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1 Introduction

Vector variational inequality was introduced by Giannessi [10] in 1980. Later on, vector
variational inequality and its various extensions have been studied by Chen and Cheng [5],
Chen and Yang [6], Chen [7], and other authors (see [8, 16, 17, 21, 24, 25]). Lee, Kim, Lee
and Yun [18], Cheng [9] both have studied the connectedness of weak efficient solution sets
for single-valued vector variational inequalities in finite dimensional Euclidean space. Gong
[12–14] introduced the concepts of f-efficient solution, Henig efficient solution, global efficient
solution, super efficient solution, cone-super efficient solution, Benson efficient solution for
vector equilibrium problems, and studied the connectedness and scalarization of the solution
sets in infinite dimension space. Ansari, Oettli and Schläger [1] introduced the set-valued
vector equilibrium problems. Later on, Fu [11], Hou, Yu and Chen [15], Tan [22], Peng, Lee
and Yang [20], and Long, Huang and Teo [19] have studied the existence of solutions for
set-valued vector equilibrium problems and set-valued vector variational inequalities. Chen,
Gong, and Yuan [4] studied the connectedness and compactness of weak efficient solutions
for set-valued vector equilibrium problems.

Because that the concepts of Henig efficient solution and the global efficient solution are
very important concepts for vector equilibrium problems. In this paper, we will introduce
the concepts of global efficient solution, and Henig efficient solution for set-valued vector
equilibrium problems, and study the existence and connectedness of the Henig efficient and
the global efficient solution sets for set-valued vector equilibrium problems and the set-valued
vector Hartman-Stampacchia variational inequality in normed linear space.

∗This work was supported by the National Natural Science Foundation of China and the Natural Science
Foundation of Jiangxi Province (2008GZS0072), China.
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2 Preliminaries

Throughout this paper, let X, Y be two normed linear spaces, let Y ∗ be the topological
dual space of Y , and let C be a closed convex pointed cone in Y . Let A be a nonempty
subset of X, and F : A×A → 2Y be a set-valued map.

We consider the following set-valued vector equilibrium problem (in short:SVEP): find
x̄ ∈ A, such that

F (x̄, y) ∩ (−K) = ∅ for all y ∈ A,

where K ∪ {0} is a convex cone in Y .
Let

C∗ = {f ∈ Y ∗ : f(y) ≥ 0 for all y ∈ C}
be the dual cone of C.

Denote the quasi-interior of C∗ by C#; i.e.

C# = {f ∈ Y ∗ : f(y) > 0 for all y ∈ C\ {0}}.

Let D be a nonempty subset of Y . The cone hull of D is defined as

cone (D) = {td : t ≥ 0, d ∈ D} .

A nonempty convex subset B of the convex cone C is called a base of C if

C = cone(B) and 0 /∈ cl(B).

It is easy to see that C# 6= ∅ if and only if C has a base.
If C has a base B, we can associate C with another closed convex pointed cone Cε (B),

defined by
Cε (B) = cl (cone (B + εU)) ,

where
0 < ε < δ = inf {‖b‖ : b ∈ B} ,

and U is the closed unit ball of Y . The notion δ and U will be used in the rest of this paper.
By [3], if 0 < ε < ε′ < δ, then Cε (B) is a closed convex pointed cone,

C\ {0} ⊂ intCε (B) ,

and
Cε (B) ⊂ cone (B + ε′U) .

Let
C∆(B) =

{
f ∈ C#: there exists t > 0, such that f (b) ≥ t for all b ∈ B

}
.

By the separation theorem of convex sets, we know that C∆(B) 6= ∅.
Now we introduce the concepts of global efficient solution, Henig efficient solution for

SVEP.

Definition 2.1. A vector x ∈ A is called a global efficient solution to the SVEP if there
exists a point convex cone H ⊂ Y , with C\ {0} ⊂ intH, such that

F (x, y) ∩ ((−H) \ {0}) = ∅ for all y ∈ A.

The set of global efficient solutions to the SVEP is denoted by VG (A,F ).
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Definition 2.2. Let B be a base of C . A vector x ∈ A is called a Henig efficient solution
to the SVEP if there exists a 0 < ε < δ, such that

F (x, y) ∩ (−intCε (B)) = ∅ for all y ∈ A.

The set of Henig efficient solutions to the SVEP is denoted by VH (A,F ).

