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1 Introduction

We consider the following multiobjective generalized fractional programming problem

(FVP)





min E(x) = (E1(x), · · · , Ep(x))T ,
s.t. g(x) = (g1(x), · · · , gr(x))T ≤ 0,

x ∈ X,

where

Ei(x) = max
y∈Y

fi(x, y) + Φi(x)
hi(x, y)−Ψi(x)

, i = 1, · · · , p.

In addition
(a) X is a nonempty convex subset of Rn and Y is a compact subset of Rm ,
(b) fi(x, y) : X × Y −→ R, hi(x, y) : X × Y −→ R, g : Rn → Rr is continuously

differentiable,
(c)5xfi(x, y) and −5xhi(x, y) exist and continuous with respect to (x, y), i = 1, · · · , p,
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(d) fi(x, y) and −hi(x, y) are upper semicontinuous functions with respect to y on Y ,
i = 1, · · · , p,

(e) Φi(x),Ψi(x) : Rn −→ R ( i = 1, · · · , p ) are convex functions on X,
(f) fi(x, y) + Φi(x) ≥ 0, hi(x, y)−Ψi(x) > 0,∀(x, y) ∈ Rn × Y , i = 1, . . . , p.

Since Schmitendorf [1] introduced necessary and sufficient optimality conditions for gen-
eralized minimax programming, much attention has been paid to optimality conditions and
duality theorems for generalized minimax programming problems, for example, see [1− 9].
Yadav and Mukherjee [2] employed the optimality conditions of [1] to construct two kinds
of dual problems and they derived duality theorems for convex differentiable minimax frac-
tional programming problem, in other words p = 1,Φ1(x) = Ψ1(x) = 0 in (FVP). In [3],
Chandra and Kumar pointed out that the formulation of [2] has some omissions and incon-
sistencies, and they constructed two modified dual problems and prove duality theorems.
Later on, Liu and Wu [4, 5], Liang and Shi [6] and Yang and Hou [7] relaxed the convexity
assumption in the sufficient optimality conditions in [3], and they employed the optimality
conditions to construct dual problems, and they established duality theorems. In a recent
paper, Yuan and Liu [9] presented (C,α, ρ, d)− convex function, which extend these gen-
eralized convexity assumptions given in [4 − 6], and they derived sufficient conditions and
constructed dual problems, and derived duality theorems.

In this paper, we will derive optimality conditions for (FVP), and apply the optimality
conditions to construct dual problem, and establish the duality theorems. Some definitions
and notations are given in Section 2. In Section 3, we derive Kuhn-Tucker type necessary
condition for a weakly efficient solution of (FVP) under a kind of generalized Abadie Con-
straint Qualification. And then the sufficient condition for a weakly efficient solution is
given under the assumption of (C, α, ρ, d)− convexity. When the optimality conditions are
utilized, a kind of dual problems may be formulated and duality results are presented in
Section 4.

2 Preliminaries

Throughout this paper, we let S = {x ∈ X : g(x) ≤ 0} be the set of feasible solutions of
problem (FVP). For each x ∈ S, we define

I(x) = {i : gi(x) = 0, i = 1, · · · ,m};
Z(x) = {z ∈ Rn : ∇gT

i (x)(z − x) ≤ 0, i ∈ I(x)};
Yi(x) = {y ∈ Y :

fi(x, y) + Φi(x)
hi(x, y)−Ψi(x)

= max
z∈Y

fi(x, z) + Φi(x)
hi(x, z)−Ψi(x)

}, i = 1, · · · , p ;

K(x) = {(s, t, ȳ) ∈ N ×Rs×p ×Rp×m×s : 1 ≤ s ≤ n + 1, t = (t1, · · · , tp),

ti = (ti1, · · · , tis)
T ≥ 0,

s∑

l=1

til = 1, ȳ = (y1, · · · , yp)T , yi = (yi
1, · · · , yi

s),

yi
l ∈ Yi(x), l = 1, · · · , s, i = 1, · · · , p}.

In addition, we let

Λ+ = {λ ∈ Rp : λi ≥ 0, i = 1, · · · , p,

p∑

i=1

λi = 1}.

