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1 Introduction

In bilevel optimization one investigates two coupled optimization problems. The problem
on the lower level is a parametric optimization problem with a solution set used for the
definition of the feasible set of the problem on the upper level (for details see [1], [7], [8]).
With bilevel optimization problems certain leader-follower optimization problems can be
formulated. Bilevel optimization has important applications (see [1], [7], [8]); among others,
Stackelberg games (see [23]) are a special case of these bilevel problems. Using the so-called
optimistic approach bilevel problems can be simplified because the problem on the upper
level considers only optimal solutions of the problem on the lower level being the best for
the upper level (for instance, see [18]).

In this paper we investigate nonlinear bilevel vector optimization problems, i.e. the op-
timization problems on the two levels are nonlinear problems, and we assume that the two
objectives are vector functions. Problems in bilevel vector optimization are much more
complicated than scalar bilevel problems because the solution set of the vector optimization
problem on the lower level generally consists of infinitely many elements. Since this solu-
tion set is needed for different parameters, these bilevel vector optimization problems are
highly complex and they require a lot of computation time for its numerical solution. Up
to now there are only two numerical methods for these nonlinear bilevel vector optimiza-
tion problems given by Eichfelder in [10], [11] and described by Deb and Sinha in [5], [6].
Eichfelder’s method is some kind of path-following technique for smooth nonlinear bilevel
problems whereas Deb and Sinha use an evolutionary approach for the solution of these
bilevel problems. The method in this paper is based on a multiobjective search algorithm
with subdivision technique.

To be more specific we use the following assumption.
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Assumption 1.1. Let X, Y , U , V , W be real linear spaces, and let the linear spaces U ,
V , W be partially ordered by pointed convex cones CU , CV and CW , respectively. Let
F : X × Y → U , f : X × Y → V and g : X × Y → W be given maps, and let SX ⊂ X and
SY ⊂ Y be nonempty sets.

Under this assumption we investigate the nonlinear vector optimization problem using
the optimistic approach

min
x,y

F (x, y)

subject to the constraints
x ∈ Ψ(y)
y ∈ SY

(1.1)

where Ψ(y), for an arbitrary y ∈ SY , denotes the solution set of the problem of the lower
level

min
x

f(x, y)

subject to the constraints
g(x, y) ∈ −CW

x ∈ SX

(1.2)

(an explicit definition of Ψ(y) is given later). The two problems (1.1) and (1.2) are vector
optimization problems. Obviously, we assume that Ψ(y) 6= ∅ for every y ∈ SY . For an
arbitray element y ∈ SY let

S(y) := {x ∈ SX | g(x, y) ∈ −CW }
denote the feasible set of problem (1.2). Then an element x̄ ∈ S(y) is called a minimal solu-
tion of problem (1.2), if the image f(x̄, y) is a minimal element of the image set f(S(y), y),
i.e.

({f(x̄, y)} − CV ) ∩ f(S(y), y) = {f(x̄, y)}
(compare [13], [2]). Then Ψ(y) is defined as set of these minimal solutions or the set-valued
map Ψ : SY ⇒ X is given by

Ψ(y) := {x ∈ S(y) | x is a minimal solution of problem (1.2)} for all y ∈ SY .

This set-valued map Ψ then defines the constraints w.r.t. the variable x in problem (1.1) of
the upper level. As pointed out before, the set Ψ(y) generally consists of infinitely many
elements for every y ∈ SY being difficult to determine. Minimal solutions of problem (1.1)
are also defined as preimages of minimal elements of the image set of F . If

S := {(x, y) ∈ X × Y | x ∈ Ψ(y) and y ∈ SY }
denotes the feasible set of problem (1.1) assumed to be nonempty, then a pair (x̄, ȳ) ∈ S is
called a minimal solution of problem (1.1), if

({F (x̄, ȳ)} − CU ) ∩ F (S) = {F (x̄, ȳ)}.
Finally, we are interested in these minimal solutions (x̄, ȳ).

This paper is now organized as follows. In Section 2 we present some optimality condi-
tions for problem (1.1) using the Lagrange multiplier rule for problem (1.2) and the contin-
gent cone. Section 3 is devoted to a new method for the determination of global solutions of
the nonlinear bilevel vector optimization problem in IRn for small n ∈ IN . Numerical results
for this method are presented in the last part.
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2 Optimality Conditions

In this section we investigate the nonlinear bilevel vector optimization problem (1.1) under
Assumption 1.1. In order to simplify the bilevel problem we describe the minimal solutions
of problem (1.2) using the generalized Lagrange multiplier rule. The following theorem
recalls this optimality condition.

