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1 Introduction

Lenstra [5] established a seminal result showing that linear integer programs can be solved
in time that is polynomial in fixed dimension. His algorithm branches on general hyper-
planes instead of elementary hyperplanes defined by single variables. Central to Lenstra’s
branching-on-hyperplane algorithm is the use of a reduced lattice basis computation at every
node of the branching-on-hyperplane tree. Aardal et al. [1, 2, 3] and Aardal and Lenstra [4]
have proposed and computationally studied reformulation techniques for pure integer prob-
lems using a kernel lattice that is Lenstra, Lenstra, Lovász [7] reduced (LLL-reduced) in
the Euclidean norm. Although their technique is a heuristic, computationally they showed
that branching on single variables in the reformulated problem requires significantly fewer
branches than those required to solve the original problem using CPLEX version 6.5.3 for
difficult knapsack and market share problems known in the literature. Their reformulation
generates a full dimensional problem using an LLL reduced kernel lattice and a short solu-
tion satisfying the equality constraints. The LLL basis reduction method is used to obtain
such a basis and short solution. The LLL basis reduction is performed using the Euclidean
norm to measure the length of each basis vector.

Mehrotra and Li [9] recently studied the problem of generating branching hyperplanes,
and showed that the branching hyperplanes can be generated without a full dimensional
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reformulation. They also suggest a reformulation technique, which performs the lattice ba-
sis reduction using an ellipsoidal norm at the root node. The matrix used to define the
ellipsoidal norm is obtained by taking an ellipsoidal approximation of the feasible region.
We present a generic four dimensional integer program to show the difference between the
method in Mehrotra and Li [9] and the reformulation method used in [1, 2, 3, 4]. The con-
structed examples show that when LLL-reduced lattice in the Euclidean-norm is used to find
the branching direction, the longest lattice vector may not give the smallest width branch-
ing Hyperplane. This is because the Euclidean-norm LLL-reduction ignores the polyhedral
geometry of linear relaxation by approximating it with a sphere. The situation may be im-
proved by incorporating the geometric information by using an ellipsoidal approximation of
the feasible region and finding an LLL-reduced basis under a more general ellipsoidal-norm.
We give examples illustrating that the reduced lattice basis which incorporates the informa-
tion on the linear relaxation region at the root node via its ellipsoidal approximation may
significantly reduce the required number of branching nodes, hence has potential practical
value. In particular, this example shows that the number of branches grow with the prob-
lem data magnitude (see dependence on k2 in (2.7) below) if Euclidean norm reduced lattice
basis is used. The number of branches is constant for the example if the ellipsoidal norm is
used. Remarkably, despite having only four variables, a flagship mixed integer programming
solver package (CPLEX) which branches on single variable reached an incorrect conclusion
when a slightly harder numerical example was constructed based on the general technique
given in this paper.

This paper is organized as follows. The notation, terminology and definitions used in
this paper are given in the Appendix. The next section gives our general technique for
constructing a four dimensional example with equality constraints. This section also gives
reformulations of the basic model using an LLL-reduced basis when the basis reduction is
performed using the Euclidean norm, and an ellipsoidal norm. It also describes an interior
point approach [10] for finding an ellipsoidal rounding of the linear relaxation region to define
the ellipsoidal norm for the LLL-reduced basis. Section 3 gives numerical examples based
on the general technique. Section 3.1 compares the number of branches required using the
Euclidean and Ellipsoidal-norm reformulations, as well as the number of branches required
by CPLEX. The example in Section 3.2 demonstrates that for more ‘difficult’ four variable
problems CPLEX-MIP solver fails. Section 4 gives infeasible versions of problems considered
in Sections 2–3. Some concluding remarks are made at the end.

2 A Four Dimensional Feasible Integer Program

We consider the following integer program:

min eT x (2.1)
s.t. Ax = b

x ∈ Z4
+,

where e ∈ IR4 is a vector of all ones, and A and b are given as

A =
[

1 0 −k1(k2k3 − 1) + k1k2 −k1(k2k3 − 1)
0 1 (k1k2 − 1)(k3 − 1)− k1 k3(k1k2 − 1)− k1

]
(2.2)

and

b =
[

k1k2k3(−2k2k3 + k2 + 2) + k1 − 1
k2k3((k1k2 − 1)(2k3 − 1)− 2k1)− 1

]
. (2.3)
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Problem (2.1) has a unique integral feasible solution [k1− 1, 0, 2k2k3− 1, k2 +1]T , where
we assume that k1, k2, k3 ∈ Z satisfy the following conditions

k1 > 2, k2 >> k1, gcd(k1, k2) = 1, and k3 >> k1k2, (2.4)

where gcd(k1, k2) is the greatest common divisor of k1 and k2. A particular short solution
to Ax = b is given by v = [k1 − 1,−1, k2k3, k2k3]T .

