ON EXISTENCE OF OPTIMAL SOLUTION FOR SUBLINEAR PROGRAMS*

Moon Hee Kim and Gue Myung Lee
Dedicted to Professor Guang Ya Chen on his 70th birthday.

Abstract

A sublinear program (P), which involves a sublinear objective function and a constrained set defined by a cone-sublinear function and a closed convex cone, is considered. We show that the existence of optimal solutions for (P) is closely related to zero solution and that a condition for the existence can be expressed in terms of subdifferentials of the functions involved in (P).

Key words: sublinear program, optimal solutions, existence, subdifferential
Mathematics Subject Classification: 90C36, 90C46

1 Introduction and Preliminaries

Consider the following sublinear program:
(P) Minimize $\quad f(x)$
subject to $g(x) \in-S$,
where X and Y are Banach spaces, S is a closed convex cone in Y, which does not necessarily have nonempty interior, and the mappings $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow Y$ are a continuous sublinear function and a continuous S-sublinear function, respectively. Recall that g is said to be S-sublinear if
(i) $\forall x \in X \quad \forall \lambda \geqq 0, g(\lambda x)=\lambda g(x)$,
(ii) $\forall x, y \in X, \quad g(x)+g(y)-g(x+y) \in S$.

We assume that the feasible set $A:=\{x \in X \mid g(x) \in-S\}$ is nonempty. We denote the set of all solutions of (P) by $\operatorname{sol}(\mathrm{P})$. The continuous dual space of Y is denoted by Y^{*} and is endowed with the weak* topology. The (positive) polar of the cone $S \subseteq Y$ is the cone $S^{+}=\left\{\theta \in Y^{*} \mid \theta(k) \geq 0 \quad \forall k \in S\right\}$.

Recently, many authors [2,4-7] extended Farkas Lemma ([1]) to convex systems.
In this brief paper, we show that the existence of optimal solutions for (P) is closely related to zero solution and that a condition for the existence can be expressed in terms of subdifferentials of the functions involved in (P). The condition is obtained from a generalized Farkas Theorem in [6].

Now we give notations and preliminary results that will be used later.

[^0]Definition $1.1([3,8])$. Let X be a Banach space, let X^{*} be the continuous dual space of X and let $h: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper lower-semicontinuous convex function.
(1) The conjugate function of $h, h^{*}: X^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ is defined by

$$
h^{*}(v)=\sup \{v(x)-h(x) \mid x \in \operatorname{dom} h\},
$$

where the domain of h, dom h, is given by

$$
\operatorname{dom} h=\{x \in X \mid h(x)<+\infty\} .
$$

(2) The epigraph of h, epih, is defined by

$$
\text { epi } h=\{(x, r) \in X \times \mathbb{R} \mid x \in \operatorname{dom} h, h(x) \leq r\}
$$

(3) The subdifferential of h at $a \in \operatorname{dom} h$ is defined as the non-empty weak* compact convex set

$$
\partial h(a):=\left\{v \in X^{*} \mid h(x)-h(a) \geq v(x-a), \quad \forall x \in \operatorname{dom} h\right\} .
$$

It is well-known that if h is sublinear (i.e., convex and positively homogeneous of degree one), then

$$
\operatorname{epi} h^{*}=\partial h(0) \times \mathbb{R}_{+}
$$

For a closed convex subset D of X, the indicator function δ_{D} is defined as $\delta_{D}(x)=0$ if $x \in D$ and $\delta_{D}(x)=+\infty$ if $x \notin D$. The support function δ_{D}^{*} is defined by $\delta_{D}^{*}(u)=\sup _{x \in D} u(x)$. Then $\partial \delta_{D}(x)=N_{D}(x)$, which is known as the normal cone of D of x.