Recall that the dual cone CV ∗ of the ordering cone CV is defined by

CV ∗ := {l ∈ V ∗ | l(c) ≥ 0 for all c ∈ CV }

and its quasi-interior C#
V ∗ is given by

C#
V ∗ := {l ∈ V ∗ | l(c) > 0 for all c ∈ CV \{0V }}.

Theorem 2.1. Let Assumption 1.1 be satisfied and, in addition, let the feasible set S(y) be
nonempty for every y ∈ SY .
(a) Let X be a real Banach space, let V and W be real normed spaces, let the ordering cones
CV 6= V and CW have a nonempty interior and let the set SX be convex with a nonempty
interior. Let x̄ ∈ S(y) be a minimal solution of problem (1.2) for an arbitrary y ∈ SY . If
the maps f(·, y) and g(·, y) are Fréchet differentiable at x̄, then there are continuous linear
functionals t ∈ CV ∗ , u ∈ CW∗ with (t, u) 6= 0V ∗×W∗ so that

(t ◦ f ′x(x̄, y) + u ◦ g′x(x̄, y)) (x− x̄) ≥ 0 for all x ∈ SX (2.1)

and
(u ◦ g)(x̄, y) = 0 (2.2)

(f ′x and g′x denote the Fréchet derivative w.r.t. the variable x). If, in addition, there is an
x̂ ∈ int(SX) with g(x̄, y) + g′x(x̄, y)(x̂− x̄) ∈ −int(CW ), then t 6= 0Y ∗ .
(b) Let X, V , W be real normed spaces and let f(·, y) and g(·, y) be Fréchet differentiable at
some x̄ ∈ S(y) for an arbitrary y ∈ SY . If there are continuous linear functionals t ∈ C#

V ∗ ,
u ∈ CW∗ satisfying the system (2.1),(2.2) and if (t ◦ f)(·, y) is pseudoconvex at x̄ (i.e.
for arbitrary x ∈ S(y): (t ◦ f ′x(x̄, y)) (x − x̄) ≥ 0 ⇒ (t ◦ f)(x̄, y) ≤ (t ◦ f)(x, y)) and
(u ◦ g)(·, y) is quasiconvex at x̄ (i.e. for arbitrary x ∈ S(y): (u ◦ g)(x, y) ≤ (u ◦ g)(x̄, y) ⇒
(u ◦ g′x(x̄, y)) (x− x̄) ≤ 0), then x̄ is a minimal solution of problem (1.2).

Proof. (a) Because of CV 6= V every minimal solution x̄ of problem (1.2) is also a so-called
weakly minimal solution, i.e.

({f(x̄, y)} − int(CV )) ∩ f(S(y), y) = ∅

(see [13, Lemma 4.14]), and then Theorem 7.4 in [13] leads to the assertion.
(b) Let x ∈ S(y) be arbitrarily chosen. Then we have g(x, y) ∈ −CW and with u ∈ CW∗ we
obtain (u◦g)(x, y) ≤ 0. With the equality (2.2) and the quasiconvexity of (u◦g)(·, y) at x̄ we
then get (u ◦ g′x(x̄, y)) (x− x̄) ≤ 0. The inequality (2.1) then implies (t ◦ f ′x(x̄, y)) (x− x̄) ≥ 0
and with the pseudoconvexity of (t◦f)(·, y) at x̄ we conclude (t◦f)(x̄, y) ≤ (t◦f)(x, y). Since
this inequality holds for arbitrary x ∈ S(y) and the functional t belongs to the quasi-interior
of the dual cone, we obtain with a known scalarization result (compare [13, Thm. 5.18,(b)])
that x̄ is a minimal solution of problem (1.2).