Definition 2.3. Let f ∈ C∗\ {0}. A vector x ∈ A is called a f -efficient solution to the
SVEP if

f(F (x, y)) ≥ 0 for all y ∈ A,

where f (F (x, y)) ≥ 0 means that f (z) ≥ 0, for all z ∈ F (x, y). The set of f -efficient
solutions to the SVEP is denoted by Vf (A,F ).

Definition 2.4. Let A be a nonempty convex subset in X. A set-valued map F : A×A → 2Y

is called to be C-convex in its second variable if, for each fixed x ∈ A, for every y1, y2 ∈ A,
t ∈ [0, 1], the following property holds:

tF (x, y1) + (1− t) F (x, y2) ⊂ F (x, ty1 + (1− t) y2) + C.

Definition 2.5. Let A be a nonempty convex subset in X. A set-valued map F : A×A → 2Y

is called to be C-concave in its first variable if, for each fixed y ∈ A, for every x1, x2 ∈ A,
t ∈ [0, 1], the following property holds:

F (tx1 + (1− t) x2, y) ⊂ tF (x1, y) + (1− t) F (x2, y) + C .

Definition 2.6. Let G be a set-valued map from a topological space W to another topo-
logical space Q.

(i) We say that G : W → 2Q is upper semicontinuous at x0 ∈ W if, for any neighborhood
U(G(x0)) of G(x0), there is a neighborhood U(x0) of x0 such that

G(x) ⊂ U(G(x0)) for all x ∈ U(x0).

G is said to be upper semicontinuous on W if it is upper semicontinuous at each x ∈ W .

(ii) G is said to be lower semicontinuous at x0 ∈ W if, for any y0 ∈ G(x0) and any
neighborhood U(y0) of y0, there exists a neighborhood U(x0) of x0 such that

G(x) ∩ U(y0) 6= ∅, for all x ∈ U(x0).

G is said to be lower semicontinuous on W if it is lower semicontinuous at each x ∈
W . G is said to be continuous on W if it is both upper semicontinuous and lower
semicontinuous on W .

(iii) G is said to be closed, if Graph(G) = {(x, y) : x ∈ W, y ∈ G(x)} is a closed subset
in W ×Q.

Definition 2.7. Let T : A → 2L(X,Y ) be a set-valued map, where L(X, Y ) is the space of
all bounded linear operators from X into Y [let L(X, Y ) be equipped with operator norm
topology].

(i) Let f ∈ C∗\ {0}. T is said to be f -pseudomonotone on A if, for every pair of points
x, y ∈ A, f ((s, y − x)) ≥ 0, for all s ∈ Tx, then f ((t, y − x)) ≥ 0, for all t ∈ Ty.
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(ii) T is said to be v-hemicontinuous if, for every pair of points x, y ∈ A, the set-valued
map

J (α) := (T (αy + (1− α)x) , y − x) , α ∈ [0, 1],

is lower semicontinuous at 0 .

Definition 2.8. Let X be a Hausdorff topological vector space, let K ⊂ X be a nonempty
set. G : K → 2X is called to be a KKM map, if for any finite set {x1, · · ·, xn} ⊂ K, the
relation

co{x1, · · ·, xn} ⊂
n⋃

i=1

G(xi)

holds, where co{x1, · · ·, xn} denoted the convex hull of {x1, · · ·, xn}.
The following FKKM theorem plays a crucial role in this paper.

Lemma 2.9. Let X be a Hausdorff topological vector space. Let K be a nonempty convex
subset of X, and let G : K → 2K be a KKM map. If for each x ∈ K, G(x) is closed in X,
and if there exists a point x0 ∈ K such that G(x0) is compact, then ∩

x∈K
G(x) 6= ∅.

By definition, we can get the following lemma.

Lemma 2.10. Let A be a nonempty convex subset of X. Let F : A × A → 2Y be a set-
valued map, and let C ⊂ Y be a closed convex pointed cone. Moreover, suppose that F (x, y)
is C-convex in its second variable. Then, for each x ∈ A, F (x,A) + C is convex, where

F (x,A) =
⋃

y∈A

F (x, y).

3 Scalarization

In this section, we extend the scalarization results of the global efficient and the Henig
efficient solution sets in [14] to set-valued map.

Theorem 3.1. Suppose C has a base B. Then

(i)
⋃

f∈C# Vf (A,F ) ⊂ VG (A,F ) .

(ii) if for each x ∈ A, the set F (x,A) + C is a convex set, then

VG (A,F ) =
⋃

f∈C#
Vf (A,F ).

Proof. (i) Let x ∈ ⋃
f∈C# Vf (A,F ), then exists some f ∈ C#, such that x ∈ Vf (A,F ).

