x0)[〈A(g(x0), ξ0), η(vj , x0)〉+ f(vj)− f(x0)]

= −
∑

j∈k(x0)

βj(x0)[〈A(g(x0), ξ0), η(vj , x0)〉+ f(vj)− f(x0)] > 0,

which leads to a contradiction. Therefore, there exist x̄ ∈ coE, z̄ ∈ V (x̄) and ξ̄ ∈ H(x̄, z̄)
such that

〈A(g(x̄), ξ̄), η(y, x̄)〉+ f(y)− f(x̄) ≥ 0, ∀y ∈ coE.

Now, by Theorem 2.7 we conclude that for every finite subset E of K, there exists x̄ ∈ coE
such that

〈A(g(x̄), ξ), η(y, x̄)〉+ f(y)− f(x̄) ≥ 0, ∀y ∈ coE, z ∈ V (y), ξ ∈ H(y, z).

Second, we claim that there exists x̂ ∈ K such that

〈A(g(x̂), ξ), η(y, x̂)〉+ f(y)− f(x̂) ≥ 0, ∀y ∈ K, z ∈ V (y), ξ ∈ H(y, z).

Indeed, since X is reflexive and K is a nonempty, bounded closed and convex subset of
X, so K is compact in σ(X, X∗). Let = be the family of all nonempty finite subsets of K.
For each E ∈ =, consider the following set:

ME = {x ∈ K : 〈A(g(x), ξ), η(y, x)〉+ f(y)− f(x) ≥ 0, ∀y ∈ coE, z ∈ V (y), ξ ∈ H(y, z)}.
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Then one has ME 6= ∅ for each E ∈ =. We shall prove that
⋂

E∈=M
w

E 6= ∅, where M
w

E

denotes the closure of E in σ(X, X∗). For this, it suffices to show that the family {Mw

E}E∈=
has the finite intersection property. Let E, F ∈ = and set G = E ∪ F ∈ =. Then MG ⊆
ME ∩MF and it follows that M

w

E ∩M
w

F 6= ∅. This shows that the family {Mw

E}E∈= has the
finite intersection property. Since K is compact in σ(X, X∗), it follows that

⋂
E∈=M

w

E 6= ∅.
Let x̂ ∈ ⋂

E∈=M
w

E and for an arbitrary y ∈ K fixed, consider F = {y, x̂}. Since x̂ ∈ M
w

F ,
there exists {xn} ⊆ M

w

F such that {xn} ⊆ K, xn ⇀ x̂ and for each n

〈A(g(xn), ξ), η(v, xn)〉+ f(v)− f(xn) ≥ 0, ∀v ∈ coF, z ∈ V (v), ξ ∈ H(v, z).

In particular, whenever v = y, one derives for each n

〈A(g(xn), ξ), η(y, xn)〉+ f(y)− f(xn) ≥ 0, ∀z ∈ V (y), ξ ∈ H(y, z).

Since f : K → R ∪ {+∞} is a proper convex lower semicontinuous function, f is weakly
lower semicontinuous. Note that η(x, ·) : K → X is continuous from σ(X, X∗) to σ(X, X∗)
for each x ∈ K fixed. Thus it follows from assumption (vi) that for each y ∈ K, z ∈ V (y)
and ξ ∈ H(y, z) fixed,

0 ≤ lim sup
n→∞

[〈A(g(xn), ξ), η(y, xn)〉+ f(y)− f(xn)]

= lim sup
n→∞

[〈A(g(xn), ξ), η(y, xn)〉 − 〈A(g(x̂), ξ), η(y, xn)〉
+ 〈A(g(x̂), ξ), η(y, xn)〉+ f(y)− f(xn)]

≤ lim sup
n→∞

〈A(g(xn), ξ)−A(g(x̂), ξ), η(y, xn)〉
+ lim sup

n→∞
[〈A(g(x̂), ξ), η(y, xn)〉+ f(y)− f(xn)]

≤ lim sup
n→∞

‖A(g(xn), ξ)−A(g(x̂), ξ)‖‖η(y, xn)‖
+ lim sup

n→∞
〈A(g(x̂), ξ), η(y, xn)〉+ lim sup

n→∞
(f(y)− f(xn))

≤ 〈A(g(x̂), ξ), η(y, x̂)〉+ f(y)− f(x̂),

that is,

〈A(g(x̂), ξ), η(y, x̂)〉+ f(y)− f(x̂) ≥ 0, ∀y ∈ K, z ∈ V (y), ξ ∈ H(y, z).