390 E. GEBHARDT AND J. JAHN

If we recall the normal cone to SX at x̄

NSX
:= {l ∈ X∗ | l(x− x̄) ≤ 0 for all x ∈ SX},

then the inequality (2.1) can be rewritten as

t ◦ f ′x(x̄, y) + u ◦ g′x(x̄, y) ∈ −NSX
(x̄). (2.3)

Notice that it is not possible to give a complete characterization of minimal solutions
because in part (a) of the preceding theorem the Lagrange multiplier t belongs to the dual
cone CW∗ whereas in part (b) t is an element of the quasi-interior of CW∗ . This theoretical
gap is well-known in vector optimization (see [13, p. 133]) and it is characteristic for the
multiobjective case. This gap disappears, if we work with the so-called weak minimality
concept. But this notion may lead to a larger set Ψ(y) which means that one gets another
solution set for problem (1.1), i.e. in general, the feasible set of problem (1.1) becomes
larger than desired. In this case the bilevel problem (1.1) is replaced by another one. It
is known that under strong assumptions the so-called set of properly minimal elements
obtained with the Lagrange multiplier t ∈ C#

V ∗ is dense in the set of minimal elements
(compare [12], [21], [3]). Therefore, from a computational point of view it makes sense
to work with the quasi-interior C#

V ∗ . This is the main reason why we consider a map
Ψ̃ : SY ⇒ X with

Ψ̃(y) := {x ∈ S(y) | ∃(t, u) ∈ C#
V ∗ × CW∗ with (2.3) and (2.2)} for all y ∈ SY .

Since we cannot give a complete characterization of minimal solutions of problem (1.2) in
the multiobjective case, we replace the set Ψ(y) by Ψ̃(y) in the problem on the upper level.
Problem (1.1) is then modified by the problem

min F (x, y)
subject to the constraints

t ◦ f ′x(x, y) + u ◦ g′x(x, y) ∈ −NSX
(x̄)

(u ◦ g)(x, y) = 0
g(x, y) ∈ −CW

x ∈ SX , y ∈ SY , t ∈ C#
v∗ , u ∈ CW∗ .

This problem is closely related to optimization problems with equilibrium constraints (see
[19], [20]).

In order to avoid a modification of the original problem (1.1) we now present another
type of optimality condition. For the used concept of contingent cones we refer to [15].
Recall that a pair (x̄, ȳ) ∈ S is called a weakly minimal solution of problem (1.1), if

({F (x̄, ȳ)} − int(CU )) ∩ F (S) = ∅.
Moreover, the set S is said to be starshaped w.r.t. z̄ := (x̄, ȳ) if for arbitrary z ∈ S

λz + (1− λ)z̄ ∈ S for all λ ∈ [0, 1].

Theorem 2.2. Let Assumption 1.1 be satisfied and, in addition, let X, Y , U be real normed
spaces, let the ordering cone CU 6= U have a nonempty interior, and let the feasible set S of
problem (1.1) be nonempty.
(a) If (x̄, ȳ) ∈ S is a minimal solution of problem (1.1), the map F is Gâteaux differentiable
at (x̄, ȳ) and S is starshaped w.r.t. (x̄, ȳ), then

F ′(x̄, ȳ)(h) /∈ −int(CU ) for all h ∈ T (S, (x̄, ȳ)). (2.4)
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(b) Let the ordering cone CU be closed and let the map F be convex. If the condition (2.4) is
fulfilled at some (x̄, ȳ) ∈ S and S is starshaped w.r.t. (x̄, ȳ), then the pair (x̄, ȳ) is a weakly
minimal solution of problem (1.1).

Proof. (a) Assume that the condition (2.4) does not hold, i.e. there exists some tangent
vector h ∈ T (S, (x̄, ȳ) with F ′(x̄, ȳ)(h) ∈ −int(CU ). Then there are a sequence (xn, yn)n∈IN

of elements in S and a sequence (λn)n∈IN of positive real numbers with (x̄, ȳ) = lim
n→∞

(xn, yn)

and h = lim
n→∞

λn(xn − x̄, yn − ȳ). Since Gâteaux derivatives are continuous and linear, we
obtain

F ′(x̄, ȳ)(h) = F ′(x̄, ȳ)
(

lim
n→∞

λn(xn − x̄, yn − ȳ)
)

= lim
n→∞

λnF ′(x̄, ȳ)(xn − x̄, yn − ȳ)

and
F ′(x̄, ȳ)(xn − x̄, yn − ȳ) ∈ −int(CU ) for a sufficiently large n ∈ IN.