Hence
f (F (x, y)) ≥ 0 for all y ∈ A. (3.1)

Let
D = {u ∈ C, f (u) = 1} ,

and
U =

{
u ∈ Y, |f (u)| < 1/2

}
.
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We have
D + U ⊂

{
u ∈ Y, f (u) ≥ 1/2

}
,

D + U is a convex set and 0 /∈ cl (D + U). Let

CU (D) = cone (D + U) .

It is clear that CU (D) is a convex pointed cone, and

C\ {0} ⊂ intCU (D) . (3.2)

By (3.1), we have
F (x,A) ∩ (−CU (D) \ {0}) = ∅. (3.3)

By definition, we know x ∈ VG (A,F ). Thus

⋃
f∈C#

Vf (A,F ) ⊂ VG (A,F ) .

(ii) By (i), we only need to prove that VG (A,F ) ⊂ ⋃
f∈C# Vf (A,F ). Let x ∈ VG (A,F ),

then there exists a point convex cone H ⊂ Y , with C\ {0} ⊂ intH, and

F (x, y) ∩ ((−H) \ {0}) = ∅ for all y ∈ A.

Hence, we have F (x,A) ∩ ((−H) \ {0}) = ∅. Because H is a convex cone,

(F (x,A) + C) ∩ (−intH) = ∅.

By assumption, F (x,A)+C is a convex set, by the separation theorem of convex sets, there
exists some f ∈ Y ∗\ {0}, such that

inf {f (F (x, y) + c) : y ∈ A, c ∈ C} ≥ sup {f (−z) : z ∈ intH} . (3.4)

By (3.4), we obtain that f ∈ H∗ and

f (F (x, y)) ≥ 0 for all y ∈ A.

Because C\ {0} ⊂ intH, we know that for each x ∈ C\ {0}, f (x) > 0. Hence f ∈ C#.
Therefore, x ∈ ⋃

f∈C# Vf (A,F ). Hence, VG (A,F ) ⊂ ⋃
f∈C# Vf (A,F ). Thus, we have

VG (A,F ) =
⋃

f∈C#
Vf (A,F ).

Theorem 3.2. Suppose C has a base B. Then

(i)
⋃

f∈C∆(B) Vf (A,F ) ⊂ VH (A,F )

(ii) if for each x ∈ A, the set F (x,A) + C is a convex set, then

⋃
f∈C∆(B)

Vf (A,F ) = VH (A,F ) .
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Proof. (i) Let x ∈ ⋃
f∈C∆(B) Vf (A,F ), then exists some f ∈ C∆(B), such that x ∈

Vf (A,F ). That is
f (F (x, y)) ≥ 0 for all y ∈ A.

Thus,
F (x, y) ∩ {u ∈ Y : f (u) < 0} = ∅ for all y ∈ A. (3.5)

Since f ∈ C∆(B), there exists t > 0 such that

f (b) ≥ t for all b ∈ B.

Set
V = {u ∈ Y : f (u) < t} .

Then V is a neighborhood of zero. Choose 0 < ε < δ, such that εU ⊂ V . We have

(εU −B) ⊂ {u ∈ Y : f (u) < 0} . (3.6)

Pick 0 < ε′ < ε. By [3], Cε′ (B) is a closed convex pointed cone and Cε′ (B) ⊂ cone (B + εU).
Let u ∈ −intCε′ (B). Then

u ∈ −intCε′ (B) ⊂ −Cε′ (B) ⊂ −cone (B + εU) .

We have
u = −λ (v + b) = λ (−v − b) ,

where λ > 0, b ∈ B, v ∈ εU . It follows from (3.6) that f (u) < 0. We obtain that

−intCε′ (B) ⊂ {u ∈ Y : f (u) < 0} , (3.7)

which combining with (3.5), we have

F (x, y) ∩ (−intCε′ (B)) = ∅ for all y ∈ A.

Thus,
x ∈ VH (A,F ) ,

and hence ⋃
f∈C∆(B)

Vf (A,F ) ⊂ VH (A,F ) .

(ii) Let x ∈ VH (A,F ). By the definition, there exists 0 < ε < δ such that

F (x, y) ∩ (−intCε (B)) = ∅ for all y ∈ A.

It is clear that
(F (x,A) + C) ∩ (−intCε (B)) = ∅.

