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Abstract: In this short note we observe that results of Dennis and Audet extend naturally to a wide
variety of deterministic sampling methods. For bound-constrained problems, we show that any method
based on coordinate search which includes a sufficiently rich set of directions, for example random directions
at each state of the sampling, will, when applied to Lipschitz continuous problems, have cluster points that
satisfy generalized necessary conditions for optimality. The results also apply to the case of more general
constraints, including so-called “hidden” or “yes-no” constraints.
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1 Introduction

In this short paper we make the observation that the analysis which supports the MADS
[2] approach to generating search directions for direct search methods applies equally well
to problems with noise in the objective function. This enables us to apply the theory to the
paradigm which motivates sampling methods such as implicit filtering [24, 30].

Deterministic sampling methods such as Nelder-Mead [33], Hooke-Jeeves [26], the DFO
method [13, 15], and the many variants of the direct search algorithm [2, 27, 31, 36] are most
typically applied to problems which are nonsmooth, can be discontinuous, and are often
corrupted by high-frequency, low-amplitude noise. By noise we mean something broader
than statistical noise, and allow for any high-frequency and low-amplitude variation in the
function. This noise can arise from truncation error in simulations which are internal to the
objective function [16, 17, 22], stochastic methods used to compute the objective function
[8, 9, 24], or termination of internal iterations [22]. The combination of nonsmoothness and
noise can trap a conventional, gradient-based optimization algorithm in a local minimum.

Such a function may not even return a value. There are several reasons for this: an
iteration within the simulator may not converge; a set of design variables generated by the
optimization algorithm may not be acceptable to the simulator (e. g. a negative damping
coefficient); or the simulator may exceed its own limits on internal iterations, cpu time, or
storage. Failure of the function evaluation has been observed in practice, [4, 7, 8, 9, 11,
14, 21, 24]. When such a failure takes place we say that a “hidden constraint” has been
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violated. We use the term “hidden constraint” because only an attempt to evaluate f(x) can
determine if x is a feasible point. Such constraints are also called “virtual constraints” [14]
or “yes/no” constraints [6]. In some cases [10, 11, 21], it is even difficult to find a point at
which one can evaluate the function and begin an iteration. We discuss hidden constraints
in § 2.3.

We will begin in § 1.1 with a description of the kinds of structured sampling methods
we consider and how they have coordinate search as a core part of the algorithms. We will
then describe our assumptions on the set of directions.

In § 2.2 we start with an analysis of the bound constrained problem

min
x∈Ω

f(x) (1.1)

where
Ω =

{
x ∈ RN : l ≤ x ≤ u

}
, (1.2)

and the inequality in (1.2) is component-wise.
In § 2.3 we discuss more general constraints. In particular our analysis allows for so-called

“hidden” constraints, for which infeasibility can only be detected when f fails to return a
value.

1.1 Sampling Methods and Directions

We consider a class of stencil-based sampling methods in this paper.
Sampling methods control the progress of the optimization by evaluating (sampling)

the objective function at points in Ω. Sampling methods include the many variants on the
direct search paradigm [1, 2, 27, 31], the Hooke-Jeeves [26] method, implicit filtering [25, 30],
DIRECT [29], and the Nelder-Mead [33] algorithm. With the exceptions of DIRECT and
the Nelder-Mead method, all of the methods mentioned above are stencil-based. This means
that some or all of the sampling is done on a stencil of points centered at the current best
point and that the method changes the size or scale of the stencil if no new point is better
than the current best point.

Sampling methods do not require gradient information, but may, as implicit filtering
does, attempt to infer gradient and even Hessian information from the sampling.

1.2 Coordinate Search

We will use coordinate search as an example. The algorithm begins with a base point x and
a scale h ≤ 1/2. The algorithm begins by evaluating f evaluated at the 2N points on the
stencil

S(x, h) = {z | z = x± hei} ∩ Ω, (1.3)

centered at x and restricted to lie within the bounds. In (1.3) ei is the unit vector in the ith
coordinate direction. In a non-opportunistic search we sample the entire stencil and replace
x with z ∈ S(x, h), where

f(z) = min
w∈S(x,h)

f(w)

if f(z) ≥ f(x), a condition we will refer to as stencil failure, holds. When stencil failure
happens we shrink the stencil by reducing h. The standard way to reduce h is by a factor
of 2.