Let $S \subseteq Y$ be a closed convex cone. Then we say that the mapping $g: X \rightarrow Y$ is S-convex if for any $x_{1}, x_{2} \in X$ and any $\lambda \in[0,1]$,

$$
g\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \in \lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)-S
$$

Now we give a generalized Farkas Lemma to convex systems.
Lemma 1.2 ([6]). Let $S \subseteq Y$ be a closed convex cone, let $u: X \rightarrow \mathbb{R}$ be a continuous linear mapping, and let $g: X \rightarrow Y$ be a continuous S-convex mapping. Suppose that the system $g(x) \in-S$ is consistent. Let $\alpha \in \mathbb{R}$. Then the following statements are equivalent:
(i) $\{x \in X \mid g(x) \in-S\} \subseteq\{x \in X \mid u(x) \leq \alpha\}$.
(ii) $\binom{u}{\alpha}^{T} \in \operatorname{cl}\left(\bigcup_{\lambda \in S^{+}} \operatorname{epi}(\lambda \circ g)^{*}\right)$.

2 Existence of Optimal Solution

The following proposition is needed to prove the main results.
Proposition 2.1. If $\operatorname{sol}(P) \neq \emptyset$, then $\operatorname{sol}(P)=\{x \in A \mid f(x)=0\}$.
Proof. Suppose that $\operatorname{sol}(\mathrm{P}) \neq \emptyset$. Let $\bar{x} \in A$ be a solution of (P). Then for any $x \in A, f(\bar{x}) \leqq$ $f(x)$. Since $\bar{x} \in A$ and g is S-sublinear,

$$
g(\alpha \bar{x})=\alpha g(\bar{x}) \in-S \quad \text { for } \quad \text { any } \alpha \geqq 0 .
$$

Thus $\alpha \bar{x} \in A$ for any $\alpha \geqq 0$, and hence $f(\bar{x}) \leqq f(\alpha \bar{x})=\alpha f(\bar{x})$ for any $\alpha \geqq 0$. Since $0 \in A, \quad f(\bar{x}) \leqq f(0)=0$. If $f(\bar{x})<0, \quad f(\alpha \bar{x})=\alpha f(\bar{x}) \rightarrow-\infty$ as $\alpha \rightarrow \infty$. This is impossible since (P) has a solution. Therefore $f(\bar{x})=0$. So, we have,

$$
\operatorname{sol}(\mathrm{P})=\{x \in A \mid f(x)=0\} .
$$

Now we give an example to illustrate Proposition 2.1.
Example 2.2. Let $f(x)=g(x)=\left\{\begin{array}{lll}0 & \text { if } & x \leqq 0 \\ x & \text { if } & x>0\end{array}\right.$. Consider the following sublinear
program: program:
(P) Minimize $\quad f(x)$

$$
\text { subject to } \quad x \in A:=\left\{x \mid g(x) \in-\mathbb{R}_{+}\right\}
$$

Then it is clear that (P) has a solution. Moreover,

$$
\begin{aligned}
\operatorname{sol}(\mathrm{P}) & =\{x \in A \mid f(x)=0\} \\
& =\{x \in(-\infty, 0] \mid f(x)=0\} \\
& =(-\infty, 0]
\end{aligned}
$$

So, Proposition 2.1 holds.

Now we give a well-known formula for normal cone ([2]). For the completeness, we give a proof for the formula.

Proposition 2.3. Let $g: X \rightarrow Y$ be a continuous S-sublinear function and $A:=\{x \in$ $X \mid g(x) \in-S\}$. Then $N_{A}(0)=c l\left(\bigcup_{\lambda \in S^{+}} \partial(\lambda \circ g)(0)\right)$.

Proof. $v \in N_{A}(0)$

$$
\begin{aligned}
& \Longleftrightarrow \quad \forall x \in A, v(x) \leqq 0 \\
& \Longleftrightarrow \quad A \subset\{v \mid v(x) \leqq 0\} \\
& \Longleftrightarrow \quad(\text { by Lemma 1.2 })\binom{v}{0}^{T} \in \operatorname{cl}\left(\bigcup_{\lambda \in S^{+}} \operatorname{epi}(\lambda \circ g)^{*}\right) \\
& \Longleftrightarrow \quad \text { (since } g \text { is } S-\text { sublinear) }\binom{v}{0}^{T} \in \operatorname{cl} \bigcup_{\lambda \in S^{+}}\left(\partial(\lambda \circ g)(0) \times \mathbb{R}_{+}\right) \\
& \Longleftrightarrow \quad\binom{v}{0}^{T} \in \operatorname{cl}\left(\bigcup_{\lambda \in S^{+}} \partial(\lambda \circ g)(0)\right) \times \mathbb{R}_{+} \\
& \Longleftrightarrow \quad v \in \operatorname{cl}\left(\bigcup_{\lambda \in S^{+}} \partial(\lambda \circ g)(0)\right) .
\end{aligned}
$$