In order to establish the necessary condition in section 3, we recall these following
results.
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Lemma 2.1 ([10]). Let A ⊂ Rn be a nonempty convex compact set, C ⊂ Rn be a convex
set, If for any d ∈ C, there exists ξd ∈ A such that ξT

d d ≥ 0, then there exists ξ ∈ A, such
that ξT d ≥ 0, ∀d ∈ C.

Lemma 2.2 ([11]). Let Y ⊂ Rm be a nonempty compact set, f(x, y) : Rn × Y −→ R,
∇xf(x, y) exists and be a continuous function with respect to (x, y), if let r(x) = max

y∈Y
f(x, y),

then
∂r(x) = co

{∇xf(x, y) : y ∈ M(x) = {y ∈ Y : f(x, y) = r(x)}}.

Lemma 2.3 ([12]). Let Ai ⊂ Rn, i = 1, · · · ,m be convex sets, then

co{A1 ∪A2 ∪ · · · ∪Am} = {
m∑

i=̆1

λiξi : ξi ∈ Ai, λi ≥ 0, i = 1, · · · ,m,
m∑

i=1

λi = 1}.

Definition 2.4 ([9]). A functional C : X ×X ×Rn −→ R is convex on Rn with respect to
the third argument if for any fixed (x, x0) ∈ X ×X, the inequality C(x,x0)(λα1+(1−λ)α2) ≤
λC(x,x0)(α1) + (1− λ)C(x,x0)(α2), ∀λ ∈ (0, 1) holds for all α1, α2 ∈ Rn.

Remark 2.5. By the definition, we have that for any fixed (x, x0) ∈ X ×X, if λi ∈
(0, 1), αi ∈ Rn, i = 1, · · · , n, and

n∑
i=1

λi = 1, then

C(x,x0)(λ1α1 + λ2α2 + · · ·+ λnαn) ≤ λ1C(x,x0)(α1) + λ2C(x,x0)(α2) + · · ·+ λnC(x,x0)(αn).

Throughout this paper, we assume that C(x,x0)(0) = 0, ∀(x, x0) ∈ X ×X, and for any
fixed x̄ ∈ S, we have NX(x̄) ⊂ {ε ∈ Rn : C(x,x̄)(ε) ≤ 0, ∀x ∈ X}. Where, NX(x̄) is the
normal cone of the convex set X at x̄.

Now, we introduce a generalized convexity based on the convex functional C(x,x0) as
follows.

We let f : X → R be a locally Lipschitzian function, α : X ×X → R+ \ {0}, ρ ∈ R, d :
X ×X → R+ be a function with the property that d(x, x0) = 0 ⇐⇒ x = x0.

Definition 2.6 ([9]). f is said to be (C, α, ρ, d)−convex at x∗ ∈ X, if there exist C,α, d
and ρ ∈ R, such that for any x ∈ X and ξ ∈ ∂f(x∗), the following inequality holds:

f(x)− f(x∗)
α(x, x∗)

≥ C(x,x∗)(ξ) + ρ
d(x, x∗)
α(x, x∗)

. (2.1)

Particularly, f is said to be a strictly (C, α, ρ, d)− convex at x∗ ∈ X, if the inequality (2.1)
is a strictly inequality when x 6= x∗.

Definition 2.7. x̄ ∈ S is said to be a weakly efficient solution of (FVP), if there is no
other x ∈ S such that E(x) < E(x̄).

Definition 2.8 ([13]). The function g satisfy generalized Abadie Constraint Qualification
(EACQ) at x∗ ∈ S, if

(Z(x∗) ∩ riX)− {x∗} ⊂ T (S, x∗).

Where, riX is the relative interior of X, in other words, riX = {x ∈ affX : ∃ε > 0, (x +
εB) ∩ (affX) ⊂ X}. B is the Euclidean closed units ball in Rn.
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Remark 2.9. We know that, the relation T (S, x∗) ⊂ Z(x∗) − {x∗} always hold. But the
relation T (S, x∗) ⊂ (Z(x∗)∩ riX)− {x∗} can not always hold. Now, we give an example to
show it.

