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ON EXISTENCE OF OPTIMAL SOLUTION FOR SUBLINEAR
PROGRAMS*

MooN HEE KiM AND GUE MYUNG LEE

Dedicted to Professor Guang Ya Chen on his 70th birthday.

Abstract: A sublinear program (P), which involves a sublinear objective function and a constrained set
defined by a cone-sublinear function and a closed convex cone, is considered. We show that the existence
of optimal solutions for (P) is closely related to zero solution and that a condition for the existence can be
expressed in terms of subdifferentials of the functions involved in (P).
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Introduction and Preliminaries

Consider the following sublinear program:
(P) Minimize f(z)
subject to g(z) € =5,

where X and Y are Banach spaces, S is a closed convex cone in Y, which does not necessarily
have nonempty interior, and the mappings f : X — R and g : X — Y are a continuous
sublinear function and a continuous S-sublinear function, respectively. Recall that g is said
to be S-sublinear if

(i) Ve € X VA 20, g(Az) = Ag(x),

(ii) Vo,y € X, g(z) +9(y) —g(z +y) € 5.

We assume that the feasible set A := {x € X | g(z) € —S} is nonempty. We denote the
set of all solutions of (P) by sol(P). The continuous dual space of Y is denoted by Y* and
is endowed with the weak* topology. The (positive) polar of the cone S C Y is the cone
St={0eY*|0(k)>0 VkeS}.

Recently, many authors [2,4-7] extended Farkas Lemma ( [1]) to convex systems.

In this brief paper, we show that the existence of optimal solutions for (P) is closely
related to zero solution and that a condition for the existence can be expressed in terms of
subdifferentials of the functions involved in (P). The condition is obtained from a generalized
Farkas Theorem in [6].

Now we give notations and preliminary results that will be used later.

*This work was supported by the Korea Science and Engineering Foundation(KOSEF) NRL Program
grant funded by the Korea government(MEST)(No. ROA-2008-000-20010-0).
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Definition 1.1 ([3,8]). Let X be a Banach space, let X* be the continuous dual space of
X and let h: X — RU {+o0} be a proper lower-semicontinuous convex function.
(1) The conjugate function of h,h* : X* — R U {+o0} is defined by

h*(v) = sup{v(z) — h(z) | = € domh},
where the domain of h, domh, is given by
domh = {z € X | h(z) < +o0}.
(2) The epigraph of h, epih, is defined by
epih = {(z,7) € X xR | z € domh, h(z) < r}.
(3) The subdifferential of h at a € domh is defined as the non-empty weak* compact

convex set
Oh(a) :={v e X" | h(z) — h(a) > v(z —a), Vx € domh}.

It is well-known that if A is sublinear (i.e., convex and positively homogeneous of degree

one), then
epih® = 0h(0) x R,.

For a closed convex subset D of X, the indicator function dp is defined as dp(z) = 0if x € D
and 6p(z) = +oo if « ¢ D. The support function 67, is defined by 6},(u) = sup,cp u(x).
Then 9dp(x) = Np(x), which is known as the normal cone of D of z.

Let S C Y be a closed convex cone. Then we say that the mapping g : X — Y is
S—convex if for any x1, x2 € X and any A € [0,1],

gAz1 + (1 = N)zx2) € Ag(x1) + (1 — N)g(xz) — S.

Now we give a generalized Farkas Lemma to convex systems.

Lemma 1.2 ([6]). Let S C Y be a closed convex cone, let u : X — R be a continuous
linear mapping, and let g : X — Y be a continuous S-conver mapping. Suppose that the
system g(x) € —S is consistent. Let « € R. Then the following statements are equivalent:

D {reX |glx)e =S} C{re X |ulx) <a}l.

(ii) (Z)T e cz< L epitr og)*).

AeS+

Existence of Optimal Solution

The following proposition is needed to prove the main results.
Proposition 2.1. If sol(P) # 0, then sol(P)={z € A | f(z) =0}.
Proof. Suppose that sol(P) # 0. Let Z € A be a solution of (P). Then for any z € A, f(z) <
f(z). Since T € A and g is S-sublinear,
g(az) = ag(z) € =S for any a = 0.

Thus aZ € A for any o 2 0, and hence f(Z) £ f(aZ) = af(Z) for any o = 0. Since

0e€ A, f(z) £ f0) =0 TIf f(Z) <0, flaZ) = af(Z) — —oo0 as a — oo. This is
impossible since (P) has a solution. Therefore f(Z) = 0. So, we have,

sol(P)={x € A f(z) =0}.
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Now we give an example to illustrate Proposition 2.1.

0 if 250

Example 2.2. Let f(z) = g(z) = { . i 250

program:

. Consider the following sublinear

(P) Minimize f(x)
subject to z € A:={x | g(z) € —Ry }.

