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Abstract: We consider Benson efficiency of a multi-product network equilibrium model based on Wardrop’s
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1 Introduction

The earliest network equilibrium model was proposed by Wardrop (1952) for a transportation
network, which asserts that the traffic flow along a path joining an origin-destination (OD)
pair is positive only if the delay (cost) for this path is the minimum possible amongst all
the paths joining the same OD pair. Since then, many other equilibrium models have been
proposed in the economics literature. Until only recently, all these equilibrium models are
based on a single cost or utility function. In practice, the choice of paths based on a single
criterion by all the road users may not be reasonable. Minimum delay paths are sometimes
not the cheapest ones to travel on. Recently, equilibrium models based on multi-criterion
consideration or vector-valued cost functions have been proposed. In Chen and Yen (1993),
a multi-criterion traffic equilibrium model was proposed. Other papers that consider multi-
criterion equilibrium models can be found in Yang and Goh (1997), Chen, Goh and Yang
(1999), Cheng and Wu (2006) and Li, Teo and Yang (2008).

In many multi-criterion decision-making problems, the common practice is to obtain the
set of efficient decisions, i.e., decisions that are not dominated by any others. Kuhn and
Tucker (see Kuhn and Tucker (1951)), and later Geoffrion (see Geoffrion (1968)), observed
that a subset of efficient set may be ”improper”. Practically, this means that points in the
subset cannot be satisfactorily characterized by a scalar minimization problem, even if the
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decision set is convex. So, the concept of proper efficiency was introduced by Kuhn and
Tucker (1951), Geoffrion (1968), and modified and formulated into a more general framework
by Borwein (1977), Benson (1979), Henig (1982), and Borwein and Zhuang (1993), among
many other researchers. The motivation for introducing proper efficiency is that it enables
one to eliminate certain anomalous efficient decisions and to prove the existence of equivalent
scalar problems whose solutions produce most of the efficient decisions at least, namely the
proper ones. It has been amply demonstrated that proper efficiency is a natural concept in
vector optimization.

In this paper we consider a kind of proper efficiency – Benson efficiency – of a multi-
product network equilibrium model with a vector-valued cost function. We establish a
sufficient and a necessary condition for a Benson equilibrium pattern flow for a multi-product
network equilibrium problem in terms of vector variational inequalities for the single criterion
case and the multiple criteria case.

The organization of the paper is as follows. In Section 2 we introduce some notation and
preliminaries. The relation between Benson efficiency of a multi-product network equilib-
rium model with a single criterion and vector variational inequalities is established in Section
3. In Section 4 we deduce a sufficient and a necessary condition for Benson efficiency of a
multi-product network equilibrium model with multiple criteria in terms of vector varia-
tional inequalities by using Gerstewitz’s scalarization function. We conclude the paper in
Section 5.

2 Notations and Preliminaries

We consider a network in which q products traverse with a typical product denoted by j.
Consider a general network G = [N, A, I], where N denotes the set of nodes representing
manufacturers and retailers, as well as distributing centers and warehouses, and A the set
of directed arcs. Let a ∈ A denote an arc connecting a pair of nodes. Let I denote the set
of all the OD pairs associated with each pair of manufacturer and retailer, and |I| = l. We
denote by Ki the set of paths that connect an OD pair i ∈ I associated with a given pair
of manufacturer and retailer and let m =

∑
i∈I

|Ki|. Let k ∈ Ki denote a path, assumed to be

acyclic, consisting of a sequence of arcs connecting an OD pair i.
For a path k ∈ Ki, let vj

k denote the flow of product j on path k. A path flow vj
k induces

a flow vj
a of product j on an arc a ∈ A as follows:

vj
a =

∑

i∈I

∑

k∈Ki

δakvj
k,

where
∆ = [δak] ∈ R|A|×m

is the arc path incidence matrix, with

δak = { 1, if a ∈ k
0, otherwise.

A vector vj = (vj
k : k ∈ Ki, i ∈ I) such that vj

k > 0, ∀k ∈ Ki, i ∈ I, j = 1, 2, · · ·, q,
is said to be a flow of product j on the network and v = (v1, v2, · · ·, vq)T is called a flow of
the network. Let there also be given a vector of demands d = (dj

i : i ∈ I, j = 1, 2, · · ·, q).
Each component dj

i indicates the demand of the OD pair i for product j, i.e., the quantity
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of product j that needs to go from the manufacturer to the retailer associated with the OD
pair i. We say that a flow of the network v satisfies the demands if

∑

k∈Ki

vj
k = dj

i , ∀i ∈ I, j = 1, 2, · · ·, q.

Then, the set D = {v :
∑

k∈Ki

vj
k = dj

i , ∀i ∈ I, j = 1, 2, · · ·, q} is the feasible set. D is clearly

a convex set.
Next, we introduce the notation about Benson efficiency. Let Y be a real normed space

ordered by a closed, convex and pointed cone M ⊂ Y with nonempty interior int M . We
denote ordering as follows:

x 6 y iff y − x ∈ M ;

x < y iff y − x ∈ int M.