Using Hermite Normal Form (HNF) calculation a Kernel lattice basis of A is

Z =




−k1(k2k3 − 1) + k1k2 −k1(k2k3 − 1)
(k1k2 − 1)(k3 − 1)− k1 k3(k1k2 − 1)− k1

−1 0
0 −1


 ,

and from the LLL basis reduction algorithm [7], an LLL-reduced kernel lattice basis of A is
given by

ZLLL =




k1k2 −k1

−(k1k2 − 1) k1

−1 k3

1 −(k3 − 1)


 .

It is easy to verify that under the conditions in (2.4) no further reduction of the second
column of ZLLL by adding an integer multiple of the first column is possible.

The technique in Aardal et al. [1, 2, 3] reformulates (2.1) using x = ZLLLy + v as an
equivalent integer program:

min y1 + y2 (2.5)
s.t. k1k2y1 − k1y2 ≥ −(k1 − 1)

−(k1k2 − 1)y1 + k1y2 ≥ 1
−y1 + k3y2 ≥ −k2k3

y1 − (k3 − 1)y2 ≥ −k2k3

y1, y2 ∈ Z.

The unique solution [k1−1, 0, 2k2k3−1, k2+1]T of (2.1) is transformed to [1, k2]T for (2.5). It

is an exercise to verify that the relaxed optimal solution of (2.5) is
[
2− k1, k2(2− k1) + k1−1

k1

]T

(for k1 = 3), or
[
−k3(k1k2+k1−1)

k1k2k3−k1
,−k2 − (k1k2+k1−1)

k1k2k3−k1)

]T

(if k1 > 3).

Denote the relaxed feasible set of Problem (2.5) by

Q = {y ∈ IR2 | k1k2y1 − k1y2 ≥ −(k1 − 1),−(k1k2 − 1)y1 + k1y2 ≥ 1, (2.6)
−y1 + k3y2 ≥ −k2k3, y1 − (k3 − 1)y2 ≥ −k2k3}.

We calculate WI(e1,Q) and WI(e2,Q), which are the integer widths of Q along e1, e2. Note
that WI(u,Q) = 0 means that Q does not contain any integer solution.
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Using the conditions in (2.4), it is an exercise to show that

WI(e2,Q) =
⌊

k2k3(k1k2 − 1)− 1
(k3 − 1)(k1k2 − 1)− k1

⌋

−
⌈
max

{
k2(2− k1) +

k1 − 1
k1

,−k2 − (k1k2 + k1 − 1)
k1k2k3 − k1)

}⌉
+ 1

=
⌊
k2 +

k1k2 + k2(k1k2 − 1)− 1
(k3 − 1)(k1k2 − 1)− k1

⌋
+ min{k2(k1 − 2)− 1, k2}+ 1

= k2 + min{k2(k1 − 2)− 1, k2}+ 1,

WI(e1,Q) =
⌊

k1k2k3 − (k3 − 1)
(k3 − 1)(k1k2 − 1)− k1

⌋

−
⌈
max

{
2− k1,−k3(k1k2 + k1 − 1)

k1k2k3 − k1

}⌉
+ 1,

=
⌊
1 +

k1(k2 + 1)
(k3 − 1)(k1k2 − 1)− k1

⌋
(2.7)

−
⌈
max

{
2− k1,−1− k3(k1 − 1) + k1

k1(k2k3 − 1)

}⌉
+ 1

= 1 + min{k1 − 2, 1}+ 1 = 3.

Therefore, at the root node branching on e2 = (0, 1) will generate 2k2 (for k1 = 3) or
2k2 + 1 (if k1 > 3) subproblems to declare optimality. Branching on e1 = (1, 0) first gener-
ates 3 subproblems. Aardal et al. [1, 2, 3] propose to branch on e2 first because the second
column of ZLLL has a larger norm.

Now following the method in Mehrotra and Li [9] we compute an approximate analytic
center of the relaxed feasible set of Problem (2.1), denoted by P = {x ∈ IR4

+|Ax = b}, where
the coefficient matrix A and b are given in (2.2) and (2.3), respectively. The analytic center
finding problem [10] is formulated as

min −
4∑

i=1

ln(xi) (2.8)

s.t. Ax = b, x ∈ IR4
+.