Thus, the assertion is proved.
Now by Theorem 2.7 we infer that there exist x̂ ∈ K, ẑ ∈ V (x̂) and ξ̂ ∈ H(x̂, ẑ) such

that
〈A(g(x̂), ξ̂), η(y, x̂)〉+ f(y)− f(x̂) ≥ 0, ∀y ∈ K.

This completes the proof.

If K is unbounded, then we have the following result under a coercivity condition.

Theorem 2.10. Let K be a nonempty, unbounded, closed and convex subset of a real re-
flexive Banach space X, and let X∗ be the dual space of X. Assume that the following
conditions are satisfied:

(i) 〈A(g(x), ξ), η(x, x)〉 = 0, ∀(x, ξ) ∈ K ×X∗;
(ii) 〈A(g(x), ξ), η(·, x)〉 : K → R is convex for each fixed (x, ξ) ∈ K ×X∗;
(iii) η(x, ·) : K → X is continuous from σ(X, X∗) to σ(X, X∗) for each fixed x ∈ K;
(iv) f : K → R ∪ {+∞} is a proper convex lower semicontinuous function;
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(v) A(ζ, ·) : X∗ → X∗ is continuous from σ(X∗, X) to itself for each fixed ζ ∈ X∗;
(vi) A(g(·), ξ) : K → X∗ is continuous from σ(X, X∗) to the norm topology of X∗ for each

fixed ξ ∈ X∗;
(vii) H and V are of locally complete semicontinuity on K;
(viii) α : X → R is weakly lower semicontinuous.

Suppose additionally that V : K → 2X takes weakly compact values in X and is upper
semicontinuous from σ(X, X∗) to itself, and that H : K ×K → 2X∗

takes weak∗ compact
values in X∗ and is upper semicontinuous from the product topology of σ(X, X∗) and itself
to σ(X∗, X). If H and V are compositely relaxed η − α pseudomonotone with respect to
(A, f, g), and the multivalued map T : K → 2X∗

defined by

T (x) =
⋃

z∈V (x)

H(x, z) = H(x, V (x))

is H̃-hemicontinuous such that H and V are η-coercive with respect to (A, f, g); i.e., there
exist x0 ∈ K, z0 ∈ V (x0) and ξ0 ∈ H(x0, z0) such that

inf
ξ∈T (x)

〈A(g(x0), ξ0)−A(g(x), ξ), η(x0, x)〉+ f(x)− f(x0)
‖η(x0, x)‖ → +∞

as ‖x‖ → +∞, then GMVLIP has a solution.

Proof. Let
Kr = {y ∈ K : ‖y‖ ≤ r}.

Consider the problem of finding xr ∈ Kr, zr ∈ V (xr) and ξr ∈ H(xr, zr) such that

〈A(g(xr), ξr), η(v, xr)〉+ f(v)− f(xr) ≥ 0, ∀v ∈ Kr. (2.9)

One can readily see that all conditions of Theorem 2.7 are fulfilled for nonempty, bounded,
closed and convex subset Kr = K ∩ Br, where Br = {x ∈ X : ‖x‖ ≤ r}. Thus according
to Theorem 2.9 we know that problem (2.9) has one solution; that is, there exist xr ∈ Kr,
zr ∈ V (xr) and ξr ∈ H(xr, zr) such that inequality (2.9) holds. Choose r > ‖x0‖ with x0 as
in the coercivity condition. Then we have

〈A(g(xr), ξr), η(x0, xr)〉+ f(x0)− f(xr) ≥ 0.

Moreover,

〈A(g(xr), ξr), η(x0, xr)〉+ f(x0)− f(xr)
= −〈A(g(x0), ξ0)−A(g(xr), ξr), η(x0, xr)〉+ f(x0)− f(xr) + 〈A(g(x0), ξ0), η(x0, xr)〉
≤ −〈A(g(x0), ξ0)−A(g(xr), ξr), η(x0, xr)〉+ f(x0)− f(xr) + ‖A(g(x0), ξ0)‖‖η(x0, xr)‖
= ‖η(x0, xr)‖ · [− 〈A(g(x0),ξ0)−A(g(xr),ξr),η(x0,xr)〉+f(xr)−f(x0)

‖η(x0,xr)‖ + ‖A(g(x0), ξ0)‖].