We denote the closure of a nonempty subset P of Y by cl(P ) and the cone hull of P by
cone(P ), i.e.,

cone(P ) := ∪{λa : λ > 0, a ∈ P}.
A point e∗ ∈ P ⊂ Y is said to be an efficient point of P if e− e∗ /∈ −M \ {0} for any e ∈ P .
By Eff(P ) we denote the set of all the efficient points of P . We also need to introduce the
concept of Benson efficient points of the set P . A point e∗ ∈ P ⊂ Y is said to be a Benson
efficient point of P if cl(cone(P + M − e∗)) ∩ (−M) = {0}. We denote the set of all the
Benson efficient points of P by Benson(P ).

3 Benson Efficiency of a Network Equilibrium Model with a Single
Criterion

In this section the function cj
a(v) : Rq×m → R+ is interpreted as the cost of product j on

arc a ∈ A. Then the cost function of product j on a path k (k ∈ Ki, i ∈ I) depending on
the flow of the network is defined by the formula

cj
k(v) =

∑

a∈k

cj
a(v).

Then, the vector function cj(v) = (cj
k(v) : k ∈ Ki, i ∈ I) and c(v) = (c1(v), c2(v), ···, cq(v))T

are called the cost function of product j on the network and the cost function of the network,
respectively.

For each i ∈ I, we define the minimum cost function of product j for the OD pair i by
putting

mj
i (v) = min

k∈Ki

cj
k(v).

Set mi(v) = (m1
i (v),m2

i (v), · · ·,mq
i (v))T . We group the q×m matrix v into a q-dimensional

column vector vk (∀ k ∈ Ki, i ∈ I) with components vk = (v1
k, v2

k, · · ·, vq
k)T , where v =

(vk : k ∈ Ki, i ∈ I). Also, group the vector c(v) into a q-dimensional column vector
ck(v), k ∈ Ki, i ∈ I, with components ck(v) = (c1

k(v), c2
k(v), · · ·, cq

k(v))T , where c(v) =
(ck(v) : k ∈ Ki, i ∈ I). For the q-dimensional Euclidean space Rq, by 6 we denote the
ordering induced by Rq

+ :
x 6 y iff y − x ∈ Rq

+;

x < y iff y − x ∈ int Rq
+.
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The ordering > and > are defined similarly.
Applying Wardrop’s equilibrium principle (Wardrop (1952)), we see that the equilibrium

principle (user-optimizing principle) in a multi-product network equilibrium problem takes
on the following form.

Definition 3.1. A vector v ∈ D is called an equilibrium pattern flow iff

ck(v)−mi(v) { = 0 if vk ∈ Rq
+ \ {0}

> 0 if vk = 0.
(3.1)

for each i ∈ I and each k ∈ Ki.

The above equilibrium principle involves no explicit optimization concept because the
network users act independently, in a noncooperative manner, until they cannot improve
on their situations unilaterally and, thus, an equilibrium is achieved, governed by the above
equilibrium conditions. Indeed, condition (3.1) means that only those paths connecting
an OD pair that have minimal user travel costs in terms of vector ordering will be used.
Otherwise, the network users could improve upon their situations by switching to a path with
a lower cost. That is, for any OD pair of manufacturer and retailer i, if the transportation
cost of all the products on a path k ∈ Ki is greater than the minimum cost of the OD pair
i in terms of vector ordering, then the flow of all the products on k is zero.

For the sake of convenience, the equilibrium condition (3.1) can be expressed in the
following equivalent form.

Proposition 3.2 (see Cheng and Wu (2006)). The network equilibrium condition (3.1)
is equivalent to the following statement:

cr(v)− ck(v) ∈ Rq
+ \ {0} ⇒ vr = 0, (3.2)

for each i ∈ I and any k, r ∈ Ki.

It seems that the left hand side of (3.2) is defined in a way similar to the definition of
strong efficiency (see Liu and Gong (2000)). Next, we introduce a kind of proper efficiency
– Benson efficiency – of a network equilibrium model.

Definition 3.3. A vector v ∈ D is called a Benson equilibrium pattern flow iff, for each
i ∈ I and k ∈ Ki, the following statement holds:

cl(cone(cKi
(v) + Rq

+ − ck(v))) ∩ (−Rq
+) = {0}

cr(v)− ck(v) 6= 0 } ⇒ vr = 0, r ∈ Ki, r 6= k.

Variational inequality theory is a powerful tool in the qualitative analysis of equilibrium
theory (see, for example, Nagurney (1999)). Now, let us introduce the concept of Benson
efficient solution to a vector variational inequality problem.

Definition 3.4. A vector v ∈ D is called a Benson efficient solution to a vector variational
inequality problem iff

cl(cone(c(v)(D − v)T + Rq×q
+ )) ∩ (−Rq×q

+ ) = {0}.
We need the following assumption.

Assumption 3.5.
cr(v)− ck(v) 6= 0, if r 6= k,

for any i ∈ I and r, k ∈ Ki.
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Next, we will establish a sufficient and a necessary condition for Benson efficiency of a
network equilibrium problem in terms of vector variational inequality problems. Specifically,
we wish to prove the following two theorems.