Example 2.10. Consider the following problem (P1)




min x + 2|x|,
s.t. x3 ≤ 0,

x ∈ X = (−∞, 0].

Obviously, x∗ = 0 is an optimal solution of (P1). Let the set of feasible solution of (P1)
be S, then S = X. On the other hand Z(x∗) = R, riX = (−∞, 0), and T (S, x∗) = (−∞, 0],
so the relation T (S, x∗) ⊂ (Z(x∗) ∩ riX)− {x∗} can not hold.

3 Optimality Conditions

In this section, we derive necessary condition for weakly efficient solution of problem (FVP),
under the assumption of EACQ , and sufficient condition for weakly efficient solution is
given under the assumption of generalized convexity.

First, we introduce the following auxiliary programming problem:

(FVP)e min
x∈S

Ω(x, e) = (Ω1(x, e1), · · · ,Ωp(x, ep))T ,

where, e = (e1, · · · , ep)T ∈ RP , Ωi(x, ei) = max
y∈Y

{fi(x, y)+Φi(x)− ei(hi(x, y)−Ψi(x))}, i =

1, · · · , p.
It is easy to prove the following Lemma.

Lemma 3.1. x̄ is a weakly efficient solution of (FVP) if and only if x̄ is a weakly efficient
solution of (FVP)ē, where ē = E(x̄).

Theorem 3.2. Let x̄ be a weakly efficient solution of (FVP), g satisfies EACQ at x̄. If

riX ∩ Z(x∗) 6= ∅,

then there exist (s, t, y) ∈ K(x̄), λ ∈ Λ+, ū ∈ Rr
+, and ē ∈ Rp

+ such that

0 ∈
p∑

i=1

λi{
s∑

l=1

til{∇xfi(x̄, yi
l)− ēi∇xhi(x̄, yi

l)}+ ∂Φi(x̄) + ēi∂Ψi(x̄)}

+
r∑

j=1

ūj∇gj(x̄) + NX(x̄); (3.1)

fi(x̄, yi
l)− ēihi(x̄, yi

l) + Φi(x̄) + ēiΨi(x̄) = 0, i = 1, · · · , p, l = 1, · · · , s; (3.2)
r∑

j=1

ūjgj(x̄) = 0; (3.3)

s∑

l=1

til = 1, til ≥ 0, i = 1, · · · , p, l = 1, · · · , s. (3.4)
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Proof. First, we prove the system
{

ξT
i (x− x̄) < 0, ∀ξi ∈ ∂Ωi(x̄, ēi), i = 1, · · · , p ,
∇gT

j (x̄)(x− x̄) ≤ 0, j ∈ I(x̄),

has no solution x ∈ riX. Suppose to the contrary that this system has solutions. Observe
by the definition of Z(x̄) that there exists x ∈ riX ∩ Z(x̄) such that

ξT
i (x− x̄) < 0, ∀ξi ∈ ∂Ωi(x̄, ēi), i = 1, · · · , p.

Hence, Ω0
i (x̄, ēi;x−x̄) < 0, i = 1, · · · , p, where Ω0

i (x̄, ēi;x−x̄) are the generalized directional
derivatives. For each i ∈ {1, · · · , p}, similar to the proof of theorem 1 in [8], we can obtain
that there exists a sequence {xk} ⊂ S, such that Ωi(xk, ēi) < Ωi(x̄, ēi), when k is large
enough. Obviously, this is a contradiction to the assumption that x̄ is a weakly efficient
solution of (FVP). This contradiction implies that the following system

ξT
i (x− x̄) < 0, ∀ξi ∈ ∂Ωi(x̄, ēi), i = 1, · · · , p,

has no solution x ∈ riX ∩ Z(x̄). So for each x ∈ riX ∩ Z(x̄), there exist i ∈ {1, · · · , p} and
ξ̄i ∈ ∂Ωi(x̄, ēi), such that ξ̄i

T (x − x̄) ≥ 0. If we let λ̄i = 1, λ̄j = 0 (j 6= i, j ∈ {1, · · · , p}),
then for each x ∈ riX ∩ Z(x̄) , there exist λ̄ ∈ Λ+ and ξ̄x = ξ̄i =

p∑
i=1

λ̄iξ̄i ( where ξ̄i ∈
∂Ωi(x̄, ēi), i = 1, · · · , p ), such that

ξ̄ T
x (x− x̄) = (

p∑

i=1

λ̄iξ̄i) T (x− x̄) = ξ̄ T
i (x− x̄) ≥ 0.