However here for simplicity we construct an approximate analytic center w of P using
the interior-point wQ = [ 12 , k2+1

2 ]T of Q

w = ZLLLwQ + v =
[
k1 − 2

2
,
k1 − 1

2
,
3k2k3 + k3 − 1

2
,
k2k3 − k3 + k2 + 2

2

]T

. (2.9)

An ellipsoid which approximates P is given by E(w, Q) := {x ∈ IR4|(x−w)TQ(x−w) ≤ 1},
where Q1/2 = diag

{
1

w1
, 1

w2
, 1

w3
, 1

w4

}
is a diagonal matrix. The integral kernel basis ZLLL

scaled by Q1/2 is given as

Q1/2ZLLL =




2k1k2
k1−2

−2k1
k1−2

−2(k1k2−1)
k1−1

2k1
k1−1

−2
3k2k3+k3−1

2k3
3k2k3+k3−1

2
k2k3−k3+k2+2

−2(k3−1)
k2k3−k3+k2+2


 .
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The LLL-reduced basis of Q1/2ZLLL is given as

Q1/2ZLLLV =




0 −2k1
k1−2

2
k1−1

2k1
k1−1−2+2k2k3

3k2k3+k3−1
2k3

3k2k3+k3−1
2−2k2(k3−1)

k2k3−k3+k2+2
−2(k3−1)

k2k3−k3+k2+2


 ,

where

V =
[

1 0
k2 1

]
.

The corresponding LLL-reduced integer kernel basis is given as

ZQ,LLL = ZLLLV =




0 −k1

1 k1

k2k3 − 1 k3

1− k2(k3 − 1) −(k3 − 1)


 .

Using x = ZQ,LLLy + v, the transformed problem is given as

min (1− k2)y1 + y2 (2.10)
s.t. −k1y2 ≥ −(k1 − 1)

y1 + k1y2 ≥ 1
(k2k3 − 1)y1 + k3y2 ≥ −k2k3

(1− k2(k3 − 1))y1 − (k3 − 1)y2 ≥ −k2k3

y1, y2 ∈ Z.

Denote its relaxed feasible set by

R := {y ∈ IR2| − k1y2 ≥ −(k1 − 1), y1 + k1y2 ≥ 1, (k2k3 − 1)y1 + k3y2 ≥ −k2k3, (2.11)
(1− k2(k3 − 1))y1 − (k3 − 1)y2 ≥ −k2k3}.

The integer widths of R along e1 and e2 are:

WI(e2,R) =
⌊

k1 − 1
k1

⌋
−

⌈
1 + k2

k1(1− k2k3 + k2) + k3 − 1

⌉
+ 1 = 1,

WI(e1,R) =
⌊
1 +

k1(1 + k2)
k1(k2k3 − k2 − 1)− k3 + 1

⌋
−

⌈
max{2− k1,−1− k1 + k3(k1 − 1)

k1(k2k3 − 1)
}
⌉

+1
= 3.

The integral optimal solution [1, 0]T of (2.10) is readily available by branching on e2 first.
This shows that Mehrotra-Li method generates a better branching scheme by considering
the geometry of the relaxed feasible set. In the following two sections we give particular
instances of (2.1) to numerically illustrate the value of above constructed example.
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3 Feasible Numerical Examples

3.1 A Numerical Example Comparing Euclidean and Ellipsoidal Norm Re-
duced Basis Reformulations

A particular instance of (2.1) is given by letting k1 = 3, k2 = 11, k3 = 180:

min
∑4

i=1 xi (3.1)
s.t. x1 − 5904x3 − 5937x4 = −23445178

x2 + 5725x3 + 5757x4 = 22734359
x1, x2, x3, x4 ∈ Z+.

This problem has a unique integral solution [2, 0, 3959, 12]T . A short particular solution to
the equality constraint is v = [2,−1, 1980, 1980]T .

From the HNF computation of the coefficient matrix in (3.1), a kernel basis and its cor-

responding adjoint lattice basis are given by Z =




5904 5937
−5725 −5757

1 0
0 1


 and Z∗ =




0 0
0 0
1 0
0 1


.