Theorem 3.6. Under Assumption 3.1, if a vector v ∈ D is a Benson equilibrium pattern
flow, then v is a Benson efficient solution to the vector variational inequality problem: to
find v ∈ D such that

cl(cone(c(v)(D − v)T + Rq×q
+ )) ∩ (−Rq×q

+ ) = {0}.
Proof. Let a vector v ∈ D be a Benson equilibrium pattern flow for a network equilibrium
problem. By Definition 3.3, we have the following statement:

cl(cone(cKi
(v) + Rq

+ − ck(v))) ∩ (−Rq
+) = {0}

cr(v)− ck(v) 6= 0 } ⇒ vr = 0, r ∈ Ki, r 6= k,

for each i ∈ I and any k ∈ Ki.
For any u ∈ D, we have

〈c(v), (u− v)T 〉
=(c1(v), c2(v), · · ·, cm(v))(u1 − v1, u2 − v2, · · ·, um − vm)T

=
m∑

t=1

ct(v)(ut − vt)T

=
l∑

i=1

[
∑

t∈Ki

ct(v)(ut − vt)T ].

We know ct(v)(ut − vt)T is a q × q matrix whose components are cα
t (v)(uβ

t − vβ
t ), where

α, β ∈ {1, 2, · · ·, q}. Hence, 〈c(v), (u − v)T 〉 is also a q × q matrix whose components are
l∑

i=1

[
∑

t∈Ki

cα
t (v)(uβ

t − vβ
t )], where α, β = 1, 2, · · ·, q.

Set
Ji(v) := {r̄ ∈ Ki : cr̄(v) ∈ Benson{cr(v) : r ∈ Ki}} ⊂ Ki.

Then, for any r̄ ∈ Ji(v) ⊂ Ki,

cl(cone(cKi
(v) + Rq

+ − cr̄(v))) ∩ (−Rq
+) = {0}.

By Assumption 3.5 and Definition 3.3, we have vr = 0 for any r ∈ Ki, i ∈ I and r 6= r̄.
Since, Benson{cr(v) : r ∈ Ki} ⊂ Eff{cr(v) : r ∈ Ki}, we know that

cr̄(v) ∈ Eff{cr(v) : r ∈ Ki}.
That is,

cr(v)− cr̄(v) /∈ −Rq
+ \ {0}, ∀ r ∈ Ki, i ∈ I and r 6= r̄.

By cr(v)− cr̄(v) 6= 0, we obtain

cr(v)− cr̄(v) /∈ −Rq
+, ∀ r ∈ Ki, i ∈ I and r 6= r̄.

It means that there exists an ᾱ ∈ {1, 2, · · ·, q} such that

cᾱ
r (v)− cᾱ

r̄ (v) > 0.
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Thus, we obtain

l∑

i=1

[
∑

t∈Ki

cᾱ
t (v)(uβ

t − vβ
t )]

=
l∑

i=1

[
∑

t∈Ki\{r̄}
cᾱ
t (v)(uβ

t − vβ
t ) + cᾱ

r̄ (v)(uβ
r̄ − vβ

r̄ )].

Since t ∈ Ki\{r̄}, we have t ∈ Ki and t 6= r̄. Hence, vt = 0. That is, for any β ∈ {1, 2, ···, q},
vβ

t = 0. So, we get

l∑

i=1

[
∑

t∈Ki

cᾱ
t (v)(uβ

t − vβ
t )]

=
l∑

i=1

[
∑

t∈Ki\{r̄}
cᾱ
t (v)uβ

t + cᾱ
r̄ (v)(uβ

r̄ − vβ
r̄ )].

Also since t ∈ Ki \ {r̄}, we have cᾱ
t (v) > cᾱ

r̄ (v). By u ∈ D, we know that there must exist
β̄ ∈ {1, 2, · · ·, q} such that uβ̄

t > 0. Hence, we get

l∑

i=1

[
∑

t∈Ki\{r̄}
cᾱ
t (v)uβ̄

t + cᾱ
r̄ (v)(uβ̄

r̄ − vβ̄
r̄ )]

>

l∑

i=1

[cᾱ
r̄ (v)(

∑

t∈Ki

uβ̄
t − vβ̄

r̄ )].

Since v ∈ D, by vr = 0 for any r ∈ Ki, i ∈ I and r 6= r̄, we know
∑

t∈Ki

vβ̄
t =

∑

t∈Ki\{r̄}
vβ̄

t + vβ̄
r̄ = vβ̄

r̄ = dβ̄
i .

Hence, we derive that there exists an ᾱ ∈ {1, 2, · · ·, q} and a β̄ ∈ {1, 2, · · ·, q}such that

l∑

i=1

[
∑

t∈Ki

cᾱ
t (v)(uβ̄

t − vβ̄
t )]

>
l∑

i=1

[cᾱ
r̄ (v)(dβ̄

i − dβ̄
i )]

=0.