Because of the equation

F ′(x̄, ȳ)(xn − x̄, yn − ȳ) = lim
λ→0

1
λ

(F (x̄ + λ(xn − x̄), ȳ + λ(yn − ȳ))− F (x̄, ȳ))

= lim
λ→0+

1
λ

(F (x̄ + λ(xn − x̄), ȳ + λ(yn − ȳ))− F (x̄, ȳ))

we get for some sufficiently small λ > 0

F (x̄ + λ(xn − x̄), ȳ + λ(yn − ȳ))− F (x̄, ȳ) ∈ −int(CU ).

Hence, the pair (x̄, ȳ) is not a weakly minimal solution of problem (1.1) and, therefore, it is
not a minimal solution of problem (1.1).

(b) Since F is assumed to be convex for all (x, y) ∈ S and λ ∈ (0, 1], we have

λF (x, y) + (1− λ)F (x̄, ȳ)− F (λx + (1− λ)x̄, λy + (1− λ)ȳ) ∈ CU

implying

1
λ

(
F (x̄ + λ(x− x̄), ȳ + λ(y − ȳ))− F (x̄, ȳ)

) ∈ {F (x, y)− F (x̄, ȳ)} − CU .

Since F is Gâteaux differentiable at (x̄, ȳ) and the ordering cone CU is closed, we conclude

F ′(x̄, ȳ)(x− x̄, y − ȳ) ∈ {F (x, y)− F (x̄, ȳ)} − CU . (2.5)

If we assume that the pair (x̄, ȳ) is not a weakly minimal solution of problem (1.1), there
exists some (x̃, ỹ) ∈ S with F (x̃, ỹ)−F (x̄, ȳ) ∈ −int(CU ). Together with the condition (2.5)
we get

F ′(x̄, ȳ)(x̃− x̄, ỹ − ȳ) ∈ −int(CU )− CU = −int(CU ) (2.6)

(see Lemma 1.12,(b) and Lemma 1.32,(a) in [15] for the last equality). Since the set S is
starshaped w.r.t. (x̄, ȳ) the set S − {(x̄, ȳ)} is contained in the contingent cone T (S, (x̄, ȳ))
and, therefore, we have (x̃ − x̄, ỹ − ȳ) ∈ T (S, (x̄, ȳ)). Then the condition (2.6) implies that
the condition (2.4) is not fulfilled.
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In the preceding theorem we have assumed that the feasible set S is starshaped w.r.t.
(x̄, ȳ). Then it is well-known that the contingent cone T (S, (x̄, ȳ)) equals the closure of the
cone generated by the set S − {(x̄, ȳ)} (for instance, see [13, Cor. 4.11]). The assumption
that the feasible set S is starshaped w.r.t. (x̄, ȳ) is a strong assumption. In general, it is not
fulfilled for nonlinear problems. Notice that even a linear vector optimization problem may
not have a starshaped solution set.

In the single-objective case Thm. 2.2 can be proved under weaker assumptions. This
result extends Thm. 2.1 in [9] to the multiobjective case in infinite dimensions. Similar to
the result in Thm. 2.1 of this section the condition (2.4) is not a complete characterization of
minimal solutions. This fact comes in by the partial ordering in the linear space U . There-
fore, it only seems to be suitable to use optimality conditions for bilevel vector optimization
problems with special structure. For the numerical solution of nonlinear bilevel problems
we work with a global solution method instead of using the presented optimality conditions.

3 Global Solver

In this section we present a new numerical method for the solution of nonlinear bilevel
vector optimization problems. Up to now, only Eicherfelder’s method (see [10], [11]) and
the approach by Deb and Sinha (see [5], [6]) are known for solving these problems. Eichfelder
uses a self-adaptive scalarization technique for a concise and representative approximation
of the minimal solutions of the problem on the lower level. Deb and Sinha work with an
evolutionary algorithm. Here we now describe an approach based on a multiobjective search
algorithm with subdivision technique published in [14].

In Assumption 1.1 we now set X = IRn, Y = IR1, U = IRk, V = IRl, W = IRm,
CU = IRk

+, CV = IRl
+, CW = IRm

+ and SY = [a, b] for −∞ < a < b < ∞. The case that
the set SY is the union of closed intervals could also be considered. We assume that the
problems (1.1) and (1.2) are given with nonempty feasible sets, i.e. S 6= ∅ and S(y) 6= ∅ for
all y ∈ SY . For simplicity let the feasible set S(y) be bounded for every y ∈ SY .