This paper is not about termination of algorithms like coordinate search but rather about
asymptotic behavior. However we will remark that sampling methods are unlike gradient-
based methods [18, 20, 23, 30, 34] where one can test for satisfaction of necessary conditions
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for optimality. One common way to control the cost of a sampling method is to give the
iteration a budget of calls to f , and to terminate the iteration when that budget is exhausted.

In the case of smooth (Lipschitz continuously differentiable) f , it is easy to show [5, 30]
that if stencil failure happens, then the necessary conditions for optimality [3, 30] hold to
first order i. e.

x− P(x−∇f(x)) = O(h). (1.4)

In (1.4) P is the l2 projection on to Ω,

P(x) = max(l, min(x, u)),

where the max and min are taken component-wise.
The proof that stencil failure implies (1.4) is simple and we summarize it here. Let {xn}

denote the sequence of of coordinate search iterations and {hn} the non-increasing sequence
of scales. Let x ∈ {xn} be an iteration for which stencil failure happens and let h = hn. To
avoid confusion with the iteration index, we let (x)i denote the ith component of the vector
x.

Let 1 ≤ i ≤ N . Suppose first that x ± hei ∈ Ω. In that case Lipschitz continuity and
f(x) ≤ f(x± hei) implies

0 ≤ f(x + hei)− f(x) = h∂f(x)/∂xi + O(h2)

0 ≤ f(x− hei)− f(x) = −h∂f(x)/∂xi + O(h2)

which implies that |∂f(x)/∂xi| = O(h). Since h < 1/2 at most one of x ± hei 6∈ Ω. If, say
x − hei 6∈ Ω then we may only make conclusions from f(x + hei). So ∂f(x)/∂xi ≥ O(h).
Since x is a distance at most h from the xi = l face of Ω and ∂f(x)/∂xi ≥ 0, we have

x−max(l, min((x)i − ∂f(x)/∂xi, u)) = O(h).

Hence (1.4) holds.
Convergence of the iteration will follow from (1.4). To see this note that the sampling

evaluates points at a grid of size h centered at x0 and aligned with the coordinate directions.
Since there are only finitely many grid points in Ω, we must have stencil failure after finitely
many evaluations of f . At that point (1.4) holds and we must reduce h. Hence any limit
point of the iteration must satisfy the necessary conditions

x− P(x−∇f(x)) = 0, (1.5)

for optimality.
One can also prove convergence if the objective function is contaminated with a certain

type of noise. If
f = fs + φ, (1.6)

where fs is smooth and φ is low-amplitude noise. We measure the size of the noise at x by
taking the maximum of |φ| over the union of the center x and the stencil S(x, h) (1.3). We
define

‖φ‖S(x,h) = max
z∈{x}∪S(x,h)

|φ(z)|.

If [30]

lim
n→∞

‖φ‖S(xn,hn)

hn
→ 0, (1.7)
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then every limit point of {xn} satisfies (1.5).
The version of coordinate search we described above can be significantly improved with

some very simple changes. One simple way to improve the performance is to do the function
evaluations in parallel. Another way is to do an “opportunistic search”, where the new
point is the first point sampled in the stencil which is better than the current point. Aside
from the sampling strategy, one can improve the performance of the method by building
surrogate models of f using the history of the optimization or by incorporating more points
into the sample [15, 30, 31]. This is the “search-poll” paradigm defined in [19] where the
exploratory phase (search) attempts to find a better point independently of the complete
sampling of the stencil (poll) is applied to determine if the scale should be reduced. Any
method that reduces the scale after stencil failure can be analyzed with the convergence
theory for coordinate search. Examples include implicit filtering [24, 30] and the DFO
method [13, 15] which sample the full stencil to build a model of f and methods like the
Hooke-Jeeves algorithm [26], APPS [27], and MADS which are opportunistic searches and
only sample the full stencil after the search phase has failed.