Then it is clear that (P) has a solution. Moreover,
sol(P) = {ze€A] f(x)=0}

= {z e (00,0 | f(z) =0}
= (—o00,0].

So, Proposition 2.1 holds. O

Now we give a well-known formula for normal cone ( [2]). For the completeness, we give
a proof for the formula.

Proposition 2.3. Let g : X — Y be a continuous S-sublinear function and A := {x €
X | g(z) € —S}. Then N4(0) :cz( U 6(Aog)(0)).
AeSt

Proof. v € N4(0)

<= VzeAd v(z)Z0
— Ac{v|v(z)=0}

<  (by Lemma 1.2) <S)T € cl( U epi(A o g)*>

AeSt

T
= (since g is S — sublinear) (g) €cl U (8()\09)(0) XR+)
AeST

= (g)T ecl( U a(Aog)(O)) xR,

Aest

= vEcl( U 6()\og)(0)>.

AeS+
L]

We give a theorem which shows that the existence of optimal solutions for (P) is closely
related to zero solution and that a condition for the existence can be expressed in terms of
subdifferentials of the functions involved in (P).

Theorem 2.4. The following statements are equivalent:

(i) sol(P) # 0.
(i) 0 € sol(P).

(iii) 0 € DF(0) + cl( U oo g)(O)).

AeSt
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Proof. (i) = (ii): Suppose that sol(P) # §. Then by Proposition 2.1, sol(P) = {z €
A| f(z) = 0}. Since f is sublinear, f(0) = 0 and hence 0 € sol(P).

(if) = (i): It is trivial.

(ii) = (ili): Suppose that 0 € sol(P). Then f(z) + da(z) = f(0) + d4(0) + 0(x — 0)
for any # € A and hence 0 € 9(f + 04)(0) = 9f(0) + 954(0) = 0f(0) + N4(0). Thus by
Proposition 2.3, 0 € 9f(0) + ¢l (U/\eer O(Ao g)(O))

(iii) = (ii): Suppose that (iii) holds. Then it follows from Propostion 2.3 that there
exists v € 9f(0) such that —v € N4(0) = 354(0). Hence 0 € 9f(0)+954(0) = d(f +34)(0).
So, f(x)+da(z) 2 f(0) + 4(0) + 0(x — 0) for any x € X and hence f(z) = f(0) for any
x € A. This means that 0 € sol(P). O

Remark 2.5. The equivalence between (ii) and (iii) in Theorem 2.4 was already established
by Glover ( [2]). However, we give its proof in order to show that a condition for the existence
of solution of (P) can be expressed in terms of subdifferentials of the functions involved in

(P).

Consider the following linear program:

(LP) Minimize c¢(x)
subject to  A(z) € =S,

where X and Y are Banach spaces, S a closed convex cone in Y, which does not necessarily
have nonempty interior, and the mappings ¢: X — R and A : X — Y are continuous and
linear functions. We denote the adjoint operator of the linear mapping A by A”. We denote
the set of all solutions of (LP) by sol(LP). Then we can easily obtain the following corollary
from Theorem 2.4.

Corollary 2.6. The following statements are equivalent:
(i) sol (LP) # 0.
(ii) 0 € sol(LP).
(iii) 0 € ¢+ cl (AT(S+)).

Now we give two examples illustrating Theorem 2.4.

i <
Example 2.7. Let f(z) = { ;x g i ;8 and g(z) = {

the following sublinear program:

0 if x50
T if >0

. Consider
(P) Minimize f(z)
subject to z€ A:={zeR|g(z) € —Ry }.

Then f(0) = 0, but (P) has no solution. Moreover, d(Ag)(0) = [0, ] for any A = 0 and
hence U 9(Ag)(0) = Ry. But 9f(0) = [1,2] and hence 9f(0) + cl(U 8()\9)(0)) =[1,00).

AZ0 A>0
So, Theorem 2.4 does not hold. O

Example 2.8. Let f(z,y) = z and g(z,y) = (;E2—|—y2)% —y. Consider the following sublinear
program:
(P) Minimize f(x,y)
subject to (x,y) € A := {(z,y) € R? | g(x,y) € —R }.
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Then A = {(0,y) | y = 0} and sol(P)=A. Let (z,§) = (0,1). Then (Z,7) € sol(P) and
f(Z,5) = 0. Moreover, 9f(0,0) = {(1,0)} and cl(UA€R+ G(Ag)(0,0)) = {(v1,v2) |v1 €
R, vp £0}. Thus
(0,0) € 9£(0,0) +cz( U 8()\9)(0,0)).
AERT
So, Theorem 2.4 holds.
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