By assumption, F (x,A) + C is a convex set. By the separation theorem of convex sets,
there exists some f ∈ Y ∗\ {0}, such that

inf {f (F (x, y) + c) : y ∈ A, c ∈ C} ≥ sup {f (−z) : z ∈ intCε (B)} . (3.8)

From this, we get
f (F (x, y)) ≥ 0 for all y ∈ A,
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and f ∈ (Cε (B))∗. It follows that

f (εU + B) ≥ 0.

Since f 6= 0, there exists u ∈ εUsuch that f (u) < 0. Thus

f (u + b) ≥ 0 for all b ∈ B.

This implies that f ∈ C∆(B) . Hence, VH (A,F ) ⊂ ⋃
f∈C∆(B) Vf (A,F ). Thus,

VH (A,F ) =
⋃

f∈C∆(B)
Vf (A,F ).

4 Existence of Solutions

In this section, we present the existence of solutions of the global efficient and Henig efficient
for set-valued vector equilibrium problems.

Theorem 4.1. Let A be a nonempty compact convex subset of X, and let C ⊂ Y be a closed
convex pointed cone with a base. Let F : A×A → 2Y be a set-valued map with F (x, x) ⊂ C
for all x ∈ A. Suppose that F (x, y) is lower semicontinuous in its first variable, and that
F (x, y) is C- convex in its second variable. Then, for any f ∈ C#, Vf (A,F ) 6= ∅, therefore,
VG (A,F ) 6= ∅.
Proof. Let f ∈ C#. Define the set-valued map G : A → 2A by

G (y) = {x ∈ A : f (F (x, y)) ≥ 0} for all y ∈ A.

By assumption, y ∈ G (y), for all y ∈ A, so G (y) 6= ∅. We claim that G is a KKM map.
Suppose to the contrary that there exists a finite subset {y1, · · · , yn} of A, and there exists

x̄ ∈ co{y1, · · ·, yn} such that x̄ /∈
n⋃

i=1

G (yi). Then, x̄ =
n∑

i=1

tiyi for some ti ≥ 0, 1 ≤ i ≤ n,

with
n∑

i=1

ti = 1, and x̄ /∈ G (yi) for all i = 1, · · · , n. Then, there exist zi ∈ F (x̄, yi), such

that
f (zi) < 0, for all i= 1, · · · ,n (4.1)

As F (x, y) is C-convex in its second invariable, we can get that

t1F (x̄, y1) + t2F (x̄, y2) + · · ·+ tnF (x̄, yn) ⊂ F (x̄, x̄) + C. (4.2)

By (4.2), we know that there exist z ∈ F (x̄, x̄), c ∈ C, such that

t1z1 + t2z2 + · · · tnzn = z + c.

Hence, f (z + c) = f (t1z1 + t2z2 + · · · tnzn). By assumption, we have f (z + c) ≥ 0. By
(4.1), however, we have f (t1z1 + t2z2 + · · · tnzn) < 0. This is a contradiction. Thus, G
is a KKM map. Now, we show that for each y ∈ A, G (y) is closed. For any sequence
{xn} ⊂ G (y) and xn → x0. Because A is a compact set, we have x0 ∈ A. By assumption,
F (x, y) is lower semicontinuous in its first variable, then by [2], for each fixed y ∈ A, and
for each z0 ∈ F (x0, y), there exist zn ∈ F (xn, y), such that zn → z0. Because {xn} ⊂ G (y),
we have
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f (F (xn, y)) ≥ 0.

Thus f (zn) ≥ 0. By the continuity of f , and zn → z0, we have f (z0) ≥ 0. By the arbitrary
of z0 ∈ F (x0, y), we have f (F (x0, y)) ≥ 0. That is, x0 ∈ G (y). Hence, G (y) is closed,
since A is compact, G (y) is compact. By Lemma 2.9, we have

⋂
y∈A

G (y) 6= ∅. Thus, there

exists x ∈ ⋂
y∈A

G (y). This means that

f (F (x, y)) ≥ 0 for all y ∈ A.

Therefore, x ∈ Vf (A,F ). It follows from Theorem 3.1 that Vf (A,F ) ⊂ VG (A,F ), thus,
VG (A,F ) 6= ∅.

In the same way, we can get the existence theorem of Henig efficient solution for set-
valued vector equilibrium problems.

Theorem 4.2. Let A be a nonempty compact convex subset of X, and let C ⊂ Y be a closed
convex pointed cone with a base. Let F : A×A → 2Y be a set-valued map with F (x, x) ⊂ C
for all x ∈ A. Suppose that F (x, y) is lower semicontinuous in its first variable, and that
F (x, y) is C- convex in its second variable. Then, for any f ∈ C∆(B), Vf (A,F ) 6= ∅,
therefore, VH (A,F ) 6= ∅.