Let Ai = ∂Ωi(x̄, ēi), i = 1, · · · , p, A = co{A1 ∪ · · · ∪ Ap}. Obviously, A is a nonempty
convex compact set. By lemma 2.3, we have ξ̄x ∈ A. So we have, for all x ∈ riX ∩ Z(x̄),
there exists ξ̄x ∈ A such that ξ̄ T

x (x− x̄) ≥ 0. On the other hand , riX ∩Z(x̄) is a nonempty
convex set. By lemma 2.1, there exists ξ̄ ∈ A, such that

ξ̄ T (x− x̄) ≥ 0, ∀x ∈ riX ∩ Z(x̄).

Combining this with the definition of A and lemma 2.3, we have, there exist ξi ∈ ∂Ωi(x̄, ēi),

i = 1, · · · , p and λ ∈ Λ+, such that ξ̄ =
p∑

i=1

λiξi. So the following system





(
p∑

i=1

λiξi)T (x− x̄) < 0,

∇gT
j (x̄)(x− x̄) ≤ 0, j ∈ I(x̄),

has no solution x ∈ riX.
By the alternative theorem [14], there exists ū ∈ Rr

+, such that
r∑

j=1

ūjgj(x̄) = 0,

0 ∈
p∑

i=1

λiξi +
r∑

j=1

ūj∇gj(x̄) + NX(x̄). (3.5)

For each i ∈ {1, · · · , p}, we calculate ∂Ωi(x̄, ēi), we have

∂Ωi(x̄, ēi) =
∑

l∈Ji0(x̄)

til{∇xfi(x̄, yi
l)− ēi∇xhi(x̄, yi

l)}+ ∂Φi(x̄) + ēi∂Ψi(x̄),
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where Ji0(x̄) is some finite subset of index sets Ji(x̄) = {l : yi
l ∈ Yi(x̄)}, til ≥ 0, l ∈ Ji0(x̄),

and
∑

l∈Ji0(x̄)

til = 1. By the Caratheodory theorem, we have, there exists s ∈ N, 1 ≤ s ≤ n+1,

such that

∂Ωi(x̄, ēi) =
s∑

l=1

til{∇xfi(x̄, yi
l)− ēi∇xhi(x̄, yi

l)}+ ∂Φi(x̄) + ēi∂Ψi(x̄).

Combining this with (3.5), we obtain (3.1). The proof is completed.

Remark 3.3. Suppose now that the set X in problem (FVP) is open (not necessary convex),
then NX(x̄) = {0}. Choose an open ball X1 included in X , with center x̄, then X1 is a
convex open set, and Z(x̄)∩riX1 = Z(x̄)∩intX1 6= ∅. Replacing X by X1 in problem (FVP)
to get a new problem, denoted by (FVP1), that x̄ is a weakly efficient solution implies that
it also a weakly efficient solution of (FVP1).We see that, via writing a theorem for (FVP1)
similar to Theorem 3.2, NX(x̄) in (3.1) is vanish, and the constraint qualification extend
these following constraint qualifications: Abadie Constraint Qualification, the two kinds of
constraint qualifications in [15], which are weaker than Kuhn-Tucker and Arrow-Hurwicz-
Uzawa Constraint Qualifications, respectively. So Theorem 3.2 derive the Kuhn-Tucker type
of necessary condition for weakly efficient solution of multiobjective generalized fractional
programming problem (FVP), under the more weaker constraint qualification. This result
extend the optimality necessary conditions in [8].

Now, we derive the sufficient condition for weakly efficient solution of (FVP), under the
assumption of (C, α, ρ, d)−convexity.