Thus, we get
〈c(v), (u− v)T 〉 /∈ −Rq×q

+ , ∀ u ∈ D. (3.3)

We assume that cl(cone(c(v)(D−v)T +Rq×q
+ ))∩(−Rq×q

+ ) 6= {0}. Since 0 ∈ cl(cone(c(v)(D−
v)T +Rq×q

+ ))∩(−Rq×q
+ ), we know that there must exist an x̄ ∈ cl(cone(c(v)(D−v)T +Rq×q

+ ))∩
(−Rq×q

+ ) such that x̄ 6= 0. Obviously, cone(c(v)(D − v)T + Rq×q
+ ) is closed. So, we have

x̄ ∈ cone(c(v)(D− v)T + Rq×q
+ )∩ (−Rq×q

+ ). We set x̄ = λ̃x̃, where x̃ ∈ c(v)(D− v)T + Rq×q
+

and λ̃ > 0 since x̄ 6= 0. Thus, we get λ̃x̃ ∈ −Rq×q
+ . Since −Rq×q

+ is also a cone, we obtain
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x̃ ∈ −Rq×q
+ . Hence, we know that there exists an x̃ ∈ (c(v)(D− v)T + Rq×q

+ )∩ (−Rq×q
+ ) and

x̃ 6= 0. So, there also exist a ũ ∈ D and ã ∈ Rq×q
+ such that x̃ = 〈c(v), (ũ− v)T 〉+ ã. Hence,

〈c(v), (ũ− v)T 〉 = x̃− ã ∈ −Rq×q
+ .

This contradicts (3.3). Therefore,

cl(cone(c(v)(D − v)T + Rq×q
+ )) ∩ (−Rq×q

+ ) = {0}.

The proof is completed.

Theorem 3.7. A vector v ∈ D is a Benson equilibrium pattern flow if v is a solution to
the strong vector variational inequality problem: to find v ∈ D such that

〈c(v), (u− v)T 〉 ∈ Rq×q
+ , ∀ u ∈ D.

Proof. Suppose that v ∈ D is a solution to the strong variational inequality problem. Also,
assume that cl(cone(cKi

(v)+Rq
+− ck(v)))∩−Rq

+ = {0} and cr(v)− ck(v) 6= 0 for any i ∈ I,
k, r ∈ Ki and k 6= r. We want to deduce that vr = 0.

We consider the vector u whose components are such that

ut = {
vt if t 6= r, k
0 if t = r
vr + vk if t = k.

Since v ∈ D, i.e.,
∑

t∈Ki

vj
t = dj

i for any i ∈ I and any j = 1, 2, · · ·, q, we have

∑

t∈Ki

uj
t =

∑

t∈Ki\{r,k}
uj

t + uj
r + uj

k

=
∑

t∈Ki\{r,k}
vj

t + 0 + vj
r + vj

k

=
∑

t∈Ki

vj
t

= dj
i .

So, u ∈ D. By the above proof, we know

〈c(v), (u− v)T 〉

=
m∑

t=1

ct(v)(ut − vt)T

=
∑

t6=r,k

ct(v)(vt − vt)T − cr(v)vT
r + ck(v)vT

r

=(ck(v)− cr(v))vT
r ∈ Rq×q

+ .

If (ck(v)− cr(v))vT
r 6= 0, then for any α, β ∈ {1, 2, · · ·, q}, it holds that

(cα
k (v)− cα

r (v))vβ
r > 0,

where the inequality holds strictly for some α, β ∈ {1, 2, · · ·, q}.
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By vβ
r > 0, we know

(cα
k (v)− cα

r (v)) > 0.

Also, the inequality holds strictly for some α, β ∈ {1, 2, · · ·, q} in the statement above.
That is,

ck(v)− cr(v) ∈ Rq
+ \ {0}.

Hence,
cr(v)− ck(v) ∈ cl(cone(cKi

(v) + Rq
+ − ck(v)))

and
cr(v)− ck(v)) ∈ −Rq

+.

Thus, we derive that there exists cr(v)− ck(v)) 6= 0 such that

cr(v)− ck(v) ∈ cl(cone(cKi
(v) + Rq

+ − ck(v))) ∩ (−Rq
+).

It is a contradiction. So, we obtain (ck(v) − cr(v))vT
r = 0. Since ck(v) − cr(v) 6= 0 when

r 6= k, we deduce that vr = 0, for any r ∈ Ki and k 6= r.
We complete the proof.

4 Benson Efficiency of a Network Equilibrium Model with Multi-
criteria

The study of vector equilibrium models is only recent. It is more reasonable to assume that
no network user will choose a path which incurs both a higher cost as well as a longer delay
than some other path. In other words, a vector equilibrium should be based on the principle
that traffic flow along a path joining an OD pair is positive only if the vector cost of this
path is not dominated by the cost of some other path joining the same OD pair.

Let Z be a Hausdorff topological vector space ordered by a pointed, closed convex cone
S ⊂ Z with nonempty interior int S. For the network G = [N, A, I], if we define the cost
function of product j on an arc a ∈ A as a vector-valued function of the flow v : Cj

a(v) :
Rq×m → Z and Cj

a(v) > 0, then the cost function Cj
k(v) of product j on a path k ∈ Ki, i ∈ I,

is also a vector-valued function, which is defined as above: Cj
k(v) =

∑
a∈k

Cj
a(v). The vector-

valued function Cj(v) = (Cj
k(v) : k ∈ Ki, i ∈ I) ∈ Zm and Ck(v) = (C1

k(v), C2
k(v), · ·

·, Cq
k(v))T ∈ Zq are the cost function of product j in the network and the cost function on

the path k ∈ Ki, i ∈ I, respectively. Then, the vector-valued cost function of the network
is C(v) = (C1(v), C2(v), · · ·, Cq(v))T ∈ Zq×m or C(v) = (Ck(v) : k ∈ Ki, i ∈ I).