Now, if ‖xr‖ = r for all r, we may choose r large enough such that the above inequality and
the η-coercivity of H and V with respect to (A, f, g) imply that

〈A(g(xr), ξr), η(x0, xr)〉+ f(x0)− f(xr) < 0,

which contradicts
〈A(g(xr), ξr), η(x0, xr)〉+ f(x0)− f(xr) ≥ 0.
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Hence there exists r such that ‖xr‖ < r. For any y ∈ K, we can choose ε > 0 small enough
such that

ε < 1 and xr + ε(y − xr) ∈ Kr.

It follows from (2.9) that

(1− ε)〈A(g(xr), ξr), η(xr, xr)〉+ ε〈A(g(xr), ξr), η(y, xr)〉+ (1− ε)f(xr) + εf(y)− f(xr)
≥ 〈A(g(xr), ξr), η(xr + ε(y − xr), xr)〉+ f(xr + ε(y − xr))− f(xr)
≥ 0.

This implies that
〈A(g(xr), ξr), η(y, xr)〉+ f(y)− f(xr) ≥ 0

for all y ∈ K, and so problem (2.2) has one solution. This completes the proof.

Remark 2.11. Theorems 2.9 and 2.10 generalize Theorems 2.2 and 2.3 of Fang and Huang
[4], the known results of Hartman and Stampacchia [8] and the corresponding results of
[5, 11,13].

3 Generalized Mixed Variational-like Inequalities in Nonreflexive
Banach Spaces

Throughout this section, unless otherwise specified, X is a nonreflexive Banach space with
its dual space X∗, X∗∗ denotes the dual space of X∗ and K is a nonempty closed convex
subset of X∗∗.

Let A : X∗ × X∗ → X∗, g : K → X∗ and η : K × K → X∗∗ be three mappings,
f : K → R ∪ {+∞} be a proper convex lower semicontinuous function, and V : K → 2X∗∗

and H : K ×K → 2X∗
be vector multifunctions. In this section, we consider the following

generalized mixed variational-like inequality problem (for short, GMVLIP∗) in the setting of
nonreflexive Banach spaces and prove the existence of its solution:

(GMVLIP∗)
{

Find x̂ ∈ K, ẑ ∈ V (x̂) and ξ̂ ∈ H(x̂, ẑ) such that
〈A(g(x̂), ξ̂), η(v, x̂)〉+ f(v)− f(x̂) ≥ 0, ∀v ∈ K.

(3.1)

Definition 3.1. Let A : X∗ × X∗ → X∗, g : K → X∗, f : K → R ∪ {+∞} and η :
K ×K → X∗∗ be mappings, V : K → 2X∗∗

and H : K ×K → 2X∗
vector multifunctions

and α : X∗∗ → R a real valued function such that lim inft→0+ α(tx)/t = 0, ∀x ∈ X∗∗. Then
H and V are said to be compositely relaxed η − α semi-pseudomonotone with respect to
(A, f, g) if the following conditions hold:

(a) for each fixed ζ ∈ X∗ A(ζ, ·) : X∗ → X∗ is continuous from σ(X∗, X) to itself, and H
and V are compositely relaxed η − α pseudomonotone with respect to (A, f, g); i.e.,
the existence of x0 ∈ K, z0 ∈ V (x0), ξ0 ∈ H(x0, z0) such that

〈A(g(x0), ξ0), η(y, x0)〉+ f(y)− f(x0) ≥ 0, ∀y ∈ K,

implies

〈A(g(x0), ξ), η(y, x0)〉+ f(y)− f(x0) ≥ α(y − x0), ∀y ∈ K, z ∈ V (y), ξ ∈ H(y, z);

(b) for each fixed ξ ∈ X∗, A(g(·), ξ) : K → X∗ is completely continuous; i.e., A(g(·), ξ) :
K → X∗ is continuous from σ(X∗∗, X∗) to the norm topology of X∗.
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Next we derive the solvability of generalized mixed variational-like inequalities with com-
positely relaxed η − α semi-pseudomonotone multifunctions in nonreflexive Banach spaces
by virtue of the method of finite-dimensional successive approximation.

Theorem 3.2. Let X be a real Banach space and K ⊆ X∗∗ be a nonempty, bounded closed
and convex subset. Assume that the following conditions are satisfied:

(i) 〈A(g(x), ξ), η(x, x)〉 = 0, ∀(x, ξ) ∈ K ×X∗;
(ii) 〈A(g(x), ξ), η(·, x)〉 : K → R is convex for each fixed (x, ξ) ∈ K ×X∗;
(iii) η(x, ·) : K → X∗∗ is continuous from σ(X∗∗, X∗) to σ(X∗∗, X∗) for each fixed x ∈ K;
(iv) f : K → R ∪ {+∞} is a proper convex lower semicontinuous function;
(v) H and V are of locally complete semicontinuity on K;
(vi) α : X∗∗ → R is convex and lower semicontinuous.