Theorem 3.4. Let x̄ ∈ S, and there exist (s, t, y) ∈ K(x̄), λ ∈ Λ+, u ∈ Rr
+, e ∈ Rp

+ and K >
0 to satisfy the relations (3.1) − (3.4), If the following conditions hold: fi(x, yi

l) + Φi(x)
are (C, α, ρi

l, d
i
l)−convex and −hi(x, yi

l)+Ψi(x) are (C, α, ρ̄i
l, d̄

i
l)−convex for l = 1, · · · , s, i =

1, · · · , p at x̄, gj(x) are (C, βj , εj , cj)−convex for j = 1, · · · , r at x̄, and

p∑
i=1

λi

s∑
l=1

til{ρi
ld

i
l + eiρ̄

i
l d̄

i
l}

α(x, x̄)
+

r∑

j=1

ujεjcj

βj(x, x̄)
≥ 0, (3.6)

then x̄ is a weakly efficient solution of (FVP).

Proof. Suppose on the contrary that x̄ is not a weakly efficient solution for (FVP), then
there exists x ∈ S such that E(x) < E(x̄) = e. By λ ∈ Λ+, we have

p∑

i=1

λi

s∑

l=1

til{fi(x, yi
l) + Φi(x)− eihi(x, yi

l) + eiΨi(x)} < 0 =

p∑

i=1

λi

s∑

l=1

til{fi(x̄, yi
l) + Φi(x̄)− eihi(x̄, yi

l) + eiΨi(x̄)}.



OPTIMALTY CONDITIONS AND DUALITY IN MGFP 409

Using the feasibility x ∈ S for (FVP), and inequality (3.3), we have
p∑

i=1

λi

s∑
l=1

til{fi(x, yi
l) + Φi(x)− eihi(x, yi

l) + eiΨi(x)}
α(x, x̄)

−
p∑

i=1

λi

s∑
l=1

til{fi(x̄, yi
l) + Φi(x̄)− eihi(x̄, yi

l) + eiΨi(x̄)}
α(x, x̄)

+

r∑

j=1

uj(gj(x)− gj(x̄))
βj(x, x̄)

< 0. (3.7)

On the other hand, by the generalized convexity assumptions, we have

fi(x, yi
l) + Φi(x)− fi(x̄, yi

l)− Φi(x̄)
α(x, x̄)

≥ C(x,x̄)(ξi
l ) +

ρi
ld

i
l(x, x̄)

α(x, x̄)
,

−hi(x, yi
l) + Ψi(x) + hi(x̄, yi

l)−Ψi(x̄)
α(x, x̄)

≥ C(x,x̄)(ηi
l) +

ρ̄i
l d̄

i
l(x, x̄)

α(x, x̄)
,

gj(x)− gj(x̄)
βj(x, x̄)

≥ C(x,x̄)(∇gj(x̄)) +
εjγj(x, x̄)
βj(x, x̄)

.

∀ξi
l ∈ ∇xfi(x̄, yi

l) + ∂Φi(x̄), ∀ηi
l ∈ −∇xhi(x̄, yi

l) + ∂Ψi(x̄),
l = 1, · · · , s, i = 1, · · · , p, j = 1, · · · , r.

Combining this with (3.7), we obtain
p∑

i=1

λi

s∑

l=1

tilC(x,x̄)(ξi
l ) +

p∑

i=1

λi

s∑

l=1

tileiC(x,x̄)(ηi
l) +

r∑

j=1

ujC(x,x̄)(∇gj(x̄)) +

p∑
i=1

λi

s∑
l=1

til{ρi
ld

i
l + eiρ̄

i
l d̄

i
l}

α(x, x̄)
+

r∑

j=1

ujεjγj

βj(x, x̄)
< 0

From the relation (3.6) and convex functional C satisfies C(x,x̄)(η) ≤ 0, ∀η ∈ NX(x̄), we
have

p∑

i=1

λi

s∑

l=1

tilC(x,x̄)(ξi
l ) +

p∑

i=1

λi

s∑

l=1

tileiC(x,x̄)(ηi
l) +

r∑

j=1

ujC(x,x̄)(∇gj(x̄)) + C(x,x̄)(η) < 0.