Now we give the existence theorem of global efficient solution for set-valued vector
Hartman-Stampacchia variational inequality.

Similarly to the proof of Theorem 4.2 of [4], we can get the following theorems.

Theorem 4.3. Let A be a nonempty compact convex subset of X, and C ⊂ Y be a closed
convex pointed cone with a base. Let f ∈ C#. Assume that T : A → 2L(X,Y ) is a v-
hemicontinuous, f-pseudomonotone mapping. Moreover, assume that the set-valued map
F : A× A → 2Y defined by F (x, y) = (Tx, y − x) is C-convex in its second variable. Then
Vf (A,F ) 6= ∅, that is, there exists x ∈ A, for all s ∈ Tx ,

f ((s, y − x)) ≥ 0 for all y ∈ A

holds. Hence, VG (A,F ) 6= ∅.

In the same way, we can get the existence theorem of Henig efficient solution for set-
valued vector Hartman-Stampacchia variational inequality.

Theorem 4.4. Let A be a nonempty compact convex subset of X, and C ⊂ Y be a closed
convex pointed cone with a base. Let f ∈ C∆(B). Assume that T : A → 2L(X,Y ) is a
v-hemicontinuous, f-pseudomonotone mapping. Moreover, assume that the set-valued map
F : A×A → 2Y defined by F (x, y) = (Tx, y − x), is C-convex in its second variable. Then
Vf (A,F ) 6= ∅, that is, there exists x ∈ A, for all s ∈ Tx ,

f ((s, y − x)) ≥ 0 for all y ∈ A

holds. Hence, VH (A,F ) 6= ∅.



CONNECTEDNESS OF THE SOLUTION SETS 381

5 Connectedness of the Solutions Set

In this section, we present the connectedness of the global efficient and the Henig efficient
solution sets for set-valued vector equilibrium problems.

Theorem 5.1. Let A be a nonempty compact convex subset of X, C ⊂ Y be a closed convex
pointed cone with a base, and let F : A × A → 2Y be a set-valued map. Assume that the
following conditions are satisfied:

(i) F (x, y) is lower semi-continuous in its first variable.

(ii) F (x, y) is C-concave in its first variable and C-convex in its second variable.

(iii) F (x, x) ⊂ C , for all x ∈ A.

(iv) {F (x, y) : x, y ∈ A} is a bounded subset in Y .

Then VG (A,F ) is a nonempty connected set.

Proof. We define the set-valued map H : C# → 2A by

H (f) = Vf (A,F ) , f ∈ C#.

By Theorem 4.1, for each f ∈ C#, we have H (f) 6= ∅. So VG (A,F ) is a nonempty set. It
is clear that C# is convex, so it is a connected set. Now we prove that, for each f ∈ C#,
H (f) is a connected set. Let x1, x2 ∈ H (f), for i = 1, 2, we have

f (F (xi, y)) ≥ 0 for all y ∈ A. (5.1)

Because F (x, y) is C-concave in its first variable, for each fixed y ∈ A, and for every
x1, x2 ∈ A, t ∈ [0, 1], we have

F (tx1 + (1− t) x2, y) ⊂ tF (x1, y) + (1− t) F (x2, y) + C.

Hence, for each y ∈ A, z ∈ F (tx1 + (1− t) x2, y), there exist z1 ∈ F (x1, y), z2 ∈ F (x2, y),
c ∈ C, such that z = tz1 + (1− t)z2 + c. As f ∈ C# and by (5.1), we have

f (z) = tf (z1) + (1− t)f (z2) + f (c) ≥ 0

Thus,
f(F (tx1 + (1− t)x2, y)) ≥ 0 for all y ∈ A.

That is tx1 + (1− t) x2 ∈ H (f). So H (f) is a convex set, therefore it is a connected set.
Now we show that H is upper semicontinuous on C#. Since A is a nonempty compact

set, by [2], we just need to prove that H is a closed map. Let the sequence {(fn, xn)} ⊂
Graph (H), and (fn, xn) → (f0, x0), where {fn} converge to f0 with respect to the norm
topology. As (fn, xn) ∈ Graph (H), we have

xn ∈ H (fn) = Vfn
(A,F ) .