Reformulation Using Euclidean Norm

The LLL-reduced basis obtained from Z is ZLLL =




33 −3
−32 3
−1 180

1 −179


, which is obtained by

post-multiplying Z with V =
[ −1 180

1 −179

]
. Using the transformation x = ZLLLy + v,

(3.1) is reformulated as:

min y1 + y2 (3.2)
s.t. 33y1 − 3y2 ≥ −2

−32y1 + 3y2 ≥ 1
−y1 + 180y2 ≥ −1980
y1 − 179y2 ≥ −1980
y1, y2 ∈ Z.

The optimal solution of linear programming relaxation of (3.2) is [−1,−10.3333]T . Denote by
P, Q the relaxed feasible sets of (3.1) and (3.2), respectively. Then WI(e2,Q) = b11.067c−
d−10.333e+ 1 = 22, and WI(e1,Q) = b1.0063c − d−1e+ 1 = 3. This shows that it requires
at least 22 subproblems if branching on e2 first. We also used CPLEX 9.0 MIP solver with
default options for comparison. It correctly solved (3.1) using 19 nodes.

Reformulation Using Ellipsoidal Norm
We now illustrate the performance when ellipsoidal-norm is used in this example. We find
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an analytic center by solving the optimization problem:

min −∑4
i=1 ln(xi) (3.3)

s.t. x1 − 5904x3 − 5937x4 = −23445178
x2 + 5725x3 + 5757x4 = 22734359
x1, x2, x3, x4 ∈ IR+.

A near optimal solution of (3.3) is given by w = [0.7498, 0.7271, 2998.742, 966.92]T (compare
this with the approximate center [0.5, 1, 3059.5, 906.5]T given by (2.9)).

An ellipsoid that approximates P is given by E(w,P) := {x ∈ IR4|(x − w)TQ(x −
w) ≤ 1}, where Q1/2 = diag {1.334, 1.375, 0.000333, 0.00103}. Then we have Q1/2ZLLL =


44.012 −4.001
−44.012 4.126

−0.000333 0.060
0.00103 −0.185


 . The LLL-reduced Q1/2ZLLL basis is given by Q1/2ZLLL =




0 −4.001
1.375 4.126
0.66 0.060

−2.035 −0.185


 , obtained by using the unimodular transformation V =

[
1 0

11 1

]
.

The corresponding reduced integral kernel basis, denoted by ZQ,LLL is given by ZQ,LLL =


0 −3
1 3

1979 180
−1968 −179


 .

Therefore, we can reformulate (3.2) as

min −10y1 + y2 (3.4)
s.t. −3y2 ≥ −2

y1 + 3y2 ≥ 1
1979y1 + 180y2 ≥ −1980
−1968y1 − 179y2 ≥ −1980

y1, y2 ∈ Z,

Now branching on e2 and e1 gives a better branching scheme. In fact, the integral optimal
solution is [1, 0]T and the relaxed optimal solution is [1.00490,−0.000163]T . Denote by R
the feasible set of (3.4). Then WI(e2,R) =

⌊
2
3

⌋ − d−0.0021e + 1 = 1, and WI(e1,R) =
b1.0063c − d−1e+ 1 = 3. Only one subproblem is needed when branching on e2 first.

We can also generate the branching directions in the original space by using the columns
of an adjoint lattice basis introduced by Mehrotra and Li [9]. Given an integral kernel lattice
basis Z of A, its adjoint basis is given by an integral matrix Z∗ satisfying ZT Z∗ = I. In the

above numerical example, the adjoint lattice basis is given by Z∗ =




0 0
0 0
1 0
0 1


 .

According to Proposition A.1 (Proposition 4.1 in [9]) we run the LLL basis reduction
algorithm on the adjoint lattice basis Z∗ with respect to the projected ellipsoidal norm

P = Q−1/2PAQ−1/2Q−1/2 = Q−1 −Q−1AT (AQ−1AT )−1AQ−1 (3.5)

= Z(ZT QZ)−1ZT .
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The LLL-reduced adjoint lattice basis, denoted by Z∗Q,LLL, is given by

Z∗Q,LLL =




0 0
0 0

−1968 −1789
−1979 −1799


 . (3.6)

Therefore, the first branching direction is u = [0, 0,−1968,−1979]T . Only one subproblem
is generated by adding constraint

1968x3 + 1979x4 = 7815060.

The integral optimal solution [2, 0, 3959, 12]T is obtained readily by adding another con-
straint

1789x3 + 1799x4 = 7104239.