By using Remark 2.5, we obtain

C(x,x̄)(
1
τ

(
p∑

i=1

λi

s∑

l=1

til(ξ
i
l + eiη

i
l) +

r∑

j=1

uj∇gj(x̄) + η)) < 0,

where, τ =
p∑

i=1

λi

s∑
l=1

til +
p∑

i=1

λi

s∑
l=1

tilei +
r∑

j=1

uj + 1 = 1 +
p∑

i=1

λiei +
r∑

j=1

uj + 1. Obviously, it

contradicts the relation (3.1). Hence the proof is completed.

From Lemma 3.1, we only study the duality of (FVP)e for some e ∈ Rn
+. For e ∈ Rn

+,
we consider the following auxiliary problem:

(FMD)e max
(s,t,y)∈K(z)

max
(z,λ,u)∈H(s,t,y)

(Ω1(z, e1) +
m∑

j=1

ujgj(z), · · · ,Ωp(z, ep) +
m∑

j=1

ujgj(z))T ,
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where
H(s, t, y) =

{
(z, λ, u) ∈ Rn ×Rp ×Rr :

0 ∈
p∑

i=1

λi

s∑

l=1

til{∇xfi(z, yi
l) + ∂Φi(z)− ei(∇xhi(z, yi

l)− ∂Ψi(z))}

+
r∑

j=1

uj∇gj(z) + NX(z);

λ ∈ Λ+, u ≥ 0
}
.

Theorem 3.5 (Weak duality). Let (z, λ, u, s, t, y) and x̄ be feasible solutions of (FMD)e

and (FVP)e (e = E(z)), respectively. If the following generalized convexity assumptions at
z hold:
fi(x, yi

l) + Φi(x) are (C, α, ρi
l, d

i
l)−convex, −hi(x, yi

l) + Ψi(x) are (C, α, ρ̄i
l, d̄

i
l)−convex for

l = 1, · · · , s, i = 1, · · · , p at z, gj(x) are (C, α, εj , cj)−convex for j = 1, · · · , r at z, and

p∑

i=1

λi

s∑

l=1

til{ρi
ld

i
l(x̄, z) + eiρ̄

i
l d̄

i
l(x̄, z)}+

r∑

j=1

ujεjcj(x̄, z) ≥ 0,

then the following inequalities can not simultaneously hold :

Ωi(x̄, ei) < Ωi(z, ei) +
m∑

j=1

ujgj(z), i = 1, · · · , p.

Proof. Suppose on the contrary that

Ωi(x̄, ei) < Ωi(z, ei) +
r∑

j=1

ujgj(z), i = 1, · · · , p.

From λ ∈ Λ+ and x̄ ∈ S, we have
p∑

i=1

λiΩi(x̄, ei) +
r∑

j=1

ujgj(x̄) <

p∑

i=1

λiΩi(z, ei) +
r∑

j=1

ujgj(z).

Hence, we obtain
p∑

i=1

λi

s∑

l=1

til{fi(x̄, yi
l) + Φi(x̄)− eihi(x̄, yi

l) + eiΨi(x̄)}+
m∑

j=1

ujgj(x̄) <

p∑

i=1

λi

s∑

l=1

til{fi(z, yi
l) + Φi(z)− eihi(z, yi

l) + eiΨi(z)}+
m∑

j=1

ujgj(z).

By using the generalized convexity assumptions, similar to the proof of Theorem 3.4, we can
complete the proof.

Theorem 3.6 (Strong duality). Assume that x̄ is a weakly efficient solution of (FVP)ē

(ē = E(x̄)). (FVP)ē satisfies EACQ at x̄, and riX ∩ Z(x̄) 6= ∅, then there exist λ̄ ∈
Rp, ū ∈ Rr, and (s̄, t̄, ȳ) ∈ K(x̄), such that (x̄, λ̄, ū, s̄, t̄, ȳ) is a feasible solution of (FMD)ē.
In addition, if for any feasible solution (z, λ, u, s, t, y) of (FMD)ē, the generalized convex-
ity assumptions of Theorem 3.5 holds, then (x̄, λ̄, ū, s̄, t̄, ȳ) is a weakly efficient solution
of (FMD)ē.
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Proof. From the assumptions, x̄ is a weakly efficient solution of (FVP), and (FVP) satis-
fies EACQ at x̄. By using Theorem 3.2, there exist λ̄ ∈ Rp, ū ∈ Rr, and (s̄, t̄, ȳ) ∈ K(x̄)
such that (x̄, λ̄, ū, s̄, t̄, ȳ) is a feasible solution of (FMD)ē . In addition, for any feasi-
ble solution (z, λ, u, s, t, y), the generalized convexity assumptions of Theorem 3.5 hold,
then (x̄, λ̄, ū, s̄, t̄, ȳ) is a weakly efficient solution of (FMD)ē. Otherwise, there exists a fea-
sible solution (z, λ, u, s, t, y) of (FMD)ē such that

