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Abstract: A sublinear program (P), which involves a sublinear objective function and a constrained set
defined by a cone-sublinear function and a closed convex cone, is considered. We show that the existence
of optimal solutions for (P) is closely related to zero solution and that a condition for the existence can be
expressed in terms of subdifferentials of the functions involved in (P).
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1 Introduction and Preliminaries

Consider the following sublinear program:

(P) Minimize f(x)
subject to g(x) ∈ −S,

where X and Y are Banach spaces, S is a closed convex cone in Y , which does not necessarily
have nonempty interior, and the mappings f : X → R and g : X → Y are a continuous
sublinear function and a continuous S-sublinear function, respectively. Recall that g is said
to be S-sublinear if

(i) ∀x ∈ X ∀λ = 0, g(λx) = λg(x),
(ii) ∀x, y ∈ X, g(x) + g(y)− g(x + y) ∈ S.
We assume that the feasible set A := {x ∈ X | g(x) ∈ −S} is nonempty. We denote the

set of all solutions of (P) by sol(P). The continuous dual space of Y is denoted by Y ∗ and
is endowed with the weak∗ topology. The (positive) polar of the cone S ⊆ Y is the cone
S+ = {θ ∈ Y ∗ | θ(k) ≥ 0 ∀k ∈ S}.

Recently, many authors [2, 4–7] extended Farkas Lemma ( [1]) to convex systems.
In this brief paper, we show that the existence of optimal solutions for (P) is closely

related to zero solution and that a condition for the existence can be expressed in terms of
subdifferentials of the functions involved in (P). The condition is obtained from a generalized
Farkas Theorem in [6].

Now we give notations and preliminary results that will be used later.
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Definition 1.1 ( [3,8]). Let X be a Banach space, let X∗ be the continuous dual space of
X and let h : X → R ∪ {+∞} be a proper lower-semicontinuous convex function.

(1) The conjugate function of h, h∗ : X∗ → R ∪ {+∞} is defined by

h∗(v) = sup{v(x)− h(x) | x ∈ domh},
where the domain of h, domh, is given by

domh = {x ∈ X | h(x) < +∞}.
(2) The epigraph of h, epih, is defined by

epih = {(x, r) ∈ X × R | x ∈ domh, h(x) ≤ r}.
(3) The subdifferential of h at a ∈ domh is defined as the non-empty weak∗ compact

convex set
∂h(a) := {v ∈ X∗ | h(x)− h(a) ≥ v(x− a), ∀x ∈ domh}.

It is well-known that if h is sublinear (i.e., convex and positively homogeneous of degree
one), then

epih∗ = ∂h(0)× R+.

For a closed convex subset D of X, the indicator function δD is defined as δD(x) = 0 if x ∈ D
and δD(x) = +∞ if x /∈ D. The support function δ∗D is defined by δ∗D(u) = supx∈D u(x).
Then ∂δD(x) = ND(x), which is known as the normal cone of D of x.

Let S ⊆ Y be a closed convex cone. Then we say that the mapping g : X → Y is
S−convex if for any x1, x2 ∈ X and any λ ∈ [0, 1],

g(λx1 + (1− λ)x2) ∈ λg(x1) + (1− λ)g(x2)− S.

Now we give a generalized Farkas Lemma to convex systems.

Lemma 1.2 ( [6]). Let S ⊆ Y be a closed convex cone, let u : X → R be a continuous
linear mapping, and let g : X → Y be a continuous S-convex mapping. Suppose that the
system g(x) ∈ −S is consistent. Let α ∈ R. Then the following statements are equivalent:

(i) {x ∈ X | g(x) ∈ −S} ⊆ {x ∈ X | u(x) ≤ α}.
(ii)

(
u

α

)T

∈ cl
( ⋃

λ∈S+

epi(λ ◦ g)∗
)
.

2 Existence of Optimal Solution

The following proposition is needed to prove the main results.

Proposition 2.1. If sol(P) 6= ∅, then sol(P) = {x ∈ A | f(x) = 0}.
Proof. Suppose that sol(P) 6= ∅. Let x̄ ∈ A be a solution of (P). Then for any x ∈ A, f(x̄) 5
f(x). Since x̄ ∈ A and g is S-sublinear,

g(αx̄) = αg(x̄) ∈ −S for any α = 0.

Thus αx̄ ∈ A for any α = 0, and hence f(x̄) 5 f(αx̄) = αf(x̄) for any α = 0. Since
0 ∈ A, f(x̄) 5 f(0) = 0. If f(x̄) < 0, f(αx̄) = αf(x̄) → −∞ as α → ∞. This is
impossible since (P) has a solution. Therefore f(x̄) = 0. So, we have,

sol(P) = {x ∈ A | f(x) = 0}.
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Now we give an example to illustrate Proposition 2.1.

Example 2.2. Let f(x) = g(x) =
{

0 if x 5 0
x if x > 0 . Consider the following sublinear

program:

(P) Minimize f(x)
subject to x ∈ A := {x | g(x) ∈ −R+ }.

Then it is clear that (P) has a solution. Moreover,

sol(P) = {x ∈ A | f(x) = 0}
= {x ∈ (−∞, 0] | f(x) = 0}
= (−∞, 0].

So, Proposition 2.1 holds. ¤

Now we give a well-known formula for normal cone ( [2]). For the completeness, we give
a proof for the formula.