In this section we consider Z as a finite-dimensional Euclidean space Rp with the special
ordering cone S = Rp

+, which is more realistic than an abstract topological vector space from
a practical viewpoint. Now we can generalize Wardrop’s equilibrium principle to a network
equilibrium problem with a vector-valued cost function with respect to Benson efficiency.

Definition 4.1. A vector v ∈ D is said to be a Benson equilibrium pattern flow in a network
equilibrium problem with a vector-valued cost function iff

cl(cone(CKi
(v) + Rq×p

+ − Ck(v))) ∩ (−Rq×p
+ ) = {0}

Cr(v)− Ck(v) 6= 0
} ⇒ vr = 0,

for each i ∈ I, k, r ∈ Ki and r 6= k.
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A useful approach to analyzing vector-valued problems is to reduce it to a scalarized
problem. In general, the linear scalarization method appears to be popular. But such kind
of methods rely heavily on some underlying convexity assumptions, which are hardly valid
for many real problems. In our paper, by using Gerstewitz’s function, which was used in
Gerth and Weidner (1990) to establish a useful non-convex separation theorem, we develop
another scalarization method for the vector-valued Wardrop’s network equilibrium problem
without any convexity assumptions.

Definition 4.2. Given a fixed e ∈ int Rp
+, the Gerstewitz’s function ξe : Rp → R is defined

by:
ξe(y) = min{λ ∈ R : y ∈ λe−Rp

+}, ∀ y ∈ Rp.

Obviously, there are some salient properties of this function that we will use later.

Lemma 4.3 (see Chen and Yang (2002)). Let e ∈ int Rp
+. For each η ∈ R and y ∈ Rp,

we have the following results:
(i) ξe (y) < η ⇔ y ∈ ηe− int Rp

+;
(ii) ξe (y) 6 η ⇔ y ∈ ηe−Rp

+;
(iii) ξe (y) > η ⇔ y /∈ ηe− int Rp

+;
(iv) ξe (y) > η ⇔ y /∈ ηe−Rp

+;
(v) ξe (y) = η ⇔ y ∈ ηe− ∂Rp

+, where ∂Rp
+ is the topological boundary of Rp

+.

Lemma 4.4 (see Cheng and Wu (2006)). For an e ∈ int Rp
+ and η ∈ R,

ξe(−ηe) = −ξe(ηe) = −η.

We denote

ξe ◦ Cj
k(v) = ξe(C

j
k(v)) = min{λ ∈ R : Cj

k(v) ∈ λe−Rp
+},

for any v ∈ D, k ∈ Ki, i ∈ I, j = 1, 2, · · ·, q;
ξe ◦ Ck(v) = (ξe ◦ Cj

k(v) : j = 1, 2, · · ·, q)T ∈ Rq;

and
ξe(v) = ξe ◦ C(v) = (ξe ◦ Ck(v) : k ∈ Ki, i ∈ I) ∈ Rq×m.

Definition 4.5. A vector v ∈ D is said to be an ξe-Benson equilibrium pattern flow in a
vector-valued network equilibrium problem if there exists an e ∈ int Rp

+ such that for any
i ∈ I, k ∈ Ki,

cl(cone(ξe ◦ CKi
(v) + Rq

+ − ξe ◦ Ck(v))) ∩ (−Rq
+) = {0}

ξe ◦ Cr(v)− ξe ◦ Ck(v) 6= 0 } ⇒ vr = 0,

for any r ∈ Ki and r 6= k.

We assume that Cj
k(v) : Rq×m → Rp

+ is in the following form:

Cj
k(v) = f j

k(v)k0, ∀ k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}. (4.1)

where f j
k(v) : Rq×m → R+ and k0 ∈ int Rp

+. It is realistic from a practical viewpoint since
the transportation cost function is made up of elementary costs. We see that k0 is a vector
of elementary costs, i.e., it is vector-valued, and each Cj

k(v) is its real-valued multiple, i.e.,
the multiple f j

k(v) is a real-valued function of flow v.
Now we will scalarize the vector-valued network equilibrium problem. It is important to

note that we do not require any convexity assumptions since we use Gerstewitz’s function
in our scalarization method.
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Theorem 4.6. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}. A

vector v ∈ D is a Benson equilibrium pattern flow in a network equilibrium problem with a
vector-valued cost function if and only if v is an ξk0-Benson equilibrium pattern flow.

Proof. Necessity: Let v ∈ D be a Benson equilibrium pattern flow in a network equilibrium
problem with a vector-valued cost function. Next we will prove

cl(cone(ξk0 ◦ CKi
(v) + Rq

+ − ξk0 ◦ Ck(v))) ∩ (−Rq
+) = {0} (4.2)

ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) 6= 0 } ⇒ vr = 0,

for any r ∈ Ki and r 6= k.
First, we prove

cl(cone(ξk0 ◦ CKi
(v) + Rq

+ − ξk0 ◦ Ck(v))) ∩ (−Rq
+) = {0}

ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) 6= 0 }

⇒{ cl(cone(CKi
(v) + Rq×p

+ − Ck(v))) ∩ (−Rq×p
+ ) = {0}

Cr(v)− Ck(v) 6= 0.

By ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) 6= 0, we know that

Cr(v)− Ck(v) 6= 0, for k, r ∈ Ki and r 6= k.

By (3.1), we also know CKi(v) = fKi(v) ◦ k0, where fKi(v) := {fr(v) : r ∈ Ki} and
fr(v) = (f1

r (v), f2
r (v), · · ·, fq

r (v)). From Lemma 4.4, we get

ξk0 ◦ CKi
(v) = {ξk0 ◦ Cr(v) : r ∈ Ki}

= {(ξk0 ◦ C1
r (v), ξk0 ◦ C2

r (v), · · ·, ξk0 ◦ Cq
r (v)) : r ∈ Ki}

= {(f1
r (v), f2

r (v), · · ·, fq
r (v)) : r ∈ Ki}

= fKi(v).

Thus, (4.2) becomes

cl(cone(fKi
(v) + Rq

+ − fk(v))) ∩ (−Rq
+) = {0}.

That is, fk(v) ∈ Benson{fr(v) : r ∈ Ki}. Since Benson{fr(v) : r ∈ Ki} ⊂ Eff{fr(v) :
r ∈ Ki}, we obtain fk(v) ∈ Eff{fr(v) : r ∈ Ki}, i.e.,

fr(v)− fk(v) /∈ −Rq
+ \ {0}, ∀r ∈ Ki. (4.3)

We assume that cl(cone(CKi(v)+Rq×p
+ −Ck(v)))∩(−Rq×p

+ ) 6= {0}. Since 0 ∈ cl(cone(CKi(v)+
Rq×p

+ −Ck(v)))∩(−Rq×p
+ ), there must exist an x̄ ∈ cl(cone(CKi

(v)+Rq×p
+ −Ck(v)))∩(−Rq×p

+ )
such that x̄ 6= 0. Obviously, cone(CKi

(v) + Rq×p
+ − Ck(v)) is closed. So, we have x̄ ∈

cone(CKi
(v)+Rq×p

+ −Ck(v))∩ (−Rq×p
+ ). We set x̄ = λ̃x̃, where x̃ ∈ CKi

(v)+Rq×p
+ −Ck(v)

and λ̃ > 0 since x̄ 6= 0. Thus, we get λ̃x̃ ∈ −Rq×p
+ . Since −Rq×p

+ is also a cone, we obtain
x̃ ∈ −Rq×p

+ . Hence, we know that there exists an x̃ ∈ (CKi
(v) + Rq×p

+ − Ck(v)) ∩ (−Rq×p
+ )

and x̃ 6= 0. So, there also exist a r̃ ∈ Ki and ã ∈ Rq×p
+ such that

x̃ = Cr̃(v) + ã− Ck(v).

Hence,
Cr̃(v)− Ck(v) = x̃− ã ∈ −Rq×p

+ −Rq×p
+ = −Rq×p

+ .
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That is, for any j ∈ {1, 2, · · ·, q},

Cj
r̃ (v)− Cj

k(v)) ∈ −Rp
+.

By Lemma 4.3, we derive that

ξk0(C
j
r̃ (v)− Cj

k(v)) 6 0.

Also by (4.1) and Lemma 4.4, it holds that

f j
r̃ (v)− f j

k(v) 6 0, ∀ j ∈ {1, 2, · · ·, q},

i.e.,
fr̃(v)− fk(v) ∈ −Rq

+.

If fr̃(v)− fk(v) = 0, then we know that Cr̃(v)−Ck(v) = 0. Hence, x̃ = ã. Since x̃ ∈ −Rq×p
+

and ã ∈ Rq×p
+ , we get x̃ = 0. It is a contradiction with x̃ 6= 0. Thus, we have

fr̃(v)− fk(v) ∈ −Rq
+ \ {0}.

This contradicts (4.3). Therefore, we derive that

cl(cone(ξk0 ◦ CKi(v) + Rq
+ − ξk0 ◦ Ck(v))) ∩ (−Rq

+) = {0}
ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) 6= 0 }

⇒{ cl(cone(CKi
(v) + Rq×p

+ − Ck(v))) ∩ (−Rq×p
+ ) = {0}

Cr(v)− Ck(v) 6= 0.

Since v ∈ D is a Benson equilibrium pattern flow, we know

cl(cone(CKi
(v) + Rq×p

+ − Ck(v))) ∩ (−Rq×p
+ ) = {0}

Cr(v)− Ck(v) 6= 0.
} ⇒ vr = 0,

for any r, k ∈ Ki, r 6= k.
Therefore, we have

cl(cone(ξk0 ◦ CKi
(v) + Rq

+ − ξk0 ◦ Ck(v))) ∩ (−Rq
+) = {0}

ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) 6= 0 } ⇒ vr = 0,

for any r, k ∈ Ki, r 6= k.
Sufficiency: Suppose that v is an ξk0-Benson equilibrium pattern flow for a vector-valued

network equilibrium problem. Next, we will prove

cl(cone(CKi(v) + Rq×p
+ − Ck(v))) ∩ (−Rq×p

+ ) = {0} (4.4)
Cr(v)− Ck(v) 6= 0.