That is, fn (F (xn, y)) ≥ 0, for all y ∈ A. As xn → x0 and A is compact, then x0 ∈ A.
Since F (x, y) is lower semi-continuous in its first variable, for each fixed y ∈ A, and each
z0 ∈ F (x0, y), there exist zn ∈ F (xn, y), such that zn → z0. From fn (F (xn, y)) ≥ 0, we
have

fn (zn) ≥ 0. (5.2)
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By the continuity of f0 and zn → z0, we have

f0 (zn) → f0 (z0) . (5.3)

Let D = {F (x, y) : x, y ∈ A}. By assumption, D is a bounded set in Y , then, there exists
some M > 0, such that for each z ∈ D, we have ‖z‖ ≤ M . Because fn−f0 → 0 with respect
to norm topology, for any ε > 0, there exists n0 ∈ N , when n ≥ n0, we have ‖fn − f0‖ < ε.
Therefore, there exists n0 ∈ N , when n ≥ n0, we have

|fn (zn)− f0 (zn)| = |(fn − f0) (zn)| ≤ ‖fn − f0‖ ‖zn‖ ≤ Mε.

Hence,
lim

n→∞
(fn(zn)− f0(zn)) = 0. (5.4)

Consequently, by (5.3), (5.4), we have

lim
n→∞

fn (zn) = lim
n→∞

(fn (zn)− f0 (zn) + f0 (zn))

= lim
n→∞

(fn (zn)− f0 (zn)) + lim
n→∞

(f0 (zn)) = f0 (z0) .

By (5.2), we have f0 (z0) ≥ 0. So for any y ∈ A and for each z0 ∈ F (x0, y), we have
f0 (z0) ≥ 0. Hence

f0 (F (x0, y)) ≥ 0 for all y ∈ A.

This means that
x0 ∈ Vf0 (A,F ) = H (f0) .

Hence, the graph of H is closed. Therefore, H is a closed map. By [2], H is upper semi-
continuous on C#. Because F (x, y) is C-convex in its second variable, by Lemma 2.10, for
each x ∈ A, F (x,A) + C is convex. It follows from Theorem 3.1 that

VG (A,F ) =
⋃

f∈C#
Vf (A,F ).

Thus, by the Theorem 3.1 in [23], VG (A,F ) is a connected set.

In the same way, we can show the connectedness theorem of Henig efficient solutions set
for set-valued vector equilibrium problems.

Theorem 5.2. Let A be a nonempty compact convex subset of X, C ⊂ Y be a closed convex
pointed cone with a base, and let F : A × A → 2Y be a set-valued map. Assume that the
following conditions are satisfied:

(i) F (x, y) is lower semi-continuous in its first variable.

(ii) F (x, y) is C-concave in its first variable and C-convex in its second variable.

(iii) F (x, x) ⊂ C , for all x ∈ A.

(iv) {F (x, y) : x, y ∈ A} is a bounded subset in Y .

Then VH (A,F ) is a nonempty connected set.
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Theorem 5.3. Let A be a nonempty compact convex subset of X, and C ⊂ Y be a closed
convex pointed cone with a base. Assume that for each f ∈ C#, T : A → 2L(X,Y ) is a
v-hemicontinuous, f-pseudomonotone mapping. Moreover, assume that the set-valued map
F : A×A → 2Y defined by F (x, y) = (Tx, y − x) is C-convex in its second variable, and the
set {F (x, y) : x, y ∈ A} is a bounded set in Y . Then, VG (A,F ) is a nonempty connected
set.

Proof. We define the set-valued map H : C# → 2A by

H (f) = Vf (A,F ) , f ∈ C#.

By Theorem 4.3, for each f ∈ C#, we have H (f) = Vf (A,F ) 6= ∅, hence VG (A,F ) 6= ∅.
Clearly, C# is a convex set, hence it is a connected set. Define the set-valued maps E,
G : A → 2A by

E (y) = {x ∈ A|∀s ∈ Tx, f ((s, y − x)) ≥ 0} , y ∈ A.

G (y) = {x ∈ A|∀s ∈ Ty, f ((s, y − x)) ≥ 0} , y ∈ A.

Now, we prove that for each f ∈ C#, H (f) is a connected set. Let x1, x2 ∈ H (f) =
Vf (A,F ), then x1, x2 ∈

⋂
y∈A

E (y). By assumption, we can see that
⋂

y∈A

G (y) =
⋂

y∈A

E (y),

so x1, x2 ∈
⋂

y∈A

G (y). Hence, for i = 1, 2 , and for each y ∈ A, s ∈ Ty, we have

f ((s, y − xi)) ≥ 0.

Then, for each y ∈ A, s ∈ Ty, and t ∈ [0, 1], we have

f ((s, y − (tx1 + (1− t) x2))) ≥ 0.