Under these assumptions the problem on the lower level is a finite-dimensional one-
parametric vector optimization problem with a parameter varying in the interval [a, b]. Since
we need a representative approximation of the whole set of minimal solutions, so-called
interactive methods cannot be applied. We use a multiobjective search algorithm being
briefly recalled.

For an arbitrary y ∈ [a, b] the multiobjective search algorithm with subdivision technique
(MOSAST) [14, Alg. 2] can be applied for the solution of problem (1.2). Since the feasible
set S(y) is bounded, it is contained in a box in which minimal solutions can be determined
using random vectors. Then this box is partitioned into small boxes, but we take only those
boxes containing at least one computed minimal solution (for subdivision techniques in
vector optimization see [22]). For each of these selected small boxes we determine minimal
solutions using random vectors. This system of boxes is reduced again and again. The
iteration process is stopped, if the diameter of these boxes is less than a given small positive
number. At each iteration minimal solutions in a certain box are determined with the Graef-
Younes method with backward iteration (GYMBI) [14, Alg. 1]. Obviously, this method
makes only sense for problems with non-expensive functions, i.e. function values can be
rapidly computed. It can be used for highly nonlinear and nonsmooth functions because
only randomly generated points are considered.

The method described in the present paper determines for some few numbers

a = y1 < y2 < . . . < yp = b (3.1)



GLOBAL SOLVER FOR NONLINEAR BILEVEL VECTOR OPTIMIZATION PROBLEMS 393

an approximation Mi (i ∈ {1, . . . , p}) of the set of minimal solutions of problem (1.2).
These p vector optimization problems are solved with the multiobjective search algorithm
(MOSAST). For every yi-layer (i ∈ {1, . . . , p}) the set Mi is reduced to only those points x
so that (x, yi) is a minimal solution of problem (1.1) w.r.t. the determined discrete points.
This reduced set is again called Mi. In order to refine our discretization scheme we choose
new discretization points as mean values ỹi := yi+yi+1

2 for i = 1, . . . , p − 1. For every new
parameter ỹi we choose the union Mi ∪Mi+1 as a starting set for the subdivision technique
used in the multiobjective search algorithm. This means that we consider a system of boxes
containing at least one element of the set Mi ∪Mi+1. For each of these boxes we apply the
Graef-Younes method with backward iteration (GYMBI) leading to a first approximation
of the set of minimal solutions of problem (1.2) for the new parameter ỹi. These boxes can
become smaller and smaller until we have an acceptable approximation of minimal solutions.
This set of minimal solutions is again reduced using the afore-mentioned reduction technique.
Using this approach we have approximations for 2p− 1 problems on the lower level. Again,
with mean values of these discretization points we can repeat the projection procedure in
connection with the subdivision technique.

Now we present the global solver for the bilevel vector optimization problem.

Algorithm 3.1.

Input: Choose δ > 0 and ε > 0 % (stopping criteria)
Choose p ∈ IN with p ≥ 2 % (number of discretization points)

Select a discretization y1, . . . , yp with (3.1)
for i = 1 : 1 : p do

Apply MOSAST and determine an approximation Mi of the set of minimal
solutions of problem (1.2) w.r.t. yi

end for
Using GYMBI select all minimal solutions of problem (1.1) restricted to the discrete

set ∪
i
Mi × {yi} and reduce Mi to the corresponding components of the

determined minimal solutions
while max

i
{yi+1 − yi} > δ do

for i = 1 : 1 : p− 1 do
ỹi := yi+yi+1

2
Select a system B1 of boxes in IRn

s := 1
M̃ := Mi ∪Mi+1

M̂ := ∅
while diameter(Bs) > ε do

is := #(M̃) % (magnitude of the set M̃)
js := #(Bs) % (magnitude of the system Bs)
for j = 1 : 1 : js do