Proposition 2.3. Let g : X → Y be a continuous S-sublinear function and A := {x ∈
X | g(x) ∈ −S}. Then NA(0) = cl

( ⋃

λ∈S+

∂(λ ◦ g)(0)
)
.

Proof. v ∈ NA(0)

⇐⇒ ∀x ∈ A, v(x) 5 0
⇐⇒ A ⊂ {v | v(x) 5 0}

⇐⇒ (by Lemma 1.2)
(

v

0

)T

∈ cl
( ⋃

λ∈S+

epi(λ ◦ g)∗
)

⇐⇒ (since g is S − sublinear)
(

v

0

)T

∈ cl
⋃

λ∈S+

(
∂(λ ◦ g)(0)× R+

)

⇐⇒
(

v

0

)T

∈ cl
( ⋃

λ∈S+

∂(λ ◦ g)(0)
)
× R+

⇐⇒ v ∈ cl
( ⋃

λ∈S+

∂(λ ◦ g)(0)
)
.

We give a theorem which shows that the existence of optimal solutions for (P) is closely
related to zero solution and that a condition for the existence can be expressed in terms of
subdifferentials of the functions involved in (P).

Theorem 2.4. The following statements are equivalent:
(i) sol(P) 6= ∅.
(ii) 0 ∈ sol(P).
(iii) 0 ∈ ∂f(0) + cl

( ⋃

λ∈S+

∂(λ ◦ g)(0)
)
.
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Proof. (i) ⇒ (ii): Suppose that sol(P) 6= ∅. Then by Proposition 2.1, sol(P) = {x ∈
A | f(x) = 0}. Since f is sublinear, f(0) = 0 and hence 0 ∈ sol(P).

(ii) ⇒ (i): It is trivial.
(ii) ⇒ (iii): Suppose that 0 ∈ sol(P). Then f(x) + δA(x) = f(0) + δA(0) + 0(x − 0)

for any x ∈ A and hence 0 ∈ ∂(f + δA)(0) = ∂f(0) + ∂δA(0) = ∂f(0) + NA(0). Thus by
Proposition 2.3, 0 ∈ ∂f(0) + cl

(⋃
λ∈S+ ∂(λ ◦ g)(0)

)
.

(iii) ⇒ (ii): Suppose that (iii) holds. Then it follows from Propostion 2.3 that there
exists v ∈ ∂f(0) such that −v ∈ NA(0) = ∂δA(0). Hence 0 ∈ ∂f(0)+∂δA(0) = ∂(f +δA)(0).
So, f(x) + δA(x) = f(0) + δA(0) + 0(x − 0) for any x ∈ X and hence f(x) = f(0) for any
x ∈ A. This means that 0 ∈ sol(P).

Remark 2.5. The equivalence between (ii) and (iii) in Theorem 2.4 was already established
by Glover ( [2]). However, we give its proof in order to show that a condition for the existence
of solution of (P) can be expressed in terms of subdifferentials of the functions involved in
(P).

Consider the following linear program:

(LP) Minimize c(x)
subject to A(x) ∈ −S,

where X and Y are Banach spaces, S a closed convex cone in Y , which does not necessarily
have nonempty interior, and the mappings c : X → R and A : X → Y are continuous and
linear functions. We denote the adjoint operator of the linear mapping A by AT . We denote
the set of all solutions of (LP) by sol(LP). Then we can easily obtain the following corollary
from Theorem 2.4.

Corollary 2.6. The following statements are equivalent:
(i) sol(LP) 6= ∅.
(ii) 0 ∈ sol(LP).
(iii) 0 ∈ c + cl

(
AT (S+)

)
.

Now we give two examples illustrating Theorem 2.4.

Example 2.7. Let f(x) =
{

x if x 5 0
2x if x > 0 and g(x) =

{
0 if x 5 0
x if x > 0 . Consider

the following sublinear program:

(P) Minimize f(x)
subject to x ∈ A := {x ∈ R | g(x) ∈ −R+ }.

Then f(0) = 0, but (P) has no solution. Moreover, ∂(λg)(0) = [0, λ] for any λ = 0 and
hence

⋃

λ=0

∂(λg)(0) = R+. But ∂f(0) = [1, 2] and hence ∂f(0) + cl
( ⋃

λ=0

∂(λg)(0)
)

= [1,∞).

So, Theorem 2.4 does not hold. ¤

Example 2.8. Let f(x, y) = x and g(x, y) = (x2+y2)
1
2−y. Consider the following sublinear

program:

(P) Minimize f(x, y)
subject to (x, y) ∈ A := {(x, y) ∈ R2 | g(x, y) ∈ −R+ }.
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Then A = {(0, y) | y = 0} and sol(P)=A. Let (x̄, ȳ) = (0, 1). Then (x̄, ȳ) ∈ sol(P) and
f(x̄, ȳ) = 0. Moreover, ∂f(0, 0) = {(1, 0)} and cl

(⋃
λ∈R+

∂(λg)(0, 0)
)

= {(v1, v2) |v1 ∈
R, v2 5 0}. Thus

(0, 0) ∈ ∂f(0, 0) + cl
( ⋃

λ∈R+

∂(λg)(0, 0)
)
.

So, Theorem 2.4 holds.
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