Many sampling methods [2, 26, 31] restrict the search to a fixed grid for each value of
h, and the analysis for coordinate search applies equally well to such methods provided the
search directions form a positive spanning set. Methods such as implicit filtering [24, 30],
for example, sample on a positive spanning set but may find a new point in the search phase
that does not lie on the grid of size h which includes the current point. For such algorithms
one must assume that stencil failure occurs infinitely often and then [30] the convergence
results will apply to any limit point of the sequence of points on which stencil failure occurs.

1.2.1 The need for more directions

The important component of the proof of (1.4) is the fact that if f is smooth, then the size
of ∇f can be determined by the directional derivatives in the coordinate directions or, more
generally, the directional derivatives from any set of directions which positively span RN

[15, 31, 37]. However, if f is Lipschitz continuous but not smooth, no finite set of search
directions will enable us to conclude (1.4) from stencil failure [2]. Therefore we must enrich
the stencil to obtain convergence.

More general constraints can also raise a need for additional directions. Even linear
constraints can confound a sampling method if the tangent directions for the constraints
are not in the direction set [31, 32]. In the case of linear constraints one can use the
constraint matrix to add directions as needed [32]. This approach becomes problematic
for general nonlinear constraints and impossible for the so-called “hidden constraints”, for
which infeasibility is only determined when f fails to return a value.

The results in [2] show that a grid-based method can be designed which has a sufficiently
rich set of directions to resolve many of these problems for Lipschitz continuous f and
sufficiently regular feasible sets. In this paper we extend those results to the case where f
is contaminated with noise.

2 Convergence Results

In this section we present two convergence results. In § 2.2 we consider only bound con-
straints and assume that f is defined for all points in Ω. In § 2.3 we assume that f can
fail to return a value. This failure can be a result of an internal failure in the call to f or
a failure to satisfy a nonlinear constraint. In the latter case one would simply assign f an
artificial value (which could include ∞ or NaN) as a way to flag the failure without calling
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f itself. The two results differ only in that the notion of stationarity differs between them,
not in the details of the analysis. Hence § 2.3 is brief and focuses only on the appropriate
generalization of stationarity. In the constrained case we will denote the feasible set by
D ⊂ Ω.

2.1 Iterates, Directions, and Necessary Conditions

As in [2] we will need a richer set of directions than a stencil which does not change as the
iteration progresses. We let I = {ξn} be the sequence of iterations and V = {Vn} be the
sequence of search directions at iteration n. By this we mean that

Vn = {vnk
}Nn

k=1

with vnk
a sequence of unit vectors. In this case the stencil at iteration n would be

S(ξn, hn) = {z | z = ξn + hnvnk
, 1 ≤ k ≤ Nn} ∩ Ω. (2.1)

In the standard case where Vn = V is independent of n, we would require that V contain a
positive spanning set. In this paper, however, we assume that the sequence {Vn} is rich in
directions, but not necessarily that any single Vn is. In fact Vn could have only one element
for each n and the theory would hold.

Assumption 2.1. Let W = {Wn} be any infinite subsequence of V and let v be any unit
vector in RN . Then

lim inf
n→∞

min
1≤k≤Nn

‖wnk
− v‖ = 0. (2.2)

Examples of sets satisfying Assumption 2.1 (at least with probability one) include the
cases where Vn is a random rotation of the centered difference stencil, a positive spanning
set which is augmented with one or more random vectors, or the MADS basis from [2]. The
important property of V, as was the case in [2], is the assumption that any direction can be
approximated arbitrarily by vectors taken from any subsequence of V. We make this precise
in Assumption 2.1

We will relax the smoothness assumptions in (1.6) by assuming that

f = fl + φ (2.3)

where fl is Lipschitz continuous.
Now let Isf = {ξsf

n } be the subset of I of iterations for which stencil failure holds. We
consider limit points of S at which φ → 0. We make this precise.

Definition 2.2. Let S = {ξn} be a convergent subsequence of Isf with limit x∗, corre-
sponding directions {Wn}, and scales {hn}. We say that x∗ is a smooth limit point of Isf

if

lim
n→∞

‖φ‖S(ξn,hn)

hn
= 0. (2.4)

Isf may be empty for methods which are not bound to a grid. Therefore we will assume
that Isf is nonempty for the remainder of this paper.