3.2 A Numerical Example Showing CPLEX Failure

A harder example is given by setting k1 = 11, k2 = 41, k3 = 600.

min
∑4

i=1 xi (3.7)
s.t. x1 − 270138x3 − 270589x4 = −13301884190

x2 + 269539x3 + 269989x4 = 13272388799
x1, x2, x3, x4 ∈ Z+.

The only optimal integral solution is [10, 0, 49199, 42]T and a short particular solution is
[10,−1, 24600, 24600]T . The reformulated problem using Euclidean-norm reduced lattice
basis is given as

min y1 + y2 (3.8)
s.t. 451y1 − 11y2 ≥ −10

−450y1 + 11y2 ≥ 1
−y1 + 600y2 ≥ −24600
y1 − 599y2 ≥ −24600
y1, y2 ∈ Z.

Denote by Q the relaxed feasible set of Problem (3.8). Then WI(e2,Q) = b41.07c −
d−41.0017e+ 1 = 83, and WI(e1,Q) = b1.0017c − d−1.0222e+ 1 = 3.

Using the ellipsoidal-norm reduced basis we obtain the following transformed problem:

min −40y1 + y2 (3.9)
s.t. −11y2 ≥ −10

y1 + 11y2 ≥ 1
24599y1 + 600y2 ≥ −24600
−24558y1 − 599y2 ≥ −24600

y1, y2 ∈ Z.

Let R be its relaxed feasible set. The analytic center solution to (2.8) for this example is w =
[4.52, 4.51, 25597.88, 23603.79]T (compare with the approximated center [4.5, 5, 37199.5, 12021.5]T
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obtained from (2.9)). Then WI(e2,R) =
⌊

10
11

⌋ − d−1.558E − 4e + 1 = 1, and WI(e1,R) =
b1.00172c − d−1.022214502e+ 1 = 3. The CPLEX 9.0 MIP [6] solver produced the follow-
ing output output for Problem (3.7). It experienced numerical difficulties and reached an
incorrect conclusion while exploring more than 500 nodes.

Reduced MIP has 2 rows, 4 columns, and 6 nonzeros. Presolve time = -0.00
sec. MIP emphasis: balance optimality and feasibility Root relaxation
solution time = -0.00 sec.

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 49166.9778 2 49166.9778 2
49166.9800 2 Fract: 1 3

100 1 49167.1562 2 49167.1559 4
200 1 49167.3272 2 49167.3266 4
300 1 49167.4982 2 49167.4973 4
400 1 49167.6692 2 49167.6681 4
500 1 49167.8403 1 49167.8388 4

* 596 0 0 49168.0044 49168.0027 4 0.00%
Warning: integer solution contains unscaled infeasibilities.

Maximum unscaled integer infeasibility = 0.00443538. Integer optimal with
unscaled infeasibilities: Objective = 4.9168004443e+04 Solution time =
0.05 sec. Iterations = 4 Nodes = 596

4 Infeasible Problems

One may question the value of using ellipsoidal norm for infeasible integer programs. In this
section we modify the right-hand side of Problem (2.1) to generate infeasible problems and
show that similar performance improvements are possible when ellipsoidal norm is considered
in the reduced lattice basis computation.

4.1 A General Infeasible Example

Let P = {x ∈ IR4
+|Ax = b}, where the coefficient matrix A is given in (2.2), and

b =
[

k1k
2
2k3 − (k2k3 − 1)(2k1k2k3 − k1k2 − 2k1) + (k1 − 1)

2k3(k1k2 − 1)(k2k3 − k2 − 1)− k1(2k2k3 − k2 − 2)− 1

]
. (4.1)

We consider the following integer feasibility problem (IFP):

Does there exist a feasible integer solution in P? (4.2)

A particular short solution to Ax = b is given by v = [k1−1,−1, k2k3, k2k3−k2−2]T . Using
the transformation x = ZLLLy + v, the set P is transformed to:

Q = {y ∈ IR2 | k1k2y1 − k1y2 ≥ −(k1 − 1),−(k1k2 − 1)y1 + k1y2 ≥ 1, (4.3)
−y1 + k3y2 ≥ −k2k3, y1 − (k3 − 1)y2 ≥ −k2k3 + k2 + 2}.
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The IFP problem (4.2) is equivalent to the following feasibility problem:

Does there exist a feasible integer solution inQ? (4.4)

One can verify that Q does not contain any feasible integer solution with the conditions
given in (2.4). The integer widths of Q along e2, e1 are given as