Ωi(x̄, ēi) +
r∑

j=1

ūjgj(x̄) < Ωi(z, ēi) +
r∑

j=1

ujgj(z), i = 1, · · · , p.

By using Theorem 3.2, we have
r∑

j=1

ūjgj(x̄) = 0. From x̄ ∈ S, we have

Ωi(x̄, ēi) +
r∑

j=1

ujgj(x̄) < Ωi(z, ēi) +
r∑

j=1

ujgj(z), i = 1, · · · , p.

By (s, t, y) ∈ K(z), we obtain

p∑

i=1

λi

s∑

l=1

til(fi(x̄, yi
l) + Φi(x̄)− ēi(hi(x̄, yi

l)−Ψi(x̄))) +
r∑

j=1

ujgj(x̄) <

p∑

i=1

λi

s∑

l=1

til(fi(z, yi
l) + Φi(z)− ēi(hi(z, yi

l)−Ψi(z))) +
r∑

j=1

ujgj(z)

By using the generalized convexity assumptions, similar to the proof of Theorem 3.5, we can
completed the proof.

Theorem 3.7 (Converse duality). Let (z, λ, u, s, t, y) be a feasible solution of (FMD)e

(e = E(z)), and there exists x̄ ∈ S, such that

p∑

i=1

λi

s∑

l=1

til{fi(x̄, yi
l) + Φi(x̄)− ei(hi(x̄, yi

l)−Ψi(x̄))} ≤
r∑

j=1

ujgj(z). (3.8)

If the following generalized convexity assumptions hold: fi(x, yi
l)+Φi(x) are strictly (C, α, ρi

l,
di

l)−convex at z, −hi(x, yi
l) + Ψi(x) are (C, α, ρ̄i

l, d̄
i
l)−convex at z, for l = 1, · · · , s, i =

1, · · · , p, gj(x) are (C, α, εj , cj)− convex at z for j = 1, · · · , r, and

p∑

i=1

λi

s∑

l=1

til{ρi
ld

i
l(x̄, z) + eiρ̄

i
l d̄

i
l(x̄, z)}+

r∑

j=1

ujεjcj(x̄, z) ≥ 0.

Then x̄ = z, and x̄ is a weakly efficient solution of (FVP)e.

Proof. We first prove x̄ = z. Suppose on the contrary that x̄ 6= z. By x̄ ∈ S, e = E(z) and
relation (4.1), we have

p∑

i=1

λi

s∑

l=1

til{fi(x̄, yi
l) + Φi(x̄)− ei(hi(x̄, yi

l)−Ψi(x̄))}+
r∑

j=1

ujgj(x̄) ≤

p∑

i=1

λi

s∑

l=1

til{fi(z, yi
l) + Φi(z)− ei(hi(z, yi

l)−Ψi(z))}+
r∑

j=1

ujgj(z).
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By using the generalized convexity assumptions and x̄ 6= z, similar to the proof of Theorem
3.4, we have a contradiction. So x̄ = z.

Now, we prove x̄ is a weakly efficient solution of (FVP)e. If x̄ is not a weakly efficient
solution , then there exists x ∈ S, x 6= x̄ such that Ω(x, e) < Ω(x̄, e) = Ω(z, e). On the

other hand, relation (4.1) implies
r∑

j=1

ujgj(z) ≥ 0, when x̄ = z. Hence Ω(x, e) < Ω(z, e) +

r∑
j=1

ujgj(z). From x 6= z, and the generalized convexity assumptions, similar to the proof

Theorem 3.5, we can complete the proof.
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