Suppose additionally that V : K → 2X∗∗
takes weakly compact values in X and H : K ×

K → 2X∗
takes weak∗ compact values in X∗ such that for any finite-dimensional subspace

L ⊆ X∗∗, (a) V : KL → 2X∗∗
is upper semicontinuous from σ(X∗∗, X∗) to itself and (b)

H : KL ×KL → 2X∗
is upper semicontinuous from the product topology of σ(X∗∗, X∗) and

itself to σ(X∗, X), where KL = K ∩ L. If H and V are compositely relaxed η − α semi-
pseudomonotone with respect to (A, f, g), and the multivalued map T : K → 2X∗

defined
by

T (x) =
⋃

z∈V (x)

H(x, z) = H(x, V (x))

is H̃-hemicontinuous, then GMVLIP∗ has a solution.

Proof. Let L ⊆ X∗∗ be a finite-dimensional subspace with KL = K ∩ L 6= ∅. For each
y ∈ K, consider the following problem: Find x0 ∈ KL, z0 ∈ V (x0) and ξ0 ∈ H(x0, z0) such
that

〈A(g(x0), ξ0), η(v, x0)〉+ f(v)− f(x0) ≥ 0, ∀v ∈ KL. (3.2)

Observe that KL ⊆ L is bounded, closed and convex. Note that H and V are compositely
relaxed η − α semi-pseudomonotone with respect to (A, f, g). Hence A(ζ, ·) : X∗ → X∗ is
continuous from σ(X∗, X) to itself for each fixed ζ ∈ X∗, A(g(·), ξ) : K → X∗ is continuous
from σ(X∗∗, X∗) to the norm topology of X∗ for each fixed ξ ∈ X∗, and H and V are
compositely relaxed η − α pseudomonotone with respect to (A, f, g). Since assumptions
(i)-(v) guarantee that conditions (i)–(iv), (vii) in Theorem 2.9 are fulfilled, from Theorem
2.9 it follows that problem (3.2) has a solution; that is, there exist x0 ∈ KL, z0 ∈ V (x0) and
ξ0 ∈ H(x0, z0) such that inequality (3.2) holds.

Let
f = {L ⊆ X∗∗ : L is finite dimensional with K ∩ L 6= ∅}

and let

WL = {x ∈ K : 〈A(g(x), ξ), η(v, x)〉+f(v)−f(x) ≥ α(v−x), ∀v ∈ KL, z ∈ V (v), ξ ∈ H(v, z)}
for all L ∈ f. By (3.2) and Theorem 2.7, we know that WL is nonempty and bounded.
Denote by WL the σ(X∗∗, X∗)-closure of WL in X∗∗. Then, WL is σ(X∗∗, X∗)-compact in
X∗∗. For any Li ∈ f, i = 1, 2, ..., N , we know that W∩iLi ⊆ ∩iWLi , so {WL : L ∈ f} has
the finite intersection property. Therefore, it follows that

⋂

L∈f
WL 6= ∅.
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Let x̂ ∈ ⋂
L∈fWL 6= ∅. We claim that there exist ẑ ∈ V (x̂) and ξ̂ ∈ H(x̂, ẑ) such that

〈A(g(x̂), ξ̂), η(v, x̂)〉+ f(v)− f(x̂) ≥ 0, ∀v ∈ K.

Indeed, for each v ∈ K, let L ∈ f be such that v ∈ KL and x̂ ∈ KL. Then, there exists a
net {xβ} ∈ WL such that xβ converges to x̂ in σ(X∗∗, X∗), which implies by the definition
of WL that

〈A(g(xβ), ξ), η(v, xβ)〉+ f(v)− f(xβ) ≥ α(v − xβ), ∀z ∈ V (v), ξ ∈ H(v, z).

It follows that

〈A(g(x̂), ξ), η(v, x̂)〉+ f(v)− f(x̂) ≥ α(v − x̂), ∀v ∈ K, z ∈ V (v), ξ ∈ H(v, z),

by the complete continuity of A(g(·), v) and the proper convex lower semicontinuity of f

and α. Therefore according to Theorem 2.7 there exist ẑ ∈ V (x̂) and ξ̂ ∈ H(x̂, ẑ) such that

〈A(g(x̂), ξ̂), η(v, x̂)〉+ f(v)− f(x̂) ≥ 0, ∀v ∈ K.