WI(e2,Q) =
⌊

(k2k3 − k2 − 2)(k1k2 − 1)− 1
(k3 − 1)(k1k2 − 1)− k1

⌋

−
⌈
max

{
k2(2− k1) +

k1 − 1
k1

,−k2 − (k1k2 + k1 − 1)
k1k2k3 − k1)

}⌉
+ 1

=
⌊
k2 − k1k2 − 1

(k3 − 1)(k1k2 − 1)− k1

⌋
−max {k2(2− k1) + 1,−k2}+ 1

= k2 − 1 + min{k2(k1 − 2)− 1, k2}+ 1,

which is 2k1 − 1 (if k1 = 3) or 2k2 (if k1 > 3), and

WI(e1,Q) =
⌊

k1(k2k3 − k2 − 2)− (k3 − 1)
(k3 − 1)(k1k2 − 1)− k1

⌋

−
⌈
max

{
2− k1,−k3(k1k2 + k1 − 1)

k1k2k3 − k1

}⌉
+ 1

=
⌊
1− k1

(k3 − 1)(k1k2 − 1)− k1

⌋
+ min{k1 − 2, 1}+ 1 = 2.

Using ellipsoidal norm reduced lattice basis the transformed feasible set is given by

R = {y ∈ IR2 | − k1y2 ≥ −(k1 − 1), y1 + k1y2 ≥ 1, (k2k3 − 1)y1 + k3y2 ≥ −k2k3,

(1− k2(k3 − 1))y1 − (k3 − 1)y2 ≥ −k2k3 + k2 + 2}.
One can show that

WI(e2,R) =
⌊

k1 − 1
k1

⌋
−

⌈
1

k1(k2k3 − k2 − 1)− (k3 − 1)

⌉
+ 1 = 0,

WI(e1,R) =
⌊
1− k1

k1(k2k3 − k2 − 1)− (k3 − 1)

⌋
−

⌈
max{2− k1,−1− k1 + k3(k1 − 1)

k1(k2k3 − 1)
}
⌉

+1 = 2.

We can readily detect the infeasibility of this problem by branching on e2 first.

4.2 Numerical Illustration of the Infeasible Example

We now give a numerical example for the problem constructed in Section 4.1. We convert
our example in Section 3.1 with a new b computed from for this purpose. The relaxed
feasible set is given as

P = {x ∈ IR4
+|x1 − 5904x3 − 5937x4 = −23367997, x2 + 5725x3 + 5757x4 = 22659518},

and the transformed relaxed feasible set is

Q = {y ∈ IR2|33y1 − 3y2 ≥ −2, −32y1 + 3y2 ≥ 1,

− y1 + 180y2 ≥ −1980, y1 − 179y2 ≥ −1967},
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where WI(e2,Q) = b10.99c − d−10.33e+ 1 = 21, WI(e1,Q) = b0.99c − d−1e+ 1 = 2.
Following the method in Mehrotra and Li [9], we obtain the following transformed set:

R = {y ∈ IR2| − 3y2 ≥ −2, y1 + 3y2 ≥ 1,

1979y1 + 180y2 ≥ −1980, −1968y1 − 179y2 ≥ −1967},
where WI(e2,R) = b2/3c − d0.000175e+ 1 = 0, and WI(e1,R) = b0.99476c − d−1e+ 1 = 2.
CPLEX 9.0 MIP solver with default options detected the integer infeasibility of P using 116
nodes. The relaxed feasible region of the infeasible version of the example in Section 3.2
obtained by changing the right hand side according to (4.1) is given by:

P = {x ∈ IR4
+|x1 − 270138x3 − 270589x4 = −13290248863,

x2 + 269539x3 + 269989x4 = 13260779272}.
A short particular solution is [10,−1, 24600, 24557]T , and the transformed feasible set is

Q = {y ∈ IR2|451y1 − 11y2 ≥ −10, −450y1 + 11y2 ≥ 1,

−y1 + 600y2 ≥ −24600, y1 − 599y2 ≥ −24557}.
Then WI(e2,Q) = b40.998c−d−41.0017e+1 = 82, and WI(e1,Q) = b0.99996c−d−1.0222e+
1 = 2.

Using the ellipsoidal norm reduced lattice basis we obtain the following transformed
problem:

R = {y ∈ IR2| − 11y2 ≥ −10, y1 + 11y2 ≥ 1, 24599y1 + 600y2 ≥ −24600,

−24558y1 − 599y2 ≥ −24557}.
Then WI(e2,R) =

⌊
10
11

⌋−d3.71E − 6e+1 = 0, WI(e1,R) = b0.99996c−d−1.02221e+1 = 2.
For comparison, CPLEX 9.0 MIP solver with default options detected the infeasibility of
this problem using 2886 nodes.