}

⇒{ cl(cone(ξk0 ◦ CKi
(v) + Rq

+ − ξk0 ◦ Ck(v))) ∩ (−Rq
+) = {0}

ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) 6= 0.

We assume that cl(cone(ξk0 ◦CKi
(v)+Rq

+−ξk0 ◦Ck(v)))∩(−Rq
+) 6= {0}. Similar to the proof

of ”Necessity”, we obtain that there exists ỹ ∈ (ξk0 ◦ CKi
(v) + Rq

+ − ξk0 ◦ Ck(v)) ∩ (−Rq
+)

such that ỹ 6= 0. Hence, there exist r̃ ∈ Ki and b̃ ∈ Rq
+ such that

ỹ = ξk0 ◦ Cr̃(v) + b̃− ξk0 ◦ Ck(v).
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That is,
ξk0 ◦ Cr̃(v)− ξk0 ◦ Ck(v) = ỹ − b̃ ∈ −Rq

+.

From (4.1) and Lemma 4.4, we have

fr̃(v)− fk(v) ∈ −Rq
+.

Thus, it holds that
Cr̃(v)− Ck(v) ∈ −Rq×p

+ .

If Cr̃(v)−Ck(v) = 0, then we have ỹ = b̃. Since ỹ ∈ −Rq
+ and b̃ ∈ Rq

+, we get ỹ = 0. It is a
contradiction to ỹ 6= 0. So, we derive that there exists a r̃ ∈ Ki such that

Cr̃(v)− Ck(v) ∈ −Rq×p
+ \ {0}.

By (4.4), we know that Ck(v) ∈ Benson{Cr(v) : r ∈ Ki}. Hence, Ck(v) ∈ Eff{Cr(v) :
r ∈ Ki}. That is,

Cr(v)− Ck(v) /∈ −Rq×p
+ \ {0}, ∀ r ∈ Ki.

It is also a contradiction. Therefore, we get cl(cone(ξk0◦CKi
(v)+Rq

+−ξk0◦Ck(v)))∩(−Rq
+) =

{0}. It is easy to see that ξk0 ◦Cr(v)− ξk0 ◦Ck(v) 6= 0 by Cr(v)−Ck(v) 6= 0. Thus, by the
definition of ξk0-Benson equilibrium pattern flow, we obtain

cl(cone(CKi(v) + Rq×p
+ − Ck(v))) ∩ (−Rq×p

+ ) = {0}
Cr(v)− Ck(v) 6= 0

} ⇒ vr = 0,

for any r, k ∈ Ki, r 6= k.
That is, v ∈ D is a Benson equilibrium pattern flow.

Combining Theorem 3.6 and Theorem 4.6, we obtain the following corollary.

Corollary 4.7. Let Cj
k(v) be defined as (4.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}. If

a vector v ∈ D is a Benson equilibrium pattern flow in a network equilibrium problem with
a vector-valued cost function, then v is a Benson efficient solution to the vector variational
inequality: to find v ∈ D such that

cl(cone(ξk0(v)(D − v)T + Rq×q
+ )) ∩ (−Rq×q

+ ) = {0}.

Corollary 4.8. Let Cj
k(v) be defined as (4.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

A vector v ∈ D is a Benson equilibrium pattern flow in a network equilibrium problem
with a vector-valued cost function if v is an efficient solution to a strong vector variational
inequality: to find v ∈ D such that

〈ξk0(v), (u− v)T 〉 ∈ Rq×q
+ , ∀ u ∈ D.

We know that the Gerstewitz’s function is difficult to compute. So the best way to
proceed is to convert the Benson efficient solution to the variational inequality to the vector
form: to find v ∈ D such that

cl(cone(C(v)(D − v)T + (Rp
+)q×q)) ∩ −(Rp

+)q×q = {0}.

Now we prove the equivalent relation.
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Theorem 4.9. Let Cj
k(v) be defined as (4.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

v ∈ D is a Benson efficient solution to the vector variational inequality (SVI): finding v ∈ D
such that

cl(cone(ξk0(v)(D − v)T + Rq×q
+ )) ∩ −(Rq×q

+ ) = {0}
if and only if v is also a Benson efficient solution to another vector variational inequality
(VVI): finding v ∈ D such that

cl(cone(C(v)(D − v)T + (Rp
+)q×q)) ∩ −(Rp

+)q×q = {0}.
Proof. Necessity: We assume that

cl(cone(C(v)(D − v)T + (Rp
+)q×q)) ∩ −(Rp

+)q×q 6= {0}.
Since 0 ∈ cl(cone(C(v)(D − v)T + (Rp

+)q×q)) ∩ −(Rp
+)q×q, there must exist a z̄ ∈

cl(cone(C(v)(D − v)T + (Rp
+)q×q)) ∩ −(Rp

+)q×q such that z̄ 6= 0. Similar to the proof of
”Necessity” in Theorem 4.6, there exists an z̃ ∈ (C(v)(D−v)T +(Rp

+)q×q)∩−(Rp
+)q×q such

that z̃ 6= 0. Hence, there exist ũ ∈ D and c̃ ∈ (Rp
+)q×q such that

z̃ = C(v)(ũ− v)T + c̃.