This completes the proof.

Theorem 3.3. Let X be a real Banach space and let K ⊆ X∗∗ be a nonempty, unbounded,
closed and convex subset. Assume that the following conditions are satisfied:

(i) η(x, y) + η(y, x) = 0, ∀(x, y) ∈ K ×K;
(ii) 〈A(g(x), ξ), η(·, x)〉 : K → R is convex for each fixed (x, ξ) ∈ K ×X∗;
(iii) η(x, ·) : K → X∗∗ is continuous from σ(X∗∗, X∗) to σ(X∗∗, X∗) for each fixed x ∈ K;
(iv) f : K → R ∪ {+∞} is a proper convex lower semicontinuous function;
(v) H and V are of locally complete semicontinuity on K;
(vi) α : X∗∗ → R is convex and lower semicontinuous.

Suppose additionally that V : K → 2X∗∗
takes weakly compact values in X and H : K ×

K → 2X∗
takes weak∗ compact values in X∗ such that for any finite-dimensional subspace

L ⊆ X∗∗, (a) V : KL → 2X∗∗
is upper semicontinuous from σ(X∗∗, X∗) to itself and (b)

H : KL ×KL → 2X∗
is upper semicontinuous from the product topology of σ(X∗∗, X∗) and

itself to σ(X∗, X), where KL = K ∩ L. If H and V are compositely relaxed η − α semi-
pseudomonotone with respect to (A, f, g), and the multivalued map T : K → 2X∗

defined
by

T (x) =
⋃

z∈V (x)

H(x, z) = H(x, V (x))

is H̃-hemicontinuous such that
(vii) there exists a point x0 ∈ K such that

lim inf
‖x‖→∞

inf
ξ∈T (x)

[〈A(g(x), ξ), η(x, x0)〉+ f(x)− f(x0)] > 0.

Then GMVLIP∗ has a solution.

Proof. Denote by Br the closed ball with radius r and center at 0 in X∗∗. First consider
the problem of finding xr ∈ Kr, zr ∈ V (xr) and ξr ∈ H(xr, zr) such that

〈A(g(xr), ξr), η(v, xr)〉+ f(v)− f(xr) ≥ 0, ∀v ∈ Kr, (3.3)
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where Kr = {x ∈ K : ‖x‖ ≤ r} = K ∩ Br. By Theorem 3.2 problem (3.3) has a solution;
that is, there exist xr ∈ Kr, zr ∈ V (xr) and ξr ∈ H(xr, zr) such that inequality (3.3) holds.

Let r be large enough such that x0 ∈ Br. Therefore,

〈A(g(xr), ξr), η(x0, xr)〉+ f(x0)− f(xr) ≥ 0. (3.4)

From condition (vii) it follows that {xr} is bounded. Indeed, if this is false, we may assume
without loss of generality that ‖xr‖ → ∞ as r →∞. Now from (3.4) and assumption (i) we
derive

inf
ξ∈T (xr)

[〈A(g(xr), ξ), η(xr, x0)〉+ f(xr)− f(x0)]

≤ 〈A(g(xr), ξr), η(xr, x0)〉+ f(xr)− f(x0)
≤ 0,

which hence implies that

lim inf
‖xr‖→∞

inf
ξ∈T (xr)

[〈A(g(xr), ξ), η(xr, x0)〉+ f(xr)− f(x0)] ≤ 0.

This contradicts condition (vii). So, we may suppose that xr converges to x̂ in σ(X∗∗, X∗)
as r →∞. On the other hand, it follows from Theorem 2.7 that

〈A(g(xr), ξ), η(v, xr)〉+ f(v)− f(xr) ≥ α(v − xr), ∀v ∈ K, z ∈ V (v), ξ ∈ H(v, z).

Letting r →∞, we have

〈A(g(x̂), ξ), η(v, x̂)〉+ f(v)− f(x̂) ≥ α(v − x̂), ∀v ∈ K, z ∈ V (v), ξ ∈ H(v, z).

Again from Theorem 2.7 we know that there exist ẑ ∈ V (x̂) and ξ̂ ∈ H(x̂, ẑ) such that

〈A(g(x̂), ξ̂), η(v, x̂)〉+ f(v)− f(x̂) ≥ 0, ∀v ∈ K.

This completes the proof.

Remark 3.4. Theorems 3.2 and 3.3 improve and generalize Theorems 3.1 and 3.2 of Fang
and Huang [4] and Theorems 2.1 – 2.6 of Chen [3].
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