Hence, tx1 + (1− t)x2 ∈
⋂

y∈A

G (y) =
⋂

y∈A

E (y). Thus, tx1 + (1− t) x2 ∈ H (f). Conse-

quently, for each f ∈ C#, H (f) is a convex set. Therefore it is a connected set. The follow-
ing is to prove that H is upper semicontinuous on f ∈ C#. Since A is a nonempty compact
set, we only need to show that H is a closed map. Let sequence {(fn, xn)} ⊂ Graph (H),
and (fn, xn) → (f0, x0), where {fn} converges to f0 ∈ C# with respect to the norm topology
of Y ∗. As (fn, xn) ∈ Graph (H), we have

xn ∈ H (fn) = Vfn (A,F ) .

Then, for each s′ ∈ Txn, we have that

fn ((s′, y − xn)) ≥ 0, for all y ∈ A.

By assumption, for each n, T : A → 2L(X,Y )is fn-pseudomonotone, hence, for each y ∈ A,
for above xn, and for each s ∈ Ty, we have

fn ((s, y − xn)) ≥ 0, for all y ∈ A. (5.5)

As xn → x0, we have (s, y − xn) → (s, y − x0), and f0 ((s, y − xn)) → f0 ((s, y − x0)). As
xn → x0, and A is compact, we have x0 ∈ A. Let D = {F (x, y) : x, y ∈ A}. By assumption,
D is a bounded set in Y . Then, there exists M > 0, such that for each z ∈ D, we have
‖z‖ ≤ M . Because fn − f0 → 0 with respect to the norm topology, for any ε > 0, there
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exists n0 ∈ N , when n ≥ n0, we have ‖fn − f0‖ < ε. Therefore, there exists n0 ∈ N , when
n ≥ n0, we have

|fn ((s, y − xn))− f0 ((s, y − xn))| = |(fn − f0) ((s, y − xn))| ≤ Mε.

Hence,
lim

n→∞
(fn ((s, y − xn))− f0 ((s, y − xn))) = 0.

Then,

lim
n→∞

fn ((s, y − xn)) = lim
n→∞

(fn ((s, y − xn))− f0 ((s, y − xn)) + f0 ((s, y − xn)))

= f0 ((s, y − x0)) . (5.6)

Then by (5.5), (5.6), for each y ∈ A , and for each s ∈ Ty, we have f0 ((s, y − x0)) ≥ 0.
Since T is f0-pseudomonotone, for each s∗ ∈ Tx0, we have f0 ((s∗, y − x0)) ≥ 0. Hence,
x0 ∈ H (f0) = Vf0 (A,F ). Therefore, the graph of H is closed, and hence H is a closed map.
By [2], we know that, H is upper semicontinuous on C#.

Because F (x, y) is C-convex in its second variable, for each x ∈ A, F (x,A)+C is convex.
It follows from Theorem 3.1 that

VG (A,F ) =
⋃

f∈C#
Vf (A,F ).

Then, by Theorem 3.1 in [23], we know that VG (A,F ) is a connected set.

In the same way, we can get the connectedness theorem of Henig efficient solutions set
for set-valued vector Hartman-Stampacchia variational inequality.

Theorem 5.4. Let A be a nonempty compact convex subset of X, and C ⊂ Y be a closed
convex pointed cone with a base. Assume that for each f ∈ C∆(B), T : A → 2L(X,Y ) is a
v-hemicontinuous, f-pseudomonotone mapping. Moreover, assume that the set-valued map
F : A×A → 2Y defined by F (x, y) = (Tx, y − x) is C-convex in its second variable, and the
set {F (x, y) : x, y ∈ A} is a bounded set in Y . Then, VH (A,F ) is a nonempty connected
set.

References

[1] Q.H. Ansari, W. Oettli and D. Schläger, A generalization of vector equilibrium, Math.
Method Oper. Res. 46 (1997) 147–152.

[2] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, New York, John Wiley & Son,
1984.

[3] J.M. Borwein and D. Zhuang, Super efficiency in vector optimization, T. Am. Math.Soc.
1993 (338) 105–122.

[4] B. Chen, X.H. Gong and S.M. Yuan, Connectedness and compactness of weak efficient
solutions for set-valued vector equilibrium problems, J. Inequalities and Appl. 2008,
Article ID 581849, 15 pages doi:10.1155/2008/581849

[5] G.Y. Chen and G.M. Cheng, Vector variational inequalities and vector optimization, in
Lecture notes in economics and mathematical systems, Vol. 258. Springer, Heidelberg,
1987, pp. 408-416.