We now review the tools from nonsmooth analysis [12] that we will need to state and prove
the result for simple bound constraints. We will assume that fl is a Lipschitz continuous
real-valued function on X ⊂ RN . In the context of this paper, X = Ω if there are no
constraints other than simple bounds and X ⊂ Ω is the feasible set D otherwise.
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Following [12, 28], we define the generalized directional derivative of a Lipschitz contin-
uous function g at x ∈ X in the direction v as

g◦(x; v) = lim sup
y→x, y∈X

t↓0, y+tv∈X

g(y + tv)− g(y)
t

. (2.5)

We seek to show that if x∗ is a smooth limit point of Isf , then the necessary conditions
for optimality hold, i. e.

fo
l (x∗; v) ≥ 0 (2.6)

for all v ∈ TCl
Ω (x∗), the Clarke cone of directions pointing from x∗ into Ω.

2.2 Bound Constraints

The Clarke tangent cone is easy to describe if there are only simple bound constraints. If
x ∈ Ω, the Clarke tangent cone at x is

TCl
Ω (x) = {v ∈ RN |x + tv ∈ Ω for all t > 0 sufficiently small},

is the same set as the Hypertangent cone we will define in § 2.3. In this case TCl
Ω (x) is the

closure of its interior for all x ∈ Ω (which is not the case for the more general situation we
discuss in § 2.3).

The convergence result is

Theorem 2.3. Assume that fl is Lipschitz continuous on Ω and that Assumption 2.1 holds.
Let S = {ξn} be a convergent subsequence of Isf with limit x∗, corresponding directions
{Wn}, and scales {hn}. Assume that x∗ is a smooth limit point of Isf . Then (2.6) holds.

Proof. By Assumption 2.1 and taking subsequences as needed there are directions wn ∈ Wn

such that
wn → u.

The definition of fo and the convergence of ξn to x∗ then imply that

fo
l (x∗;u) ≥ lim

n→∞
fl(ξn + hnu)− fl(ξn)

hn
. (2.7)

Since
fl(ξn + hnu) ≤ fl(ξn + hnwn) + λhn‖u− wn‖,

where λ is the Lipschitz constant of fl, we obtain

fl(ξn + hnu)− fl(ξn) ≥ fl(ξn + hnwn)− fl(ξn)− λhn‖wn − u‖

= fl(ξn + hnwn)− fl(ξn) + o(hn).
(2.8)

Since x∗ is a smooth limit point, (2.8) implies that

fl(ξn + hnwn)− fl(ξn) ≥ f(ξn + hnwn)− f(ξn)− 2‖φ‖S(ξn,hn)

= f(ξn + hnwn)− f(ξn) + o(hn).
(2.9)

Since stencil failure occurs at each ξn, we can combine (2.8) and (2.9) to obtain

fl(ξn + hnu)− fl(ξn)
hn

≥ o(1), (2.10)

and hence fo(x∗;u) ≥ 0.
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2.3 General Constraints

In this section we assume that f does not return a value outside of a set D ⊂ Ω. Sampling
methods often handle constraints, even simple bounds and linear constraints, by simply
returning ∞, NaN , or an artificial value [2, 24, 30, 31]. The results in this section do not
depend on the how infeasible points are processed, only that such points are flagged in a
way that eliminates them as candidates for the new point and declares stencil failure if the
current point is the best of all feasible points in the current stencil.

The geometry of D determines the set of admissible directions from x∗ and limits the
strength of the necessary conditions we will be able to prove. We do not give proofs of the
results in this section because the follow from Theorem 2.3 and the logic from [2].

We begin with the direct extension of Theorem 2.3. We define the hypertangent cone.

Definition 2.4. A vector v ∈ RN is said to be a hypertangent vector to the set D ⊂ RN

at the point x ∈ D if there exists a scalar ε > 0 such that

y + tw ∈ D for all y ∈ D ∩Bε(x), w ∈ Bε(v), and 0 < t < ε, (2.11)

where Bε(x) is the ball of radius ε centered at x. The set of hypertangent vectors to D at x
is called the hypertangent cone to D at x and is denoted by TH

D (x).

If x∗ is a smooth limit point of Isf we can show that fo(x∗; v) ≥ 0 for all v ∈ TH
D (x∗)

using the same arguments as in the proof of Theorem 2.3.