5 Concluding Remarks

In this paper we have constructed four variable examples illustrating an integer program-
ming reformulation technique which uses an LLL-reduced basis in ellipsoidal norm. We
have demonstrated the value of using the ellipsoidal norm over Euclidean norm proposed
previously by showing that in these examples the branching nodes in the ellipsoidal norm
based reformulation is O(1), while the number of nodes in the Euclidean norm based refor-
mulations grows with the magnitude of problem data. We have also observed the failure of
a state of the art commercial package in solving four variable integer programs constructed
using the technique described in this paper.
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A Appendix

General Notation
The superscript T represents transpose of a vector or a matrix. For x ∈ IRn, ‖x‖ represents
the l2 (Euclidean) norm, and ‖x‖Q represents the ellipsoidal norm

√
xT Qx. e is a vector of

all ones. Q1/2 represents the square-root of a positive definite matrix, and Q−1/2 represents
the inverse of Q1/2. bαe represents an integer closest to α. bαc denotes the largest integer
less than or equal to α, and dαe represents the smallest integer greater than or equal to
α. bxc and dxe represents integral vectors obtained by rounding each component of a real
vector x as described above. I represents an Identity matrix of an appropriate size.

Feasibility Integer Programs
The pure feasibility integer linear programming problem (FILP) is to

find {x ∈ Zn
+ | Ax = a}, (A.1)

or to show that no such solution exists. Here A ∈ Zm×n, a ∈ Zm, and A is assumed to have
full row rank. Let P := {x | Ax = a, x ≥ 0}.

Width of a Convex Set
The width of a convex set C along an integral vector u is defined as

W(u, C) := max
x∈C

uT x−min
x∈C

uT x,

and its integer width is defined as

WI(u, C) := bmax
x∈C

uT xc − dmin
x∈C

uT xe+ 1.

Kernel and Adjoint Lattices
Given B = [b1, . . . , bk], n ≥ k, L(B) := {x ∈ IRn | x =

∑k
i=1 Zbi}, is the lattice generated by

column vectors bi, i = 1, . . . , k. A lattice is called integral if all vectors in L(B) are integer
vectors. An integral lattice has an associated unique integral kernel lattice K(B) := {u ∈
Zn | uT b = 0 for all b ∈ L(B)}. The lattice K(AT ) is represented by Λ. The existence of Λ
is well known. A lattice K∗(AT ) is called an adjoint lattice of A if for any basis Z of Λ there
exist a basis Z∗ of K∗(AT ) such that

ZT Z∗ = I. (A.2)

An adjoint lattice is integral if all its elements are integral. We only consider integral adjoint
lattices.

Lenstra, Lenstra, and Lovász Reduced Basis
Let B̂ = [b̂1, . . . , b̂k] be the orthogonal basis vectors computed by using the Gram-Schmidt
orthogonalization procedure as follows:

b̂i = bi −
i−1∑

j=1

Γj,ib̂j , i = 1, . . . , k, (A.3)

where
Γj,i = bT

i Eb̂j/‖b̂j‖2E , and b̂1 = b1. (A.4)
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Here E is a positive semi-definite matrix, which is defined later depending on the context.
It is assumed that ‖ · ‖E 6= 0 for the vectors of interest.

Definition A.1 A basis b1, . . . , bk of a lattice L is called an LLL-reduced basis, for δ ∈
( 1
4 , 1), if it has the following two properties:

C1. (Size Reduced) |Γj,i| ≤ 1/2 for 1 ≤ j < i ≤ k.

C2. (2-Reduced) ‖b̂i+1‖2E ≥ (δ − Γ2
i,i+1)‖b̂i‖2E, |Γi,i+1| ≤ 1/2 for i = 1, . . . , k − 1.

A.1 The Branching Hyperplane Problem

Aardal et al. [1, 2] have given a particular reformulation technique that reformulates FILP
in a full dimensional space. This technique is shown to be computationally useful for the
market split problems [3], and knapsack problems [4]. Aardal et al. [1, 2] transform (FILP)
to an equivalent feasibility problem:

find {y ∈ Zk | y ∈ Y := v + ZT y ≥ 0}, (A.5)

where Z ∈ Zn×k is a basis of K(AT ), and v ∈ Zn is an integral solution satisfying Ax = a.
Aardal et al. [1, 2, 3] and Aardal and Lenstra [4] use an LLL reduced Z and a short v in
their reformulation.