CONNECTEDNESS OF THE SOLUTION SETS 385

[6] G.Y. Chen and X.Q. Yang, Vector complementarity problem and its equivalence with
weak minimal element in ordered spaces, J. Math. Anal. Appl. 153 (1990) 136–158.

[7] G.Y. Chen, Existence of solution for a vector variational inequality: an extension of the
Hartman-Stampacchia theorem, J. Optimiz. Theory. Appl. 74 (1992) 445–456.

[8] G.Y. Chen and S.J. Li, Existence of solution for a generalized vector quasivariational
inequality, J. Optimiz. Theory. Appl. 90 (1996) 321–334.

[9] Y.H. Cheng, On the connectedness of the solution set for the weak vector variational
inequality, J. Math. Anal. Appl. 260 (2001) 1–5.

[10] F. Giannessi, Theorem of the alternative, quadratic programs, and complementarity
problems, in Variational Inequalities and Complementarity Problems, R.W. Cottle, F.
Giannessi and J.L. Lions(eds.), Wiley, New York, 1980, pp. 151–186.

[11] J.Y. Fu, Generalized vector quasivariational problems, Math. Method Oper. Res. 52
(2000) 57–64.

[12] X.H. Gong, Efficiency and Henig efficiency for vector equilibrium problems, J. Optimz.
Theory. Appl. 108 (2001)139–154.

[13] X.H. Gong, W.T. Fu and W. Liu, Super efficiency for a vector equilibrium in locally con-
vex topological vector spaces, in Vector Variational Inequalities and Vector Equilibria:
Mathematical Theories, F. Giannessi (ed.), Kluwer Academic Publishers, Netherlands,
2000, pp. 233–252.

[14] X.H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium
problems, J. Optimz. Theory. Appl. 133 (2007) 151–161.

[15] S.H. Hou, H. Yu and G.Y. Chen, On vector quasi-equilibrium problems with set-valued
maps, J. Optimiz. Theory. Appl. 119 (2003) 139–154.

[16] I.V. Konnov and J.C. Yao, On the generalized vector variational inequality problem, J.
Math. Anal. Appl. 206 (1997) 42–58.

[17] G.M. Lee, B.S. Lee and S.S. Chang, On vector quasivariational inequalities, J. Math.
Anal. Appl. 203 (1996) 626–638.

[18] G.M. Lee, D.S. Kim, B.S. Lee and N.D. Yun, Vector variational inequality as a tool
for studying vector optimization problems, Nonlinear. Anal. Theory. Methods. Appl. 34
(1998) 745–765.

[19] X.J. Long, N.J. Huang and K.L. Teo, Existence and stability of solutions for generalized
strong vector quasi-equilibrium problem, Math. Comput. Modelling 47 (2008) 445–451.

[20] J. W. Peng, H. W. Joseph Lee and X.M. Yang, On systems of generalized vector quasi-
equilibrium problem with set-valued maps, J. Global. Optim. 35 (2006) 139–158.

[21] A.H. Siddiqi, Q.H. Ansari, Q.H. Khaliq, On vector variational inequalities, J. Optimiz.
Theory. Appl. 84 (1995) 171–180.

[22] N.X. Tan, On the existence of solutions of quasi-variational inclusion problems, J.
Optimiz. Theory. Appl. 123 (2004) 619–638.



386 X.-H. GONG, B. CHEN AND H.-M. YUE

[23] A.R. Warburton, Quasi-concave vector maximization: connectedness of the sets of
Pareto-optimal and weak Pareto-optimal alternatives, J. Optimiz. Theory. Appl. 40
(1983) 537–557.

[24] X.Q. Yang, Vector variational inequality and its duality, Nonlinear. Anal. Theory.
Methods. Appl. 21 (1993) 869–877.

[25] S.J. Yu and J.C. Yao, On vector variational inequalities, J. Optimiz. Theory. Appl. 89
(1996) 749–769.

Manuscript received 11 May 2008
revised 31 January 2009

accepted for publication 18 May 2009

Xun-Hua Gong
Department of Mathematics, Nanchang University
Nanchang, 330031, China
E-mail address: xunhuagong@gmail.com

Bin Chen
Department of Mathematics, Nanchang University
Nanchang, 330031, China
E-mail address: chenbin1984910@163.com

Hua-Ming Yue
Department of Mathematics, Nanchang University
Nanchang, 330031, China
E-mail address: yuehm334@163.com