We give a theorem which shows that the existence of optimal solutions for (P) is closely related to zero solution and that a condition for the existence can be expressed in terms of subdifferentials of the functions involved in (P).

Theorem 2.4. The following statements are equivalent:
(i) $\operatorname{sol}(P) \neq \emptyset$.
(ii) $0 \in \operatorname{sol}(P)$.
(iii) $0 \in \partial f(0)+c l\left(\bigcup_{\lambda \in S^{+}} \partial(\lambda \circ g)(0)\right)$.

Proof. (i) \Rightarrow (ii): Suppose that $\operatorname{sol}(\mathrm{P}) \neq \emptyset$. Then by Proposition 2.1, $\operatorname{sol}(\mathrm{P})=\{x \in$ $A \mid f(x)=0\}$. Since f is sublinear, $f(0)=0$ and hence $0 \in \operatorname{sol}(\mathrm{P})$.
(ii) \Rightarrow (i): It is trivial.
(ii) \Rightarrow (iii): Suppose that $0 \in \operatorname{sol}(\mathrm{P})$. Then $f(x)+\delta_{A}(x) \geqq f(0)+\delta_{A}(0)+0(x-0)$ for any $x \in A$ and hence $0 \in \partial\left(f+\delta_{A}\right)(0)=\partial f(0)+\partial \delta_{A}(0)=\partial f(0)+N_{A}(0)$. Thus by Proposition 2.3, $0 \in \partial f(0)+c l\left(\bigcup_{\lambda \in S^{+}} \partial(\lambda \circ g)(0)\right)$.
(iii) \Rightarrow (ii): Suppose that (iii) holds. Then it follows from Propostion 2.3 that there exists $v \in \partial f(0)$ such that $-v \in N_{A}(0)=\partial \delta_{A}(0)$. Hence $0 \in \partial f(0)+\partial \delta_{A}(0)=\partial\left(f+\delta_{A}\right)(0)$. So, $f(x)+\delta_{A}(x) \geqq f(0)+\delta_{A}(0)+0(x-0)$ for any $x \in X$ and hence $f(x) \geqq f(0)$ for any $x \in A$. This means that $0 \in \operatorname{sol}(\mathrm{P})$.

Remark 2.5. The equivalence between (ii) and (iii) in Theorem 2.4 was already established by Glover ([2]). However, we give its proof in order to show that a condition for the existence of solution of (P) can be expressed in terms of subdifferentials of the functions involved in (P).

Consider the following linear program:

$$
\begin{array}{ll}
\text { Minimize } & c(x) \tag{LP}\\
\text { subject to } & A(x) \in-S
\end{array}
$$

where X and Y are Banach spaces, S a closed convex cone in Y, which does not necessarily have nonempty interior, and the mappings $c: X \rightarrow \mathbb{R}$ and $A: X \rightarrow Y$ are continuous and linear functions. We denote the adjoint operator of the linear mapping A by A^{T}. We denote the set of all solutions of (LP) by sol(LP). Then we can easily obtain the following corollary from Theorem 2.4.

Corollary 2.6. The following statements are equivalent:
(i) $\operatorname{sol}(L P) \neq \emptyset$.
(ii) $0 \in \operatorname{sol}(L P)$.
(iii) $0 \in c+c l\left(A^{T}\left(S^{+}\right)\right)$.