The following result from Mehrotra and Li [9] shows that computation of the width of
P and Y are equivalent.

Theorem A.1 Let u ∈ Λ∗, and u 6= 0, then there exists a p ∈ Zk (p 6= 0) such that

W(u,P) = W(p,Y). (A.6)

Furthermore, for p ∈ Zk there exists a u ∈ Λ∗ such that (A.6) also holds. In particular,
u = Z∗p, where Z∗ is a basis of Λ∗ satisfying ZT Z∗ = I.

This results in the following corollary.

Corollary A.1 minu∈Λ∗\0W(u,P) = minp∈Zk\0W(p,Y).

A.2 The Branching Hyperplane Problem in Ellipdsoidal Norm

The branching hyperplane problem using the ellipsoidal norm is formulated as follows. Let
E(w, Q) := {x ∈ IRn | (x − w)TQ(x − w) ≤ 1,Ax = a}. If w is taken as the log-barrier
analytic center, which is the solution of:

min{−
n∑

i=1

lnxi | Ax = a}.

It is well known that E(w, Q) gives an n-approximation of P [10]. In particular,

E(w,∇2ρ(w,P)) ⊆ P ⊆ E(w,∇2ρ(w,P)/n).

The branching hyperplane finding problem for the ellipsoid E(w, Q) is to solve the minimiza-
tion problem:

min
u∈Λ∗\0

W(u, E(w, Q)), or equivalently, min
u∈Λ∗\0

W(u, E(0, Q)), (A.7)

where E(0, Q) = {x ∈ IRn | ‖x‖Q ≤ 1,Ax = 0}. Since for any u ∈ IRn, minx∈E(0,Q) uT x =
−maxx∈E(0,Q) uT x, we have the following result.
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Proposition A.1 The width of the ellipsoid E(0, Q) along u ∈ Zn is

W(u, E(0, Q)) = 2‖Q−1/2u‖P
AQ−1/2 , (A.8)

where PAQ−1/2 = I−Q−1/2AT (AQ−1AT )−1AQ−1/2, or PAQ−1/2 = Q1/2Z(ZT QZ)−1ZT Q1/2

is an orthogonal projection matrix. In particular, if u ∈ Λ∗, then

1
2

min
u∈Λ∗\0

W(u, E(0, Q)) = min
p∈Zk\0

‖Q−1/2Z∗p‖P
AQ−1/2 (A.9)

= min
p∈Zk\0

√
pT (ZT QZ)−1p (A.10)

= min
p∈Zk\0

‖Q1/2Z(ZT QZ)−1p‖. (A.11)

The following corollary establishes a relationship between branching in the original prob-
lem and its full dimensional reformulation.

Corollary A.2 Consider the polyhedron Y = {y |ZT y + v ≥ 0}, where Z is a basis for Λ,
and v ∈ Zn satisfies Av = a. Then,

W(ek,Y) = W(Z∗k ,P),

where Z∗k = Z∗ek is the k−th column of Z∗.

If Z is LLL-reduced in ‖ · ‖Q norm and Z∗ is the corresponding adjoint lattice, then
Mehrotra and Li [9] show that PAQ−1/2Z∗ is 2-reduced in the reverse order. Similarly, if
PAQ−1/2Z∗ is LLL-reduced then the corresponding Q1/2Z is 2-reduced in the reverse order.

Proposition A.2 Let Z, Z∗ be bases of Λ and Λ∗ satisfying ZT Z∗ = I. Let us consider
the problem obtained by adding a constraint uT x = α to the set Ax = b, where u = Z∗k .

Then Z̃ = [Z1, . . . , Zk−1] is an integral basis for K(Ã) where Ã :=
[

A
uT

]
. Furthermore,

Z̃∗ =
[
Z∗1 , . . . , Z∗k−1

]
satisfies Z̃T Z̃∗ = I.

From Proposition A.2 and Corollary A.2 Mehrotra and Li [9] conclude that branching
on the coordinates ek, . . . , e1 in Y, is equivalent to branching on the vectors Z∗k , . . . , Z∗1 of
the adjoint lattice basis satisfying ZT Z∗ = I. Consequently they suggest an alternative
reformulation of FILP in (A.5) where Z is such that it is LLL-reduced under ‖ · ‖Q norm
instead of l-2 norm.