That is,
C(v)(ũ− v)T = z̃ − c̃ ∈ −(Rp

+)q×q. (4.5)
We know that

C(v)(ũ− v)T

=
l∑

i=1

[
∑

t∈Ki

Ct(v)(ũt − vt)T ]

and it is a q× q matrix whose components are
l∑

i=1

[
∑

t∈Ki

Cα
t (v)(ũβ

t − vβ
t )] ∈ Rp, where α, β ∈

{1, 2, · · ·, q}. Hence, we get for any α, β ∈ {1, 2, · · ·, q},
l∑

i=1

[
∑

t∈Ki

Cα
t (v)(ũβ

t − vβ
t )] ∈ −Rp

+.

By Lemma 4.3, we have

ξk0(
l∑

i=1

[
∑

t∈Ki

Cα
t (v)(ũβ

t − vβ
t )]) 6 0.

From (4.1) and Lemma 4.4, we obtain

ξk0(
l∑

i=1

[
∑

t∈Ki

Cα
t (v)(ũβ

t − vβ
t )])

=ξk0(
l∑

i=1

[
∑

t∈Ki

fα
t (v)(ũβ

t − vβ
t ))] · k0)

=
l∑

i=1

[
∑

t∈Ki

fα
t (v)(ũβ

t − vβ
t )]

=
l∑

i=1

[
∑

t∈Ki

ξk0(C
α
t (v))(ũβ

t − vβ
t )] 6 0.
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Obviously,
l∑

i=1

[
∑

t∈Ki

ξk0(C
α
t (v))(ũβ

t −vβ
t )] is the component of the matrix

l∑
i=1

[
∑

t∈Ki

ξk0(Ct(v))(ũt−

vt)T ]. Since ξk0(v)(ũ− v)T =
l∑

i=1

[
∑

t∈Ki

ξk0(Ct(v))(ũt − vt)T ], we get

ξk0(v)(ũ− v)T ∈ −Rq×q
+ .

Also, we know that
ξk0(v)(ũ− v)T ∈ ξk0(v)(D − v)T + Rq×q

+ .

Hence,
ξk0(v)(ũ− v)T ∈ cl(cone(ξk0(v)(D − v)T + Rq×q

+ )) ∩ (−Rq×q
+ ).

Since v ∈ D is a Benson efficient solution to (SVI), we know that ξk0(v)(ũ − v)T = 0. By
(4.1) and Lemma 4.4, we have

ξk0(v)(ũ− v)T

=ξk0(f(v)k0)(ũ− v)T

=f(v)(ũ− v)T

=0.

Thus,

C(v)(ũ− v)T

=f(v)k0(ũ− v)T

=0.

By (4.5), we get z̃ = c̃. Since z̃ ∈ −(Rp
+)q×q and c̃ ∈ (Rp

+)q×q, we have z̃ = 0. It is a
contradiction to z̃ 6= 0. Hence,

cl(cone(C(v)(D − v)T + (Rp
+)q×q)) ∩ −(Rp

+)q×q = {0}.
Sufficiency: Since the proof is similar to the ”Necessity”, we omit it for the sake of concise-
ness.

In Cheng and Wu (2006), the following theorem was proved.

Theorem 4.10. Let Cj
k(v) be defined as (4.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

v ∈ D is an efficient solution to the strong vector variational inequality (SVI): finding v ∈ D
such that

〈ξk0(v), (u− v)T 〉 ∈ Rq×q
+ , ∀ u ∈ D,

if and only if v is also an efficient solution to the strong vector variational inequality (VVI):

〈C(v), (u− v)T 〉 ∈ (Rp
+)q×q, ∀ u ∈ D.

Combining with Corollary 4.7, Corollary 4.8, Theorem 4.9 and Theorem 4.10, we have
derived the following Theorem 4.11 and Theorem 4.12.

Theorem 4.11. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}. If

a vector v ∈ D is a Benson equilibrium pattern flow in a network equilibrium problem with
a vector-valued cost function, then v is a Benson efficient solution to the vector variational
inequality: to find v ∈ D such that

cl(cone(C(v)(D − v)T + (Rp
+)q×q)) ∩ −(Rp

+)q×q = {0}.
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Theorem 4.12. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

A vector v ∈ D is a Benson equilibrium pattern flow in a network equilibrium problem with
a vector-valued cost function if v is an efficient solution to the strong vector variational
inequality: to find v ∈ D such that

〈C(v), (u− v)T 〉 ∈ (Rp
+)q×q, ∀ u ∈ D.

5 Conclusions

Based on Wardrop’s equilibrium principle, we considered Benson efficiency of a scalar and a
vector multi-product network equilibrium model. We established a sufficient and a necessary
condition for a Benson equilibrium pattern flow for multi-product network equilibrium mod-
els in terms of vector variational inequalities when the cost function is defined in a certain
form. We have not been able to derive a condition that is both necessary and sufficient. It
is worth noting that there exists no such result in the literature. That is, the question of a
solution to what kind of vector variation inequalities is also a Benson equilibrium pattern
flow for multi-product network equilibrium models is yet to be answered.
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