Bj := (Bs)j % (j-th set in the system Bs)
for t = 1 : 1 : is do

mt := (M̃)t % (t-th element in the set M̃)
if mt ∈ Bj then

Apply GYMBI w.r.t. the set S(ỹi) ∩Bj and determine an
approximation M̂i

M̂ := M̂ ∪ M̂i

end if
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end for
end for
Select a new system Bs+1 of boxes with diameter(Bs+1) < diameter(Bs)
s := s + 1
M̃ := M̃ ∪ M̂
M̂ := ∅

end while
Apply GYMBI w.r.t. M̃ and determine an approximation M̃i

end for
p := 2p− 1
Rename the discretization points as y1, y2, . . .
Rename the approximations of the set of minimal solutions as M1,M2, . . .
Using GYMBI select all minimal solutions of problem (1.1) restricted to the

discrete set ∪
i
Mi × {yi} and reduce Mi to the corresponding

components of the determined minimal solutions
end while
Let M denote the set of computed minimal solutions of problem (1.1)
Output: M

Theorem 3.1. Under the assumptions of this section Algorithm 3.1 is well-defined and
it determines all (global) minimal solutions of the bilevel optimization problem (1.1),(1.2)
among the randomly generated vectors.

Proof. Obviously, Algorithm 3.1 is well-defined. It is proved in [16, Thm. 1] that the Graef-
Younes Method with backward iteration [16, Alg. 1] determines all (global) minimal solutions
of a vector optimization problem, if the constraints are restricted to the randomly generated
feasible points. Since we only work with this method in appropriate boxes, we cannot loose
potentially minimal solutions among the randomly generated vectors.

Remark 3.2. Algorithm 3.1 is really a global solver because it determines all minimal
solutions among a discrete set of points. This is an essential advantage in contrast to stan-
dard methods applied to optimality conditions. The examples in the next section illustrate
that these solution sets are very complex so that one needs a global solver in bilevel vector
optimization.

Remark 3.3. It does not seem to be desirable to work with systems of very small boxes
because this would be time-consuming. But it is important to have a fine partition of the
interval [a, b]. So, one should carry out several projection steps. Then one gets a better
characterization of the feasible set of the problem on the upper level.

4 Numerical Results

Now we apply Algorithm 3.1 to various bilevel biobjective optimization problems in low
dimensional spaces. For all examples we consider the linear spaces X = IR2, Y = IR,
U = V = IR2 and the set SX = IR. The vector functions F, f : IR3 → IR2 are sometimes
highly nonlinear so that one needs a global solver for the solution of the bilevel problem
(1.1).
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Example 4.1. This problem introduced by Eichfelder is taken from [10], [11]. For the
problems (1.1) and (1.2) we have the objectives F, f with

F (x1, x2, y) =

(
x1 + x2

2 + y + sin2(x1 + y)
(cos x2) · (0.1 + y) · exp(− x1

0.1+x2
)

)
for all (x1, x2, y) ∈ IR3

and

f(x1, x2, y) =

(
(x1−2)2+(x2−1)2

4 + x2y+(5−y)2

16 + sin x2
10

x2
1+(x2−6)4−2x1y−(5−y)2

80

)
for all (x1, x2, y) ∈ IR3

and the constraint map g : IR3 → IR4 with

g(x1, x2, y) =




x2
1 − x2

5x2
1 + x2 − 10

x2 − 5 + y/6
−x1


 for all (x1, x2, y) ∈ IR3.

The ordering cone CW is chosen as IR4
+ and the set SY equals [0, 10]. An application of

Algorithm 3.1 gives an approximation of the set of minimal solutions of the bilevel problem
illustrated on the left hand of Fig. 1. The right side of this figure shows the images of
these minimal solutions. The left picture of Fig. 1 shows only a rough estimate of the set of

Figure 1: Minimal solutions and its images of Example 4.1.

minimal solutions of the bilevel problem because the discretization of the y-values is not fine
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Figure 2: Refinement of minimal solutions of Example 4.1.

enough. Fig. 2 presents a refinement of the set of minimal solutions showing that this set
obviously consists of several disconnected parts. These results are based on 41 equidistant
discretization points in the interval [0, 10].

Example 4.2. Now we investigate the problems (1.1) and (1.2) with the set SY := [1, 6],
the objective functions F, f given by

F (x1, x2, y) =

(
(x1 + x2)y

√
x2

1 + y
2

)
for all (x1, x2, y) ∈ IR2 × IR+

and

f(x1, x2, y) =
(

x1

x2

)
for all (x1, x2, y) ∈ IR3

and the constraint map g : IR× (IR\{0})× IR → IR6 with

g(x1, x2, y) =




−x2
1 − x2

2 + 1 + y
10 cos arctan x1

x2

(x1 − 0.5)2 + (x2 − 0.5)2 − 0.5
−x1

x1 − π
−x2

x2 − π




for all (x1, x2, y)

∈ IR× (IR\{0})× IR.