Theorem 2.5. Assume that fl is Lipschitz continuous on D and that Assumption 2.1 holds.
Let S = {ξn} be a convergent subsequence of Isf with limit x∗, corresponding directions
{Wn}, and scales {hn}. Assume that that x∗ is a smooth limit point of Isf . Then (2.6)
holds for all v ∈ TH

D (x∗).

For general constraints it is not the case that the closure of TH
D (x) is TCl

D (x), and hence
the conclusion of Theorem 2.5 is weaker that the full Clarke stationarity conditions. In the
case of simple bound constraints, TH

D (x∗) is non-empty, and its closure is TCl
D (x∗), so if

(2.6) holds for all v ∈ TH
D (x∗), it holds by continuity for all v ∈ TCl

D (x). This is not so in
the general case. To explore the new assumptions we follow [2], and use the more general
definitions of the Clarke and contingent cones [28, 12, 35] for this purpose.

We observe that if x∗ is in the interior of D, then TH
D (x∗) = RN and the results of § 2.2

can be applied. So the differences arise only when x∗ is on the boundary of D.

Definition 2.6. A vector v ∈ RN is said to be a Clarke tangent vector to the set D ⊂ RN

at the point x in the closure of D if for every sequence {yk} of elements of D that converges
to x and for every sequence of positive real numbers {tk} converging to zero, there exists a
sequence of vectors {wk} converging to v such that yk + tkwk ∈ D. The set TCl

D (x) of all
Clarke tangent vectors to D at x is called the Clarke tangent cone to D at x.

Definition 2.7. A vector v ∈ RN is said to be a tangent vector to the set D ⊂ RN at the
point x in the closure of D if there exists a sequence {yk} of elements of D that converges
to x and a sequence of positive real numbers {λk} for which v = limk λk(yk − x). The set
TCo
D (x) of all tangent vectors to D at x is called the contingent cone (or sequential Bouligand

tangent cone) to D at x.

The three cones are nested [2],

TH
D (x) ⊆ TCl

D (x) ⊆ TCo
D (x).
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We conclude by extending our results to differentiable functions. We first state a simple
observation (also made for MADS methods in [2]) that if the set D is regular (i. e. TCl

D (x) =
TCo
D (x)) at x∗, then smooth limit points of Isf are stationary with respect to the contingent

cone.

Corollary 2.8. Assume that fl is Lipschitz continuous on D and that Assumption 2.1 holds.
Let S = {ξn} be a convergent subsequence of Isf with limit x∗, corresponding directions
{Wn}, and scales {hn}. Assume that that x∗ is a smooth limit point of Isf .

If TH
D (x∗) 6= ∅, and if D is regular at x∗, then fo(x∗; v) ≥ 0 for all v ∈ TCo

D (x∗).

Our final result extends Corollary 2.8 to the case of smoother fl. We say that fl is
strictly differentiable at x if the generalized gradient at x

∂f(x) = {s ∈ RN | fo(x; v) ≥ vT s for all v ∈ RN }

is a single point, which we denote by ∇f(x). In this case

fo(x; v) = ∇f(x)T v,

for all v ∈ RN .
x is a contingent KKT stationary point of f on D if f is strictly differentiable at x and

−∇f(x)T v ≤ 0 for all v ∈ TCo
D (x∗).

We state the constraint qualifications needed to show that smooth limit points of Isf

are contingent KKT stationary points.

Theorem 2.9. Assume that fl is Lipschitz continuous on D, strictly differentiable at x∗,
and that Assumption 2.1 holds. Let S = {ξn} be a convergent subsequence of Isf with limit
x∗, corresponding directions {Wn}, and scales {hn}. Assume that x∗ is a smooth limit point
of Isf . If TH

D (x∗) 6= ∅, and if D is regular at x∗, then x∗ is a contingent KKT stationary
point of f over D.

Proof. As pointed out in [12, 2], strict differentiability of f at x∗ implies that ∇f(x∗)T v =
fo(x∗; v) for all v ∈ TCo

D (x∗). Thus, it follows from the previous corollary that −∇f(x∗)T v ≤
0 for all v in the contingent cone.
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