Now we give two examples illustrating Theorem 2.4.
Example 2.7. Let $f(x)=\left\{\begin{array}{ll}x & \text { if } \\ 2 x & \text { if } \\ x>0\end{array}\right.$ and $g(x)=\left\{\begin{array}{ll}0 & \text { if } x \leqq 0 \\ x & \text { if } x>0\end{array}\right.$. Consider the following sublinear program:

$$
\begin{array}{ll}
\text { (P) } & \text { Minimize } f(x) \\
& \text { subject to } \quad x \in A:=\left\{x \in \mathbb{R} \mid g(x) \in-\mathbb{R}_{+}\right\} .
\end{array}
$$

Then $f(0)=0$, but (P) has no solution. Moreover, $\partial(\lambda g)(0)=[0, \lambda]$ for any $\lambda \geqq 0$ and hence $\bigcup_{\lambda \geqq 0} \partial(\lambda g)(0)=\mathbb{R}_{+}$. But $\partial f(0)=[1,2]$ and hence $\partial f(0)+c l\left(\bigcup_{\lambda \geqq 0} \partial(\lambda g)(0)\right)=[1, \infty)$. So, Theorem 2.4 does not hold.

Example 2.8. Let $f(x, y)=x$ and $g(x, y)=\left(x^{2}+y^{2}\right)^{\frac{1}{2}}-y$. Consider the following sublinear program:
(P) Minimize $f(x, y)$
subject to $\quad(x, y) \in A:=\left\{(x, y) \in \mathbb{R}^{2} \mid g(x, y) \in-\mathbb{R}_{+}\right\}$.

Then $A=\{(0, y) \mid y \geqq 0\}$ and $\operatorname{sol}(\mathrm{P})=A$. Let $(\bar{x}, \bar{y})=(0,1)$. Then $(\bar{x}, \bar{y}) \in \operatorname{sol}(\mathrm{P})$ and $f(\bar{x}, \bar{y})=0$. Moreover, $\partial f(0,0)=\{(1,0)\}$ and $c l\left(\bigcup_{\lambda \in \mathbb{R}_{+}} \partial(\lambda g)(0,0)\right)=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in\right.$ $\left.\mathbb{R}, v_{2} \leqq 0\right\}$. Thus

$$
(0,0) \in \partial f(0,0)+c l\left(\bigcup_{\lambda \in \mathbb{R}^{+}} \partial(\lambda g)(0,0)\right)
$$

So, Theorem 2.4 holds.

References

[1] J. Farkas, Uber die Theorie der einfachen Ungleichungen, Journal für die Reine und Angewandte Mathematik 124 (1902) 1-24.
[2] B.M. Glover, A generalized Farkas lemma with applications to quasidifferentiable programming, Zeitschrift für Operations Research, Series A-B 26 (1982) 125-141.
[3] J.B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms, Volumes I and II, Springer-Verlag, Berlin, Heidelberg, 1993.
[4] V. Jeyakumar, Asymptotic dual conditions characterizing optimality for convex programs, J. Optim. Th. Appl. 93 (1997) 153-165.
[5] V. Jeyakumar, G.M. Lee and N. Dinh, Characterization of solution sets of convex vector minimization problems, Eur. J. Oper. Res. 174 (2006) 1380-1395.
[6] V. Jeyakumar, G.M. Lee and N. Dinh, New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex program, SIAM J. Optim. 14 (2003) 534-547.
[7] V. Jeyakumar and G.M. Lee, Complete characterizations of stable Farkas' lemma and cone-convex programming duality, Math. Programming 114 (2008) 335-347.
[8] C. Zalinescu, Convex Analysis in General Vector Space, World Scientific Pub., Singapore, 2002.

Manuscript received 10 June 2008
revised 9 December 2008
accepted for publication 15 December 2008

[^1]
[^0]: *This work was supported by the Korea Science and Engineering Foundation(KOSEF) NRL Program grant funded by the Korea government(MEST)(No. ROA-2008-000-20010-0).

[^1]: Moon Hee Kim
 Department of Multimedia Engineering, Tongmyong University, Pusan 608-711, Korea
 E-mail address: mooni@tu.ac.kr

 Gue Myung Lee
 Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea
 E-mail address: gmlee@pknu.ac.kr