We choose the ordering cone CW := IR6
+. For y = 1 the problem on the lower level coincides
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with a problem proposed by Tanaka et al. [24] (see also [4, p. 366]) used as a test problem for
evolutionary algorithms. Fig. 3 illustrates the set of minimal solutions of problem (1.1) on
the left; on the right hand one can see the images of these minimal solutions. Although the
image set seems to be a smooth curve, the set of preimages is disconnected without special
structure. For this example we have worked with 81 equidistant discretization points in the

Figure 3: Minimal solutions and its images of Example 4.2.

interval [1, 6].

Example 4.3. This example modifies a (one-level) problem due to Kursawe [17] (see also [4,
p. 341]). We consider the problems (1.1) and (1.2) with the objectives F, f given by

F (x1, x2, y) =
( −x2

1 − 3yx2 + sin yx1

x2y − exp(sin(x1 + x2 − y))

)
for all (x1, x2, y) ∈ IR3

and

f(x1, x2, y) =

(
exp(−0.2

√
x2

1 + x2
2 + y2)

|x1|0.8 + |x2|0.8 + sin y

)
for all (x1, x2, y) ∈ IR3

and the constraint map g : IR3 → IR2 with

g(x1, x2, y) =
(

x2
1 − x2 − y

2

x1 + 2x2 − 5

)
for all (x1, x2, y) ∈ IR3.

Moreover, we have SY := [0, 4] and CW := IR2
+. Notice that the objective function f is not

differentiable so that smooth methods cannot be applied. Fig. 4 shows the set of minimal
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solutions of problem (1.1) on the left hand, the right side illustrates the images of these
minimal solutions. Here we have chosen 33 equidistant discretization points in the interval

Figure 4: Minimal solutions and its images of Example 4.3.

[0, 4].

Example 4.4. This example is obtained by a modification of a (one-level) problem due to
Van Veldhuizen [25, p. 545]. Here we have the objective functions F, f with

F (x1, x2, y) =
(

(x1 − 1)4 + (x2 − 2)2 + ( y
10 − 1)2

(x1 + 1)2 + (x2 + 2)4 + ( y
10 + 1)2

)
for all (x1, x2, y) ∈ IR3

and

f(x1, x2, y) =

(
1 +

(
y − 1√

3

)2 − exp
(− ((x1 − 1)2 + (x2 − 1√

2
)2)

)

1 +
(
y + 1√

3

)2 − exp
(− ((x1 + 1)2 + (x2 + 1√

2
)2)

)
)

for all (x1, x2, y) ∈ IR3

and the constraint map g : IR3 → IR4 with

g(x1, x2, y) =




−4− x1

x1 − 4
−4− x2

x2 − 4


 for all (x1, x2, y) ∈ IR3.
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Now we have SY := [−4, 4] and the ordering cone CW := IR4. The set of minimal solutions
of problem (1.1) is illustrated on the left hand of Fig. 5; the right side shows the correspond-
ing set of images. Although the image set is a smooth convex “Pareto curve”, the set of

Figure 5: Minimal solutions and its images of Example 4.4.

preimages is not so clearly drawn and shows the complexity of this problem. 65 equidistant
discretization points have been chosen in the interval [−4, 4].

5 Conclusion

Optimality conditions are formulated for nonlinear bilevel vector optimization problems.
Although these conditions are given under differentiability assumptions in a general setting,
they do not seem to be suitable for the determination of the complete set of minimal solutions
of the bilevel problem. For the approximation of this solution set a new numerical method
is presented which is based on a known multiobjective search algorithm with subdivision
technique. Even nonsmooth bilevel problems with few variables can be solved with this
approach. For the solution of problems with more variables this method can produce good
starting points for smooth local solvers. The discussed numerical results show that the
set of minimal solutions looks bizarre and for some examples the “Pareto curve” seems to
be non-convex. These results also emphasize the complexity of bilevel vector optimization
problems.

Recently, Deb and Sinha [6] have proposed test problems which should be used for the
comparison of the currently existing methods for the solution of nonlinear bilevel vector
optimization problems. This is a topic for future work.
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